3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Chapter 3

Modifications to the Draft EIR

3.1 Introduction

This chapter of the Final EIR addresses modifications to the Draft EIR for the Berths 191-194 (Ecocem) Low-Carbon Cement Processing Facility Project (Proposed Project) at the Port of Los Angeles (Port). It presents all revisions related to public comments, as determined necessary by the lead agency (the Los Angeles Harbor Department or "LAHD"), for the following areas of the document:

- Executive Summary
- Chapter 2 Project Description
- Section 3.1 Air Quality
- Section 3.2, Biological Resources
- Section 3.5 Greenhouse Gases
- Section 3.8 Ground Transportation
- Chapter 4 Cumulative Analysis
- Appendix B Air Quality
- Appendix D-2 Noise Study
- Appendix E Soil Management Plan.

Any revisions to supporting documentation are also presented. The numbering format from the Draft EIR is maintained in the sections presented here. Only sections that have revisions are included; sections that have no revisions are not included. Readers are referred to the Draft EIR to view complete sections.

It should be noted that most of the changes are editorial in nature. None of the revisions results in changes to significance findings.

As provided in Section 15088(c) of the State California Environmental Quality Act (CEQA) Guidelines, responses to comments may take the form of a revision to a Draft EIR or may be a separate section in the Final EIR. This chapter complies with the latter of these two guidelines and provides changes to the Draft EIR in revision-mode text (i.e., deletions are shown with strikethrough and additions are shown with underline). These notations are meant to provide clarification, corrections, or minor revisions as needed as a result of public comments or because of changes in the Proposed Project since the release of the Draft EIR.

1	3.2	Changes to the Draft EIR
2		The following changes to the text as presented below are incorporated into the Final EIR.
3	3.2.1	Changes Made to the Executive Summary
4		In Sections ES.4.2.1 and 4.2.2 the following changes are made:
5		ES.4.2.1 Unavoidable Significant Impacts
6 7		This Draft EIR has determined that implementation of the Proposed Project would result in significant and unavoidable impacts related to:
8 9		• Air Quality: NOx emissions from operations for all analysis years; offsite ambient annual and 24-hr PM_{10} and 24-hr $PM_{2.5}$ concentrations for all analysis years.
10 11		 Greenhouse Gases: Greenhouse gas emissions would exceed the SCAQMD mass emissions thresholds in all three analysis years.
12 13		• Noise: Construction activities that would exceed ambient noise levels by 5dBA or more lasting more than 10 days in a 3-month period.
14 15		ES.4.2.2 Summary of Significant Impacts that Can Be Mitigated, Avoided, or Substantially Lessened
16 17		This Draft EIR has determined that implementation of the Proposed Project would result in significant impacts that can be mitigated related to:
18 19 20 21		 Biological Resources: substantial adverse effect, either directly or through habitat modification on any identified species. Implementation of MM BIO-1 pProtect mMarine mMammals would reduce a significant impact to less than significant.
22 23 24 25		 Greenhouse Gases: Greenhouse gas emissions would exceed the SCAQMD mass emissions thresholds in all three analysis years. Implementation of MM GHG-1 GHG Reduction Offsets would reduce a significant impact to less than significant.
26 27		In Section ES.4.2.4, Mitigation Measures, on page ES-28, three mitigation measures are added.
28 29 30		First, mitigation measures MM AQ-1 and MM AQ-2 (re-designated and revised from Lease Measures LM AQ-5 and LM AQ-6, respectively) are inserted in front of Biological Resources as shown:
31		Air Quality
32 33 34 35		LMM AQ-51: Vessel Speed Reduction Program (VSRP). 95100 percent of vessels calling at the Ecocem Dry Bulk Processing Facility willshall comply with the expanded VSRP atof 12 knots between 40 nautical miles (nm) from Point Fermin and the Precautionary Area, Vessel speed is confirmed by the Marine Exchange. Any vessel

experiencing a maritime emergency¹ that prevents compliance with the expanded VSRP may be exempt from this measure. If a maritime emergency were to occur, the vessel operators shall provide substantial evidence of a qualifying event to LAHD.

LMM AQ-62: Front End Loader Replacement Schedule. The tenant shall maintain a replacement schedule of replace the off-road diesel front end loader of every two years, where an The equivalent new piece that front end loader shall meets operational requirements and meets Tier 4 Final standards or cleaner or as required by state and/or local agencies, whichever is stricter, would be procured. During replacement, the following preference will be used for consideration: first preference for zero-emission equipment, a second preference for near-zero equipment (such as, hybrid or low-NOx equipment), and third for Tier 4 standards if zero or near-zero equipment is not feasible, provided that LAHD shall conduct engineering assessments to confirm that such equipment is capable of installation at the facility. The Tenant shall provide substantial evidence including, but not limited to, inventory reports of available equipment from manufacturers, to verify the availability and feasibility of equipment sought to be purchased in accordance with this measure.

Second, MM GHG-1 is inserted between Biological Resources and Noise as follows:

Greenhouse Gases

MM GHG-1: GHG Reduction Offsets. The Tenant shall be required to purchase and retire carbon offsets related to activities that reduce, avoid, destroy, or sequester an amount of GHG emissions in an off-site location to offset the equivalent amount of GHG emissions generated by the Project, with the exception of electricity consumption. The Tenant shall purchase and retire carbon offsets in an amount that would be the equivalent of the Project's GHG Emissions of 4,985 Metric Tons (MT) from first year of operation until 2049 and 4,073 MT from 2049 through the end of the term of the Permit. The Tenant shall purchase and retire carbon offsets on an annual basis, commencing after construction is complete and during the first year of operation. The LAHD is in the process of developing a Greenhouse Gas Program. The Program shall be used for GHG-reducing projects and programs approved by the Port of Los Angeles. If that Program is established during the term of the Permit, the Tenant shall have the option to offset the required amount of GHG emissions through a funding contribution to the Greenhouse Gas Program rather than towards purchasing carbon offsets from a CARB-recognized registry.

While the LAHD Greenhouse Gas Program is currently under development, the Tenant shall purchase and retire carbon offsets from a CARB-recognized offset registry as follows:

Carbon offsets: The Tenant shall purchase and retire carbon offsets from a CARB-recognized registry to ensure that offsets will result in real, permanent, additional, quantifiable, verifiable, and enforceable reductions. The carbon offsets shall be verifiable by LAHD and enforceable in accordance with the registry's applicable standards, practices, or protocols.

Maritime emergencies may include, but are not limited to, suspicious activity, drone/plane activity, security breaches or attempts, United States Coast Guard (USCG) safety/security/protection zone violations, crimes on land and water, navigation rule violations, vessels in distress, rescues, fires and emergencies, as defined by the Port of Los Angeles Mariners Guide.

1 2	The order of priority for purchasing (any one or more) carbon offsets shall be considered as follows:
3	i. Originating within the local area;
4	ii. Originating within the South Coast Air Basin;
5	iii. Originating within the state of California; or
6 7 8	iv. If sufficient local and in-state offsets are not available, the Tenant shall purchase conforming national offsets registered with a CARB-recognized registry.
9 10 11 12	Adjustment of Tenant's Required Offsets through Other Verified GHG Emission Reductions: The Tenant may pursue the following modifications to the Project's total estimated GHG emissions identified in this measure. These modifications may be pursued in conjunction with or independent of each other on an annual basis. (a) Adjustment in Natural Gas Consumption
14	In the event natural gas consumption differs from the assumptions or is offset in the
15 16 17 18 19 20 21	future due to changes in technology, efficiency, reduced operations, or for any other purpose, the Tenant may request an adjustment of the required offsets based on actual natural gas consumption, as verified through utility bills, rather than projected future usage. To adjust the Tenant's required number of offsets for purchase, the Tenant shall make a request in writing to the LAHD for review and approval for the time period under consideration and shall provide copies of utility bills showing the amount of natural gas consumed at the project site along with a revised greenhouse gas emission calculation performed by an independent, qualified third-party verifier.
23	<u>or</u>
24	(b) Adjustment in GHG Emissions
25 26 27 28 29 30 31 32 33 34 35 36 37	In the event of changes in activities, efficiency, reduced operations, or for any other purpose, the Tenant may request an adjustment of the required carbon offsets based on an evaluation of actual GHG emissions rather than future projected GHG emission calculations. To adjust the Tenant's required number of carbon offsets for purchase, the Tenant shall make a request in writing to the LAHD for review and approval for the calendar year under consideration and shall submit a report within 60 days that quantifies the actual greenhouse gas emissions by an expert or an independent, qualified third-party. The evaluation of actual greenhouse gas emissions must be performed using acceptable industry standards and protocols for all sources that were included in the Project's GHG emissions calculations under MM GHG-1. LAHD review shall occur within 30 days of receipt of the submitted report. Any expenses incurred by LAHD in processing the Tenant's request, including retaining an independent third-party verifier to peer review the report, shall be borne by the Tenant.
38	<u>or</u>
39	(c) Implementation of Additional GHG Reduction Methods
40 41 42 43 44	In addition, the Tenant may request a reevaluation of required carbon offsets to be purchased according to this paragraph. The Tenant may implement different and additional GHG reduction methods that are equally or more effective if new technology and/or other feasible measures become available during the term of the Permit. To adjust the Tenant's required number of carbon offsets for purchase, the Tenant shall identify
45	such additional GHG reduction actions and must quantify the GHG emission reductions

from these GHG reduction actions by an independent, qualified third-party verifier. Once
the GHG reduction actions are found to be feasible and are reviewed and approved by
LAHD staff, the Tenant may request that LAHD reduce its required purchase of carbon offsets by the equivalent amount of demonstrated reduction. Any expenses incurred by
LAHD in processing the Tenant's request, including retaining a third-party verifier, shall be borne by the Tenant.

Third, MM NOI-3 is added under Noise as follows:

MM NOI-3: Usage of Wooden Cushion Block. The construction contractor shall use a

MM NOI-3: Usage of Wooden Cushion Block. The construction contractor shall use a wooden cushion block to dampen the noise impact from pile driving. This wooden cushion block shall be placed between the pile and hammer. It shall only be applicable to driving concrete piles.

In Section ES.4.2.5, Lease Measures and Standard Conditions of Approval, the following changes are made

Air Quality

Lease measures LM AQ-1 through LM AQ-3 are revised as follows:

LM AQ-1: Fleet Modernization for Cementitious Material Handling Equipment. Tenant shall replace cementitious material handling equipment used for operation with the cleanest available equipment; that meets operating and safety requirements, any time new or replacement equipment is purchased, with a first preference for zero-emission equipment, a second preference for near-zero equipment (such as, hybrid or low-NOx equipment), and third for the cleanest available if zero or near-zero equipment is not feasible, provided that LAHD shall conduct engineering assessments to confirm that such equipment is capable of installation at the facility. Tenant may make a recommendation to LAHD for LAHD's concurrence as to which equipment is available and is feasible The Tenant shall provide substantial evidence including, but not limited to, inventory reports of available equipment from manufacturers, to verify the availability and feasibility of equipment sought to be purchased in accordance with this measure.

Starting one year after the effective date of a new entitlement between the Tenant and the LAHD, Tenant shall submit to the Port an equipment inventory and 5-year procurement plan for new equipment, and infrastructure, and willshall update the procurement plan annually in order to assist with planning for transition of equipment to zero emissions in accordance with the foregoing paragraph.

LM AQ-2: Periodic Review of New Technology and Regulations. The Tenant willshall conduct a periodic review of any Port-identified or other new emissions-reducing technology and report to the LAHD on the feasibility of any new technology advancements that may reduce emissions not less frequently than once every five years following the effective date of the entitlement. The technology review would be subject to approval by LAHD and would involve consulting with appropriate resources (e.g., consultants, engineers, regulators) to validate the findings. If the review demonstrates the new technology would be effective in reducing emissions and is determined by the LAHD to be feasible, including but not limited to, financial, technical and operational considerations, the Tenant willshall implement the new air quality technological advancements, subject to mutual agreement, which shall not be unreasonably withheld by the Tenant.

LM AQ-3: At-Berth Vessel Emissions Control Pilot Study. The Tenant will shall complete a pilot study to evaluate the feasibility of implementing an at-berth vessel

42

43

emissions capture and control systemstrategy within 3 years of entitlement execution. If proven to be feasible, including but not limited to financial, technical, and operational considerations, and upon California Air Resources Board certification, the Tenant willshall be required to implement the technology when operationally feasible as described in Tenant's pilot study. Implementation of the technology required under Tthis measure will rely on the Tenant's pilot study evaluation and determination, and is subject to mutual agreement between the Tenant and LAHD, implementation of which shall not be unreasonably withheld or unreasonably required.

Lease measures LM-AQ-5 and LM AQ-6 are deleted, having been re-designated as mitigation measures as described above. New lease measures LM AQ-5 through LM AQ-7 are added as follows:

LM AQ-5: Fleet Modernization for On-Road Trucks During Construction.

- 1. <u>Trucks hauling materials such as debris or fill shall be fully covered while operating off Port property.</u>
- 2. Idling shall be restricted to a maximum of 5 minutes when not in use.
- 3. <u>Tier Specifications:</u>
 - From January 1, 2024, to December 31, 2026: All on-road heavy-duty diesel trucks with a gross vehicle weight rating (GVWR) of 19,500 pounds or greater used on site or to transport materials to and from the site shall comply with 2012 emission standards, or newer, where available.
 - Post January 1, 2027: All on-road heavy duty diesel trucks used on site or to transport materials to and from the site shall comply with 2015 emission standards, or newer, where available.
 - A copy of each unit's certified U.S. Environmental Protection Agency (USEPA) rating, Best Available Control Technology (BACT) documentation, and CARB or South Coast Air Quality Management District (SCAQMD) operating permit shall be provided at the time of mobilization of each applicable unit of equipment.

LM AQ-6: Fleet Modernization for Construction Equipment.

- 1. Construction equipment shall incorporate, where feasible, emissions savings technology such as hybrid drives and specific fuel economy standards.
- 2. Idling shall be restricted to a maximum of 5 minutes when not in use.
- 3. Tier Specifications:
 - All offroad diesel-powered construction equipment greater than 50 horsepower shall meet the Tier 4 emission standards, where available. In addition, all construction equipment shall be outfitted with BACT devices certified by CARB. Any emissions control device used by the contractor shall achieve emissions reductions that are no less than what could be achieved by a Level 3 diesel emissions control strategy for a similarly sized engine as defined by CARB regulations.
 - A copy of each unit's certified tier specification, BACT documentation, and CARB or SCAQMD operating permit shall be provided at the time of mobilization of each applicable unit of equipment.

1 2 3	The construction equipment measures shall be met, unless one of the following circumstances exist and the contractor is able to provide proof that any of these circumstances exists:
4	A piece of specialized equipment is unavailable in a controlled form within
5	the state of California, including through a leasing agreement.
6	• A contractor has applied for necessary incentive funds to put controls on a
7	piece of uncontrolled equipment planned for use on the project, but the
8	application process is not yet approved, or the application has been approved
9	but funds are not yet available.
10	 A contractor has ordered a control device for a piece of equipment planned
	for use on the project, or the contractor has ordered a new piece of controlled
11 12 13 14	equipment to replace the uncontrolled equipment, but that order has not been
13	completed by the manufacturer or dealer. In addition, for this exemption to
14	apply, the contractor must attempt to lease controlled equipment to avoid
15	using uncontrolled equipment, but no dealer within 200 miles of the project
16	has the controlled equipment available for lease.
17	LM AQ-7: Renewable Diesel Fuel for Construction Equipment and On-
18	Road Trucks
19	The Tenant shall fuel diesel-powered construction equipment and on-road trucks with
20	renewable diesel fuel during construction. The renewable diesel product that is used shall
21	comply with American Society for Testing and Materials (ASTM) fuel standards.
22	In the event of renewable diesel supply challenges or disruptions, the Tenant shall use
23	ultra-low sulfur diesel (ULSD) as a secondary fuel. The Tenant shall demonstrate to
24	LAHD substantial evidence of a supply disruption or event in a timely manner.
25	Greenhouse Gas
26	LM GHG-1: GHG Credit Fund is deleted, having been replaced by MM GHG-1 GHG
27	Reduction Offsets as described above.
28	On page ES-30, the final sentence of the Greenhouse Gas subsection is revised as
29	follows:
30	LMs AQ-1, through LM AQ-27, LM AQ-3, LM AQ-4, LM AQ-5, and LM AQ-6 are also
31	expected to have co-benefits for greenhouse gases.
32	Section ES.4.2.6 is revised to acknowledge that implementation of MM GHG-1 would
33	reduce impacts to less than significant.
34	On p. ES-30:
	•
35	The Proposed Project and/or the Alternatives would make cumulatively considerable
36	contributions to significant cumulative impacts in the following resource areas under
37	CEQA:
38	 Air Quality and Meteorology;
39	• Noise;
40	Greenhouse Gas Emissions.
11	On p. ES-31:
	OII p. 110 51.

1	Proposed Project Cumulatively Considerable Impacts
2 3	The following are cumulatively considerable and unavoidable impacts for the Proposed Project after mitigation (if applicable, as described in section ES 5.2.4):
4	Greenhouse Gas Emissions
5 6 7	 GHG emissions would add to existing global GHG levels and, therefore, would make a cumulatively considerable and unavoidable contribution to a significant cumulative impact relative to climate change.
8	On page ES-32:
9 10 11 12	 The Reduced Project Alternative (Alternative 2) would make a cumulatively considerable and unavoidable contribution to a significant cumulative impact for cancer risk for residential, sensitive, and occupational receptors, for occupational chronic and acute hazard indices, and for population cancer burden.
13	Greenhouse Gas Emissions
14 15 16 17	 GHG emissions from the Reduced Project Alternative (Alternative 2) would add to existing levels and, therefore, would make a cumulatively considerable and unavoidable contribution to a significant cumulative impact relative to climate change
18 19	Alternative 3 (Product Import Terminal Alternative) Cumulatively Considerable Impacts
20 21 22	Like the Proposed Project, the Product Import Terminal (Alternative 3) would make cumulatively considerable and unavoidable contributions to significant cumulative impact after mitigation in the following resource areas:
23	Air Quality and Meteorology
24 25 26 27 28 29 30 31 32 33 34 35	 Emissions from the Product Import Terminal Alternative (Alternative 3) construction would make a cumulatively considerable and unavoidable contribution to a significant cumulative impact for NOx emissions. Emissions from the Product Import Terminal Alternative (Alternative 3) operations would make a cumulatively considerable and unavoidable contribution to a significant cumulative impact for NOx emissions and for offsite ambient pollutant concentrations of PM₁₀. The Product Import Terminal Alternative (Alternative 3) would make a cumulatively considerable and unavoidable contribution to a significant cumulative impact for cancer risk for residential, sensitive, and occupational receptors, for occupational chronic and acute hazard indices, and for population cancer burden.
36	Greenhouse Gas Emissions
37 38 39 40	 GHG emissions from the Reduced Project Alternative (Alternative 2) would add to existing levels and, therefore, would make a cumulatively considerable and unavoidable contribution to a significant cumulative impact relative to climate change.
41	On p. ES-33 Greenhouse Gases is added to the bulleted list after Geology and Soils.
42	Table ES-2 is revised as follows:

1 Table ES-2: Summary of Impacts and Mitigation for the Proposed Project and Alternatives

Alternative	Environmental Impacts	Impact Determination	Applied Mitigation/ and Lease Measures or Controls	Residual Impacts			
3.1 Air Quality	3.1 Air Quality						
Proposed Project	AQ-1: The Proposed Project would result in construction-related emissions that exceed an SCAQMD localized threshold of significance in Table 3.1-4	Less than significant	Mitigation not required although-lease measures LM AQ-4: Los Angeles Harbor Department (LAHD) Sustainable Construction Guidelines, LM AQ-5: Fleet Modernization for On-Road Trucks During Construction, LM AQ-6: Fleet Modernization for Construction Equipment, and LM AQ-7: Renewable Diesel Fuel for Construction Equipment and On-Road Trucks would be applied.	Less than significant			
	AQ-2: Proposed Project construction would result in off-site ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.1-6	Less than significant	Mitigation not required although lease measures LM AQ-4: Los Angeles Harbor Department (LAHD) Sustainable Construction Guidelines, LM AQ-5: Fleet Modernization for On-Road Trucks During Construction, LM AQ-6: Fleet Modernization for Construction Equipment, and LM AQ-7: Renewable Diesel Fuel for Construction Equipment and On-Road Trucks would be applied.	Less than significant			
	AQ-3: The Proposed Project would result in operational emissions that exceed an SCAQMD regional threshold of significance in Table 3.1-7	Operation emissions would be significant for NOx in all operational years	LMM AQ-15: Vessel Speed Reduction Program (VSRP) LMM AQ-26: Front End Loader Replacement Schedule LM AQ-1: Fleet Modernization for Cementitious Material Handling Equipment LM AQ-2: Periodic Review of New Technology LM AQ-3: At-Berth Vessel Emissions Control Pilot Study LM AQ-5: Vessel Speed Reduction Program (VSRP) LM AQ-6: Front End Loader Replacement Schedule	Impacts would remain significant and unavoidable for NOx in all operational years			

Alternative	Environmental Impacts	Impact Determination	Applied Mitigation/ and Lease Measures or Controls	Residual Impacts
	AQ-4: Proposed Project operations would result in offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.1-8	Operation-related ambient pollutant concentrations would be significant in all years for annual and 24-hr PM ₁₀ and 24-hr PM _{2.5}	MM AQ-1: Vessel Speed Reduction Program (VSRP) MM AQ-2: Front End Loader Replacement Schedule No additional mitigation measures applied: control measures AP-42 guidance and BACT for dust collection and bag filters applied LM AQ-1: Fleet Modernization for Cementitious Material Handling Equipment LM AQ-2: Periodic Review of New Technology. LM AQ-3: At-Berth Vessel Emissions Control Pilot Study LM AQ-5: Vessel Speed Reduction Program (VSRP) LM AQ-6: Front End Loader Replacement Schedule	Impacts would remain significant and unavoidable for operation-related ambient pollutant concentrations in all years for annual and 24-hr PM ₁₀ and 24-hr PM _{2.5}
	AQ-5: The Proposed Project would expose receptors to significant levels of TACs	Less than significant	Mitigation not required although mitigation measures MM AQ-1 and MM AQ-2 and lease measures LM AQ-1, LM AQ-2, LM AQ-3, and LM AQ-4, LM AQ-5 and LM AQ-6 would be applied	Less than significant
	AQ-6: The Proposed Project would not conflict with or obstruct implementation of an applicable AQMP	Less than significant	No mitigation is required	Less than significant
Alternative 1 – No Project	AQ-1: Alternative 1 would not result in construction-related emissions that exceed an SCAQMD threshold of significance in Table 3.1-4	No impact	Not applicable	No impact
	AQ-2: Alternative 1 construction would not result in off-site ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.1-6	No impact	Not applicable	No impact
	AQ-3: Alternative 1 would result in operational emissions that exceed an SCAQMD threshold of significance in Table 3.1-7	No impact	Not applicable	No impact

Alternative	Environmental Impacts	Impact Determination	Applied Mitigation/ and Lease Measures or Controls	Residual Impacts
	AQ-4: Alternative 1 operations would result in offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.1-8	No impact	Not applicable	No impact
	AQ-5: Alternative 1 would not expose receptors to significant levels of TACs	No impact	Not applicable	No impact
	AQ-6: Alternative 1 would not conflict with or obstruct implementation of an applicable AQMP	No impact	Not applicable	No impact
Alternative 2 – Reduced Project	AQ-1: Alternative 2 would not result in construction-related emissions that exceed an SCAQMD threshold of significance in Table 3.1-4	Less than significant	Mitigation not required although lease measures LM AQ-4: Los Angeles Harbor Department (LAHD) Sustainable Construction Guidelines, LM AQ-5: Fleet Modernization for On-Road Trucks During Construction, LM AQ-6: Fleet Modernization for Construction Equipment, and LM AQ-7: Renewable Diesel Fuel for Construction Equipment and On-Road Trucks would be applied.	Less than significant
	AQ-2: Alternative 2 construction would result in off-site ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.1-6	Less than significant	Mitigation not required although lease measures LM AQ-4: Los Angeles Harbor Department (LAHD) Sustainable Construction Guidelines, LM AQ-5: Fleet Modernization for On-Road Trucks During Construction, LM AQ-6: Fleet Modernization for Construction Equipment, and LM AQ-7: Renewable Diesel Fuel for Construction Equipment and On-Road Trucks would be applied.	Less than significant
	AQ-3: Alternative 2 would result in operational emissions that exceed an SCAQMD threshold of significance in Table 3.1-7	Operational emissions would be significant for NOx in all years	LMM AQ-15: Vessel Speed Reduction Program (VSRP) LMM AQ-26: Front End Loader Replacement Schedule LM AQ-1: Fleet Modernization for Cementitious Material Handling Equipment LM AQ-2: Periodic Review of New Technology	Operational emissions would remain significant and unavoidable for NOx in all years

Environmental Impacts	Impact Determination	Applied Mitigation and Lease Measures or Controls	Residual Impacts
		LM AQ-3: At-Berth Vessel Emissions Control Pilot Study LM AQ-5: Vessel Speed Reduction Program (VSRP) LM AQ-6: Front End Loader Replacement Schedule	
AQ-4: Alternative 2 operations would result in offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.1-8	Operation-related ambient pollutant concentrations would be significant for annual and 24-hr PM ₁₀ in all years and 24-hr PM _{2.5} in 2027 and 2049	MM AQ-1: Vessel Speed Reduction Program (VSRP) MM AQ-2: Front End Loader Replacement Schedule No additional mitigation measures applied; control measures AP-42 guidance and BACT for dust collection and bag filters already applied LM AQ-1: Fleet Modernization for Cementitious Material Handling Equipment LM AQ-2: Periodic Review of New Technology LM AQ-3: At-Berth Vessel Emissions Control Pilot Study LM AQ-5: Vessel Speed Reduction Program (VSRP) LM AQ-6: Front End Leader Replacement	Impacts would remain significant and unavoidable for operation-related ambient pollutant concentrations for annual and 24-hr PM ₁₀ in all years and 24-hr PM _{2.5} in 2027 and 2049
AQ-5: Alternative 2 would not expose receptors to significant levels of TACs	Health risks would be below the significance threshold for all receptor types.	Mitigation not required although <u>mitigation</u> measures MM AQ-1 and MM AQ-2 and lease measures LM AQ-1, LM AQ-2, LM AQ-3, and LM AQ-4, LM AQ-5 and LM AQ-6 would be applied	Less than significant
AQ-6: Alternative 2 would not conflict with or obstruct implementation of an applicable AQMP	Less than significant	No mitigation required	Less than significant
AQ-1: Alternative 3 would not result in construction-related emissions that exceed an SCAQMD threshold of significance in Table 3.1-4	Less than significant	Mitigation not required although lease measures LM AQ-4: Port of Los Angeles Harbor Department (LAHD) Sustainable Construction Guidelines, LM AQ-5: Fleet Modernization for On-Road Trucks During Construction, LM AQ-6: Fleet Modernization for Construction Equipment and	Less than significant
	AQ-4: Alternative 2 operations would result in offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.1-8 AQ-5: Alternative 2 would not expose receptors to significant levels of TACs AQ-6: Alternative 2 would not conflict with or obstruct implementation of an applicable AQMP AQ-1: Alternative 3 would not result in construction-related emissions that exceed an SCAQMD threshold of	AQ-4: Alternative 2 operations would result in offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.1-8 AQ-5: Alternative 2 would not expose receptors to significant levels of TACs AQ-6: Alternative 2 would not conflict with or obstruct implementation of an applicable AQMP AQ-1: Alternative 3 would not result in construction-related ambient pollutant concentrations would be significant for annual and 24-hr PM ₁₀ in all years and 24-hr PM _{2.5} in 2027 and 2049 Health risks would be below the significance threshold for all receptor types. Less than significant Less than significant construction-related emissions that exceed an SCAQMD threshold of	Determination Permination I M AQ-3: At-Berth Vessel Emissions Control Pilot Study LM AQ-5: Vessel Speed Reduction Program (VSRP) LM AQ-6: Front End Loader Replacement Schedule AQ-4: Alternative 2 operations would result in offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.1-8 AQ-4: Alternative 2 would not expose receptors to significant levels of TACs AQ-5: Alternative 2 would not conflict with or obstruct implementation of an applicable AQMP AQ-6: Alternative 3 would not result in construction-related ambient pollutant concentrations would be significant levels of TACs AQ-6: Alternative 2 would not conflict with or obstruct implementation of an applicable AQMD threshold of significance in Table 3.1-4 AQ-6: Alternative 3 would not result in construction-related emissions that exceed an SCAQMD threshold of significance in Table 3.1-4 AQ-6: Front End Loader Replacement Schedule MMAQ-1: Vessel Speed Reduction Program (VSRP) MM AQ-2: Periodic Review of New Technology LM AQ-3: At-Berth Vessel Emissions Control Pilot Study MM AQ-1: Fleet Modernization for Cementitious Material Handling Equipment LM AQ-2: Periodic Review of New Technology LM AQ-3: At-Berth Vessel Emissions Control Pilot Study MAQ-6: Front End Loader Replacement Schedule AQ-6: Front End Loader Replacement MAQ-1: Fleet Modernization for Cementitious Material Handling Equipment MAQ-6: Front End Loader Replacement MAQ-1: Fleet Modernization for Cementitious Material Handling Equipment MAQ-6: Front End Loader Replacement MAQ-6: Front End Loader Replacement MAQ-1: Fleet Modernization for Cementitious Material Handling Equipment MAQ-6: Front End Loader Replacement MAQ-1: Fleet Modernization for Cementitious Material Handling Equipment MAQ-6: Front End Loader Replacement MAQ-6: Front

Alternative	Environmental Impacts	Impact Determination	Applied Mitigation/ and Lease Measures or Controls	Residual Impacts
			Construction Equipment and On-Road Trucks would be applied	
	AQ-2: Alternative 3 construction would result in off-site ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.1-6	Less than significant	Mitigation not required although LM AQ-4: Port of-Los Angeles Harbor Department (LAHD) Sustainable Construction Guidelines, LM AQ-5: Fleet Modernization for On-Road Trucks During Construction, LM AQ-6: Fleet Modernization for Construction Equipment, and LM AQ-7: Renewable Diesel Fuel for Construction Equipment and On-Road Trucks would be applied	Less than significant
	AQ-3: Alternative 3 would result in operational emissions that exceed an SCAQMD threshold of significance in Table 3.1-7	Operational emissions would be significant for NOx in all years	LM AQ-5: Vessel Speed Reduction Program (VSRP) LM AQ-6: Front End Loader Replacement Schedule LM AQ-1: Fleet Modernization for Cementitious Material Handling Equipment LM AQ-2: Periodic Review of New Technology LM AQ-3: At-Berth Vessel Emissions Control Pilot Study LM AQ-5: Vessel Speed Reduction Program (VSRP) LM AQ-6: Front End Loader Replacement Schedule	Impacts would remain significant and unavoidable for NOx in all years
	AQ-4: Alternative 3 operations would result in offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.1-8	Operation-related ambient pollutant concentrations would be significant for annual and 24-hour PM ₁₀ in all years	MM AQ-1: Vessel Speed Reduction Program (VSRP) MM AQ-2: Front End Loader Replacement Schedule No additional mitigation measures applied; control measure BACT for dust collection and bag filters already applied LM AQ-1: Fleet Modernization for Cementitious Material Handling Equipment LM AQ-2: Periodic Review of New Technology LM AQ-3: At-Berth Vessel Emissions Control Pilot Study LM AQ-5: Vessel Speed Reduction Program (VSRP)	Impacts would remain significant and unavoidable for operation-related ambient pollutant concentrations for annual and 24-hour PM ₁₀ in all years

Alternative	Environmental Impacts	Impact Determination	Applied Mitigation/ and Lease Measures or Controls	Residual Impacts
			LM AQ-6: Front End Loader Replacement Schedule LM AQ-5: Vessel Speed Reduction Program (VSRP)	
	AQ-5: Alternative 3 would not expose receptors to significant levels of TACs	Less than significant	Mitigation not required although mitigation measure MM AQ-1 and lease measures LM AQ-1, LM AQ-2, LM AQ-3, and LM AQ-4, and LM AQ-5 would be applied	Less than significant
	AQ-6: Alternative 3 would not conflict with or obstruct implementation of an applicable AQMP	Less than significant	No mitigation required	Less than significant
3.2 Biological	Resources			
Proposed Project	BIO-1: Would the Proposed Project have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service?	Potentially significant impact	MM BIO-1: Protect marine mammals , would be applied	Less than significant
Alternative 1 – No Project	BIO-1: Would Alternative 1 have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service?	No impact	Not applicable	No impact
Alternative 2 – Reduced Project	BIO-1: Would Alternative 2 have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the	Potentially significant impact	MM BIO-1: Protect Marine Mammals	Less than significant

Alternative	Environmental Impacts	Impact Determination	Applied Mitigation <u>and</u> Lease Measures or Controls	Residual Impacts
	California Department of Fish and Wildlife or U.S. Fish and Wildlife Service?			
Alternative 3 – Product Import Terminal	BIO-1: Would Alternative 3 have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service?	Potentially significant impact	MM BIO-1: Protect Marine Mammals	Less than significant
3.3 Energy				
Proposed Project	EN-1: Would the Proposed Project result in potentially significant environmental impacts due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation?	Less than significant	No mitigation is required	Less than significant
Alternative 1 – No Project	EN-1: Would Alternative 1 result in potentially significant environmental impacts due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation?	No impact	Not applicable	No impact
Alternative 2 – Reduced Project	EN-1: Would Alternative 2 result in potentially significant environmental impacts due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation?	Less than significant	No mitigation is required.	Less than significant

Alternative	Environmental Impacts	Impact Determination	Applied Mitigation/ and Lease Measures or Controls	Residual Impacts
Alternative 3 – Product Import Terminal	EN-1: Would Alternative 3 result in potentially significant environmental impacts due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation?	Less than significant	No mitigation is required.	Less than significant
3.4 Geology an	d Soils			
Proposed Project	GEO-1: Would the Proposed Project be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslides, lateral spreading, subsidence, liquefaction, or collapse?	Less than significant	No mitigation is required	Less than significant
Alternative 1 – No Project	GEO-1: Would Alternative 1 be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslides, lateral spreading, subsidence, liquefaction, or collapse?	No impact	Not applicable	No impact
Alternative 2 – Reduced Project	GEO-1: Would Alternative 2 be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslides, lateral spreading, subsidence, liquefaction, or collapse?	Less than significant	No mitigation is required	Less than significant
Alternative 3 – Product Import Terminal	GEO-1: Would Alternative 3 be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslides, lateral spreading, subsidence, liquefaction, or collapse?	Less than significant	No mitigation is required	Less than significant

Alternative	Environmental Impacts	Impact Determination	Applied Mitigation/ and Lease Measures or Controls	Residual Impacts
Proposed Project	GHG-1: Would the Proposed Project generate GHG emissions, either directly or indirectly, may have a significant impact on the environment?	GHG emissions would be significant under CEQA in 2025, 2027 and 2049 analysis years	LMM GHG-1: GHG Credit Fund Reduction Offsets MM AQ-1: Vessel Speed Reduction Program (VSRP) MM AQ-2: Front End Loader Replacement Schedule LM AQ-1: Fleet Modernization for Cementitious Material Handling Equipment LM AQ-2: Periodic Review of New Technology LM AQ-3: At-Berth Vessel Emissions Control Pilot Study LM AQ-4: Pert of Los Angeles Harbor Department (LAHD) Sustainable Construction Guidelines LM AQ-5: Vessel Speed Reduction Program (VSRP) LM AQ-6: Front End Loader Replacement Schedule	GHG emissions impacts would be significant and unavoidable for all analyzed years Less than significant
Alternative 1 – No Project	GHG-1: Would Alternative 1 generate GHG emissions, either directly or indirectly, may have a significant impact on the environment?	No Impact	Not applicable	No Impact
Alternative 2 – Reduced Project	GHG-1: Would Alternative 2 generate GHG emissions, either directly or indirectly, may have a significant impact on the environment?	GHG emissions would be significant under CEQA in 2025, 2027 and 2049 analysis years	LMM GHG-1: GHG Credit Fund-Reduction Offsets LM AQ-1: Fleet Modernization for Cementitious Material Handling Equipment LM AQ-2: Periodic Review of New Technology LM AQ-3: At-Berth Vessel Emissions Control Pilot Study LM AQ-4: Pert of Los Angeles Harbor Department (LAHD) Sustainable Construction Guidelines MLM AQ-15: Vessel Speed Reduction Program (VSRP) MLM AQ-26: Front End Loader Replacement Schedule	GHG emissions impacts would be significant and unavoidable for analysis year 2027 Less than significant
Alternative 3 – Product Import Terminal	GHG-1: Would Alternative 3 generate GHG emissions, either directly or indirectly, may have a significant impact on the environment?	Less than significant	Mitigation not required; however, the following lease measures would be applied: LM AQ-1: Fleet Modernization for Cementitious Material Handling Equipment LM AQ-2: Periodic Review of New Technology	Less than significant

Alternative	Environmental Impacts	Impact Determination	Applied Mitigation/ and Lease Measures or Controls	Residual Impacts
			LM AQ-3: At-Berth Vessel Emissions Control Pilot Study LM AQ-4: Port of Los Angeles Harbor Department (LAHD) Sustainable Construction Guidelines would be applied MLM AQ-15: Vessel Speed Reduction Program (VSRP)	
3.6 Land Use				
Proposed Project	LU-1: Would the Proposed Project cause a significant environmental impact due to a conflict with any land use plan, policy, or regulation adopted for the purpose of avoiding or mitigating an environmental impact?	Less than significant	No mitigation is required	Less than significant
Alternative 1 – No Project	LU-1: Would Alternative 1 cause a significant environmental impact due to a conflict with any land use plan, policy, or regulation adopted for the purpose of avoiding or mitigating an environmental impact?	Less than significant	Not applicable	Less than significant
Alternative 2 – Reduced Project	LU-1: Would Alternative 2 cause a significant environmental impact due to a conflict with any land use plan, policy, or regulation adopted for the purpose of avoiding or mitigating an environmental impact?	Less than significant	No mitigation is required	Less than significant
Alternative 3 – Product Import Terminal	LU-1: Would Alternative 3 cause a significant environmental impact due to a conflict with any land use plan, policy, or regulation adopted for the purpose of avoiding or mitigating an environmental impact?	Less than significant	No mitigation is required	Less than significant
3.7 Noise				
Proposed Project	NOI-1: Would the Proposed Project result in generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or			

Alternative	Environmental Impacts	Impact Determination	Applied Mitigation <u>and</u> Lease Measures or Controls	Residual Impacts
	noise ordinance, or applicable standards of other agencies?			
	NOI-1a: Daytime construction activities lasting more than 10 days in a 3-month period that would exceed existing ambient exterior noise levels by 5 dBA or more at a noise-sensitive/receptor	Significant	MM NOI-1: Noise Barriers Adjacent to Pile Driving Activities MM NOI-2: Noise Reduction of Landside Pile Driving MM NOI-3: Usage of Wooden Cushion Block	Significant and unavoidable
	NOI-1b: Construction activities could result in noise levels that would exceed the ambient noise level by 5 dBA at noise-sensitive receptors between the hours of 9:00 p.m. and 7:00 a.m., Monday through Friday, before 8:00 a.m. or after 6:00 p.m. on Saturday, or at any time on Sunday	Significant	MM NOI-1: Noise Barriers Adjacent to Pile Driving Activities MM NOI-2: Noise Reduction of Landside Pile Driving MM NOI-3: Usage of Wooden Cushion Block	Significant and unavoidable
	NOI-1c: For operational noise, a significant noise impact would occur if project operations cause the ambient noise level measured at the property line of affected uses (i.e., sensitive receptors) to increase by 3 dBA in CNEL to or within the 'normally unacceptable' or 'clearly unacceptable category,' or any increase in CNEL 5 dBA or greater	Less than significant	No mitigation is required	Less than significant
	NOI-1d: Would the Proposed Project result in generation of excessive groundborne vibration or groundborne noise levels?	Less than significant	No mitigation is required	Less than significant
Alternative 1 – No Project	NOI-1: Would Alternative 1 result in generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise			

Alternative	Environmental Impacts	Impact Determination	Applied Mitigation/ and Lease Measures or Controls	Residual Impacts
	ordinance, or applicable standards of other agencies?			
	NOI-1a: Daytime construction activities lasting more than 10 days in a 3-month period that would exceed existing ambient exterior noise levels by 5 dBA or more at a noise-sensitive/receptor	No impact	Not applicable	No impact
	NOI-1b: Construction activities could result in noise levels that would exceed the ambient noise level by 5 dBA at noise-sensitive receptors between the hours of 9:00 p.m. and 7:00 a.m., Monday through Friday, before 8:00 a.m. or after 6:00 p.m. on Saturday, or at any time on Sunday	No impact	Not applicable	No impact
	NOI-1c: For operational noise, a significant noise impact would occur if project operations cause the ambient noise level measured at the property line of affected uses (i.e., sensitive receptors) to increase by 3 dBA in CNEL to or within the 'normally unacceptable' or 'clearly unacceptable category,' or any increase in CNEL 5 dBA or greater	No impact	Not applicable	No impact
	NOI-1d: Would Alternative 1 result in generation of excessive groundborne vibration or groundborne noise levels?	No impact	Not applicable	No impact
Alternative 2 – Reduced Project	NOI-1: Would Alternative 2 result in generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?			

Alternative	Environmental Impacts	Impact Determination	Applied Mitigation/ and Lease Measures or Controls	Residual Impacts
	NOI-1a: Daytime construction activities lasting more than 10 days in a 3-month period that would exceed existing ambient exterior noise levels by 5 dBA or more at a noise-sensitive/receptor	Significant	MM NOI-1: Noise Barriers Adjacent to Pile Driving Activities MM NOI-2: Noise Reduction of Landside Pile Driving MM NOI-3: Usage of Wooden Cushion Block	Significant and unavoidable
	NOI-1b: Construction activities could result in noise levels that would exceed the ambient noise level by 5 dBA at noise-sensitive receptors between the hours of 9:00 p.m. and 7:00 a.m., Monday through Friday, before 8:00 a.m. or after 6:00 p.m. on Saturday, or at any time on Sunday	Significant	MM NOI-1: Noise Barriers Adjacent to Pile Driving Activities MM NOI-2: Noise Reduction of Landside Pile Driving MM NOI-3: Usage of Wooden Cushion Block	Significant and unavoidable
	NOI-1c: For operational noise, a significant noise impact would occur if project operations cause the ambient noise level measured at the property line of affected uses (i.e., sensitive receptors) to increase by 3 dBA in CNEL to or within the 'normally unacceptable' or 'clearly unacceptable category,' or any increase in CNEL 5 dBA or greater	Less than significant	No mitigation is required	Less than significant
	NOI-1d: Would Alternative 2 result in generation of excessive groundborne vibration or groundborne noise levels?	Less than significant	No mitigation is required	Less than significant
Alternative 3 – Product Import Terminal	NOI-1: Would Alternative 3 result in generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?			

Alternative	Environmental Impacts	Impact Determination	Applied Mitigation and Lease Measures or Controls	Residual Impacts
	NOI-1a: Daytime construction activities lasting more than 10 days in a 3-month period that would exceed existing ambient exterior noise levels by 5 dBA or more at a noise-sensitive/receptor	Significant	MM NOI-1: Noise Barriers Adjacent to Pile Driving Activities MM NOI-2: Noise Reduction of Landside Pile Driving MM NOI-3: Usage of Wooden Cushion Block	Significant and unavoidable
	NOI-1b: Construction activities could result in noise levels that would exceed the ambient noise level by 5 dBA at noise-sensitive receptors between the hours of 9:00 p.m. and 7:00 a.m., Monday through Friday, before 8:00 a.m. or after 6:00 p.m. on Saturday, or at any time on Sunday	Significant	MM NOI-1: Noise Barriers Adjacent to Pile Driving Activities MM NOI-2: Noise Reduction of Landside Pile Driving MM NOI-2: Usage of Wooden Cushion Block	Significant and unavoidable
	NOI-1c: For operational noise, a significant noise impact would occur if project operations cause the ambient noise level measured at the property line of affected uses (i.e., sensitive receptors) to increase by 3 dBA in CNEL to or within the 'normally unacceptable' or 'clearly unacceptable category,' or any increase in CNEL 5 dBA or greater	Less than significant	No mitigation is required	Less than significant
	NOI-1d: Would Alternative 3 result in generation of excessive groundborne vibration or groundborne noise levels?	Less than significant	No mitigation is required	Less than significant
3.8 Ground Tr	ansportation			
Proposed Project	TRANS-1: Would the Proposed Project conflict with a program, plan, ordinance or policy addressing the circulation system, including transit, roadway, bicycle and pedestrian facilities?	No impact	No mitigation is required	No impact
	TRANS-2: Would the Proposed Project conflict or be inconsistent with CEQA Guidelines section 15064.3, subdivision (b)?	No impact	No mitigation is required	No impact

Alternative	Environmental Impacts	Impact Determination	Applied Mitigation/ and Lease Measures or Controls	Residual Impacts
	TRANS-3: Would the Proposed Project substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?	No impact	No mitigation is required	No impact
	TRANS-4: Would the Proposed Project result in inadequate emergency access?	No impact	No mitigation is required	No impact
Alternative 1 – No Project	TRANS-1: Would Alternative 1 conflict with a program, plan, ordinance or policy addressing the circulation system, including transit, roadway, bicycle and pedestrian facilities?	No impact	Not applicable	No impact
	TRANS-2: Would Alternative 1 conflict or be inconsistent with CEQA Guidelines section 15064.3, subdivision (b)?	No impact	Not applicable	No impact
	TRANS-3: Would Alternative 1 substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?	No impact	Not applicable	No impact
	TRANS-4: Would Alternative 1 result in inadequate emergency access?	No impact	Not applicable	No impact
Alternative 2 – Reduced Project	TRANS-1: Would Alternative 2 conflict with a program, plan, ordinance or policy addressing the circulation system, including transit, roadway, bicycle and pedestrian facilities?	No Impact	No mitigation is required	No Impact
	TRANS-2: Would Alternative 2 conflict or be inconsistent with CEQA Guidelines section 15064.3, subdivision (b)?	No impact	No mitigation is required	No impact

Alternative	Environmental Impacts	Impact Determination	Applied Mitigation and Lease Measures or Controls	Residual Impacts
	TRANS-3: Would Alternative 2 substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?	No impact	No mitigation is required	No impact
	TRANS-4: Would Alternative 2 result in inadequate emergency access?	No impact	No mitigation is required	No impact
Alternative 3 – Product Import Terminal	TRANS-1: Would Alternative 3 conflict with a program, plan, ordinance or policy addressing the circulation system, including transit, roadway, bicycle and pedestrian facilities?	No Impact	No mitigation is required	No Impact
	TRANS-2: Would Alternative 3 conflict or be inconsistent with CEQA Guidelines section 15064.3, subdivision (b)?	No impact	No mitigation is required	No impact
	TRANS-3: Would Alternative 3 substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?	No impact	No mitigation is required	No impact
	TRANS-4: Would Alternative 3 result in inadequate emergency access?	No impact	No mitigation is required	No impact
3.9 Tribal Cultu	ural Resources			
Proposed Project	TCR-1: Would the Proposed Project cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code Section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is i.listed or eligible for listing in the California Register of	Less than significant	No mitigation is required but SC TCR-1 would be employed	Less than significant

Alternative	Environmental Impacts	Impact Determination	Applied Mitigation and Lease Measures or Controls	Residual Impacts
	Historical Resources, or in a local register of historical resources as defined in Public Resources Code Section 5020.1(k).?			
	TCR-2: Would the Proposed Project cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code Section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is a resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1. In applying the criteria set forth in subdivision (c) of Public Resources Code Section 5024.1, the lead agency shall consider the significance of the resource to a California Native American tribe?	Less than significant	No mitigation is required but SC TCR-1 would be employed	Less than significant
Alternative 1 – No Project	TCR-1: Would Alternative 1 cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code Section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is listed or eligible for listing in the California Register of Historical Resources, or in a local	No impact	Not applicable	No impact

Alternative	Environmental Impacts	Impact Determination	Applied Mitigation/ and Lease Measures or Controls	Residual Impacts
	register of historical resources as defined in Public Resources Code Section 5020.1(k).?			
	TCR-2: Would Alternative 1 cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code Section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is a resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1. In applying the criteria set forth in subdivision (c) of Public Resources Code Section 5024.1, the lead agency shall consider the significance of the resource to a California Native American tribe?	No impact	Not applicable	No impact
Alternative 2 – Reduced Project	TCR-1: Would Alternative 2 cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code Section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as	Less than significant	No mitigation is required but SC TCR-1 would be employed	Less than significant

Alternative	Environmental Impacts	Impact Determination	Applied Mitigation/ and Lease Measures or Controls	Residual Impacts
	defined in Public Resources Code Section 5020.1(k).?			
	TCR-2: Would Alternative 2 cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code Section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is a resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1. In applying the criteria set forth in subdivision (c) of Public Resources Code Section 5024.1, the lead agency shall consider the significance of the resource to a California Native American tribe.?	Less than significant	No mitigation is required but SC TCR-1 would be employed	Less than significant
Alternative 3 – Product Import Terminal	TCR-1: Would Alternative 3 cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code Section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is listed or eligible for listing in the California Register of Historical Resources, or in a local	Less than significant	No mitigation is required but SC TCR-1 would be employed	Less than significant

Alternative	Environmental Impacts	Impact Determination	Applied Mitigation/ and Lease Measures or Controls	Residual Impacts
	register of historical resources as defined in Public Resources Code Section 5020.1(k).?			
	TCR-2: Would Alternative 3 cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code Section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is a resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1. In applying the criteria set forth in subdivision (c) of Public Resources Code Section 5024.1, the lead agency shall consider the significance of the resource to a California Native American tribe?	Less than significant	No mitigation is required but SC TCR-1 would be employed	Less than significant

3.2.2 Changes Made to Chapter 2 Project Description

Section 2.5.1 Overview

The second sentence is revised as follows:

... and issuance by the LAHD of a 30 year entitlement for the site 32-year entitlement for the site that would include 30 years of operation and two years of construction, as well as access to Berth 191.

Section 2.5.2 Project Construction

The last paragraph of Section 2.5.2.1 (p. 2-14) is revised as follows:

Construction would last approximately 18 months and require up to 75 construction workers on a peak construction day. Construction-phase traffic would include worker vehicles and a variety of medium- and heavy-duty vehicles hauling debris and excavated material and bringing in imported soil, supplies, equipment, and construction materials. Construction is assumed to take place between 7 a.m. and 5 p.m. five days per week (Monday through Friday) except national holidays. Construction staging, parking, and laydown would occur either on the site or at a nearby offsite location.

In response to Comment CDFW-2, Section 2.5.2.1 (p. 2-15) is revised as follows:

The concrete piles would be repaired by installing reinforcing jackets, but the damaged timber piles would need to be pulled out and replaced with new timber piles. Some damaged timber piles may end up being broken off at the mudline instead of being pulled, but the goal would be to <u>completely</u> remove all of each pile. At the edge of the existing wharf, 11 timber fender piles would be replaced with new timber piles. In addition, 47 new timber piles would be driven along the wharf's edge to support the floating fender panel and Yokohama fenders necessary to hold vessels several feet away from the wharf. The replacement timber piles would be wrapped with a 6-millimeter polyethylene inner wrap and a 30-mil outer PVC wrap.

3.2.3 Changes Made to Section 3.1 Air Quality

Section 3.1.5 Impact Determination

On page 3.1-32, the following change is made to the text:

Lastly, the analysis assumes the natural future turnover of the current average (as of 2021) engine age mix of the Port's assist tug fleet (harbor craft category), per the Port's 2021 Emissions Inventory (POLA 2022). CARB recently approved the 2022 Amendments to the Commercial Harbor Craft (CHC) Regulation, which may result in a quicker turnover, and therefore lower future emissions, for harbor craft sources in California. On January 10, 2025, CARB received partial authorization for the 2022 CHC Amendments. However, because there is not yet an enforceable mechanism for this rule, the analysis does not quantify potential reductions benefits of it.

On page 3.1-33, LM AQ-1 through LM AQ-3 are revised and three new lease measures are added as follows:

LM AQ-1: Fleet Modernization for Cementitious Material Handling Equipment. Tenant shall replace cementitious material handling equipment used for operation with the cleanest available equipment, that meets operating and safety requirements, any time new

or replacement equipment is purchased, with a first preference for zero-emission equipment, a second preference for near-zero equipment (such as, hybrid or low-NOx equipment), and third for the cleanest available if zero or near-zero equipment is not feasible, provided that LAHD shall conduct engineering assessments to confirm that such equipment is capable of installation at the facility. Tenant may make a recommendation to LAHD for LAHD's concurrence as to which equipment is available and is feasible. The Tenant shall provide substantial evidence including, but not limited to, inventory reports of available equipment from manufacturers, to verify the availability and feasibility of equipment sought to be purchased in accordance with this measure.

Starting one year after the effective date of a new entitlement between the Tenant and the LAHD, Tenant shall submit to the Port an equipment inventory and 5-year procurement plan for new equipment, and infrastructure, and willshall update the procurement plan annually in order to assist with planning for transition of equipment to zero emissions in accordance with the foregoing paragraph.

LM AQ-2: Periodic Review of New Technology and Regulations. The Tenant willshall conduct a periodic review of any Port-identified or other new emissions-reducing technology and report to the LAHD on the feasibility of any new technology advancements that may reduce emissions not less frequently than once every five years following the effective date of the entitlement. The technology review would be subject to approval by LAHD and would involve consulting with appropriate resources (e.g., consultants, engineers, regulators) to validate the findings. If the review demonstrates the new technology would be effective in reducing emissions and is determined by the LAHD to be feasible, including but not limited to, financial, technical and operational considerations, the Tenant willshall implement the new air quality technological advancements, subject to mutual agreement, which shall not be unreasonably withheld by the Tenant.

LM AQ-3: At-Berth Vessel Emissions Control Pilot Study. The Tenant willshall complete a pilot study to evaluate the feasibility of implementing an at-berth vessel emissions capture and control systemstrategy within 3 years of entitlement execution. If proven to be feasible, including but not limited to financial, technical, and operational considerations, and upon California Air Resources Board certification, the Tenant willshall be required to implement the technology when operationally feasible as described in Tenant's pilot study. Implementation of the technology required under Tthis measure will rely on the Tenant's pilot study evaluation and determination, and is subject to mutual agreement between the Tenant and LAHD, implementation of which shall not be unreasonably withheld or unreasonably required.

LM AQ-5: Fleet Modernization For On-Road Trucks During Construction

- 1. <u>Trucks hauling materials such as debris or fill shall be fully covered while operating off Port property.</u>
- 2. <u>Idling shall be restricted to a maximum of 5 minutes when not in use.</u>
- 3. Tier Specifications:
 - From January 1, 2024, to December 31, 2026: All on-road heavy-duty diesel trucks with a gross vehicle weight rating (GVWR) of 19,500 pounds or greater used on site or to transport materials to and from the site shall comply with 2012 emission standards, or newer, where available.

1 2 3	• Post January 1, 2027: All on-road heavy duty diesel trucks used on site or to transport materials to and from the site shall comply with 2015 emission standards, or newer, where available.
4 5 6 7 8	 A copy of each unit's certified U.S. Environmental Protection Agency (USEPA) rating, Best Available Control Technology (BACT) documentation, and CARB or South Coast Air Quality Management District (SCAQMD) operating permit shall be provided at the time of mobilization of each applicable unit of equipment.
9	LM AQ-6: Fleet Modernization for Construction Equipment.
10 11	1. Construction equipment shall incorporate, where feasible, emissions savings technology such as hybrid drives and specific fuel economy standards.
12	2. Idling shall be restricted to a maximum of 5 minutes when not in use.
13	3. Tier Specifications:
14 15 16 17 18 19	 All offroad diesel-powered construction equipment greater than 50 horsepower shall meet the Tier 4 emission standards, where available. In addition, all construction equipment shall be outfitted with BACT devices certified by CARB. Any emissions control device used by the contractor shall achieve emissions reductions that are no less than what could be achieved by a Level 3 diesel emissions control strategy for a similarly sized engine as defined by CARB regulations.
21 22 23	 A copy of each unit's certified tier specification, BACT documentation, and CARB or SCAQMD operating permit shall be provided at the time of mobilization of each applicable unit of equipment.
24 25 26	The construction equipment measures shall be met, unless one of the following circumstances exist and the contractor is able to provide proof that any of these circumstances exists:
27 28	• A piece of specialized equipment is unavailable in a controlled form within the state of California, including through a leasing agreement.
29 30 31 32	 A contractor has applied for necessary incentive funds to put controls on a piece of uncontrolled equipment planned for use on the project, but the application process is not yet approved, or the application has been approved, but funds are not yet available.
33 34 35 36 37 38 39	 A contractor has ordered a control device for a piece of equipment planned for use on the project, or the contractor has ordered a new piece of controlled equipment to replace the uncontrolled equipment, but that order has not been completed by the manufacturer or dealer. In addition, for this exemption to apply, the contractor must attempt to lease controlled equipment to avoid using uncontrolled equipment, but no dealer within 200 miles of the project has the controlled equipment available for lease.
40 41	LM AQ-7: Renewable Diesel Fuel for Construction Equipment and On- Road Trucks
42 43	The Tenant shall fuel diesel-powered construction equipment and on-road trucks with renewable diesel fuel during construction. The renewable diesel product that is used shall
44	comply with American Society for Testing and Materials (ASTM) fuel standards

1 In the event of renewable diesel supply challenges or disruptions, the Tenant shall use 2 ultra-low sulfur diesel (ULSD) as a secondary fuel. The Tenant shall demonstrate to 3 LAHD substantial evidence of a supply disruption or event in a timely manner. 4 On page 3.1-33, LM AQ-5 and LM AQ-6 have been re-designated as mitigation 5 measures (MM AQ-1 and MM AQ-2, respectively), and revised, and three new 6 mitigation measures have been added, as shown below. 7 **LMM AO-51: Vessel Speed Reduction Program (VSRP).** 95100 percent of vessels 8 calling at the Ecocem Dry Bulk Processing Facility willshall be required to comply with 9 the expanded VSRP atof 12 knots between 40 nautical miles (nm) from Point Fermin and 10 the Precautionary Area. Speed is confirmed by the Marine Exchange. Any vessel experiencing a maritime emergency that prevents compliance with the expanded VSRP 11 12 may be exempt from this measure. If a maritime emergency were to occur, the vessel 13 operators shall provide substantial evidence of a qualifying event to LAHD. 14 LMM AQ-62: Front End Loader Replacement Schedule. The tenant shall maintain a 15 replacement schedule of replace the off-road diesel front end loader of every two years. 16 where an The equivalent new piece that front end loader shall meets operational 17 requirements and meets Tier 4 Final standards or cleaner or as required by state and/or 18 local agencies, whichever is stricter, would be procured. During replacement, the 19 following preference will be used for consideration: first preference for zero-emission 20 equipment, a second preference for near-zero equipment (such as, hybrid or low-NOx equipment), and third for Tier 4 standards if zero or near-zero equipment is not feasible. 21 22 provided that LAHD shall conduct engineering assessments to confirm that such 23 equipment is capable of installation at the facility. The Tenant shall provide substantial 24 evidence including, but not limited to, inventory reports of available equipment from 25 manufacturers, to verify the availability and feasibility of equipment sought to be 26 purchased in accordance with this measure. 27 The revision of MM AO-2 recognizes that it is uncertain when Tier 4 Final-compliant 28 equipment will become available, so that requiring that standard to be met could render 29 the mitigation measure infeasible. 30 Page 3.1-39 contains an erroneous statement and is revised as follows: 31 Figure 3.1-2 shows the individual residential cancer risk contour of-one in a million 1-in-32 1-million and the locations of the MEI residential receptor and the MEI non-residential 33 sensitive receptor for the Proposed Project. Because the individual cancer risk estimated 34 at all residential and non-residential sensitive receptors for the Proposed Project is are 35 below the significance threshold of 10 in a million, a contour for 10 in a million residential risk is not drawn in Figure 3.1-2. The 10-in-1 million residential risk contour 36 37 is also included in Figure 3.1-2 even though no residential or non-residential sensitive 38 receptor is located within the contour. 39 Table 3.1-24 is revised to reflect the revised lease measures and added mitigation 40 measures as follows:

² Maritime emergencies may include, but are not limited to, suspicious activity, drone/plane activity, security breaches or attempts. United States Coast Guard (USCG) safety/security/protection zone violations, crimes on land and water, navigation rule violations, vessels in distress, rescues, fires and emergencies, as defined by the Port of Los Angeles Mariners Guide.

Table 3.1-24 Summary Matrix of Potential Impacts and Mitigation Measures for Air Quality Associated with the Proposed Project and Alternatives

Project and A	Environmental Impacts	Impact Determination	Applied Mitigation/Lease Measures or Controls	Residual Impacts
Proposed Project	AQ-1: The Proposed Project would result in construction-related emissions that exceed an SCAQMD localized threshold of significance in Table 3.1-4	Less than significant	Mitigation not required although LM AQ-4: Port of Los Angeles Harbor Department (LAHD) Sustainable Construction Guidelines, LM AQ-5: Fleet Modernization for On-Road Trucks During Construction LM AQ-6: Fleet Modernization for Construction Equipment, and LM AQ-7: Renewable Diesel Fuel for Construction Equipment and On-Road Trucks would be applied	Less than significant
	AQ-2: Proposed Project construction would result in off-site ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.1-6	Less than significant	Mitigation not required although LM AQ-4: Port of Los Angeles Harbor Department (LAHD) Sustainable Construction Guidelines, LM AQ-5: Fleet Modernization for On-Road Trucks During Construction, LM AQ-6: Fleet Modernization for Construction Equipment, and LM AQ-7: Renewable Diesel Fuel for Construction Equipment and On-Road Trucks would be applied	Less than significant
	AQ-3: The Proposed Project would result in operational emissions that exceed an			Impacts would remain significant and

Table 3.1-24 Summary Matrix of Potential Impacts and Mitigation Measures for Air Quality Associated with the Proposed

Project and Alternatives

Alternative	Environmental Impacts	Impact Determination	Applied Mitigation/Lease Measures or Controls	Residual Impacts
	SCAQMD regional threshold of significance in Table 3.1-7	Operation emissions would be significant for NOx in all operational years	LM AQ-1: Fleet Modernization for Cementitious Material Handling Equipment LM AQ-2: Periodic Review of New Technology and Regulations LM AQ-3: At-Berth Vessel Emissions Control Pilot Study LMM AQ-51: Vessel Speed Reduction Program (VSRP) LMM AQ-62: Front End Loader Replacement Schedule	unavoidable for NOx in all operational years
	AQ-4: Proposed Project operations would result in offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.1-8	Operation-related ambient pollutant concentrations would be significant in all years for annual and 24-hr PM ₁₀ and 24-hr PM _{2.5}	LM AQ-1: Fleet Modernization for Cementitious Material Handling Equipment LM AQ-2: Periodic Review of New Technology and Regulations LM AQ-3: At-Berth Vessel Emissions Control Pilot Study LMM AQ-51: Vessel Speed Reduction Program (VSRP) LMM AQ-62: Front End Loader Replacement Schedule	Impacts would remain significant and unavoidable for operation-related ambient pollutant concentrations in all years for annual and 24-hr PM ₁₀ and 24-hr PM _{2.5}
	AQ-5: The Proposed Project would expose receptors to significant levels of TACs	Less than significant	Mitigation not required although LM AQ-1, LM AQ-2, LM AQ-3, LM AQ-4, LMM AQ-51 and LMM AQ-62 would be applied	Less than significant
	AQ-6: The Proposed Project would not conflict with or obstruct implementation of an applicable AQMP	Less than significant	Mitigation not required	Less than significant
Alternative 1 – No Project Alternative	AQ-1: Alternative 1 would not result in construction-related emissions that exceed an SCAQMD threshold of significance in Table 3.1-4	No impact	Not applicable	No impact
Allernative	AQ-2: Alternative 1 construction would not result in off-site ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.1-6	No impact	Not applicable	No impact

Table 3.1-24 Summary Matrix of Potential Impacts and Mitigation Measures for Air Quality Associated with the Proposed Project and Alternatives

Alternative	Environmental Impacts	Impact Determination	Applied Mitigation/Lease Measures or Controls	Residual Impacts
	AQ-3: Alternative 1 would result in operational emissions that exceed an SCAQMD threshold of significance in Table 3.1-7	No impact.	Not applicable	No impact
	AQ-4: Alternative 1 operations would result in offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.1-8	No impact	Not applicable	No impact
	AQ-5: Alternative 1 would not expose receptors to significant levels of TACs	No impact	Not applicable	No impact
	AQ-6: Alternative 1 would not conflict with or obstruct implementation of an applicable AQMP	No impact	Not applicable	No impact
Alternative 2 – Reduced Project Alternative	AQ-1: Alternative 2 would not result in construction-related emissions that exceed an SCAQMD threshold of significance in Table 3.1-4	Less than significant	Mitigation not required although LM AQ-4: Port of Los Angeles Harbor Department (LAHD) Sustainable Construction Guidelines, LM AQ-5: Fleet Modernization for On-Road Trucks During Construction, LM AQ-6: Fleet Modernization for Construction Equipment, and LM AQ-7: Renewable Diesel Fuel for Construction Equipment and On-Road Trucks would be applied	Less than significant
	AQ-2: Alternative 2 construction would result in off-site ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.1-6	Less than significant	Mitigation not required though LM AQ-4: Port of Los Angeles Harbor Department (LAHD) Sustainable Construction Guidelines, LM AQ-5: Fleet Modernization for On-Road Trucks During Construction, LM AQ-6: Fleet Modernization for Construction Equipment, and LM AQ-7: Renewable Diesel Fuel for Construction Equipment and On-Road Trucks	Less than significant

Table 3.1-24 Summary Matrix of Potential Impacts and Mitigation Measures for Air Quality Associated with the Proposed

Project and Alternatives

Alternative	Environmental Impacts	Impact Determination	Applied Mitigation/Lease Measures or Controls	Residual Impacts
			would be applied	
	AQ-3: Alternative 2 would result in operational emissions that exceed an SCAQMD threshold of significance in Table 3.1-7	Operational emissions would be significant for NOx in all years	LM AQ-1: Fleet Modernization for Cementitious Material Handling Equipment LM AQ-2: Periodic Review of New Technology and Regulations LM AQ-3: At-Berth Vessel Emissions Control Pilot Study LMM AQ-51: Vessel Speed Reduction Program (VSRP) LMM AQ-62: Front End Loader Replacement Schedule	Operational emissions would remain significant and unavoidable for NOx in all years
	AQ-4: Alternative 2 operations would result in offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.1-8	Operation-related ambient pollutant concentrations would be significant for annual and 24-hr PM ₁₀ in all years and 24-hr PM _{2.5} in 2027 and 2049	LM AQ-1: Fleet Modernization for Cementitious Material Handling Equipment LM AQ-2: Periodic Review of New Technology and Regulations LM AQ-3: At-Berth Vessel Emissions Control Pilot Study LMM AQ-51: Vessel Speed Reduction Program (VSRP) LMM AQ-62: Front End Loader Replacement Schedule	Impacts would remain significant and unavoidable for operation-related ambient pollutant concentrations for annual and 24-hr PM ₁₀ in all years and 24-hr PM _{2.5} in 2027 and 2049
	AQ-5: Alternative 2 would not expose receptors to significant levels of TACs	Health risks would be below the significance threshold for all receptor types.	Mitigation not required although LM AQ-1, LM AQ-2, LM AQ-3, LM AQ-4, LMM AQ-51 and LMM AQ-62 would be applied	Less than significant.
	AQ-6: Alternative 2 would not conflict with or obstruct implementation of an applicable AQMP	Less than significant	No mitigation required	Less than significant
Alternative 3- Product Import Terminal Alternative	AQ-1: Alternative 3 would not result in construction-related emissions that exceed an SCAQMD threshold of significance in Table 3.1-4	Less than significant	Mitigation not required although LM AQ-4: Port of Los Angeles Harbor Department (LAHD) Sustainable Construction Guidelines.	Less than significant

Table 3.1-24 Summary Matrix of Potential Impacts and Mitigation Measures for Air Quality Associated with the Proposed

Project and Alternatives

Alternative	Environmental Impacts	Impact Determination	Applied Mitigation/Lease Measures or Controls	Residual Impacts
			LM AQ-5: Fleet Modernization for On-Road Trucks During Construction, LM AQ-6: Fleet Modernization for Construction Equipment, and LM AQ-7: Renewable Diesel Fuel for Construction Equipment and On-Road Trucks would be applied	
	AQ-2: Alternative 3 construction would result in off-site ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.1-6	Less than significant	Mitigation not required although LM AQ-4: Port of Los Angeles Harbor Department (LAHD) Sustainable Construction Guidelines, LM AQ-5: Fleet Modernization for On-Road Trucks During Construction, LM AQ-6: Fleet Modernization for Construction Equipment, and LM AQ-7: Renewable Diesel Fuel for Construction Equipment and On-Road Trucks would be applied	Less than significant
	AQ-3: Alternative 3 would result in operational emissions that exceed an SCAQMD threshold of significance in Table 3.1-7	Operational emissions would be significant for NOx in all years	LM AQ-1: Fleet Modernization for Cementitious Material Handling Equipment LM AQ-2: Periodic Review of New Technology and Regulations LM AQ-3: At-Berth Vessel Emissions Control Pilot Study LMM AQ-51: Vessel Speed Reduction Program (VSRP).	Impacts would remain significant and unavoidable for NOx in all years
	AQ-4: Alternative 3 operations would result in offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.1-8	Operation-related ambient pollutant concentrations would be significant for annual and 24-hour PM ₁₀ and 24-hour PM _{2.5} in all years	LM AQ-1: Fleet Modernization for Cementitious Material Handling Equipment LM AQ-2: Periodic Review of New Technology and Regulations	Impacts would remain significant and unavoidable for operation-related ambient pollutant concentrations for annua

Table 3.1-24 Summary Matrix of Potential Impacts and Mitigation Measures for Air Quality Associated with the Proposed Project and Alternatives

Alternative	Environmental Impacts	Impact Determination	Applied Mitigation/Lease Measures or Controls	Residual Impacts
			LM AQ-3: At-Berth Vessel Emissions Control Pilot Study LMM AQ-51: Vessel Speed Reduction Program (VSRP)	and 24-hour PM ₁₀ and 24-hour PM _{2.5} in all years
	AQ-5: Alternative 3 would not expose receptors to significant levels of TACs	Less than significant	Mitigation not required although LM AQ-1, LM AQ-2, LM AQ-3, LM AQ-4 and LMM AQ-51 would be applied	Less than significant
	AQ-6: Alternative 3 would not conflict with or obstruct implementation of an applicable AQMP	Less than significant	No mitigation required	Less than significant

On page 3.1-80, the following material is added:

3.2.3.1 Section 3.1.5.6 Discussion of Health Effects Related to Pollutant Impacts

This section includes a discussion of the potential health effects of air pollutant impacts. Potential health effects are described for the Proposed Project's significant operational emissions identified in Impact AQ-3, significant ambient concentrations associated with Proposed Project operations are identified in Impact AQ-4, and the health risk assessment is presented in Impact AQ-5 (Section 3.1.5.1). This discussion is not a new impact assessment but rather provides supplemental information related to the significant impacts already identified in Section 3.1.5.1. The discussion considers potential links between the Proposed Project's emissions of priority pollutants and human health effects. Information about health effects was acquired through a review of available literature published by the SCAQMD, CARB, and USEPA.

This discussion is also guided by the stepwise process depicted in Figure 3.1-6 that is used for assessing air quality impacts in the EIR. The first step, emissions analysis, is presented in Impact AQ-3 for Proposed Project operations and is indicative of *regional* air quality impacts because the analysis determines the quantity of pollutants released into the South Coast Air Basin (SCAB) from Proposed Project-related sources operating throughout the SCAB. The second step, dispersion modeling, is presented in Impact AQ-4 for Proposed Project operations. The analysis is indicative of *local* impacts because the analysis estimates the ambient pollutant concentrations to which persons would be exposed, and the highest concentrations are predicted to occur in close proximity to the Project site. Therefore, the health effects discussion considers both regional health effects (i.e., effects that could be experienced throughout the SCAB) and local health effects (i.e., effects in the vicinity of Berths 191-194) related to Proposed Project operation.

The third step, health risk assessment (HRA), is presented in Impact AQ-5. The results for individual cancer risk and population cancer burden presented in Table 3.1-14 of the DEIR are already direct estimates of the health effects associated with exposure to the Proposed Project's toxic air contaminant (TAC) emissions. In addition, as shown in Table 3.1-14, the HRA determined that health impacts related to TACs would be less than significant. Therefore, no further discussion of health effects is necessary for the HRA.

Regional Health Effects

This section discusses the relationship between the Proposed Project's regional criteria pollutant emissions and the potential for adverse health effects to occur for persons exposed to the emitted pollutants. The Proposed Project would produce significant regional emissions of nitrogen oxides (NO_X) in all operational years, but emissions of the other air pollutants of concern in the SCAB (i.e., CO, SO_X, lead [Pb], particulate matter (PM₁₀ and PM_{2.5}), and volatile organic compounds [VOCs]) would not exceed significance thresholds. Accordingly, this discussion of regional health effects focuses on NO_X (because the primary component of NO_X is NO₂), a criteria pollutant. This discussion also focuses on ozone because NO_X is a precursor of ozone, which is a criteria pollutant that is photochemically formed from precursors in the atmosphere in the presence of sunlight; EPA 2018). The ozone discussion also considers VOCs because they, too, are a precursor of ozone.

In an *amicus curiae* brief submitted to the California Supreme Court in the *Sierra Club v*. *County of Fresno* ("*Friant Ranch*") case, the SCAQMD explained that it did not know of a way to accurately quantify health impacts caused by emissions produced on a scale as small as individual projects (SCAQMD, 2015c). The SCAQMD's observations on the infeasibility of linking project-specific emissions to specific health impacts were echoed by *amicus curiae* briefs submitted by other air pollution control authorities (see attachments 1 through 4 in City of Los Angeles 2019).

One existing tool, can model changes in ozone or PM concentrations on a regional scale and uses that data to calculate the number of the resulting air-pollution-related deaths and illnesses (USEPA 2019). The tool consists of the USEPA's Community Multiscale Air Quality Modeling System (CMAQS) and Environmental Benefits Mapping and Analysis Program (BenMAP) models used together. These models are designed to estimate health impacts over a large scale (e.g., city-wide, state-wide) and some of their data inputs are either not generally accessible or not relevant to project-level analyses (City of Los Angeles 2019). The expected changes in regional ozone concentrations associated with an individual project, such as the Proposed Project, would be so low that, as SCAQMD (2015c) and City of Los Angeles (2019) point out, BenMAP would likely produce estimates of health effects that are near zero, and thus would not be informative for the public.

The City of Los Angeles (2019) evaluated 11 other tools and models used in air quality and public health assessments and found that they all, for various reasons, do not connect mass emissions or pollutant concentrations with specific health effects. Accordingly, at this time, as stated in Attachment 4 of City of Los Angeles (2019), neither the SCAQMD, CARB, "nor any air district currently have methodologies that would provide Lead Agencies and CEQA practitioners with a consistent, reliable, and meaningful analysis to correlate specific health impacts that may result from a proposed project's mass emissions". As a result of expert agencies determining that any individual project's contribution to health effects will be so small that none of the existing models can provide helpful information and the lack of a reliable methodology for linking project-level pollutant concentrations attributable to an individual project to specific health effects in the regional population, the extent to which regional adverse health effects can be identified in this section is limited to (a) discussing the Proposed Project's potential impact on regional pollutant levels; and (b) generally describing the types of adverse health effects associated with exposure to the pollutants of concern.

Nitrogen Dioxide (NO₂)

Impact on Regional NO₂ Concentrations. The SCAB is currently designated as "in attainment" of NO₂ concentration standards. The most stringent state and federal NO₂ standards are: 0.18 ppm for a 1-hour average (state 1-hour standard), 0.100 ppm for a three-year average of the 98th percentile of the annual distributions of daily maximum 1-hour average concentrations (federal 1-hour standard), and 0.030 ppm for an annual average.

The highest NO₂ concentrations recorded anywhere in the SCAB over the 3-year period from 2020 to 2022 were 0.104 ppm for the state 1-hour average, 0.086 ppm for the federal 1-hour average, and 0.029 ppm for an annual average (SCAQMD 2024). These pollutant levels are 58, 86, and 97 percent of the state 1-hour, federal 1-hour, and annual standards, respectively. All of the maximum values occurred at a monitoring station along I-710 in north Long Beach (SCAQMD 2024).

2

3

4

5

6

7

8

9

10

11 12

13 14

15

16

17

18

According to the most recent USEPA-approved SCAB emissions inventory, NO_x emissions within the SCAB in 2018 averaged 351 tons/day (SCAQMD 2022). By comparison, the highest NO_x emissions increment associated with the Proposed Project was 0.42 tons/day on a peak day, which is 0.1 percent of the total SCAB emissions. Therefore, the Proposed Project's contribution to regional NO₂ levels would be insubstantial.

<u>Potential Health Effects.</u> In developing the NO₂ standards, the USEPA (USEPA 2016) and CARB (2007) have prepared comprehensive reports on the possible health effects associated with NO₂ exposure. The main conclusions of these agencies are:

• USEPA (2016) concluded that a causal relationship exists between short-term NO₂ exposure and respiratory effects such as asthma attacks. There is likely to be a causal relationship between long-term NO₂ exposure and respiratory effects based on the evidence for development of asthma. For short-term and/or long-term NO₂ exposure, evidence is suggestive of, but not sufficient to imply, a causal relationship with cardiovascular effects, diabetes, mortality, adverse birth outcomes, and cancer. People with asthma, children, and older adults are at increased risk for NO₂-related health effects.

Figure 3.1-6. Air Quality Analysis Key Elements and Progression

Emissions Analysis

- Operational activity data and emission factors are used to estimate emissions for all Proposed Project sources.
- Impacts evaluated: Peak day criteria pollutant emissions increments from baseline level are compared against SCAQMD daily thresholds. A threshold exceedance indicates a significant contribution to regional criteria air pollutant emissions in the SCAB.

Dispersion Modeling

- Dispersion of emissions is modeled spatially using AERMOD to estimate ambient pollutant concentrations at or beyond the Project site boundary.
- Impacts evaluated: Predicted ambient concentrations associated with the Proposed Project are compared to State and Federal ambient air quality standards for NO2 and to SCAQMD thresholds for PM10 and PM2.5. A threshold exceedance indicates a significant contribution to local criteria air pollutant levels.

Health Risk Assessment

- The HRA analyzes Proposed Project toxic air contaminant (TAC) emissions and human exposure to the emissions during 25-, 30-, and 70-year periods, each starting the year after the baseline.
- Impacts evaluated: HRA includes an evaluation of three different types of health effects: individual cancer risk, chronic non-cancer hazard index, and acute non-cancer hazard index. A threshold exceedance indicates a significant contribution to adverse health effects related to TAC exposure.

CARB (2007) concluded that, in controlled human exposure studies, asthmatics appear to be especially sensitive to NO₂. Asthmatic volunteers have experienced short-term effects at NO₂ concentrations as low as 0.26

ppm. There is evidence that a subset of asthmatics may experience increased

22 23

19

20

21

Berths 191–194 (Ecocem) Low-Carbon Cement Processing Facility Project Final EIR

1 airway reactivity at concentrations of 0.2 to 0.3 ppm for 30 minutes to 2 2 hours. Generally, no clinical effects are reported in non-asthmatic volunteers 3 in conditions below 1 ppm. Epidemiological studies have shown an 4 association between NO₂ and both hospital admissions and emergency room 5 visits for asthma at 24-hour average concentrations ranging from 0.018 to 6 0.036 ppm. Less robust evidence suggests associations with mortality, 7 hospitalization for cardiovascular disease, and low birth weight. 8 Ozone 9 As mentioned above, a discussion of ozone must include a consideration of NO_x and 10 volatile organic carbon (VOC) emissions because those two pollutants are precursors to the formation of ozone in the atmosphere. However, because ozone is formed sometime 11 12 later and downwind from its precursor emission source (USEPA 2024), ozone behaves as 13 a regional pollutant rather than a local pollutant. For example, the highest ozone 14 concentrations are not found in urban areas close to the concentrated sources of its 15 precursors, but rather in suburban and rural areas downwind of these sources (USEPA 16 2020). The feasibility of considering potential health effects associated with ozone 17 exposure were addressed under Regional Health Effects. The discussion below describes 18 regional ozone concentrations and standards, considers whether the Proposed Project's 19 emissions of ozone precursors would have a substantial impact on regional ozone 20 concentrations, and discusses known human health effects of exposure to ozone. 21 Impact on Regional Ozone Concentrations. The SCAB is currently designated as in 22 "nonattainment" of ozone concentration standards. The most stringent state and federal 23 ozone standards are 0.09 ppm for a 1-hour average, 0.070 ppm for the three-year average 24 of the fourth-highest 8-hour concentration each year (known as the federal 8-hour 25 standard), and 0.07 ppm for an 8-hour average (known as the state 8-hour standard). 26 The highest 1-hour ozone concentration recorded in the SCAB over the 3-year period 27 from 2020 through 2022 was 0.185 ppm, which is 2.05 times greater than the standard. 28 This concentration occurred in 2020 at the Central Los Angeles monitoring site in 29 downtown Los Angeles. The standard was exceeded somewhere in the SCAB on 28 30 percent of days during that same three-year period (SCAQMD 2024). 31 The highest federal 8-hour ozone concentration recorded in the SCAB over the 3-year 32 period from 2020 through 2022 was 0.125 ppm, which is 1.8 times greater than the 33 standard. This concentration also occurred in 2020, but at the East San Bernardino Valley 34 monitoring site. The threshold of 0.070 ppm was exceeded at one or more locations in the 35 SCAB on 40 percent of days during that same three-year period (SCAQMD 2024). 36 The highest state 8-hour ozone concentration recorded in the SCAB over the 3-year 37 period from 2020 through 2022 was 0.139 ppm, which is 2.0 times greater than the 38 standard. This concentration occurred in 2020 at the San Bernardino Mountains station. 39 The standard was exceeded at one or more locations in the SCAB on 38 percent of days 40 during that same three-year period (SCAQMD 2024). 41 According to the most recent EPA-approved SCAB emissions inventory, the total VOC 42 emissions within the SCAB in 2018 were 406 tons/day (SCAOMD 2022). By 43 comparison, the highest VOC emissions increment associated with the Proposed Project 44 is anticipated to be 0.012 tons/day (Table 3.1-11), which comprises 0.003 percent of the 45 total SCAB emissions. As discussed above, for NO₂, the Proposed Project's anticipated 46 NO_x emissions increment makes up 0.1 percent of the total SCAB emissions. Given the 47 Proposed Project's insubstantial contributions to the region's emissions of ozone

precursors, therefore, the Proposed Project's contribution to regional ozone levels would likely be insubstantial.

<u>Potential Health Effects.</u> In developing the ozone standards, USEPA (2020) and CARB (2005) have prepared comprehensive reports on the possible health effects associated with ozone exposure. The main conclusions of the agencies' reports are:

- EPA (USEPA 2020) concluded that a causal relationship exists between short-term ozone exposure and respiratory effects. A causal relationship is likely to exist between short-term ozone exposure and cardiovascular effects and mortality. Evidence is suggestive of a causal relationship between short-term ozone exposure and central nervous system effects. A causal relationship is likely to exist between long-term ozone exposure and respiratory effects. Evidence is suggestive of a causal relationship between long-term ozone exposure and cardiovascular effects, reproductive and developmental effects, central nervous system effects, and mortality. There is little evidence for a relationship between long-term ozone exposure and increased risk of lung cancer. The populations and life stages that have adequate evidence for increased ozone-related health effects are individuals with certain genotypes, individuals with asthma, younger and older age groups, individuals with reduced intake of Vitamins E and C, and outdoor workers.
- CARB (2005) concluded that ozone exposure can result in reduced lung function, increased respiratory symptoms, increased airway hyperreactivity and increased airway inflammation, increased mortality, hospitalization for cardiopulmonary causes, emergency room visits for asthma, and restrictions in activity. In controlled human exposure studies, exercising individuals exposed for one hour to an ozone concentration as low as 0.12 ppm or for 6.6 hours to a concentration as low as 0.08 ppm experienced lung function decrements and symptoms of respiratory irritation such as cough, wheeze, and pain upon deep inhalation. The lowest ozone concentrations at which airway hyperreactivity (an increase in the tendency of the airways to constrict in reaction to exposure to irritants) has been reported are 0.18 ppm ozone following 2-hour exposure in exercising subjects, 0.40 ppm following 2-hour exposure in resting subjects, and 0.08 ppm ozone in subjects exercising for 6.6 hours. Airway inflammation has been reported following 2-hour exposures to 0.20 ppm ozone and following 6.6-hour exposure to 0.08 ppm ozone. Children may be more affected by ozone than the general population due to effects on the developing lung and to relatively higher exposure than adults. Also, asthmatics may represent a sensitive sub-population for ozone.

In summary, the Proposed Project would produce emissions of NO_x that exceed SCAQMD's project significance threshold and emissions of VOCs that would not exceed those thresholds. In both cases, those emissions would make relatively small contributions to regional levels of NO₂ and ozone. There is currently no methodology available that can accurately quantify regional health effects from NO₂ or ozone exposure associated with an individual project's emissions. Therefore, the above discussion is limited to identifying the Proposed Project's potential contribution to regional pollutant levels and generally describing the types of adverse health effects associated with exposure to those pollutants.

Local Health Effects

This section discusses the relationship between the Proposed Project's local criteria pollutant emissions and the potential for adverse health effects to occur for persons exposed to those emissions in the Proposed Project's vicinity. The dispersion modeling results in Tables 3.1-12 and 3.1-13 show that operation of the Proposed Project would not result in significant off-site local concentration impacts for NO₂ but would result in local concentrations of PM₁₀ and PM_{2.5} above significance thresholds in all analysis years. Therefore, the criteria pollutants evaluated for local health effects are PM₁₀ and PM_{2.5}.

As discussed in Section 3.1.5.1, LAHD has established a health effects quantification methodology based on speciating PM₁₀ into toxic air contaminants (TACs), including PM_{2.5} (a substantial component of PM₁₀). The health risk assessment (Section 3.1.5.1 Impact AQ-5) shows that health risks from the Proposed Project's TAC emissions, including those of PM_{2.5}, would not exceed the applicable significance thresholds.

There is currently no methodology available that can accurately quantify local health effects from ambient PM_{10} concentrations associated with an individual project. Therefore, the extent to which local adverse health effects of PM_{10} emissions can be identified is limited to generally describing the types of adverse health effects associated with exposure to PM_{10} .

Particulate Matter

The SCAB is currently classified as nonattainment for the state 24-hour and annual PM₁₀ and the federal 24-hour PM_{2.5} standards. Locally, Table 3.1-2 shows that the Wilmington Community Station, approximately one mile north of the Project site, exceeded the PM₁₀ 24-hour standard on at least one day in two of the last three available years (i.e., 2020 and 2021). The highest observed 24-hour concentration of 70.6 ug/m3 is 41 percent higher than the standard of 50 ug/m3. The Wilmington Community Station exceeded the annual PM10 standard in all three years from 2020 to 2022. The highest observed annual PM10 concentration of 27.2 ug/m3 is 36 percent higher than the standard of 20 ug/m3. The Wilmington Community Station did not exceed the 24-hour or annual PM2.5 standards in any year.

Magnitude of Local Impact. The maximum PM₁₀ concentrations to which individuals in the local area would be exposed were estimated by adding the Proposed Project's concentration increments from Table 3.1-13 to the highest background PM₁₀ concentration measured at the Wilmington Community Station (70.6 ug/m³; Table 3.1-2). This approach assumes that the background concentration at the Wilmington Station would remain at the maximum observed throughout the life of the Proposed Project, and therefore may overestimate future local concentrations. Accordingly, the maximum 24-hour PM₁₀ local concentrations were determined to be 81.5 ug/m³ in 2025, 92.2 ug/m³ in 2027, and 92.1 ug/m³ in 2049. Similarly, the maximum annual PM₁₀ local concentrations were determined to be 28.2 ug/m³ in 2025 and 34.2 ug/m³ in 2027 and 2049. These maximum impact locations would be at the property line of the Proposed Project and exceedances of the significance thresholds would be limited to immediately adjacent industrial land uses; locations farther from the Project site would experience lower concentrations.

The maximum PM_{2.5} concentrations to which individuals in the local area would be exposed were estimated by adding the Proposed Project 24-hour concentration increments from Table 3.1-13 to the highest background PM_{2.5} concentration measured at the Wilmington Community Station (25.9 ug/m³; Table 3.1-2); only 24-hour

concentrations are considered because SCAOMD does not have a standard for annual concentrations. This approach assumes that the background concentration at the Wilmington Station would remain at the maximum observed throughout the life of the Proposed Project, and therefore may overestimate future local concentrations. Accordingly, the maximum 24-hour PM_{2.5} local concentrations were determined to be 30.5 ug/m³ in 2025, 33.8 ug/m³ in 2027, and 33.8 ug/m³ in 2049. These maximum impact locations would be experienced at the property line of the Proposed Project; locations farther from the Project site would experience lower concentrations. Potential Health Effects. In developing the PM₁₀ standards, EPA (USEPA 2019b) and

Potential Health Effects. In developing the PM₁₀ standards, EPA (USEPA 2019b) and CARB (2002) have prepared comprehensive reports on the possible health effects associated with PM₁₀ exposure. The SCAQMD also reviewed PM₁₀-related health effects in Appendix I of its *Final 2022 Air Quality Management Plan* (SCAQMD 2022). Most of the health effects findings made by these agencies focus on PM_{2.5}, which is a subset of PM₁₀. The main conclusions of the agencies and their reports are:

- EPA (USEPA 2019b) concluded that a causal relationship exists between PM_{2.5} exposure (both short- and long-term) and cardiovascular effects and mortality. A causal relationship is likely to exist between PM_{2.5} exposure (both short- and long-term) and respiratory effects. Evidence is suggestive of a causal relationship between long-term PM_{2.5} exposure and reproductive and developmental effects, cancer, mutagenicity, and genotoxicity. For the portion of PM₁₀ greater than 2.5 microns (PM_{10-2.5}), USEPA concluded that evidence is suggestive of a causal relationship between short-term PM_{10-2.5} exposure and cardiovascular effects, respiratory effects, and mortality. Older adults have heightened responses for cardiovascular morbidity with PM exposure. Children are at an increased risk of PM-related respiratory effects. Individuals with underlying cardiovascular disease or asthma may be at an increased risk for adverse effects.
- CARB (2007) concluded that the potential health effects associated with PM exposure include mortality, increased hospital admissions for cardiopulmonary causes, acute and chronic bronchitis, asthma attacks and emergency room visits, respiratory symptoms, and days with some restriction in activity. These adverse health effects have been reported primarily in infants, children, the elderly, and those with preexisting cardiopulmonary disease. CARB also classifies the portion of PM₁₀ produced by diesel engine exhaust (diesel particulate matter, or "DPM") as a toxic air contaminant exhibiting carcinogenic effects. A quantitative health risk assessment (HRA) of the Proposed Project's emissions of DPM and other toxic air contaminants is presented in Impact AQ-5.
- SCAQMD (2022) concluded that there is a causal relationship between PM_{2.5} exposure and cardiovascular effects and mortality. Specific cardiovascular effects include cardiovascular deaths, hospital admissions for ischemic heart disease and congestive heart failure, changes in heart rate variability and markers of oxidative stress, and markers of atherosclerosis. A causal relationship is likely to exist between PM_{2.5} exposure and respiratory effects, such as hospital admissions for chronic obstructive pulmonary disease (COPD) or respiratory infections, asthma development, asthma or allergy exacerbation, lung cancer, impacts on lung function, lung inflammation, oxidative stress, and airway hyperresponsiveness. Both short-term and long-term PM exposures are linked to health effects in humans. Young children, older adults, and people with pre-existing respiratory or cardiovascular health conditions are among those who may be more susceptible

to the adverse effects of PM. The SCAQMD also found that the DPM portion of
PM₁₀ is a significant contributor to the cancer risk associated with toxic air
contaminants in the SCAB. For example, the average lifetime risk for excess
cancer cases in the SCAB from all air toxics sources (i., multiple pathway
exposure) is estimated to be 455 per million. SCAQMD's *Multiple Air Toxics*Exposure Study V (MATES V) determined that DPM is responsible for about 50
percent of the risk (SCAQMD 2021).

In summary, operation of the Proposed Project would produce significant local

In summary, operation of the Proposed Project would produce significant local concentration impacts of PM₁₀ and PM_{2.5}. The Proposed Project's significant impact areas would extend over industrial, commercial, and recreational land uses near the Berths 191-194 site. There is currently no methodology available that can accurately quantify local health effects from ambient PM concentrations associated with an individual project. Therefore, the above discussion is limited to presenting the magnitude of significant local impacts and generally describing the types of adverse health effects associated with exposure to PM. As guidance from the City of Los Angeles (2019) concludes:

"For local plans or projects that exceed any identified SCAQMD air quality threshold, City EIR documents typically identify and disclose generalized health effects of certain air pollutants but are currently unable to establish a reliable connection between any local plan or project and a particular health effect... A number of factors contribute to this uncertainty, including the regional scope of air quality monitoring and planning, technological limitations for modeling at a local plan- or project-level, and the intrinsically complex nature between air pollutants and health effects in conjunction with local environmental variables."

In Section 3.1.6, Mitigation Monitoring, LM AQ-1, LM AQ-2, and LM AQ-3are revised as follows:

LM AQ-1: Fleet Modernization for Cementitious Material Handling Equipment.

Tenant shall replace cementitious material handling equipment used for operation with the cleanest available equipment; that meets operating and safety requirements, any time new or replacement equipment is purchased, with a first preference for zero-emission equipment, a second preference for near-zero equipment (such as, hybrid or low-NOx equipment), and third for the cleanest available if zero or near-zero equipment is not feasible, provided that LAHD shall conduct engineering assessments to confirm that such equipment is capable of installation at the facility. Tenant may make a recommendation to LAHD for LAHD's concurrence as to which equipment is available and is feasible The Tenant shall provide substantial evidence including, but not limited to, inventory reports of available equipment from manufacturers, to verify the availability and feasibility of equipment sought to be purchased in accordance with this measure.

Starting one year after the effective date of a new entitlement between the Tenant and the LAHD, Tenant shall submit to the Port an equipment inventory and 5-year procurement plan for new equipment, and infrastructure, and will update the procurement plan annually in order to assist with planning for transition of equipment to zero emissions in accordance with the foregoing paragraph.

LM AQ-2: Periodic Review of New Technology and Regulations. The Tenant willshall conduct a periodic review of any Port-identified or other new emissions-reducing technology and report to the LAHD on the feasibility of any new technology advancements that may reduce emissions not less frequently than once every five years following the effective date of the entitlement. The technology review would be subject to approval by LAHD and would involve consulting with appropriate resources (e.g.,

 consultants, engineers, regulators) to validate the findings. If the review demonstrates the new technology would be effective in reducing emissions and is determined by the LAHD to be feasible, including but not limited to, financial, technical and operational considerations, the Tenant willshall implement the new air quality technological advancements, subject to mutual agreement, which shall not be unreasonably withheld by the Tenant.

LM AQ-3: At-Berth Vessel Emissions Control Pilot Study. The Tenant willshall complete a pilot study to evaluate the feasibility of implementing an at-berth vessel emissions capture and control systemstrategy within 3 years of entitlement execution. If proven to be feasible, including but not limited to financial, technical, and operational considerations, and upon California Air Resources Board certification, the Tenant willshall be required to implement the technology when operationally feasible as described in Tenant's pilot study. Implementation of the technology required under Tthis measure will rely on the Tenant's pilot study evaluation and determination, and is subject to mutual agreement between the Tenant and LAHD, implementation of which shall not be unreasonably withheld or unreasonably required.

LM AQ-5 and LM AQ-6 have been re-designated as mitigation measures (MM AQ-1 and MM AQ-2, respectively, and revised, and three new lease measures have been added, as shown below.

LMM AQ-51: Vessel Speed Reduction Program (VSRP). 95100 percent of vessels calling at the Ecocem Dry Bulk Processing Facility will be required to comply with the expanded VSRP at 12 knots between 40 nautical miles (nm) from Point Fermin. Speed is confirmed by the Marine Exchange. Any vessel experiencing a maritime emergency that prevents compliance with the expanded VSRP may be exempt from this measure. If a maritime emergency were to occur, the vessel operators shall provide substantial evidence of a qualifying event to LAHD.

<u>LMM AQ-62</u>: Front End Loader Replacement Schedule. The tenant shall maintain a replacement schedule of replace the off-road diesel front end loader of-every two years, where an The equivalent new piece that front end loader shall meets operational requirements and meets Tier 4 Final standards or cleaner or as required by state and/or local agencies, whichever is stricter, would be procured. During replacement, the following preference will be used for consideration: first preference for zero-emission equipment, a second preference for near-zero equipment (such as, hybrid or low-NOx equipment), and third for Tier 4 standards if zero or near-zero equipment is not feasible, provided that LAHD shall conduct engineering assessments to confirm that such equipment is capable of installation at the facility. The Tenant shall provide substantial evidence including, but not limited to, inventory reports of available equipment from manufacturers, to verify the availability and feasibility of equipment sought to be purchased in accordance with this measure.

LM AQ-5: Fleet Modernization for On-Road Trucks During Construction.

- 1. Trucks hauling materials such as debris or fill shall be fully covered while operating off Port property.
- 2. Idling shall be restricted to a maximum of 5 minutes when not in use.

³ Maritime emergencies may include, but are not limited to, suspicious activity, drone/plane activity, security breaches or attempts. United States Coast Guard (USCG) safety/security/protection zone violations, crimes on land and water, navigation rule violations, vessels in distress, rescues, fires and emergencies, as defined by the Port of Los Angeles Mariners Guide.

1	3. Tier Specifications:
2 3 4 5	• From January 1, 2024, to December 31, 2026: All on-road heavy-duty diesel trucks with a gross vehicle weight rating (GVWR) of 19,500 pounds or greater used on site or to transport materials to and from the site shall comply with 2012 emission standards, or newer, where available.
6 7 8	 Post January 1, 2027: All on-road heavy duty diesel trucks used on site or to transport materials to and from the site shall comply with 2015 emission standards, or newer, where available.
9 10 11 12 13	 A copy of each unit's certified U.S. Environmental Protection Agency (USEPA) rating, Best Available Control Technology (BACT) documentation, and CARB or South Coast Air Quality Management District (SCAQMD) operating permit shall be provided at the time of mobilization of each applicable unit of equipment.
14	LM AQ-6: Fleet Modernization for Construction Equipment.
15 16	1. Construction equipment shall incorporate, where feasible, emissions savings technology such as hybrid drives and specific fuel economy standards.
17	2. Idling shall be restricted to a maximum of 5 minutes when not in use.
18	3. Tier Specifications:
19 20 21 22 23 24 25	 All offroad diesel-powered construction equipment greater than 50 horsepower shall meet the Tier 4 emission standards, where available. In addition, all construction equipment shall be outfitted with BACT devices certified by CARB. Any emissions control device used by the contractor shall achieve emissions reductions that are no less than what could be achieved by a Level 3 diesel emissions control strategy for a similarly sized engine as defined by CARB regulations.
26 27 28	 A copy of each unit's certified tier specification, BACT documentation, and CARB or SCAQMD operating permit shall be provided at the time of mobilization of each applicable unit of equipment.
29 30 31	The construction equipment measures shall be met, unless one of the following circumstances exist and the contractor is able to provide proof that any of these circumstances exists:
32 33	 A piece of specialized equipment is unavailable in a controlled form within the state of California, including through a leasing agreement.
34 35 36 37	 A contractor has applied for necessary incentive funds to put controls on a piece of uncontrolled equipment planned for use on the project, but the application process is not yet approved, or the application has been approved, but funds are not yet available.
38 39 40 41 42 43	 A contractor has ordered a control device for a piece of equipment planned for use on the project, or the contractor has ordered a new piece of controlled equipment to replace the uncontrolled equipment, but that order has not been completed by the manufacturer or dealer. In addition, for this exemption to apply the contractor must attempt to lease controlled equipment to avoid using uncontrolled equipment, but no dealer within 200 miles of the project has the controlled equipment available for lease

1 LM AQ-7: Renewable Diesel Fuel for Construction Equipment and On-2 **Road Trucks** 3 The Tenant shall fuel diesel-powered construction equipment and on-road trucks with 4 renewable diesel fuel during construction. The renewable diesel product that is used shall 5 comply with American Society for Testing and Materials (ASTM) fuel standards. 6 In the event of renewable diesel supply challenges or disruptions, the Tenant shall use 7 ultra-low sulfur diesel (ULSD) as a secondary fuel. The Tenant shall demonstrate to <u>LAHD</u> substantial evidence of a supply disruption or event in a timely manner. 8 Changes Made to Section 3.2 Biological Resources 3.2.4 9 Section 3.2.24, pages 3.2-29 and 3.2-32 10 11 In response to Comment CDFW-3, the following revisions are made: 12 p. 3.2-29, third paragraph: The current Level A harassment (injury) thresholds for 13 impulsive sounds (e.g., pile driving) range from 185 dB to 218 dB for seals, and from 203 14 dB to 232 dB for sea lions (LAHD 2017b); cetaceans and sea turtles are not considered in 15 this analysis, because as discussed in Section 3.2.2, none are likely to occur at or near the 16 Project site. 17 p. 3.2-32: Accordingly, mitigation measure MM BIO-1 (Protect Marine Mammals) 18 would be required. As common practice, the marine mammal observers would also note 19 other marine wildlife, such as sea turtles. Accordingly, With-implementation of this 20 measure, would reduce impacts on marine mammals and managed fish species would be 21 to less than significant. 22 Section 3.2.24, page 3.2-32 23 Mitigation Measure MM BIO-1 is revised as follows: 24 MM BIO-1: Protect Marine Mammals. Although it is expected that marine mammals 25 will voluntarily move away from the area at the commencement of the "soft start" of pile 26 driving activities, as a precautionary measure, pile driving activities will shall include 27 establishment of a safety zone, by a qualified marine mammal professional, and the area 28 surrounding the operations (including the safety zones) will shall be monitored for marine 29 mammals by a qualified marine mammal observer⁴. The pile driving site willshall move 30 with each new pile; therefore, the safety zones will shall move accordingly. 3.2.5 Changes Made to Section 3.5 Greenhouse Gas 31 **Emissions** 32 33 Section 3.5.3, page 3.5-4 34 In response to Comment E4SS-10, the following revisions are made:

⁴ Marine mammal professional qualifications shall be identified based on criteria established by LAHD during the construction bid specification process. Upon selection as part of the construction award winning team, the qualified marine mammal professional shall develop site specific pile driving safety zone requirements, which shall follow the National Oceanic and Atmospheric Administration (NOAA) Fisheries Technical Guidance Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing (NOAA Fisheries 2018) in consultation with the Acoustic Threshold White paper prepared for this purpose by LAHD (LAHD 2017a). Final pile driving safety zone requirements developed by the selected marine mammal professional shall be submitted to LAHD Construction and Environmental Management Divisions prior to commencement of pile driving.

The cumulative impact each pollutant has on global warming is based on the volume of emissions and its 100-year global warming potential (GWP). GWP is a unitless quantity that measures how much a gas will contribute to global warming relative to the same mass of CO_2 . For example, CH_4 and N_2O have 100-year horizon GWPs of $\frac{27}{29.8}$ and 273, respectively (IPCC 20231). However, artificially derived pollutants such as SF_6 , HFCs, and CFCs, have been found to have substantially larger GWP values. Sulfur hexafluoride has one of the largest GWP values at $\frac{25,184}{23,900}$, whereasand CFCs and HFCs have GWPs as high as $\frac{13,902}{6,200}$ and $\frac{14,590}{14,600}$, respectively (IPCC $\frac{20231}{2}$). For consistency amongst pollutants, GHG emissions are typically reported in terms of metric tons ("tonnes," or "MTon," equivalent to 1,000 kilograms) of carbon dioxide equivalents (CO_2e). In this document, GHG emissions will be reported in metric tons.

On page 3.5-21, Table 3.5-2 is revised as follows to reflect updated GWP values.

Table 3.5-2: Amortized Construction and Operational GHG Emissions – Proposed Project (mty)

Source Category	CO ₂	CH ₄	N ₂ O	CO₂e
Amortized Construction				273
Year - 2025				
OGV - Transit	1,199	<1	<1	<u>1,2081,211</u>
OGV – Hoteling/Anchoring	346	<1	<1	<u>348</u> 349
Harbor Craft	43	<1	<1	<u>43</u> 44
Trucks	3,009	<1	<1	3,023 _{3,044}
Worker Vehicles	30	<1	<1	30
Offroad Equipment	281	<1	<1	284
Dryer Combustion	2,484	<1	<1	2,497
Electricity Consumption	_	1	_	<u>5,3144,639</u>
Total Operations with Proposed Project Amortized Construction	-	<1	<1	13,02012,371
Total GHG emissions above SCAQMD's 10,000 MT CO ₂ e threshold?				Yes
Year – 2027				
OGV - Transit	2,399	<1	<1	<u>2,417</u> 2,423
OGV – Hoteling/Anchoring	690	<1	<1	<u>693</u> 695
Harbor Craft	87	<1	<1	87
Trucks	5,889	<1	<1	<u>5,916</u> 5,958
Worker Vehicles	37	<1	<1	37
Offroad Equipment	562	<1	<1	<u>568</u> 569
Dryer Combustion	4,968	<1	<1	4,99 <u>45</u>
Electricity Consumption				<u>7,171</u> 6 ,261
Total Operations with Proposed Project Amortized Construction	-	<1	<1	<u>22,156</u> 21,298
Total GHG emissions above SCAQMD's 10,000 MT CO ₂ e threshold?				Yes

Source Category	CO ₂	CH₄	N ₂ O	CO₂e
Year - 2049				
OGV - Transit	2,399	<1	<1	<u>2,417</u> 2,423
OGV – Hoteling/Anchoring	690	<1	<1	<u>693</u> 695
Harbor Craft	87	<1	<1	87
Trucks	4,986	<1	<1	<u>5,009</u> <u>5,045</u>
Worker Vehicles	31	<1	<1	32
Offroad Equipment	562	<1	<1	568
Dryer Combustion	4,968	<1	<1	4,994 <u>5</u>
Electricity Consumption				<u>107</u> 93
Total Operations with Proposed Project Amortized Construction	-	<1	< 1	14,180 14,210
Total GHG emissions above SCAQMD's 10,000 MT CO ₂ e threshold?				Yes

Notes:

Section 3.5.6.1, page 3.5-24 and 3.5-25

The text and air quality lease measures are revised as follows:

The Proposed Project and alternatives would implement the following <u>mitigation and</u> lease measures for <u>greenhouse gases and air quality</u>; although some were not quantified within the analysis (except for LM AQ-4, <u>LMM AQ-51</u>, and <u>LMM AQ-6</u>) these measures would generate further reductions of GHG emissions as a co-benefit:

MM GHG-1: GHG Reduction Offsets. The Tenant shall be required to purchase and retire carbon offsets related to activities that reduce, avoid, destroy, or sequester an amount of GHG emissions in an off-site location to offset the equivalent amount of GHG emissions generated by the Project, with the exception of electricity consumption. The Tenant shall purchase and retire carbon offsets in an amount that would be the equivalent of the Project's GHG Emissions of 4,985 Metric Tons (MT) from first year of operation until 2049 and 4,073 MT from 2049 through the end of the term of the Permit. The Tenant shall purchase and retire carbon offsets on an annual basis, commencing after construction is complete and during the first year of operation. The LAHD is in the process of developing a Greenhouse Gas Program. The Program shall be used for GHG-reducing projects and programs approved by the Port of Los Angeles. If that Program is established during the term of the Permit, the Tenant shall have the option to offset the required amount of GHG emissions through a funding contribution to the Greenhouse Gas Program rather than towards purchasing carbon offsets from a CARB-recognized registry.

While the LAHD Greenhouse Gas Program is currently under development, the Tenant shall purchase and retire carbon offsets from a CARB-recognized offset registry as follows:

3

1 2

19

20

13 14

212223

24

^{1.} Truck and vessel travel emissions include transport within the California State Boundary.

^{2.} Emissions might not precisely add due to rounding.

1 2 3	<u>Carbon offsets</u> : The Tenant shall purchase and retire carbon offsets from a CARB-recognized registry to ensure that offsets will result in real, permanent, additional, quantifiable, verifiable, and enforceable reductions. The carbon offsets shall be verifiable
4 5	by the LAHD and enforceable in accordance with the registry's applicable standards, practices, or protocols.
6 7	The order of priority for purchasing (any one or more) carbon offsets shall be considered as follows:
8	v. <u>Originating within the local area;</u>
9	vi. <u>Originating within the South Coast Air Basin;</u>
10	vii. <u>Originating within the state of California; or</u>
11 12 13	viii. <u>If sufficient local and in-state offsets are not available, the Tenant shall purchase conforming national offsets registered with a CARB-recognized registry.</u>
14 15 16 17	Adjustment of Tenant's Required Offsets through Other Verified GHG Emission Reductions: The Tenant may pursue the following modifications to the Project's total estimated GHG emissions identified in this measure. These modifications may be pursued in conjunction with or independent of each other on an annual basis.
18	(d) Adjustment in Natural Gas Consumption
19 20 21 22 23 24 25 26 27	In the event natural gas consumption differs from the assumptions or is offset in the future due to changes in technology, efficiency, reduced operations, or for any other purpose, the Tenant may request an adjustment of the required offsets based on actual natural gas consumption, as verified through utility bills, rather than projected future usage. To adjust the Tenant's required number of offsets for purchase, the Tenant shall make a request in writing to the LAHD for review and approval for the time period under consideration and shall provide copies of utility bills showing the amount of natural gas consumed at the project site along with a revised greenhouse gas emission calculation performed by an independent, qualified third-party verifier.
28	· · · · · · · · · · · · · · · · · · ·
29	or (e) Adjustment in GHG Emissions
30 31 32 33 34 35 36 37	In the event of changes in activities, efficiency, reduced operations, or for any other purpose, the Tenant may request an adjustment of the required carbon offsets based on an evaluation of actual GHG emissions rather than future projected GHG emission calculations. To adjust the Tenant's required number of carbon offsets for purchase, the Tenant shall make a request in writing to the LAHD for review and approval for the calendar year under consideration and shall submit a report within 60 days that quantifies the actual greenhouse gas emissions by an expert or an independent, qualified third-party. The evaluation of actual greenhouse gas emissions must be performed using acceptable
38	industry standards and protocols for all sources that were included in the Project's GHG
39 40	emissions calculations under MM GHG-1. LAHD review shall occur within 30 days of receipt of the submitted report. Any expenses incurred by LAHD in processing the
41	Tenant's request, including retaining an independent third-party verifier to peer review
42	the report, shall be borne by the Tenant.
43	<u>or</u>
44	(f) Implementation of Additional GHG Reduction Methods

In addition, the Tenant may request a reevaluation of required carbon offsets to be purchased according to this paragraph. The Tenant may implement different and additional GHG reduction methods that are equally or more effective if new technology and/or other feasible measures become available during the term of the Permit. To adjust the Tenant's required number of carbon offsets for purchase, the Tenant shall identify such additional GHG reduction actions and must quantify the GHG emission reductions from these GHG reduction actions by an independent, qualified third-party verifier. Once the GHG reduction actions are found to be feasible and are reviewed and approved by LAHD staff, the Tenant may request that LAHD reduce its required purchase of carbon offsets by the equivalent amount of demonstrated reduction. Any expenses incurred by LAHD in processing the Tenant's request, including retaining a third-party verifier, shall be borne by the Tenant.

LM AQ-1: Fleet Modernization for Cementitious Material Handling Equipment. Tenant shall replace cementitious material handling equipment used for operation with

Tenant shall replace cementitious material handling equipment used for operation with the cleanest available equipment, that meets operating and safety requirements, any time new or replacement equipment is purchased, with a first preference for zero-emission equipment, a second preference for near-zero equipment (such as, hybrid or low-NOx equipment), and third for the cleanest available if zero or near-zero equipment is not feasible, provided that LAHD shall conduct engineering assessments to confirm that such equipment is capable of installation at the facility. Tenant may make a recommendation to LAHD for LAHD's concurrence as to which equipment is available and is feasible The Tenant shall provide substantial evidence including, but not limited to, inventory reports of available equipment from manufacturers, to verify the availability and feasibility of equipment sought to be purchased in accordance with this measure.

Starting one year after the effective date of a new entitlement between the Tenant and the LAHD, Tenant shall submit to the Port an equipment inventory and 5-year procurement plan for new equipment, and infrastructure, and will update the procurement plan annually in order to assist with planning for transition of equipment to zero emissions in accordance with the foregoing paragraph.

LM AQ-2: Periodic Review of New Technology and Regulations. The Tenant willshall conduct a periodic review of any Port-identified or other new emissions-reducing technology and report to the LAHD on the feasibility of any new technology advancements that may reduce emissions not less frequently than once every five years following the effective date of the entitlement. The technology review would be subject to approval by LAHD and would involve consulting with appropriate resources (e.g., consultants, engineers, regulators) to validate the findings. If the review demonstrates the new technology would be effective in reducing emissions and is determined by the LAHD to be feasible, including but not limited to, financial, technical and operational considerations, the Tenant willshall implement the new air quality technological advancements, subject to mutual agreement, which shall not be unreasonably withheld by the Tenant.

LM AQ-3: At-Berth Vessel Emissions Control Pilot Study. The Tenant willshall complete a pilot study to evaluate the feasibility of implementing an at-berth vessel emissions capture and control systemstrategy within 3 years of entitlement execution. If proven to be feasible, including but not limited to financial, technical, and operational considerations, and upon California Air Resources Board certification, the Tenant willshall be required to implement the technology when operationally feasible as described in Tenant's pilot study. Implementation of the technology required under Tthis measure will rely on the Tenant's pilot study evaluation and determination, and is subject

1 to mutual agreement between the Tenant and LAHD; which agreement shall not be 2 unreasonably withheld nor implementation of technology unreasonably required. 3 LM AQ-5 and LM AQ-6 have been re-designated as mitigation measures (MM AQ-1 and 4 MM AQ-2, respectively), and revised, and three new mitigation measures have been 5 added, as shown below. 6 **LMM AQ-51: Vessel Speed Reduction Program (VSRP).** 95100 percent of vessels 7 calling at the Ecocem Dry Bulk Processing Facility will be required to comply with the 8 expanded VSRP at 12 knots between 40 nautical miles (nm) from Point Fermin. Speed is 9 confirmed by the Marine Exchange. Any vessel experiencing a maritime emergency that prevents compliance with the expanded VSRP may be exempt from this measure. If a 10 maritime emergency were to occur, the vessel operators shall provide substantial 11 12 evidence of a qualifying event to LAHD. 13 **LMM AQ-62: Front End Loader Replacement Schedule.** The tenant shall maintain a 14 replacement schedule of replace the off-road diesel front end loader of every two years. 15 where an The equivalent new piece that front end loader shall meets operational 16 requirements and meets Tier 4 Final standards or cleaner or as required by state and/or 17 local agencies, whichever is stricter, would be procured. During replacement, the 18 following preference will be used for consideration: first preference for zero-emission 19 equipment, a second preference for near-zero equipment (such as, hybrid or low-NOx equipment), and third for Tier 4 standards if zero or near-zero equipment is not feasible, 20 21 provided that LAHD shall conduct engineering assessments to confirm that such 22 equipment is capable of installation at the facility. The Tenant shall provide substantial 23 evidence including, but not limited to, inventory reports of available equipment from 24 manufacturers, to verify the availability and feasibility of equipment sought to be 25 purchased in accordance with this measure. 26 LM AO-5: Fleet Modernization for On-Road Trucks During Construction. 1. Trucks hauling materials such as debris or fill shall be fully covered while operating 27 28 off Port property. 29 2. Idling shall be restricted to a maximum of 5 minutes when not in use. 30 3. Tier Specifications: 31 From January 1, 2024, to December 31, 2026: All on-road heavy-duty diesel 32 trucks with a gross vehicle weight rating (GVWR) of 19,500 pounds or greater 33 used on site or to transport materials to and from the site shall comply with 2012 34 emission standards, or newer, where available. 35 Post January 1, 2027: All on-road heavy duty diesel trucks used on site or to 36 transport materials to and from the site shall comply with 2015 emission 37 standards, or newer, where available. 38 A copy of each unit's certified U.S. Environmental Protection Agency (USEPA) 39 rating, Best Available Control Technology (BACT) documentation, and CARB 40 or South Coast Air Quality Management District (SCAQMD) operating permit

⁵ Maritime emergencies may include, but are not limited to, suspicious activity, drone/plane activity, security breaches or attempts. United States Coast Guard (USCG) safety/security/protection zone violations, crimes on land and water, navigation rule violations, vessels in distress, rescues, fires and emergencies, as defined by the Port of Los Angeles Mariners Guide.

1 2	shall be provided at the time of mobilization of each applicable unit of equipment.
3	LM AQ-6: Fleet Modernization for Construction Equipment.
4 5	1. Construction equipment shall incorporate, where feasible, emissions savings technology such as hybrid drives and specific fuel economy standards.
6	2. Idling shall be restricted to a maximum of 5 minutes when not in use.
7	3. Tier Specifications:
8 9 10 11 12 13	 All offroad diesel-powered construction equipment greater than 50 horsepower shall meet the Tier 4 emission standards, where available. In addition, all construction equipment shall be outfitted with BACT devices certified by CARB. Any emissions control device used by the contractor shall achieve emissions reductions that are no less than what could be achieved by a Level 3 diesel emissions control strategy for a similarly sized engine as defined by CARB regulations.
15 16 17	 A copy of each unit's certified tier specification, BACT documentation, and <u>CARB or SCAQMD operating permit shall be provided at the time of</u> <u>mobilization of each applicable unit of equipment.</u>
18 19 20	The construction equipment measures shall be met, unless one of the following circumstances exist and the contractor is able to provide proof that any of these circumstances exists:
21 22	 A piece of specialized equipment is unavailable in a controlled form within the state of California, including through a leasing agreement.
23 24 25 26	 A contractor has applied for necessary incentive funds to put controls on a piece of uncontrolled equipment planned for use on the project, but the application process is not yet approved, or the application has been approved, but funds are not yet available.
27 28 29 30 31 32 33	 A contractor has ordered a control device for a piece of equipment planned for use on the project, or the contractor has ordered a new piece of controlled equipment to replace the uncontrolled equipment, but that order has not been completed by the manufacturer or dealer. In addition, for this exemption to apply, the contractor must attempt to lease controlled equipment to avoid using uncontrolled equipment, but no dealer within 200 miles of the project has the controlled equipment available for lease.
34 35	LM AQ-7: Renewable Diesel Fuel for Construction Equipment and On- Road Trucks
36 37 38	The Tenant shall fuel diesel-powered construction equipment and on-road trucks with renewable diesel fuel during construction. The renewable diesel product that is used shall comply with American Society for Testing and Materials (ASTM) fuel standards.
39 40 41	In the event of renewable diesel supply challenges or disruptions, the Tenant shall use ultra-low sulfur diesel (ULSD) as a secondary fuel. The Tenant shall demonstrate to LAHD substantial evidence of a supply disruption or event in a timely manner.
42	On page 3.5-25, LM GHG-1 is replaced by MM GHG-1 as follows:

1 LM GHG-1: GHG Credit Fund: LAHD shall establish a Greenhouse Gas Fund, which 2 LAHD shall have the option to accomplish through a Memorandum of Understanding 3 (MOU) with the California Air Resources Board (CARB) or another appropriate entity. 4 The fund shall be used for GHG-reducing projects and programs approved by the Port of 5 Los Angeles, or through the purchase of emission reduction credits from a CARB 6 approved offset registry. It shall be the responsibility of the Tenant to contribute to the 7 fund to mitigate emissions over the threshold (11,298 MT) at the existing market rate of 8 \$35.20 per carbon credit. Fund contribution shall be a one time payment of \$397,690 9 payable upon substantial completion of Project construction. If LAHD is unable to 10 establish the fund within one year prior to when payment is due, the Tenant shall instead 11 purchase emission reduction credits from a CARB approved GHG offset registry. 12 MM GHG-1: GHG Reduction Offsets. The Tenant shall be required to purchase and 13 retire carbon offsets related to activities that reduce, avoid, destroy, or sequester an 14 amount of GHG emissions in an off-site location to offset the equivalent amount of GHG 15 emissions generated by the Project, with the exception of electricity consumption. The 16 Tenant shall purchase and retire carbon offsets in an amount that would be the equivalent 17 of the Project's GHG Emissions of 4.985 Metric Tons (MT) from first year of operation until 2049 and 4,073 MT from 2049 through the end of the term of the Permit. The 18 19 Tenant shall purchase and retire carbon offsets on an annual basis, commencing after 20 construction is complete and during the first year of operation. The LAHD is in the process of developing a Greenhouse Gas Program. The Program shall be used for GHG-21 reducing projects and programs approved by the Port of Los Angeles. If that Program is 22 23 established during the term of the Permit, the Tenant shall have the option to offset the 24 required amount of GHG emissions through a funding contribution to the Greenhouse Gas Program rather than towards purchasing carbon offsets from a CARB-recognized 25 26 registry. 27 While the LAHD Greenhouse Gas Program is currently under development, the Tenant 28 shall purchase and retire carbon offsets from a CARB-recognized offset registry as 29 follows: 30 Carbon offsets: The Tenant shall purchase and retire carbon offsets from a CARB-31 recognized registry to ensure that offsets will result in real, permanent, additional, 32 quantifiable, verifiable, and enforceable reductions. The carbon offsets shall be verifiable 33 by the LAHD and enforceable in accordance with the registry's applicable standards, 34 practices, or protocols. 35 The order of priority for purchasing (any one or more) carbon offsets shall be considered 36 as follows: 37 ix. Originating within the local area; 38 Originating within the South Coast Air Basin; х. 39 Originating within the state of California; or xi. 40 xii. If sufficient local and in-state offsets are not available, the Tenant shall purchase conforming national offsets registered with a CARB-recognized 41 42 registry. 43 Adjustment of Tenant's Required Offsets through Other Verified GHG Emission 44 **Reductions:** The Tenant may pursue the following modifications to the Project's total

45 46 estimated GHG emissions identified in this measure. These modifications may be

pursued in conjunction with or independent of each other on an annual basis.

(g) Adjustment in Natural Gas Consumption

In the event natural gas consumption differs from the assumptions or is offset in the future due to changes in technology, efficiency, reduced operations, or for any other purpose, the Tenant may request an adjustment of the required offsets based on actual natural gas consumption, as verified through utility bills, rather than projected future usage. To adjust the Tenant's required number of offsets for purchase, the Tenant shall make a request in writing to the LAHD for review and approval for the time period under consideration and shall provide copies of utility bills showing the amount of natural gas consumed at the project site along with a revised greenhouse gas emission calculation performed by an independent, qualified third-party verifier.

or

(h) Adjustment in GHG Emissions

In the event of changes in activities, efficiency, reduced operations, or for any other purpose, the Tenant may request an adjustment of the required carbon offsets based on an evaluation of actual GHG emissions rather than future projected GHG emission calculations. To adjust the Tenant's required number of carbon offsets for purchase, the Tenant shall make a request in writing to the LAHD for review and approval for the calendar year under consideration and shall submit a report within 60 days that quantifies the actual greenhouse gas emissions by an expert or an independent, qualified third-party. The evaluation of actual greenhouse gas emissions must be performed using acceptable industry standards and protocols for all sources that were included in the Project's GHG emissions calculations under MM GHG-X. LAHD review shall occur within 30 days of receipt of the submitted report. Any expenses incurred by LAHD in processing the Tenant's request, including retaining an independent third-party verifier to peer review the report, shall be borne by the Tenant.

<u>or</u>

(i) Implementation of Additional GHG Reduction Methods

In addition, the Tenant may request a reevaluation of required carbon offsets to be purchased according to this paragraph. The Tenant may implement different and additional GHG reduction methods that are equally or more effective if new technology and/or other feasible measures become available during the term of the Permit. To adjust the Tenant's required number of carbon offsets for purchase, the Tenant shall identify such additional GHG reduction actions and must quantify the GHG emission reductions from these GHG reduction actions by an independent, qualified third-party verifier. Once the GHG reduction actions are found to be feasible and are reviewed and approved by LAHD staff, the Tenant may request that LAHD reduce its required purchase of carbon offsets by the equivalent amount of demonstrated reduction. Any expenses incurred by LAHD in processing the Tenant's request, including retaining a third-party verifier, shall be borne by the Tenant.

On p. 3.5-26 the following change is made:

Residual Impacts

GHG emissions impacts under the Proposed Project would be <u>less than</u> significant and unavoidable for all analyzed years.

Section 3.5.6.3, page 3.5-29

1	The text is revised as follows:
2	Mitigation Measures
3 4 5 6 7 8	Feasible mitigation measures are not available as described in 3.5.6.1. The Reduced Project (Alternative 2) would implement the following mitigation and lease measures for air quality and greenhouse gases; although some were not quantified within the analysis (except only LM AQ-4 and LMM AQ-51 and LMM AQ-62) these measures would generate further reductions of GHG emissions as a co-benefit:
9	LM AQ-1: Fleet Modernization for Cementitious Material Handling Equipment.
10	LM AQ-2: Periodic Review of New Technology.
11	LM AQ-3: At-Berth Vessel Emissions Control Pilot Study.
12	LM AQ-4: Port of Los Angeles Sustainable Construction Guidelines.
13	LMM AQ-51 : Vessel Speed Reduction Program (VSPR).
14	LMM AQ-62: Front End Loader Replacement Schedule.
15	LMM GHG-1: GHG Credit FundReduction Offsets.
16 17 18	The analysis of mitigation measures feasibility and application of lease measures can be found in Section 3.5.6.1 and the description of measures can be found in Section 3.5.10 Mitigation Monitoring.
19	Section 3.5.6.4, page 3.5-32
20	The text is revised to change LM AQ-5 to MM AQ-1 and LM AQ-6 to MM AQ-2.
21	Section 3.5.8.3, page 3.5-38
22 23	To clarify an issue raised by the California Coastal Commission's comment on the NOP, the following is added as the second paragraph of subsection 3.5.8.3:
24 25 26 27 28 29 30 31	Sea level rise, and possibly storm surge, could potentially cause groundwater elevations on the site to rise, potentially mobilizing existing soil and groundwater contamination. However, that phenomenon would occur whether or not the Proposed Project is implemented and would thus not be a consequence of the Proposed Project. Furthermore, the soil management plan (SMP; see FEIR Appendix E) for construction activities would require remediation of any contamination encountered on the site. By reducing the amount of site contamination, that remediation would reduce, compared to baseline conditions, the possibility of contamination being mobilized in the future by sea level rise or storm surge.
33	Table 3.5-10
34 35 36 37	Lease measures LM AQ-5 and LM AQ-6 are re-designated MM AQ-1 and MM AQ-2, respectively, lease measures LM AQ-5, LM AQ-6, and LM AQ-7 are added to the Proposed Project and alternatives 2 and 3, and MM GHG-1 is added to the Proposed Project and Alternative 2 as follows:

Table 3.5-10: Summary Matrix of Impacts and Mitigation Measures Associated with the Proposed Project and Alternatives

Alternative	Environmental Impacts	Impact Determination	Applied Mitigation /Lease Measures or Controls	Residual Impacts
Proposed Project	GHG-1: The Proposed Project would generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment.	GHG emissions would be significant under CEQA in 2025, 2027 and 2049 analysis years	MM GHG-1: GHG Reduction Offsets MM AQ-1: Vessel Speed Reduction Program (VSRP) MM AQ-2: Front End Loader Replacement Schedule LM AQ-1: Fleet Modernization for Cementitious Material Handling Equipment LM AQ-2: Periodic Review of New Technology LM AQ-3: At-Berth Vessel Emissions Control Pilot Study Mitigation not required although LM AQ-4: Port of Los Angeles Harbor Department (LAHD) Sustainable Construction Guidelines would be applied LM AQ-5: Vessel Speed Reduction Program (VSRP) LM AQ-6: Front End Loader Replacement Schedule LM GHG-1: GHG Credit Fund LM AQ-5: Fleet Modernization for On-Road Trucks During Construction LM AQ-6: Fleet Modernization for Construction Equipment LM AQ-7: Renewable Diesel Fuel for Construction Equipment and On-Road Trucks	GHG emissions impacts would be significant and unavoidable for all analyzed years Less than significant impact

Table 3.5-10: Summary Matrix of Impacts and Mitigation Measures Associated with the Proposed Project and Alternatives

Alternative	Environmental Impacts	Impact Determination	Applied Mitigation /Lease Measures or Controls	Residual Impacts
Alternative 1 – No Project Alternative	GHG-1: No Project Alternative (Alternative 1) would generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment.	No Impact	Not applicable	No Impact
Alternative 2 – Reduced Project Alternative	GHG-1: Reduced Project Alternative (Alternative 2) would generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment.	GHG emissions would be significant under CEQA in analysis year 2027	MM GHG-1: GHG Reduction Offsets MM AQ-1: Vessel Speed Reduction Program (VSRP) MM AQ-2: Front End Loader Replacement Schedule LM AQ-1: Fleet Modernization for Cementitious Material Handling Equipment LM AQ-2: Periodic Review of New Technology LM AQ-3: At-Berth Vessel Emissions Control Pilot Study Mitigation not required although LM AQ-4: Port of Los Angeles Harbor Department (LAHD) Sustainable Construction Guidelines would be applied LM AQ-5: Vessel Speed Reduction Program (VSRP) LM AQ-6: Front End Loader Replacement Schedule LM GHG-1: GHG Credit Fund LM AQ-5: Fleet Modernization for On-Road Trucks During Construction LM AQ-6: Fleet Modernization for Construction Equipment LM AQ-7: Renewable Diesel Fuel for	GHG emissions impacts would be significant and unavoidable for analysis year 2027 Less than significant impact

Table 3.5-10: Summary Matrix of Impacts and Mitigation Measures Associated with the Proposed Project and Alternatives

Alternative	Environmental Impacts	Impact Determination	Applied Mitigation /Lease Measures or Controls	Residual Impacts
			Construction Equipment and On-Road Trucks	
Alternative 3 – Product Import Terminal Alternative	GHG-1: Product Import Terminal Alternative (Alternative 3) would generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment.	Less than significant impact	Mitigation not required; however, the following lease measures would be applied: LM AQ-1: Fleet Modernization for Cementitious Material Handling Equipment LM AQ-2: Periodic Review of New Technology LM AQ-3: At-Berth Vessel Emissions Control Pilot Study LM AQ-4: Port of-Los Angeles Harbor Department (LAHD) Sustainable Construction Guidelines would be applied LM AQ-5: Vessel Speed Reduction Program (VSRP) LM AQ-5: Fleet Modernization for On-Road Trucks During Construction LM AQ-6: Fleet Modernization for Construction Equipment LM AQ-7: Renewable Diesel Fuel for Construction Equipment and On-Road Trucks	Less than significant impact

2

3

4

5

6

Section 3.5.10, p. 3.5-41 through 3.5-43

The text has been revised as follows:

The mitigation monitoring program below does not contain any mitigation measures, as none were found feasible. Instead, this section summarizes implementation of the applicable lease <u>and mitigation</u> measures.

The mitigation monitoring table is revised as follows:

Lease	LM AQ-1: Fleet Modernization for Cementitious Material Handling
Measure	Equipment. Tenant shall replace cementitious material handling
	equipment used for operation with the cleanest available equipment,
	that meets operating and safety requirements, anytime new or
	replacement equipment is purchased, with a first preference for zero-
	emission equipment, a second preference for near-zero equipment
	(such as, hybrid or low-NOx equipment), and third for the cleanest
	available if zero or near-zero equipment is not feasible, provided that
	LAHD shall conduct engineering assessments to confirm that such
	equipment is capable of installation at the facility. Tenant may make a
	recommendation to LAHD for LAHD's concurrence as to which
	equipment is available and is feasible The Tenant shall provide
	substantial evidence including, but not limited to, inventory reports of
	available equipment from manufacturers, to verify the availability and
	feasibility of equipment sought to be purchased in accordance with this
	measure.
	Starting one year after the effective date of a new entitlement between
	the Tenant and the LAHD, Tenant shall submit to the Port an
	equipment inventory and 5-year procurement plan for new equipment,
	and infrastructure, and will update the procurement plan annually in
	order to assist with planning for transition of equipment to zero
	emissions in accordance with the foregoing paragraph.
Timing	During operation.
Methodology	LAHD will include this lease measure in lease agreements with the
	<u>ŧT</u> enant s .

Lease	LM AQ-2: Periodic Review of New Technology and Regulations.
Measure	The Tenant willshall conduct a periodic review of any Port-identified or other new emissions-reducing technology and report to the LAHD on the feasibility of any new technology advancements that may reduce emissions not less frequently than once every five years following the effective date of the entitlement. The technology review would be subject to approval by LAHD and would involve consulting with appropriate resources (e.g., consultants, engineers, regulators) to validate the findings. If the review demonstrates the new technology would be effective in reducing emissions and is determined by the LAHD to be feasible, including but not limited to, financial, technical and operational considerations, the Tenant willshall implement the new air quality technological advancements, subject to mutual agreement, which shall not be unreasonably withheld by the Tenant.
Timing	During operation.
Methodology	LAHD will include this lease measure in lease agreements with the tTenants.

Mitigation Lease	LM AQ-3: At-Berth Vessel Emissions Control Pilot Study. The
Measure	Tenant shall complete a pilot study to evaluate the feasibility of
	implementing an at-berth vessel emissions capture and control system
	within 3 years of entitlement execution. If proven to be feasible,
	including but not limited to financial, technical, and operational
	considerations, and upon California Air Resources Board certification,
	the Tenant will be required to implement the technology when
	operationally feasible as described in Tenant's pilot study.
	Implementation of the technology required under ‡this measure will rely
	on the Tenant's pilot study evaluation and determination and is subject
	to mutual agreement between the Tenant and LAHD, which agreement
	shall not be unreasonably withheld nor implementation of technology
	unreasonably required.
Timing	During operation.
Methodology	LAHD will include this lease measure in lease agreements with the
	t <u>T</u> enants.

MitigationLeas	ELM AQ-4: Port of Los Angeles Harbor Department (LAHD)
Measure	Sustainable Construction Guidelines. The project shall implement and comply with all measures as required by the Los Angeles Harbor Department's Sustainable Construction Guidelines adopted in February 2008 and updated in November 2009 during Project construction activities. These requirements shall be stipulated in the construction contracts and bid documents.
Timing	During operation.
Methodology	LAHD will include this lease measure in lease agreements with the tenants.

Mitigation	<u>LMM AQ-51</u> : Vessel Speed Reduction Program (VSRP): 95100					
Measure	percent of vessels calling at the Ecocem Dry Bulk Processing Facility					
	will be required to shall comply with the expanded VSRP at 12 knots					
	between 40 nautical miles (nm) from Point Fermin. Vessel Sspeed is					
	confirmed by the Marine Exchange. Vessels experiencing a maritime					
	emergency ⁶ that prevents compliance with the expanded VSRP may be					
exempt from this measure. If a maritime emergency were to						
	vessel operators shall provide substantial evidence of a qualifying					
	event to LAHD.					
Timing	During operation.					
Methodology	LAHD will include this leasemitigation measure in lease agreements					
	with the tTenants.					

Mitigation	LMM AQ-62: Front End Loader Replacement Schedule. The tenant
Measure	shall maintain a replacement schedule of replace the off-road diesel
	front end loader of every two years, where an The equivalent new
	piece that front end loader shall meets operational requirements and
	meets Tier 4 Final standards or cleaner or as required by state and/or
	local agencies, whichever is stricter, would be procured. During

⁶ Maritime emergencies may include, but are not limited to, suspicious activity, drone/plane activity, security breaches or attempts, United States Coast Guard (USCG) safety/security/protection zone violations, crimes on land and water, navigation rule violations, vessels in distress, rescues, fires and emergencies, as defined by the Port of Los Angeles Mariners Guide.

	replacement, the following preference will be used for consideration:
	first preference for zero-emission equipment, a second preference for
	near-zero equipment (such as, hybrid or low-NOx equipment), and
	third for Tier 4 standards if zero or near-zero equipment is not feasible,
	provided that LAHD shall conduct engineering assessments to confirm
	that such equipment is capable of installation at the facility. The
	Tenant shall provide substantial evidence including, but not limited to,
	inventory reports of available equipment from manufacturers, to verify
	the availability and feasibility of equipment sought to be purchased in
	accordance with this measure.
Timing	During operation.
Methodology	LAHD will include this leasemitigation measure in lease agreements
0,	with the tTenants.
Mitigation	LM AQ-5: Fleet Modernization for On-Road Trucks During
Measure	Construction.
	1. Trucks hauling materials such as debris or fill shall be fully covered
	while operating off Port property.
	2. Idling shall be restricted to a maximum of 5 minutes when not in use.
	3. Tier Specifications:
	• From January 1, 2024, to December 31, 2026: All on-road heavy-
	duty diesel trucks with a gross vehicle weight rating (GVWR) of
	19,500 pounds or greater used on site or to transport materials to
	and from the site shall comply with 2012 emission standards, or
	newer, where available.
	Post January 1, 2027: All on-road heavy duty diesel trucks used
	on site or to transport materials to and from the site shall comply
	with 2015 emission standards, or newer, where available.
	 A copy of each unit's certified U.S. Environmental Protection
	Agency (USEPA) rating, Best Available Control Technology
	(BACT) documentation, and CARB or South Coast Air Quality
	Management District (SCAQMD) operating permit shall be
	provided at the time of mobilization of each applicable unit of
	equipment.
Timing	During construction
Methodology	LAHD will include this lease measure in the Tenant's construction
	permit.
Mitigation	LM AQ-6: Fleet Modernization for Construction Equipment.
Measure	1. Construction equipment shall incorporate, where feasible, emissions
	savings technology such as hybrid drives and specific fuel economy
	standards.
	2. Idling shall be restricted to a maximum of 5 minutes when not in use.
	3. Tier Specifications:
	·
	All offroad diesel-powered construction equipment greater than Solver Property Property
	50 horsepower shall meet the Tier 4 emission standards, where
	available. In addition, all construction equipment shall be
	outfitted with BACT devices certified by CARB. Any emissions
	control device used by the contractor shall achieve emissions
	reductions that are no less than what could be achieved by a
	Level 3 diesel emissions control strategy for a similarly sized
	engine as defined by CARB regulations.
	 A copy of each unit's certified tier specification, BACT
	documentation, and CARB or SCAQMD operating permit shall
	be provided at the time of mobilization of each applicable unit of
	equipment.

	The construction equipment measures shall be met, unless one of the
	following circumstances exist and the contractor is able to provide proof
	that any of these circumstances exists:
	A piece of specialized equipment is unavailable in a controlled
	form within the state of California, including through a leasing
	agreement.
	A contractor has applied for necessary incentive funds to put applied on a piece of upcontrolled equipment planned for use
	controls on a piece of uncontrolled equipment planned for use
	on the project, but the application process is not yet approved,
	or the application has been approved, but funds are not yet
	available.
	A contractor has ordered a control device for a piece of
	equipment planned for use on the project, or the contractor has
	ordered a new piece of controlled equipment to replace the
	uncontrolled equipment, but that order has not been completed
	by the manufacturer or dealer. In addition, for this exemption to
	apply, the contractor must attempt to lease controlled
	equipment to avoid using uncontrolled equipment, but no dealer
	within 200 miles of the project has the controlled equipment
- · ·	available for lease.
Timing	During construction
Methodology	LAHD will include this lease measure in the Tenant's construction
	permit.
Mitigation	LM AQ-7: Renewable Diesel Fuel for Construction Equipment
Measure	and On-Road Trucks
	The Tenant shall fuel diesel-powered construction equipment and on-
	road trucks with renewable diesel fuel during construction. The
	renewable diesel product that is used shall comply with American
	Society for Testing and Materials (ASTM) fuel standards.
	In the event of renewable diesel supply challenges or disruptions, the
	Tenant shall use ultra-low sulfur diesel (ULSD) as a secondary fuel.
	The Tenant shall demonstrate to LAHD substantial evidence of a
	supply disruption or event in a timely manner.
Timing	<u>During construction</u>
Methodology	LAHD will include this lease measure in the Tenant's construction
	permit.
Mitigation	LM GHG-1: GHG Credit Fund: LAHD shall establish a Greenhouse
Measure	Gas Fund, which LAHD shall have the option to accomplish through a
	Memorandum of Understanding (MOU) with the California Air
	Resources Board (CARB) or another appropriate entity. The fund shall
	be used for GHG-reducing projects and programs approved by the
	Port of Los Angeles, or through the purchase of emission reduction
	credits from a CARB approved offset registry. It shall be the
	responsibility of the Tenant to contribute to the fund to mitigate 11,298
	MT at the existing market rate of \$35.20 per carbon credit. Fund
	contribution shall be a one time payment of \$397,690 payable upon
	substantial completion of Project construction. If LAHD is unable to
	establish the fund within one year prior to when payment is due, the
	Tenant shall instead purchase emission reduction credits from a CARB
	approved GHG offset registry.
	MM GHG-1: GHG Reduction Offsets. The Tenant shall be required
	to purchase and retire carbon offsets related to activities that reduce,
	avoid, destroy, or sequester an amount of GHG emissions in an off-
	site location to offset the equivalent amount of GHG emissions

generated by the Project, with the exception of electricity consumption. The Tenant shall purchase and retire carbon offsets in an amount that would be the equivalent of the Project's GHG Emissions of 4,985 Metric Tons (MT) from first year of operation until 2049 and 4,073 MT from 2049 through the end of the term of the Permit. The Tenant shall purchase and retire carbon offsets on an annual basis, commencing after construction is complete and during the first year of operation. The LAHD is in the process of developing a Greenhouse Gas Program. The Program shall be used for GHG-reducing projects and programs approved by the Port of Los Angeles. If that Program is established during the term of the Permit, the Tenant shall have the option to offset the required amount of GHG emissions through a funding contribution to the Greenhouse Gas Program rather than towards purchasing carbon offsets from a CARB-recognized registry.

While the LAHD Greenhouse Gas Program is currently under development, the Tenant shall purchase and retire carbon offsets from a CARB-recognized offset registry as follows:

Carbon offsets: The Tenant shall purchase and retire carbon offsets from a CARB-recognized registry to ensure that offsets will result in real, permanent, additional, quantifiable, verifiable, and enforceable reductions. The carbon offsets shall be verifiable by the LAHD and enforceable in accordance with the registry's applicable standards, practices, or protocols.

The order of priority for purchasing (any one or more) carbon offsets shall be considered as follows:

- i. Originating within the local area;
- ii. Originating within the South Coast Air Basin;
- iii. Originating within the state of California: or
- iv. If sufficient local and in-state offsets are not available, the Tenant shall purchase conforming national offsets registered with a CARB-recognized registry.

Adjustment of Tenant's Required Offsets through Other Verified GHG Emission Reductions: The Tenant may pursue the following modifications to the Project's total estimated GHG emissions identified in this measure. These modifications may be pursued in conjunction with or independent of each other on an annual basis.

a) Adjustment in Natural Gas Consumption

In the event natural gas consumption differs from the assumptions or is offset in the future due to changes in technology, efficiency, reduced operations, or for any other purpose, the Tenant may request an adjustment of the required offsets based on actual natural gas consumption, as verified through utility bills, rather than projected future usage. To adjust the Tenant's required number of offsets for purchase, the Tenant shall make a request in writing to the LAHD for review and approval for the time period under consideration and shall provide copies of utility bills showing the amount of natural gas consumed at the project site along with a revised greenhouse gas emission calculation performed by an independent, qualified third-party verifier.

or b) Adjustment in GHG Emissions In the event of changes in activities, efficiency, reduced operations, or for any other purpose, the Tenant may request an adjustment of the required carbon offsets based on an evaluation of actual GHG emissions rather than future projected GHG emission calculations. To adjust the Tenant's required number of carbon offsets for purchase, the Tenant shall make a request in writing to the LAHD for review and approval for the calendar year under consideration and shall submit a report within 60 days that quantifies the actual greenhouse gas emissions by an expert or an independent, qualified third-party. The evaluation of actual greenhouse gas emissions must be performed using acceptable industry standards and protocols for all sources that were included in the Project's GHG emissions calculations under MM GHG-1. LAHD review shall occur within 30 days of receipt of the submitted report. Any expenses incurred by LAHD in processing the Tenant's request, including retaining an independent third-party verifier to peer review the report, shall be borne by the Tenant. or c) Implementation of Additional GHG Reduction Methods In addition, the Tenant may request a reevaluation of required carbon offsets to be purchased according to this paragraph. The Tenant may implement different and additional GHG reduction methods that are equally or more effective if new technology and/or other feasible measures become available during the term of the Permit. To adjust the Tenant's required number of carbon offsets for purchase, the Tenant shall identify such additional GHG reduction actions and must quantify the GHG emission reductions from these GHG reduction actions by an independent, qualified third-party verifier. Once the GHG reduction actions are found to be feasible and are reviewed and approved by LAHD staff, the Tenant may request that LAHD reduce its required purchase of carbon offsets by the equivalent amount of demonstrated reduction. Any expenses incurred by LAHD in processing the Tenant's request, including retaining a third-party verifier, shall be borne by the Tenant.

Timing Payable upon substantial completion of Project construction annually during operation.

Methodology LAHD will include this lease measure in lease agreements with the trenants.

3.2.6 Changes Made to Section 3.7 Noise

On page 3.7-1, line 20, the sentence is revised as follows:

Mitigation measures NOI-1, and NOI-2, and NOI-3 would reduce construction noise, but...

On page 3.7-18, MM NOI-3 is added after MM NOI-2 as follows:

MM NOI-3: Usage of Wooden Cushion Block. The construction contractor shall use a wooden cushion block to dampen the noise impact from pile driving. This wooden cushion block shall be placed between the pile and hammer. It shall only be applicable to driving concrete piles.

1 2

3

4

5

6

7

8

3

4 5

6

7

8

9

10

11

12 13

14

15

1 On page 3.7-19, the first sentence is revised as follows:

Mitigation measures MM NOI-1 and MM NOI-2 are expected to reduce sound levels from pile driving activity by at least 5 dBA where they are it is feasible to apply. The degree of sound level reduction that MM NOI-3 might achieve is unknown.

On page 3.7-24 the same revisions applied to the Proposed Project text, above, are applied to Alternative 2, Reduced Project.

On pages 3.7-25 and 3.7-26, the same revisions applied to the Proposed Project text, above, are applied to Alternative 3, Product Import Project.

3.2.7 Changes Made to Section 3.8 Ground Transportation.

In response to Comment SCAQMD-1, Table 3.8-4 is modified as follows to reconcile a discrepancy in the number of operational truck trips between the air quality analysis and the informational ground transportation analysis.

Table 3.8-4: Truck Trip Generation by the Proposed Project and Alternatives

Activity	CEQA Baseline	Proposed Project	Alternative 1 – No Project Alternative	Alternative 2 – Reduced Project	Alternative 3 – Product Import Terminal
Annual Truck trips (one-way trips/year)	0	66,000 <u>65,950</u>	0	44,500	62,000
Daily Truck Trips (one-way trips/day)	0	263	0	178	248
Average trip length (VMT, miles/one-way trip)	0	73	N/A	73	73

Note: number of trips represent at-capacity operations of the facility.

Daily trips derived from annual trips divided by 50 weeks per year, 5 days per week.

To reflect updated project schedules, Table 3.8-5 is revised as follows:

17 Table 3.8-5: Planned Transportation Improvement Projects in the Project Area

Project	Construction Start	Construction Completion
Ecocem Project (operational Q1 202 <u>7</u> 6)	07/202406/30/2025	12/31/2025 <u>11/30/2026</u>
Berth 200 Roadway ¹	09/2026	01/01/2027 <u>03/01/2028</u>
Closed Avalon Blvd., Harry Bridges Blvd. to S. Broad Ave. (part of Avalon Gateway project currently under design) ^{1,2}	03/ <u>01</u> /2026	<u>N/A</u>
Realigned Water St.1	Completed	
Closed Avalon Blvd., S. Broad Ave. to Water St.	<u>12/31/2026</u> 03/02/2028	<u>N/A</u>
Avalon Pedestrian Bridge and Gateway	12/31/2026 03/01/2026	01/202708/31/2028

Source:

¹Port of Los Angeles (2023)

1

3 4

5

6

7

8

9

10

11 12

13 14

15

²This route will be permanently closed after completion of the Avalon Pedestrian Bridge and Gateway project.

3.2.8 Changes Made to Chapter 4 Cumulative Analysis

In response to Comment E4SS-34, the second sentence of the last paragraph on p. 4-23 (Section 4.2.2) is revised as follows:

This increase is assumed on the basis of the increased size of vessels, as vessel numberscalls are not expected to increase substantially (for example, in years 2001 through 2005, vessel calls to the Port of Los Angeles averaged approximately 2,750 calls per year, whereas vessel calls in years 2019 through 2023 averaged approximately 1,800 calls per year, a decrease of approximately 30 percent. In the same period, however, annual container cargo throughput [the major category for the Port and a surrogate for total cargo] increased by nearly 50 percent).

Section 4.3.1 is revised to eliminate the Greenhouse Gas Emissions bullet from sections 4.3.1, 4.3.3, and 4.3.4.

Table 4-2 is revised as follows:

Table 4-2 Summary Matrix of Residual Impacts, Cumulative Analysis and Mitigation Measures for the Proposed Project and Alternatives.

Resource Area	Environmental Impacts	Proposed Project Residual Impacts	Applied Mitigation/Lease Measures or Controls	Cumulative Analysis for Proposed Project	Cumulative Analysis for build Alternatives 2 and 3
4.2.1 Air Quality	AQ-1: Would the Proposed Project or alternatives result in construction-related emissions that would make a cumulatively considerable contribution to a significant cumulative impact from exceedance of the SCAQMD threshold of significance in Table 3.1-4?	Less than significant	LM AQ-4: POLA Sustainable Construction Guidelines would be applied.	No cumulatively considerable contribution to an existing significant cumulative impact	Same as the Proposed Project
	AQ-2: Would the Proposed Project or alternatives construction result in off-site ambient air pollutant concentrations that would make a cumulatively considerable contribution to a significant cumulative impact from exceedance of a SCAQMD threshold of significance in Table 3.1-5?	Less than significant	No mitigation required	No cumulatively considerable contribution to an existing significant cumulative impact	Same as the Proposed Project
	AQ-3: Would operation of the Proposed Project or alternatives result in operational emissions that would make a cumulatively considerable contribution to a significant cumulative impact from exceedance of a SCAQMD threshold of significance in Table 3.1-6?	Operation emissions would be significant for NOx in all operational years	LM AQ-1: Fleet Modernization for Cementitious Material Handling Equipment LM AQ-2: Periodic Review of New Technology and Regulations LM AQ-3: At-Berth Vessel Control Pilot Project LM AQ-5: Vessel Speed Reduction Program would be applied LM AQ-6: Front End Loader Replacement Schedule	Cumulatively considerable and unavoidable contribution to a significant cumulative impact related to operational NOx emissions	Similar contributions as the Proposed Project to a lesser extent

Resource Area	Environmental Impacts	Proposed Project Residual Impacts	Applied Mitigation/Lease Measures or Controls	Cumulative Analysis for Proposed Project	Cumulative Analysis for build Alternatives 2 and 3
	AQ-4: Would operation of the Proposed Project or alternatives make a cumulatively considerable contribution to a significant cumulative impact related to offsite ambient air pollutant concentrations exceeding a SCAQMD threshold of significance?	Operation-related ambient pollutant concentrations would be significant in all years for annual and 24-hr PM ₁₀ , and 24-hr PM _{2.5}	LM AQ-1, LM AQ-2, LM AQ-3, LM AQ-5; LM AQ-6 is applicable only to Proposed Project and Reduced Project	Cumulatively considerable and unavoidable contribution to an existing significant cumulative impact related to ambient concentrations of PM ₁₀ and PM _{2.5}	Similar contributions as the Proposed Project to a lesser extent
	AQ-5: Would the Proposed Project or alternatives make a cumulatively considerable contribution to a significant cumulative impact from exposure of receptors to significant levels of toxic air contaminants?	Health risks would be below the significance threshold for all receptor types	LM AQ-1, LM AQ-2, LM AQ-3, LM AQ-4, LM AQ-5; LM AQ-6 is applicable only to Proposed Project and Reduced Project	Cumulatively considerable and unavoidable contribution to an existing significant cumulative impact related to residential, non-residential sensitive, and occupational cancer risk, occupational chronic and acute hazard indices	Similar contributions as the Proposed Project to a lesser extent
	AQ-6: Would the Proposed Project or alternatives make a cumulatively considerable contribution to a significant cumulative impact from conflict with or obstruction of the implementation of an applicable AQMP?	Less than significant	No mitigation required	No cumulatively considerable contribution to an existing significant cumulative impact	Same as the Proposed Project
4.2.2 Biological Resources	BIO-1: Would the Proposed Project or alternatives contribute to a cumulative substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service?	Less than significant after mitigation	MM BIO-1: Protect marine mammals	No cumulatively considerable contribution to an existing significant cumulative impact	Same as the Proposed Project

Resource Area	Environmental Impacts	Proposed Project Residual Impacts	Applied Mitigation/Lease Measures or Controls	Cumulative Analysis for Proposed Project	Cumulative Analysis for build Alternatives 2 and 3
4.2.3 Energy	EN-1: Would the Proposed Project make a cumulatively considerable contribution to a significant cumulative impact related to wasteful, inefficient, or unnecessary consumption of energy resources, during Project construction or operation?	Less than significant	No mitigation is required	No cumulatively considerable contribution to an existing significant cumulative impact	Same as the Proposed Project
4.2.4 Geology and Soils	GEO-1: Would the Proposed Project make a cumulatively considerable contribution to a significant cumulative impact related to geologic units or soils that are unstable, or that would become unstable as a result of the Project, and potentially result in on- or off-site landslides, lateral spreading, subsidence, liquefaction, or collapse?	Less than significant	No mitigation is required	No cumulatively considerable contribution to an existing significant cumulative impact	Same as the Proposed Project
4.2.5 Greenhouse Gases	GHG-1 : Would the Proposed Project or alternatives generate GHG emissions, either directly or indirectly, that would make a cumulatively considerable contribution to a significant cumulative impact?	GHG emissions would be significant under CEQA in 2025, 2027 and 2049 analysis years	LM AQ-1, LM AQ-2, LM AQ-4, and MM GHG-1: GHG Reduction Offsets	No Ccumulatively considerable and unavoidable contribution to an existing significant cumulative impact related to GHG and global climate change	Similar contributions as the Proposed Project to a lesser extent
4.2.6 Land Use	LU-1: Would the Proposed Project or alternatives make a cumulatively considerable contribution to a significant cumulative impact related to conflict with any land use plan, policy, or regulation adopted for the purpose of avoiding or mitigating an environmental impact?	Less than significant	No mitigation is required	No cumulatively considerable contribution to an existing significant cumulative impact	Same as the Proposed Project
4.2.7 Noise	NOI-1: Would the Proposed Project or alternatives result in generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the Project that would result in a cumulatively considerable exceedance of				

Resource Area	Environmental Impacts	Proposed Project Residual Impacts Applied Mitigation/Leas Measures or Controls		Cumulative Analysis for Proposed Project	Cumulative Analysis for build Alternatives 2 and 3
	standards established in the local general plan or noise ordinance, or applicable standards of other agencies?				
	NOI-1a: Daytime construction activities lasting more than 10 days in a 3-month period that would exceed existing ambient exterior noise levels by 5 dBA or more at a noise-sensitive/receptor.	Significant and unavoidable	MM NOI-1: Noise Barriers Adjacent to Pile Driving Activities MM NOI-2:_Noise Reduction of Landside Pile Driving MM NOI-3: Usage of a Wooden Cushion Block	Cumulatively considerable and unavoidable contribution to a significant cumulative impact related to daytime construction noise	Similar contributions as the Proposed Project to a lesser extent
	NOI-1b: Construction activities could result in noise levels that would exceed the ambient noise level by 5 dBA at noisesensitive receptors between the hours of 9:00 p.m. and 7:00 a.m., Monday through Friday, before 8:00 a.m. or after 6:00 p.m. on Saturday, or at any time on Sunday.	Significant and unavoidable	MM NOI-1: Noise Barriers Adjacent to Pile Driving Activities Noise Reduction of Landside Pile Driving MM NOI-3: Usage of a Wooden Cushion Block	arriers Adjacent to le Driving Activities bise Reduction of andside Pile Driving M NOI-3: Usage of a booden Cushion and unavoidable contribution to a significant cumulative impact related to night- time construction noise	
	NOI-1c: For operational noise, a significant noise impact would occur if project operations cause the ambient noise level measured at the property line of affected uses (i.e., sensitive receptors) to increase by 3 dBA in CNEL to or within the 'normally unacceptable' or 'clearly unacceptable category,' or any increase in CNEL 5 dBA or greater.	Less than significant	No mitigation is required	No cumulatively considerable contribution to an existing significant cumulative impact relayed to operational noise	Same as the Proposed Project
	NOI-2: Would the Proposed Project or alternatives result in a considerable contribution to a cumulatively significant	Less than significant	No mitigation is required	No cumulatively considerable contribution to an existing significant cumulative impact related to	Same as the Proposed Project

Resource Area	Impacts		Applied Mitigation/Lease Measures or Controls	Cumulative Analysis for Proposed Project	Cumulative Analysis for build Alternatives 2 and 3	
	generation of excessive groundborne vibration or groundborne noise levels?			groundborne noise or vibration		
4.2.8 Ground Transportation	TRANS-1: Would the Proposed Project or alternatives make a cumulatively considerable contribution to a significant cumulative conflict with a program, plan, ordinance or policy addressing the circulation system, including transit, roadway, bicycle and pedestrian facilities?	No impact	No cumulatively considerable contribution to required an existing significant cumulative impact		Same as the Proposed Project	
	TRANS-2: Would the Proposed Project or alternatives make a cumulatively considerable contribution to a significant cumulative conflict or inconsistency with CEQA Guidelines section 15064.3, subdivision (b)?	No Impact	No mitigation is required No cumulatively considerable contribution to an existing significant cumulative impact		Same as the Proposed Project	
	TRANS-3: Would the Proposed Project or alternatives make a cumulatively considerable contribution to a significant cumulative impact related to hazards due to geometric design features (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?	No impact	No mitigation is required	No cumulatively considerable contribution to an existing significant cumulative impact	Same as the Proposed Project	
	TRANS-4: Would the Proposed Project or alternatives make a cumulatively considerable contribution to a significant cumulative impact related to inadequate emergency access?	No impact	No mitigation is required	No cumulatively considerable contribution to an existing significant cumulative impact	Same as the Proposed Project	
4.2.9 Tribal Cultural Resources	TCR-1: Would the Proposed Project or alternatives have a potential to make a cumulatively considerable contribution to a significant cumulative impact related to substantial adverse changes in the significance of a tribal cultural resource,	Less than significant	No mitigation is required but SC TCR-1 would be employed SC TCR-1: Stop Work in the Area if	No cumulatively considerable contribution to an existing significant cumulative impact	Same as the Proposed Project	

Resource Area	Environmental Impacts	Proposed Project Residual Impacts	Applied Mitigation/Lease Measures or Controls	Cumulative Analysis for Proposed Project	Cumulative Analysis for build Alternatives 2 and 3
	defined in Public Resources Code Section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as defined in Public Resources Code section 5020.1(k)?		Prehistoric and/or Archaeological Resources are Encountered		
	TCR-2: Would the Proposed Project or alternatives have a potential to make a cumulatively considerable contribution to a significant cumulative impact related to substantial adverse changes in the significance of a tribal cultural resource, defined in Public Resources Code section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is a resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1?	Less than significant	No mitigation is required but SC TCR-1 would be employed SC TCR-1: Stop Work in the Area if Prehistoric and/or Archaeological Resources are Encountered	No cumulatively considerable contribution to an existing significant cumulative impact	Same as the Proposed Project

environmental issues in accordance with CEQA Guidelines Appendix G, which is intended to focus the EIR on potentially significant impacts. The IS concluded that the Proposed Project would have no impact in a number of resource areas, and those issue areas were not considered in the DEIR. In other resource areas, the IS concluded that the Proposed Project's impacts would be less than significant and similarly eliminated those areas from further analysis in the DEIR. After publication of the DEIR, LAHD determined that it is appropriate to consider the potential for those less-than-significant impacts to make cumulatively considerable contributions to existing significant cumulative impacts. Accordingly, LAHD has prepared an additional section in Chapter 4 Cumulative Analysis to include an analysis of those cases. The FEIR is revised to include that section as follows:

The Initial Study (IS) for the Proposed Project, published in March, 2022, evaluated the

Section 4.2.10 Other Cumulative Impacts

The IS for the Proposed Project, published in March 2022, evaluated the environmental issues in accordance with CEQA Guidelines Appendix G, which is intended to focus the EIR on potentially significant impacts. The IS concluded that the Proposed Project would have no impact in a number of resource areas, and those resource areas were therefore not considered in the DEIR. In other resource areas, the IS concluded that the Proposed Project's impacts would be less than significant and thus similarly eliminated those areas from further discussion in the DEIR. LAHD has determined that it is appropriate to consider whether those less-than-significant impacts could potentially make cumulatively considerable contributions to significant cumulative impacts. This analysis summarizes LAHD's conclusions in that regard.

Aesthetics -1a: The IS concluded that the Proposed Project's aesthetic impacts would be less than significant with regard to having a substantial adverse effect on a scenic vista, conflict with zoning and regulations regarding scenic quality, and addition of light or glare. As described in the IS, the Project site is in a remote, industrial portion of the Port that is not readily visible to the public and is not part of a scenic vista, the Proposed Project's physical features would be consistent with the existing visual character of the immediate area, and the existing nighttime light environment is characterized by bright industrial lighting. None of the related projects in the immediate area would substantially alter the existing view. Accordingly, the Proposed Project would not make a cumulatively considerable contribution to a significant cumulative impact.

Air Quality -3d: The IS concluded that the Proposed Project's impacts with regard to odors would be less than significant. The LAHD is not aware that the Project site currently experiences a significant odor impact, and as described in the IS, any additional odors generated by the Proposed Project and the nearby Vopak project (primarily diesel exhaust fumes) would be consistent with the existing odor environment and would not be adjacent to sensitive receptors. Accordingly, the Proposed Project would not make a cumulatively considerable contribution to a significant cumulative impact.

Biology -4b: The IS concluded that the Proposed Project's impacts with regard to riparian habitat or sensitive natural communities would be less than significant. The Port supports sensitive natural communities, including eelgrass and kelp beds, and non-native species are a component of the marine biota of the Port. However, as described in the IS, construction and operation of the Proposed Project would not adversely affect eelgrass or kelp, and the small number of vessels and the existing biofouling and ballast water programs minimize the potential for the Proposed Project to introduce invasive species.

1 Accordingly, the Proposed Project would not make a cumulatively considerable 2 contribution to a significant cumulative impact. 3 Cultural Resources -5a, -5b: The IS concluded that the Proposed Project's impacts on 4 historical and archeological resources would be less than significant. As described in the 5 IS, a cultural resources study determined that the Proposed Project does not have the 6 potential to adversely affect the historical resources in the general area. Because the 7 Project site is on engineered fill placed early in the 20th Century, archaeological resources 8 would not be encountered during construction. Accordingly, the Proposed Project would 9 not make a cumulatively considerable contribution to a significant cumulative impact. 10 **Energy -6b:** The IS concluded that the Proposed Project's impacts with respect to state 11 or local energy plans for renewable energy or energy efficiency would be less than 12 significant because the Proposed Project would be required to comply with applicable 13 renewable energy and energy efficiency plans, standards, and regulations pursuant to the 14 California Building Code, California Green Building Standards, and the City of Los 15 Angeles Green Building Code, which would reduce long-term energy demand. The 16 Proposed Project would also be required to comply with the Port's Climate Action Plan, 17 Executive Directive No. 10, the Sustainable City pLAn, LAHD's Sustainable Construction guidelines, and the San Pedro Bay CAAP. Accordingly, the Proposed 18 19 Project would not make a cumulatively considerable contribution to a significant 20 cumulative impact. 21 Geology -7a - d: The IS concluded that the Proposed Project's impacts with regard to 22 seismic risks, soil erosion, and expansive soils would be less than significant. As 23 described in the IS, project design and construction would take geological risk factors 24 into account, incorporating appropriate geotechnical and engineering methods. 25 Furthermore, seismic and soil issues are site-specific, meaning that a significant 26 cumulative impact does not exist. Accordingly, the Proposed Project would not make a 27 cumulatively considerable contribution to a significant cumulative impact. Hazards and Hazardous Materials -9a, -9b: The IS concluded that the Proposed 28 29 Project's impacts with regard to the routine use or upset of hazardous materials would be 30 less than significant. The IS described the control measures that would be employed 31 during construction and operation to control the small amounts of hazardous materials 32 that would be used and to minimize potential releases of hazardous materials and 33 hazardous wastes from vessels and on-site equipment. Furthermore, the LAHD is not 34 aware that the Project site or the surrounding area currently experiences a significant 35 cumulative impact with regard to the routine use of hazardous materials. 36 As a result of a comment on the Draft EIR by the Department of Toxic Substances 37 Control, the LAHD is aware of existing subsurface contamination at the nearby Gibson 38 Environmental site, which is undergoing RCRA remediation. However, construction 39 activities at the Project site would not disturb the Gibson site, and the IS described the 40 routine measures that would be employed during construction to minimize the exposure 41 of workers and the environment to hazardous wastes at the Project site. In addition, the 42 Soil Management Plan prepared for the Proposed Project (FEIR Appendix *) includes 43 additional measures to ensure that any contaminated soils that the construction work may 44 encounter is managed properly and accordance with all applicable laws and regulations. 45 Accordingly, the Proposed Project would not make a cumulatively considerable contribution to a significant cumulative impact. 46 47 Hydrology and Water Quality -10a, -10b, 10c.iii, 10-d: The IS concluded that the 48 Proposed Project's impacts with respect to water quality standards, groundwater,

stormwater treatment, and flooding would be less than significant. Although areas of Los Angeles Harbor are listed as impaired due to sediment contamination, water quality in the Harbor meets standards set by the Regional Water Quality Control Board; accordingly, LAHD considers that a significant cumulative impact does not exist. The IS described the controls that would be in place for the Proposed Project, including construction-related controls required by the Construction General Permit and Waste Discharge Requirements, operational controls required by the NPDES Industrial General Permit, and structural controls required by the Low-Impact Development and the City's stormwater permit. Groundwater underlying the Project site has no beneficial uses and would not be substantially affected by the Proposed Project. The Proposed Project includes a new stormwater system designed to accommodate anticipated flood flows and manage runoff pollutants. As described in the IS, the Project site is not vulnerable to substantial flooding. Accordingly, the Proposed Project would not make a cumulatively considerable contribution to a significant cumulative impact.

Public Services -15a.v: The IS concluded that the Proposed Project's impacts with respect to the U.S. Coast Guard's vessel traffic safety facilities would be less than significant. The Proposed Project and the adjacent Vopak project would add oceangoing vessel traffic to the overall vessel traffic in the Port, but the increase would be negligible in the context of total traffic volumes. Furthermore, the existing facilities are adequate to manage vessel traffic safely, such that a significant cumulative impact does not exist. Accordingly, the Proposed Project would not make a cumulatively considerable contribution to a significant cumulative impact.

Transportation/Traffic -17d, 17-e: The IS concluded that the Proposed Project's impacts with respect to the emergency access and vessel traffic safety would be less than significant. The Proposed Project in concert with other nearby projects such as the Vopak terminal, would not alter emergency access and would not, given the local roadways' capacity, substantially hinder access to Fire Station 49. Vessel traffic at Berth 191, including that serving the Vopak terminal, would be too infrequent to hinder fireboat operations or increase vessel safety risks. Accordingly, the Proposed Project would not make a cumulatively considerable contribution to a significant cumulative impact.

Utilities and Service Systems: The IS concluded that the Proposed Project's impacts with respect to utility systems and solid waste generation would be less than significant. As discussed in the IS, the existing utility infrastructure is adequate to serve the Proposed Project and no off-site construction would occur. Accordingly, no relocation or construction of water, wastewater treatment or storm water drainage, electric power, natural gas, or telecommunications facilities would be necessary. The existing infrastructure is adequate to serve the related projects in the area of the Proposed Project; accordingly, a significant cumulative impact does not exist. The IS concluded that existing solid waste disposal facilities are adequate to accommodate the Proposed Project's small amount of solid waste, and that the Proposed Project would comply with federal, state, and city solid waste regulations and codes and with state and city waste minimization, diversion, and recycling regulations and policies. Accordingly, the Proposed Project would not make a cumulatively considerable contribution to a significant cumulative impact.

3.2.9 Changes Made to Chapter 5 Comparison of Alternatives

In Section 5.3.1 the following changes are made:

As shown in Table 5-2, the Proposed Project, the Reduced Project Alternative (Alternatives 2) and the Product Import Terminal Alternative (Alternative 3) would have significant unavoidable impacts on air quality, greenhouse gases (GHG), and noise. Alternative 1 (No Project Alternative) would have no significant impacts in any resource area.

Table 5-2: Number of Unavoidable Significant Impacts by Alternative

Environmental Resource Area	Proposed Project	Alternative 1 No Project	Alternative 2 Reduced Project	Alternative 3 Product Import Terminal	
Air Quality	4	0	4	3	
Greenhouse Gases	4	0	4	4	
Noise	2	0	2	2	

Notes:

The analysis includes only project-level impacts after mitigation has been applied, not cumulatively considerable contributions to significant cumulative impacts.

Alternatives eliminated from further consideration are not included.

For GHG emissions, the Proposed Project, Reduced Project Alternative (Alternative 2), and Product Import Terminal Alternative (Alternative 3) would have significant and unavoidable impacts. The Proposed Project would have the highest amount of combined GHG emissions during construction and operations. The Product Import Terminal Alternative (Alternative 3)—because of its lower construction activity levels than the Proposed Project and Reduced Project Alternative (Alternative 2), and due to the shifting of binder production (and associated GHGs) to overseas—would emit the lowest amount of greenhouse gases under this CEQA analysis.

In Section 5.3.2 the following change is made:

However, the Product Import Terminal Alternative (Alternative 3), because of its lower operational activity levels, would have overall the lowest severity of impacts related to noise, <u>and</u> air quality <u>and greenhouse gases</u>. Accordingly, the Product Import Terminal Alternative (Alternative 3) is deemed to be the environmentally superior alternative.

3.2.10 Changes Made to Chapter 11 References

The following are added to the references for Section 3.1:

<u>CARB, 2005e.</u> Review of the California Ambient Air Quality Standard for Ozone. <u>October 2005 Revision.</u>

<u>City of Los Angeles. 2019. Air Quality and Health Effects. Sierra Club v. County of Fresno. Prepared for City of Los Angeles Department of City Planning. October.</u>

IPCC. 2023. Sections. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 35-115, doi: 10.59327/IPCC/AR6-9789291691647.

LAHD. 2021. Environmental Guidance for Industrial Fill Material. 13p. December.

SCAQMD. 2015c. Application of the South Coast Air Quality Management District for Leave to File Brief of *Amicus Curiae* in Support of Neither Party and [Proposed] Brief of

1 2	Amicus Curiae. In the Supreme Court of California. Sierra Club v. County of Fresno. Supreme Court Case No. S219783. April 13, 2015.
3 4	SMAQMD (Sacramento Metropolitan Air Quality Management District). 2019. Friant Ranch Interim Recommendation. Attachment 4 in City of Los Angeles 2019.
5 6 7	<u>USEPA. 2016. Integrated Science Assessment (ISA) for Oxides of Nitrogen – Health Criteria (Final Report, 2016). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-15/068, 2016. https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=310879</u>
8 9	<u>USEPA. 2019a. Environmental Benefits Mapping and Analysis Program - Community Edition (BenMAP-CE). https://www.epa.gov/benmap.</u>
10 11	<u>USEPA. 2019b. Integrated Science Assessment for Particulate Matter (EPA/600/R-19/188).</u>
12 13 14	<u>USEPA. 2020. Integrated Science Assessment for Ozone and Related Photochemical Oxidants. Office of Research and Development. EPA/600/R-20/012. April. www.epa.gov/isa.</u>
15 16 17 18	USEPA, 2024. Ozone Pollution and Your Patients Health. https://www.epa.gov/ozone-pollution-and-your-patients-health/what-ozone#:~:text=It%20is%20also%20formed%20in,air%20quality%20advisories%20for%20ozone.

3.2.11 Changes Made to Appendix B-1 Air Quality

On page B1-10 the description of the Advanced Clean Fleet Regulation is updated as follows:

Additionally, in April 2023, the Advanced Clean Fleets (ACF) regulation was proposed by CARB, with the goal of achieving a zero-emission truck and bus California fleet by 2045 for certain market segments such as government fleets, last mile delivery, and drayage applications. However, since the ACF rule does not specify cement truck fleets and has yet to receive a waiver by the USEPA; no emissions reduction credits from this rule, as well as the Advanced Clean Trucks (ACT) rule, were quantified in the analysis. Per the Clean Air Act, California must seek a waiver from the USEPA to enact emissions standards that are more stringent than those enacted at the federal level. California is granted this ability because of its unique air quality issues, but for each California regulation CARB must seek a waiver from USEPA. On January 13, 2025, CARB withdrew its request for a waiver and authorization to USEPA for its Advanced Clean Fleets Regulation.

On page B-1-10 the description of the Commercial Harbor Craft Regulation is updated as follows:

The 2022 amendments to this regulation declare that effective January 2023, all commercial harbor craft operating within regulated California Waters must comply with the renewable diesel fuel requirements as laid forth in Section 93118.5. Similarly, under the amendment, new and newly acquired engines are required to meet the most stringent marine standards (Tier 4 for most applications, and Tier 3 or cleaner for commercial fishing) based on the rule's implementation schedule that begins in 2024 (CARB, 2023). In addition, the regulation has been expanded to include more classes of harbor craft, including pilot boats.

1	On January 10, 2025, CARB received partial authorization for the 2022 CHC
2	Amendments. In addition, on January 13, 2025, CARB withdrew its request for a waiver
3	and authorization to USEPA for its Advanced Clean Fleets Regulation. Therefore, this
4	analysis conservatively does not take credit for potential emissions reductions. For
5	purposes of the current study, because there is not yet an enforceable mechanism for this
6	rule, the analysis does not quantify potential reductions benefits of the 2022 CHC rule
7	amendments.
8	In response to Comment E4SS-10, the following changes are made:
9	On Appendix B1, page B1-60, Note 7 is revised as follows:
10 11	[7] $PM_{2.5}$ is 8992% of PM_{10} , per SCAQMD 2006 Final Methodology to Calculate $PM_{2.5}$ and $PM_{2.5}$ Significance Thresholds, Table 5.
12 13	As explained in the Response to Comment E4SS-10, this change does not alter the significance determinations or the HRA calculations presented in the DEIR.
14 15 16	On Appendix B1, page B1-110, in response to Comment E4SS-10, the global warming potential values and note 7 in the Conversion Factors and Constants table were updated as follows to be consistent with the analysis performed in the DEIR:

Ecocem Materials Ltd. Port of Los Angeles DRAFT

Conversion Factors and Constants

onversion Factors and Constants:									
Parameter		Unit of Measure	Notes						
Maximum rated heat input capacity		MMBTU/hr	Based on Ecocem correspondence in 2018						
Natural Gas HHV		MMBtu/MMscf	SCAQMD Rule 2012 Appendix A Chapter 3 Table 3-D						
Average heat input	12.39	MMBTU/hr	8% moisture content; correspondence with the Ecocem on March 2, 2023.						
Maximum heat input	28.09	MMBTU/hr	12% moisture content; correspondence with the Ecocem on March 2, 2023.						
К	1.195E-07	ppm NOx per lb/scf	40 CFR 60 Appendix A Method 19 (SCAQMD Rule 2012 Appendix A Chapter 4 Equation 28a)						
02	3	%	Standard						
F	8710	dscf/MMBtu	40 CFR 60 App A Method 19						
Conversion factor	35.3147	ft ¹ /m ¹	44						
Conversion factor	453,592	mg/lb	**						
Conversion factor	453.592	g/lb	**						
	24	hours/day	Correspondence with Ecocem on March 2, 2023.						
Normal Operating Schedule for Dryer	7	days/week	Correspondence with Ecocem on March 2, 2023.						
	45	weeks/year	Correspondence with Ecocem on March 2, 2023.						
	24	hours/day	Email correspondence with Ecocem team on November 8, 2022						
Maximum Operating Schedule for Dryer	7	days/week	Correspondence via phone with Clive Moutray and David Mulhall, Ecocem, on September 29, 2022.						
	52	weeks/year	Ecocem correspondence received on May 26, 2022.						
Monthly heat input limit (proposed)	11,000	MMBtu/month	Correspondence with Ecocem on March 2, 2023.						
Annual heat input limit (proposed)	195,000	MMBtu/year	Correspondence with Ecocem on March 2, 2023.						
Carbon Dioxide (CO ₂) GWP	1		See note 7						
Methane (CH _s) GWP	25 29.8		See note 7						
Nitrous Oxide (N ₂ O) GWP	298 273		See note 7						

- ¹ CO, SOx, and VOC emission factors were referenced from SCAQMD's AER Default Emission Factors for Natural Gas/Other Equipment dated January 2022 Accessed at https://www.aqmd.gov/docs/default-source/planning/annual-emission-reporting/default-combustion-emission-factors.pdf?sfvrsn=12.
- NOx guarantee from manufacturer provided via phone correspondence with Ecocem, Coen, Thyssenkrupp, and Bay City Boilers on October 4, 2022.
 TAC emissions were estimated using the AER Reporting Tool Default Combustion Emission Factors for Toxic Air Contaminants. Available online at:
 The emission factor for PAHs represents a combined default emission factor for toxic compounds within the PAH family.
 The ammonia emission factor corresponds to equipment without Selective Non Catalytic Reduction (SNCR).

- CO2, CH4, and N50 emission factors were estimated using SCAQMD's 400-CEQA Greenhouse Gas Estimator. Available online at: https://www.aqmd.gov/docs/default-source/permitting/ceqa-2017/ghg-estimator-(2017-11)_xisx?sfvrsn=8
- GHG emissions in CO₂e were estimated using GWP values as referenced from the SCAQNID Greenhouse Gas Estimater Intergovernmental Panel On Climate Change (IPCC) 6th Assessment Report.
- AHU and AHC were calculated as the average rated heat input capacity multiplied by the emissions factor. MHU and MHC were calculated as the maximum rated heat input capacity multiplied by the emission factor. The emissions were uncontrolled.

 MDU and MDC were calculated as MHU and MHC multiplied by the maximum operating schedule, respectively. The emissions were uncontrolled.

- Annual PTE and MAC were calculated as the proposed annual fuel consumption multiplied by the emission factor.
 30DA was calculated as the proposed monthly heat input limit multiplied by the emission factor divided by 4.3 weeks per month multiplied by the maximum operating schedule.
 AA was calculated as the AHC multiplied by the normal operating schedule.
- GBPS entered the dryer with a moisture content of 12%, based on Ecocem written correspondence received on November 8, 2022.
 Gypsum entered the dryer with a moisture content of 2.5%, based on the technical specification provided by Ecocem correspondence on May 20, 2022.

AA - annual average Ib - pound

AA - annual average HHV- higher heating value

AHC - average hourly controlled m - meter

AHU - average hourly uncontrolled MAC- maximum annual controlled

CEQA- California Environmental Quality Act

CH₀ - Methane

CCO₂ - Carbon Discription CH_s - Methane CO₂ - Carbon Dioxide MDU - maximum daily uncontrolled mg - 10⁻² gram

MHC - maximum hourly controlled MHU - maximum hourly uncontrolled dscf - dry standard cubic feet dsc - ur, ft - feet GBFS - granulated blast furnace slag MMBTU - 10° British thermal unit MMscf - 10⁶ standard cubic feet GWP - global warming potential Nm3 - normal cubic meter

N-O - nitrous oxide NOx - nitrogen oxides

PAHs - polycyclic aromatic hydrocarbons ppm- parts per million

PTE - potential to emit

SCAQMD - South Coast Air Quality Management District scf - standard cubic feet

SOx - oxides of sulfur TAC - toxic air contaminant tpy - tons per year VOC - volatile organic compounds yr - year

1 2	3.2.12	Changes Made to Appendix B-3 Health Risk Assessment
3 4		In response to Comment E4SS-24, p. B3-4 and the reference to SCAQMD (2005) in Section 8.0 of Appendix B3 (p. B3-49) are revised as follows:
5 6		p. B3-4: In accordance with SCAQMD guidance (SCAQMD 2005 <u>2008</u>), for the construction emissions,
7 8 9 10		p. B3-49: SCAQMD, 2005. Personal communication with J. Koizumi. September 21 st 2008. Localized Significance Threshold Methodology. July. http://www.aqmd.gov/home/rules-compliance/ceqa/air-quality-analysis-handbook/localized-significance-thresholds
11 12		In response to Comment E4SS-26, Profile 6239 for cobalt in Table B3-1 is revised as shown below.

1 Table B3-1. Speciation Profiles for PM₁₀ and TOG

				Weight Fra	action of PM ₁₀					Weight Fraction of TOG ^a		
Toxic Air Contaminant ^b		Profile 9901: Diesel IC Engine Exhaust °	Profile 4251: Marine Vessels - MGO (0.1 PCT S) ^d	Profile 6239: 2023 Offroad Diesel Vehicle Exht ^{c,d,e}	Profile 7231: 2023 Heavy- Duty Diesel Truck-idle ^{c,d,e}	Profile 7233: 2023 Heavy- Duty Diesel Truck- transient ^{c,d,e}	Profile 472: Tire Wear ^c	Profile 473: Brake Wear ^c	Profile 400: Gasoline Vehicles	Profile 2303: Gasoline Vehicles	Profile 719: Natural Gas IC Engines	Profile 818: Diesel IC Engine Exhaust ^d
DPM	9901	1	0	0	0	C	0	0	C	0	0	0
Arsenic	7440382	0	0	0.000002	0	C	0	0.00001	C	0	0	0
Beryllium	7440417	0	0	0	0	0	0	0	C	0	0	0
Bromine	7726956	0	0	0	0	0	0.000015	0.00004	0.0005	0	0	0
Cadmium	7440439	0	0	0.000026	0	C	0	0	C	0	0	0
Chlorine	7782505	0	0	0.000029	0.000073	0.00018	0.0078	0.0015	0.07	0	0	0
Chromium III	16065831	0	0	0.000077	0.000059	0.00017	0.000029	0.0011	C	0	0	0
Chromium VI	18540299	0	0	0.0000041	0.0000031	0.0000090	0.0000015	0.00006	0.000025	0	0	0
Cobalt	1216	0	0	0.000005 <u>0</u>	0	C	0	0	C	0	0	0
Copper	7440508	0	0	0.000094	0.000031	0.00015	0.00049	0.011	0.0005	0	0	0
Lead	7439921	0	0	0.000011	0.000001	0.000054	0.00016	0.00005	C	0	0	0
Manganese	7439965	0	0	0.000047	0.000024	0.000064	0.0001	0.0017	0.0005	0	0	0
Mercury	7439976	0	0	0.000008	0	0.000001	0	0	C	0	0	0
Nickel	7440020	0	0	0.000009	0.000023	0.00007	0.00005	0.00066	0.0005	0	0	0
Selenium	7782492	0	0	0.000009	0.000002	0.000006	0.00002	0.00002	C	0	0	0
Sulfates	9960	0	0.08	0.050	0.026	0.098	0.0025	0.033	0.45	0	0	0
Vanadium	7440622	0	0	0.000001	0	0.000005	0	0.00066	C	0	0	0
1,3-Butadiene	106990	0	0	0	0	C	0	0	C	0.0024	0	0.0022
Acetaldehyde	75070	0	0	0	0	C	0	0	C	0.0090	0.0003	0.084
Acrolein	107028	0	0	0	0	C	0	0	C	0.000014	0	0
Benzene	71432	0	0	0	0	C	0	0	C	0.039	0.0011	0.023

				Weight Fr	action of PM ₁₀					Weight Fraction of TOG ^a		
Toxic Air Contaminant ^b	HARP TAC ID	Profile 9901: Diesel IC Engine Exhaust °	Profile 4251: Marine Vessels - MGO (0.1 PCT S) ^d	Profile 6239: 2023 Offroad Diesel Vehicle Exht c,d,e	Profile 7231: 2023 Heavy- Duty Diesel Truck-idle c,d,e	Profile 7233: 2023 Heavy- Duty Diesel Truck- transient ^{c,d,e}	Profile 472: Tire Wear °	Profile 473: Brake Wear °	Profile 400 Gasoline Vehicles	Profile 2303: Gasoline Vehicles	Profile 719: Natural Gas IC Engines	Profile 818: Diesel IC Engine Exhaust ^d
Chlorobenzene	108907	0	0	0	0	C	0	0	(0	0	0
Ethyl Benzene	100414	0	0	0	0	С	0	0	(0.011	0.0001	0.0035
Formaldehyde	50000	0	0	0	0	C	0	0	(0.021	0.0081	0.17
Hexane	110543	0	0	0	0	C	0	0	(0.0078	0.0002	0.0018
Methanol	67561	0	0	0	0	C	0	0	(0.00020	0	0.00034
Methyl tert-butyl ether	1634044	0	0	0	0	С	0	0	(0.0047	0	0
Methyl Ethyl Ketone	78933	0	0	0	0	С	0	0	(0.0015	0	0.017
Naphthalene	91203	0	0	0	0	С	0	0	(0.0037	0	0.00097
Propylene	115071	0	0	0	0	С	0	0	(0.022	0.017	0.030
Styrene	100425	0	0	0	0	С	0	0	(0.0022	0	0.00066
Toluene	108883	0	0	0	0	C	0	0	(0.048	0.0004 <u>0</u>	0.017
Xylenes	1330207	0	0	0	0	C	0	0	(0	0.0004 <u>0</u>	0.012
Applicable Sources		All diesel IC engines - harbor craft, marine vessel, truck, offroad equipment (CANCER/ CHRONIC)	Ship main & auxiliary engines (ACUTE ONLY ^f)	Construction equipment, onsite mobile equipment, harbor craft (ACUTE ONLY')	,	Diesel truck driving exhaust (ACUTE ONLY ^f)	ACUTE)	Brake wear (CANCER/ CHRONIC/ ACUTE)	Onroad operative and pickup trucks (CANCER/ CHRONIC/ ACUTE)	trucks (CANCER/C	- ,	All diesel IC engines (ACUTE ONLY')
Source Group ID	FENDER, HC1 to HC3, OFF01A and OFF01B, OFFROAD1 and OFFROAD2, TUGBOATS, ANCHOR, OGV2 to OGV5,	<u>OGVBERTH</u>	OFF01A and OFF01B, OFFROAD1 and OFFROAD2, TUGBOATS	GBFSIDLE, GYPSIDLE, TRUCKS1 and TRUCKS2	GBFS RUN, GYPS RUN, TRUCKS1 to TRUCKS39	DUST1, DUST2, GBFS RUN, GYPS RUN, TRUCKS3 to TRUCKS39, TWEAR3 to TWEAR39	DUST1 and DUST2, GBFS RUN, GYPS RUN, TRUCKS3 to TRUCKS39, TWEAR3 to TWEAR39	TRUCKS1 and TRUCKS2	TRUCKS1 and TRUCKS2	<u>EP0102</u>	GBFS RUN, GBFSIDLE, GYPS RUN, GYPSIDLE, OFF01A and OFF01B, OFFROAD1 and OFFROAD2, OGVBERTH, TRUCKS1 to	Source Group ID

		Weight Fraction of PM ₁₀								Weight Fraction of TOG ^a		
Toxic Air Contaminant ^b	HARP TAC ID									Profile 2303: Gasoline Vehicles	Profile 719: Natural Gas IC Engines	Profile 818: Diesel IC Engine Exhaust d
	OGVBERTH, GBFS RUN, GBFSIDLE, GYPS RUN, GYPSIDLE, TRUCKS1 to TRUCKS39										TRUCKS39, TUGBOATS	

Source for speciation profiles except #9901: Speciation Profiles Used in ARB Modeling. Available: https://ww2.arb.ca.gov/speciation-profiles-used-carb-modeling. Accessed July 2022. See notes for Profiles #9901. Notes:

^a TOG speciation profiles were converted to VOC by dividing by the following VOC/TOG ratios: 0.8785 for Profile 818; 0.7276 for Profile 2303; and 0.0931 for Profile 719.

^b Only TACs that have OEHHA/CARB toxicity factors are shown in the table.

^c Profile 9901 represents diesel particulate matter (DPM) emissions from diesel internal combustion engines. This profile was used for the determination of cancer risk and the chronic hazard index because the health values for DPM are representative of whole diesel IC engine exhaust.

^d Profiles No. 4251, 6239, 7231, 7233, and 818 are associated with diesel IC engines and therefore were only used for the determination of the acute hazard index.

^e Where indicated, hexavalent chromium was assumed to be 5 percent of total chromium, according to CARB's AB2588 Technical Support Document (CARB 1989), page 57. CARB 1989. Technical Guidance Document for the Emission Inventory Criteria and Guidelines Regulation for AB 2588. Technical Support Division. August. Available: https://www3.arb.ca.gov/ab2588/tgd1989.pdf. The other 95 percent was assumed to be trivalent chromium.

^f Profiles for the diesel or diesel-like marine vessel MGO sources were used to speciate the one-hour maximum emissions from these sources for the acute HI evaluations only.

Source for speciation profiles except 9901: Speciation Profiles used in ARB Modeling, Available: https://ww2.arb.ca.gov/speciation-profiles-used-carb-modeling, Accessed July 2022. See notes for Profiles 9901.

In response to Comment E4SS-31, Table B3-4 is revised as follows:

2 Table B3-4. Toxicity Values Used In the HRA

Toxic Air Contaminant	CASRN	Inhalation Cancer Potency Factor (mg/kg-d) ⁻¹	Chronic Inhalation REL (µg/m³)	Target Organ for Chronic Exposure ^b	Acute Inhalation REL (µg/m³)	Target Organ for Acute Exposure ^b	Multipath Chemicals ^c
Acetaldehyde	75-07-0	0.01	140	I	470	D, I	No
Acrolein	107-02-8		0.35	I	2.5	D, I	No
Arsenic ^a	7440-38-2	12	0.015	B, C, G, I, J	0.2	B, C, G	Yes
Benzene	71-43-2	0.1	3	E	27	C, E, F	No
<u>Beryllium</u>	<u>7440-41-7</u>	<u>8.4</u>	<u>0.007</u>	<u></u>	<u></u>	<u></u>	<u>Yes</u>
1,3-Butadiene	106-99-0	0.6	2	С	660	С	No
Cadmium ^a	7440-43-9	15	0.02	I, M			Yes
Chlorine	7782-50-5		0.2	1	210	D, I	No
Chromium III	16065-83-1		0.06		0.48		No
Cobalt	1-21-6	27					No
Copper	7440-50-8				100	I	No
DPM	9-90-1	1.1	5	1			No
Ethyl benzene	100-41-4	0.0087	2,000	A, C, L, M			No
Formaldehyde	50-00-0	0.021	9	1	55	D	No
Hexane	110-54-3		7,000	G			No
Hexavalent Chromium ^a	18540-29-9	510	0.2	E, I			Yes
Lead ^a	7439-92-1	0.042					Yes
Manganese	7439-96-5		0.09	G			No
Mercury	7439-97-6		0.03		0.6		Yes
Methanol	67-56-1		4,000	С	28,000	G	No
Methyl ethyl ketone	78-93-3				13,000	D, I	No
Methyl tert-butyl ether	1634-04-4	0.0018	8000	A, D, M			No
Naphthalene	91-20-3	0.12	9	, , , , , , , , , , , , , , , , , , ,			No
Nickel ^a	7440-02-0	0.91	0.014	C, E, I	0.2	F	Yes
Propylene	115-07-1		3,000	1			No
Selenium ^a	7782-49-2		20	A, B, G			No
Silica quartz	14808-60-7		3				No
Styrene	100-42-5		900	G	21,000	C, D, I	No
Sulfates	9-96-0				120	I	No
Toluene	108-88-3		300 420	C, G, I	37,000 <u>5000</u>	C, D, G, I	No
Vanadium	7440-62-2				30	D, I	No
Xylenes	1330-20-7		700	D, G, I	22,000	D, G, I	No

Source: ARB 2022a. Consolidated Table of OEHHA/ARB Approved Risk Assessment Health Values. October 2

Notes:

-- = not available

CASRN = Chemical Abstract Services Registry Number

^a Arsenic, cadmium, hexavalent chromium, lead, mercury and nickel were evaluated for non-inhalation exposure pathways. For arsenic, the cancer risk oral slope factor is 1.5 (mg/kg/day)⁻¹, and the noncancer chronic oral REL is 0.000035 mg/kg/day. For cadmium, the noncancer chronic oral REL is 0.0005 mg/kg/day. For hexavalent chromium, the cancer risk oral slope factor is 0.5 (mg/kg/day)⁻¹, and the noncancer chronic oral REL is 0.02 mg/kg/day. For lead, the cancer risk oral slope factor is 0.0085 (mg/kg/day)⁻¹. For nickel, the noncancer chronic oral REL is 0.011 mg/kg/day. For selenium, the noncancer chronic oral REL is 0.005 mg/kg/day.

^b Key to non-cancer acute and chronic exposure target organs:

A = Alimentary Tract B = Cardiovascular System

C = Reproductive/Developmental System

D = Eye

E = Hematologic System

F = Immune System

G = Nervous System

I = Respiratory System

J = Skin K = Bone

L = Endocrine System

M = Kidney

^c Based on the multipath chemicals recommended by OEHHA (2015) for evaluation of health impacts through the non-inhalation pathways. Source: CARB. 2023. Consolidated Table of OEHHA/ARB Approved Risk Assessment Health Values. October.

- 2 Appendix D-2 Noise Study, was inadvertently omitted from the DEIR and is added to the FEIR as shown
- 3 below (the addition is not shown in underline format because of the pdf format of the insert).
- 4 Appendix E Soil Management Plan is added to the FEIR as shown below. The addition supplements
- 5 information presented in the DEIR but does not change the conclusions of the DEIR.

6

1

Appendix D-2

2 Illingworth & Rodkin Ambient Sound Survey

429 East Cotati Avenue Petaluma, California 94931

Tel: 707-794-0400 www.Illingworthrodkin.com Fax: 707-794-0405 illro@illingworthrodkin.com

December 1, 2022

DRAFT TECHNICAL MEMO

Port of Los Angeles Vopak Terminal Long Term Noise Measurement Results

Illingworth & Rodkin Inc. (I&R) was retained to conduct five (5) long term (24-hour) noise measurement surveys of ambient conditions at the Closest East Basin Marina to Project site, the Bannings Landing Community Center, Fire Station 49, on the Orcem property (Berths 191-194) and on the Vopak Project site (Berths 187-190). These measurement locations are shown in Figure 1, attached

The noise measurements were made between Monday November 21st and Tuesday November 22nd, 2022 with unmanned Larson Davis Model LxT Integrating Sound Level Meters (SLMs) set at "slow" response. The sound level meters were equipped with PCB Model 377B02 1/2" free-field, pre-polarized condenser microphones fitted with windscreens. The sound level meters were calibrated prior to the noise measurements using a Larson Davis Model CAL200 acoustical calibrator. The response of the systems was checked after each measurement session and was always found to be within 0.2 dBA. No calibration adjustments were made to the measured sound levels. At the completion of monitoring, the noise data were obtained from the SLM using the Larson Davis G4 software program. Weather conditions during the measurement period were generally good for noise monitoring. Meteorological conditions generally consisted of mostly clear skies, calm to light winds (0 to ~10 mph), and seasonable temperatures (~50° F to ~65° F average).

The A-weighted maximum (L_{max}), minimum (L_{min}), energy average (L_{eq}) noise levels, and the noise levels exceeded 1, 10, 50 and 90 percent of the time (indicated as L01, L10, L50 and L90) measured at these locations during the 24-hour survey are attached as 10 minute and hourly charts, and in tabular format with the measured 10-minute and calculated hourly noise levels during the 24-hour survey period. Additional tables showing the unweighted octave band L_{eq} levels measured during each 10-minute period are also attached. The calculated A-weighted 24-hour average Community Noise Equivalent Level (CNEL) is also shown in the hourly and 10-minute charts for each measurement location and a brief description of each of the measurement positions and overall results is also provided.

Measurement Position LT-V1

The noise measurement at this location was made on a wooden piling at the end of the westernmost finger pier at the California Yacht Harbor at a height of approximately 8 feet above the pier and at an approximate distance of 950 feet from the closest portion of the Vopak Terminal. The measurement began at 4:05 pm on November 21st and ended at 4:14 pm on November 22nd, 2022. The monitoring location is shown in Figure 1 and the monitor installation is shown in Figure 2, attached. The sound levels measured during the survey likely resulted from Port activities, the sound of wind, waves and dock movements, and occasional localized noise from marina residents and related boating activities. The results of the measurement showed daytime and nighttime average hourly (L_{eq}) noise levels ranging

from 54 to 66 dBA and 57 to 62 dBA, respectively, with an average daytime L_{eq} of 60 dBA and an average nighttime L_{eq} of 58 dBA. The measured CNEL at this location was 66 dBA.

Measurement Position LT-V2

The noise measurement at this location was made on a light pole adjacent to the Banning Community Center. The monitoring position was approximately 12 above the adjacent grade, 45 feet east of the Community Center building, 30 feet from the centerline of E. Water Street, and about 280 feet from the Vopak Administration Building. The measurement began at 2:32 pm on November 21st and ended at 3:28 pm on November 22nd, 2022. The monitoring location is shown in Figure 1 and the monitor installation is shown in Figure 3, attached. The sound levels measured during the survey likely resulted from traffic on E. Water Street, construction activities related to the Community Center and Wilmington Waterfront Promenade development, and Port related activities. The results of the measurement showed daytime and nighttime average hourly (L_{eq}) noise levels where similar to one another, ranging from 59 to 68 dBA and 59 to 70 dBA, respectively, with an average daytime L_{eq} of 64 dBA and an average nighttime L_{eq} of 63 dBA. The measured CNEL at this location was 71 dBA.

Measurement Position LT-V3

The noise measurement at this location was made on the trunk of an Avocado tree in the entry/parking area of Fire Station 49. The monitoring position was approximately 12 above the adjacent grade, 85 from the Fire Station Building, 60 feet from the centerline of Yacht Street, and about 120 feet from the Vopak Terminal Area. The measurement began at 1:42 pm on November 21st and ended at 2:29 pm on November 22nd, 2022. The monitoring location is shown in Figure 1 and the monitor installation is shown in Figure 4, attached. The sound levels measured during the survey likely resulted from fire station activities, traffic on Yacht Street and existing Port related activities. The results of the measurement showed daytime and nighttime average hourly (L_{eq}) noise levels where similar to one another, ranging from 53 to 62 dBA and 52 to 58 dBA, respectively, with an average daytime L_{eq} of 58 dBA and an average nighttime L_{eq} of 56 dBA. The measured CNEL at this location was 63 dBA.

Measurement Position LT-V4

The noise measurement at this location was made on a utility pole on the Orcem property on the opposite side of Yacht Street from the Vopak Project site. The monitoring position was approximately 12 above the adjacent grade and 25 feet from the centerline of Yacht Street. The measurement began at 1:22 pm on November 21^{st} and ended at 2:20 pm on November 22^{nd} , 2022. The monitoring location is shown in Figure 1 and the monitor installation is shown in Figure 5, attached. The sound levels measured during the survey likely primarily resulted from existing Port activities and occasional traffic on Yacht Street. The results of the measurement showed daytime and nighttime average hourly (L_{eq}) noise levels where similar to one another, ranging from 50 to 62 dBA and 51 to 57 dBA, respectively, with an average daytime L_{eq} of 57 dBA and an average nighttime L_{eq} of 54 dBA. The measured CNEL at this location was 62 dBA.

Measurement Position LT-V5

The noise measurement at this location was made on the Vopak project site with the monitor installed on a utility pole in the service area between Canal Street and the Berth 188 waterfront. The monitoring position was approximately 12 above the adjacent grade, 180 feet from the centerline of Canal Street and 80 feet from the waterfront. The measurement began at 2:05 pm on November 21^{st} and ended at 3:15 pm on November 22^{nd} , 2022. The monitoring location is shown in Figure 1 and the monitor installation is shown in Figure 6, attached. The sound levels measured during the survey are expected to have resulted primarily from existing Port activities. The results of the measurement showed daytime and nighttime average hourly (L_{eq}) noise levels where similar to one another, ranging from 57 to 66 dBA and 55 to 63 dBA, respectively, with an average daytime L_{eq} of 61 dBA and an average nighttime L_{eq} of 59 dBA. The measured CNEL at this location was 67 dBA.

This concludes I&R's Technical Memo summarizing the results of our noise measurement survey to conduct five (5) long term (24-hour) noise measurement surveys of ambient conditions at the Closest East Basin Marina to Project site, the Bannings Landing Community Center, Fire Station 49, on the Orcem property, and on the Vopak Project site. Please see the attached Figures, Charts and Tables for the full results of the measurement survey.

Sincerely,

Fred M. Svinth, INCE, Assoc, AIA

Senior Consultant, Principal

Illingworth & Rodkin, Inc.

Attachments: Figure 1: Noise Measurement Locations

Figure 2: LT-V1 Installation

Figure 3: LT-V2 Installation

Figure 4: LT-V3 Installation

Figure 5: LT-V4 Installation

Figure 6: LT-V5 Installation

Chart 1: Hourly Noise Levels at LT-V1

Chart 1a: 10-minute Measured & Average Hourly Noise Levels at LT-V1

Chart 2: Hourly Noise Levels at LT-V2

Chart 2a: 10-minute Measured & Average Hourly Noise Levels at LT-V2

Chart 3: Hourly Noise Levels at LT-V3

Chart 3a: 10-minute Measured & Average Hourly Noise Levels at LT-V3

Chart 4: Hourly Noise Levels at LT-V4

Chart 4a: 10-minute Measured & Average Hourly Noise Levels at LT-V4

Chart 5: Hourly Noise Levels at LT-V5

Chart 5a: 10-minute Measured & Average Hourly Noise Levels at LT-V5

Table 1: A-weighted Hourly Noise Levels at LT-V1

Table 1a: A-weighted 10-minute Noise Levels at LT-V1

Table 1b: Un-weighted 10-minute Octave Band Leq Noise Levels at LT-V1

Table 2: A-weighted Hourly Noise Levels at LT-V2

Table 2a: A-weighted 10-minute Noise Levels at LT-V2

Table 2b: Un-weighted 10-minute Octave Band Leq Noise Levels at LT-V2

Table 3: A-weighted Hourly Noise Levels at LT-V3

Table 3a: A-weighted 10-minute Noise Levels at LT-V3

Table 3b: Un-weighted 10-minute Octave Band Leq Noise Levels at LT-V3

Table 4: A-weighted Hourly Noise Levels at LT-V4

Table 4a: A-weighted 10-minute Noise Levels at LT-V4

Table 4b: Un-weighted 10-minute Octave Band Lea Noise Levels at LT-V4

Table 5: A-weighted Hourly Noise Levels at LT-V5

Table 5a: A-weighted 10-minute Noise Levels at LT-V5

Table 5b: Un-weighted 10-minute Octave Band Leq Noise Levels at LT-V5

Figure 1: Noise Measurement Locations

Figure 2: LT-V1 Installation

Figure 3: LT-V2 Installation

Figure 4: LT-V3 Installation

Figure 5: LT-V4 Installation

Figure 6: LT-V5 Installation

Chart 1a: 10-minute Measured & Average Hourly Noise Levels at LT-V1

CNEL Chart 2a: 10-minute Measured 71 dBA & Average Hourly Noise Levels at LT-V2

95 65 70 75 80 85 90 CNEL = Chart 3a: 10-minute Measured & Average Hourly Noise Levels at LT-V3 63 dBA

hart 5a: 10-minute Measured & Average Hourly Noise Levels at LT-V5

Table 1: A-weighted Hourly Noise Levels at LT-V1

	Hour							
Date	beginning	Lmax	L01	L10	Leq	L50	L90	Lmin
21-Nov-22	5:00 PM	67.6	58.1	52.6	52.1	48.5	46.2	41.0
21-Nov-22	6:00 PM	71.7	59.6	51.8	52.7	46.5	44.3	41.6
21-Nov-22	7:00 PM	72.4	58.1	53.2	52.9	48.5	46.9	44.5
21-Nov-22	8:00 PM	56.0	50.3	48.0	46.9	46.5	45.5	44.0
21-Nov-22	9:00 PM	63.9	53.8	48.4	47.5	45.8	44.7	42.2
21-Nov-22	10:00 PM	68.5	54.2	48.6	47.7	45.6	44.4	42.7
21-Nov-22	11:00 PM	67.6	51.8	48.3	47.7	46.8	45.7	43.6
22-Nov-22	12:00 AM	57.5	51.4	49.2	48.2	47.8	47.0	44.8
22-Nov-22	1:00 AM	61.5	51.5	48.8	47.9	47.3	46.3	44.4
22-Nov-22	2:00 AM	52.6	48.3	46.2	45.1	44.5	43.2	38.1
22-Nov-22	3:00 AM	57.1	46.5	43.7	42.4	41.8	40.8	39.0
22-Nov-22	4:00 AM	59.2	50.3	45.6	44.2	42.8	41.6	39.8
22-Nov-22	5:00 AM	66.7	54.2	48.7	48.6	45.2	43.6	41.7
22-Nov-22	6:00 AM	62.9	56.7	51.5	49.6	48.3	46.6	43.6
22-Nov-22	7:00 AM	84.5	65.0	57.8	63.8	52.7	50.2	45.9
22-Nov-22	8:00 AM	85.1	65.0	61.3	65.5	52.3	48.2	45.2
22-Nov-22	9:00 AM	67.4	61.8	58.5	55.0	52.7	46.5	40.2
22-Nov-22	10:00 AM	84.0	63.7	59.3	56.8	51.8	46.1	39.6
22-Nov-22	11:00 AM	70.2	58.8	54.7	51.8	48.3	44.8	41.5
22-Nov-22	12:00 PM	65.7	59.2	52.7	50.8	47.6	45.4	42.6
22-Nov-22	1:00 PM	77.7	64.1	58.1	58.4	50.7	47.3	44.6
22-Nov-22	2:00 PM	77.0	70.3	67.6	66.1	58.9	54.0	46.0
22-Nov-22	3:00 PM	76.3	64.8	60.8	60.4	56.9	52.5	48.2
22-Nov-22	4:00 PM	75.6	64.1	58.3	55.8	52.2	49.6	45.6

Table 1a: A-weighted 10-minute Noise Levels at LT-V1

	10-minute period							
Date	beginning	Lmax	L01	L10	Leq	L50	L90	Lmin
21-Nov-22	4:10 PM	67.6	65.8	57.1	55.1	52.2	51.4	50.7
21-Nov-22	4:20 PM	60.4	58.0	56.0	54.4	53.9	53.0	51.8
21-Nov-22	4:30 PM	60.2	58.8	56.8	55.6	55.2	54.5	53.6
21-Nov-22	4:40 PM	57.2	55.6	54.4	53.6	53.6	52.7	51.6
21-Nov-22	4:50 PM	60.3	58.3	55.1	54.3	54.2	53.0	52.0
21-Nov-22	5:00 PM	67.6	61.7	58.0	56.5	56.2	54.1	53.2
21-Nov-22	5:10 PM	71.3	66.1	60.1	58.8	58.0	56.4	55.5
21-Nov-22	5:20 PM	59.0	58.5	57.1	56.7	56.6	56.1	55.4
21-Nov-22	5:30 PM	66.9	63.9	58.8	57.7	57.0	56.0	55.0
21-Nov-22	5:40 PM	59.7	58.0	57.0	56.5	56.4	55.9	55.2
21-Nov-22	5:50 PM	62.1	59.2	56.9	56.3	56.1	55.5	54.9
21-Nov-22	6:00 PM	60.2	58.1	56.9	56.1	56.0	55.4	54.5
21-Nov-22	6:10 PM	59.7	57.9	56.1	55.6	55.5	54.9	54.4
21-Nov-22	6:20 PM	65.0	61.1	56.5	56.0	55.5	54.8	54.0
21-Nov-22	6:30 PM	61.7	61.0	58.2	56.5	55.8	55.1	54.4

Table 1a (continued): A-weighted 10-minute Noise Levels at LT-V1

	10-minute							
Data	period	T	T 01	T 10	Tax	T 50	T 00	T
Date	beginning 6:40 PM	Lmax	L01	L10 56.4	Leq	L50	L90	Lmin
21-Nov-22		57.9	57.3		55.8	55.7	55.1	54.4
21-Nov-22	6:50 PM	75.1	60.3	56.7	57.1	55.8	55.1	54.0
21-Nov-22	7:00 PM	61.5	60.6	57.4	56.7	56.4	55.9	55.3
21-Nov-22	7:10 PM	73.9	70.1	64.5	60.8	58.6	56.3	54.6
21-Nov-22	7:20 PM	62.9	62.3	61.4	58.1	56.1	54.5	53.4
21-Nov-22	7:30 PM	69.9	67.3	58.4	57.0	54.8	54.0	53.1
21-Nov-22	7:40 PM	74.1	67.7	58.7	57.6	55.6	54.5	53.6
21-Nov-22	7:50 PM	62.7	59.9	56.6	55.6	55.3	54.3	53.3
21-Nov-22	8:00 PM	84.2	81.2	66.2	66.8	55.9	54.9	53.7
21-Nov-22	8:10 PM	75.3	68.8	57.3	58.1	56.0	54.9	54.1
21-Nov-22	8:20 PM	72.6	68.4	57.3	57.6	55.5	54.5	53.6
21-Nov-22	8:30 PM	61.7	58.4	56.8	55.9	55.7	55.0	54.3
21-Nov-22	8:40 PM	66.6	60.7	57.7	56.7	56.3	55.6	54.4
21-Nov-22	8:50 PM	60.7	58.4	56.7	55.8	55.6	55.0	54.3
21-Nov-22	9:00 PM	69.8	63.6	56.6	56.0	55.2	54.4	53.5
21-Nov-22	9:10 PM	60.3	59.1	57.3	56.1	55.8	55.1	54.2
21-Nov-22	9:20 PM	60.1	58.7	57.1	56.1	55.9	55.0	54.1
21-Nov-22	9:30 PM	72.8	64.1	58.1	57.2	56.2	55.1	54.4
21-Nov-22	9:40 PM	62.2	58.8	56.9	55.9	55.7	54.6	53.9
21-Nov-22	9:50 PM	72.1	70.4	59.5	58.6	55.4	54.4	53.4
21-Nov-22	10:00 PM	68.1	62.6	56.8	55.9	55.2	54.1	53.5
21-Nov-22	10:10 PM	58.7	56.6	55.9	55.2	55.1	54.6	54.1
21-Nov-22	10:20 PM	65.5	61.7	56.2	55.9	55.5	54.9	54.0
21-Nov-22	10:30 PM	72.0	67.4	57.1	57.7	56.3	55.7	54.8
21-Nov-22	10:40 PM	77.0	73.4	59.9	60.8	56.5	55.6	55.0
21-Nov-22	10:50 PM	65.6	61.4	58.6	57.0	56.3	55.2	53.9
21-Nov-22	11:00 PM	75.7	71.1	56.9	58.3	53.9	53.3	52.6
21-Nov-22	11:10 PM	63.9	61.2	57.1	56.0	55.5	54.5	53.1
21-Nov-22	11:20 PM	65.6	62.5	56.8	55.9	55.3	54.3	53.6
21-Nov-22	11:30 PM	68.3	64.8	57.2	56.8	55.6	54.9	54.2
21-Nov-22	11:40 PM	62.5	60.1	57.2	56.2	56.0	54.8	54.0
21-Nov-22	11:50 PM	65.2	59.3	57.5	56.6	56.3	55.5	54.4
22-Nov-22	12:00 AM	72.3	66.8	59.0	58.6	57.7	56.2	54.9
22-Nov-22	12:10 AM	69.9	65.2	58.1	57.5	56.7	55.7	54.8
22-Nov-22	12:20 AM	62.4	60.7	58.5	57.2	56.9	55.7	54.6
22-Nov-22	12:30 AM	62.1	59.6	57.9	56.6	56.3	55.2	54.3
22-Nov-22	12:40 AM	65.0	60.9	57.1	55.9	55.4	54.3	53.3
22-Nov-22	12:50 AM	62.5	57.9	56.6	55.6	55.5	54.5	53.2
22-Nov-22	1:00 AM	64.8	62.7	59.0	57.3	56.5	55.2	53.9

<u> </u>		(continuea)	. A-weight	icu 10-iiiii	ate Moise I	cveis at L	1-11	ı
	10-minute							
Date	period beginning	Lmax	L01	L10	Leq	L50	L90	Lmin
22-Nov-22	1:10 AM	74.4	72.8	61.2	60.5	57.3	55.5	54.0
22-Nov-22	1:20 AM	69.9	62.3	57.5	56.5	55.7	54.6	53.3
22-Nov-22	1:30 AM	74.4	68.4	60.3	59.1	56.8	54.8	54.0
22-Nov-22	1:40 AM	87.3	74.4	66.8	65.8	63.0	58.7	57.1
22-Nov-22	1:50 AM	76.1	70.3	65.0	63.6	62.9	61.3	60.5
22-Nov-22	2:00 AM	73.9	66.0	63.8	61.7	60.8	59.4	57.6
22-Nov-22	2:10 AM	63.1	60.8	60.0	59.0	58.9	58.0	57.0
22-Nov-22	2:20 AM	60.2	59.9	59.4	58.5	58.4	57.5	56.3
22-Nov-22	2:30 AM	61.1	60.4	59.4	58.5	58.5	57.3	56.2
22-Nov-22	2:40 AM	68.0	63.9	59.7	58.7	58.4	57.0	55.2
22-Nov-22	2:50 AM	67.4	63.1	59.7	58.6	58.3	57.0	55.8
22-Nov-22 22-Nov-22	3:00 AM	66.1	62.0	60.0	58.7	58.5	56.9	55.2
22-Nov-22 22-Nov-22	3:10 AM	62.5	60.8	59.1	57.8	57.6	56.3	54.7
22-Nov-22	3:20 AM	62.5	59.7	58.6	57.5	57.3	56.2	55.2
22-Nov-22	3:30 AM	65.6	63.8	60.1	58.5	58.0	56.5	54.4
		70.2	64.7	58.6				55.0
22-Nov-22	3:40 AM 3:50 AM	59.2	58.6	58.1	57.9 57.3	57.3	56.1	
22-Nov-22	4:00 AM	60.8		58.8		57.2	56.3	54.8
22-Nov-22		59.5	59.4		57.7	57.6	56.6	55.4
22-Nov-22	4:10 AM		58.9	58.3	57.3	57.2	56.4	55.1
22-Nov-22	4:20 AM	60.1	59.2	58.5	57.7	57.5	56.8	55.8
22-Nov-22	4:30 AM	59.6	59.0	57.9	57.2	57.1	56.3	55.7
22-Nov-22	4:40 AM	61.2	60.2	59.4	58.3	58.3	57.1	56.1
22-Nov-22	4:50 AM	61.3	60.0	59.0	58.2	58.1	57.1	56.2
22-Nov-22	5:00 AM	61.5	60.9	59.9	58.3	58.0	56.9	55.9
22-Nov-22	5:10 AM	62.0	60.9	60.2	59.2	59.1	58.0	57.0
22-Nov-22	5:20 AM	63.1	61.0	60.0	59.1	59.0	58.0	56.7
22-Nov-22	5:30 AM	67.1	62.5	60.8	59.5	59.3	58.0	56.4
22-Nov-22	5:40 AM	63.1	61.9	60.3	59.2	59.0	57.9	56.6
22-Nov-22	5:50 AM	60.9	59.9	59.0	58.3	58.2	57.3	56.4
22-Nov-22	6:00 AM	67.3	63.6	60.0	59.3	59.1	58.1	57.1
22-Nov-22	6:10 AM	64.0	61.6	59.8	58.8	58.7	57.7	56.4
22-Nov-22	6:20 AM	68.3	63.4	60.5	59.7	59.3	58.5	57.8
22-Nov-22	6:30 AM	65.1	62.3	60.6	59.5	59.3	58.5	57.3
22-Nov-22	6:40 AM	68.4	66.5	60.8	60.2	59.9	59.1	58.1
22-Nov-22	6:50 AM	66.1	61.6	60.1	59.2	59.1	58.1	57.0
22-Nov-22	7:00 AM	67.1	64.2	60.6	59.5	59.1	58.1	57.0
22-Nov-22	7:10 AM	64.1	63.4	60.8	59.9	59.8	58.9	57.7
22-Nov-22	7:20 AM	62.0	61.6	60.4	59.7	59.6	58.8	58.2
22-Nov-22	7:30 AM	67.8	63.6	60.2	59.5	59.2	58.4	57.4

	10-minute							
Date	period beginning	Lmax	L01	L10	Leq	L50	L90	Lmin
22-Nov-22	7:40 AM	59.9	59.6	59.1	58.1	58.0	57.2	56.3
22-Nov-22	7:50 AM	61.3	59.8	58.3	57.6	57.5	56.9	56.1
22-Nov-22	8:00 AM	60.4	59.1	58.3	57.7	57.6	57.1	56.3
22-Nov-22	8:10 AM	62.9	62.4	58.7	57.7	57.3	56.5	55.8
22-Nov-22	8:20 AM	61.6	60.9	58.9	57.7	57.4	56.6	55.8
22-Nov-22	8:30 AM	68.2	67.9	67.6	65.2	66.4	57.6	56.1
22-Nov-22	8:40 AM	68.4	68.1	67.6	67.1	67.1	66.6	66.1
22-Nov-22	8:50 AM	67.8	67.5	67.2	66.9	66.9	66.6	66.0
22-Nov-22	9:00 AM	67.6	67.4	67.2	66.9	66.8	66.5	66.1
22-Nov-22	9:10 AM	67.5	67.3	67.0	66.6	66.5	66.2	65.6
22-Nov-22	9:20 AM	67.0	66.7	66.5	66.2	66.2	66.0	65.6
22-Nov-22	9:30 AM	75.0	74.0	68.3	67.3	66.3	66.0	65.5
22-Nov-22	9:40 AM	67.7	67.2	66.4	66.1	66.1	65.8	65.3
22-Nov-22	9:50 AM	68.7	68.0	66.2	65.9	65.8	65.5	65.1
22-Nov-22	10:00 AM	68.7	68.4	66.0	65.8	65.7	65.5	65.1
22-Nov-22	10:10 AM	67.7	66.7	66.2	65.9	65.9	65.6	65.2
22-Nov-22	10:20 AM	66.6	66.3	66.0	65.7	65.7	65.4	64.9
22-Nov-22	10:30 AM	67.7	67.2	66.0	65.8	65.7	65.5	65.3
22-Nov-22	10:40 AM	66.4	66.1	65.9	65.7	65.7	65.4	65.0
22-Nov-22	10:50 AM	67.1	66.7	65.9	65.6	65.6	65.3	64.9
22-Nov-22	11:00 AM	67.1	66.7	66.3	66.0	66.0	65.6	65.2
22-Nov-22	11:10 AM	66.9	66.5	66.2	65.8	65.8	65.4	64.8
22-Nov-22	11:20 AM	66.5	66.2	65.9	65.2	65.6	62.5	61.8
22-Nov-22	11:30 AM	67.2	63.9	62.8	62.3	62.3	61.7	61.0
22-Nov-22	11:40 AM	63.3	63.0	62.6	62.2	62.2	61.7	61.2
22-Nov-22	11:50 AM	63.3	63.0	62.5	62.1	62.1	61.6	60.9
22-Nov-22	12:00 PM	68.9	67.2	62.4	62.2	62.0	61.7	61.2
22-Nov-22	12:10 PM	63.7	62.9	62.6	62.2	62.2	61.8	61.4
22-Nov-22	12:20 PM	63.5	63.0	62.6	62.3	62.3	61.9	61.4
22-Nov-22	12:30 PM	63.6	62.9	62.6	62.1	62.1	61.7	61.1
22-Nov-22	12:40 PM	63.9	62.9	62.4	60.6	61.6	56.6	55.8
22-Nov-22	12:50 PM	60.8	60.1	58.5	57.2	56.9	56.3	55.8
22-Nov-22	1:00 PM	65.3	60.8	57.7	57.1	56.8	56.2	55.6
22-Nov-22	1:10 PM	61.1	60.6	58.5	57.8	57.6	57.0	55.8
22-Nov-22	1:20 PM	59.9	58.9	58.0	57.3	57.2	56.6	55.9
22-Nov-22	1:30 PM	62.8	60.4	58.7	57.8	57.6	57.0	56.2
22-Nov-22	1:40 PM	61.4	60.3	59.4	58.4	58.2	57.5	56.6
22-Nov-22	1:50 PM	62.4	61.7	59.1	58.2	57.9	57.3	56.5
22-Nov-22	2:00 PM	63.7	61.9	59.1	58.1	57.7	57.0	56.1

Table 1a (continued): A-weighted 10-minute Noise Levels at LT-V1

Date	10-minute period beginning	Lmax	L01	L10	Leq	L50	L90	Lmin
22-Nov-22	2:10 PM	65.3	63.3	59.3	58.6	58.3	57.7	56.9
22-Nov-22	2:20 PM	63.9	62.7	59.0	58.3	58.0	57.4	56.9
22-Nov-22	2:30 PM	64.3	62.8	58.7	58.1	57.8	57.1	56.6
22-Nov-22	2:40 PM	65.9	64.7	58.7	58.2	57.7	57.0	56.6
22-Nov-22	2:50 PM	61.1	59.9	58.2	57.5	57.4	56.8	56.1
22-Nov-22	3:00 PM	59.4	58.3	57.7	57.2	57.2	56.6	56.0
22-Nov-22	3:10 PM	70.6	67.0	58.6	58.5	57.7	57.1	56.5
22-Nov-22	3:20 PM	64.2	61.1	59.1	58.0	57.6	57.0	55.6
22-Nov-22	3:30 PM	61.9	59.7	58.6	57.4	57.3	56.1	55.1
22-Nov-22	3:40 PM	61.9	60.5	59.1	57.9	57.7	56.7	55.4
22-Nov-22	3:50 PM	62.6	61.4	59.9	58.7	58.5	57.2	55.7
22-Nov-22	4:00 PM	68.0	63.7	59.3	58.4	58.1	56.9	55.8

	10-minute period			Octave I	•			
Date	beginning	63	125	250	500	1000	2000	4000
21-Nov-22	4:10 PM	66.5	63.6	58.0	53.1	48.6	39.8	34.0
21-Nov-22	4:20 PM	67.1	64.8	58.0	51.7	47.1	38.0	32.1
21-Nov-22	4:30 PM	68.7	67.0	58.4	52.5	49.4	34.6	24.6
21-Nov-22	4:40 PM	68.0	66.7	57.1	50.4	44.3	32.9	24.4
21-Nov-22	4:50 PM	66.7	65.9	57.5	51.9	46.0	36.2	26.3
21-Nov-22	5:00 PM	69.3	68.2	58.9	54.3	49.0	39.3	35.3
21-Nov-22	5:10 PM	71.2	69.5	61.0	57.2	51.2	43.5	42.8
21-Nov-22	5:20 PM	70.9	68.8	59.2	54.4	48.8	38.6	28.8
21-Nov-22	5:30 PM	71.8	69.3	59.7	56.3	49.6	38.9	27.8
21-Nov-22	5:40 PM	71.6	69.1	58.4	54.2	48.3	38.2	28.5
21-Nov-22	5:50 PM	71.1	68.4	58.8	54.2	47.6	36.0	25.5
21-Nov-22	6:00 PM	71.5	68.3	58.4	54.1	47.3	36.6	29.4
21-Nov-22	6:10 PM	71.8	68.3	58.1	53.3	45.6	36.5	30.7
21-Nov-22	6:20 PM	71.8	68.0	58.8	54.2	45.4	37.7	31.3
21-Nov-22	6:30 PM	72.6	68.6	58.5	54.9	46.3	40.3	30.3
21-Nov-22	6:40 PM	71.5	68.1	58.4	54.2	44.9	35.3	25.3
21-Nov-22	6:50 PM	71.8	68.0	58.4	54.2	45.2	50.2	29.1
21-Nov-22	7:00 PM	72.1	68.1	59.2	55.2	46.3	38.9	28.5
21-Nov-22	7:10 PM	72.6	68.9	62.0	58.6	52.9	52.9	35.8
21-Nov-22	7:20 PM	74.0	65.9	60.1	56.5	51.3	39.8	29.5
21-Nov-22	7:30 PM	67.1	64.0	60.9	56.4	48.4	34.1	23.7
21-Nov-22	7:40 PM	66.2	63.8	59.2	57.0	52.6	37.9	24.9
21-Nov-22	7:50 PM	65.2	61.5	59.1	55.1	48.9	36.7	26.3

Tubic	10-minute period Average Octave Band Sound Level, Leq, dB							
Date	beginning	63	125	250	500	1000	2000	4000
21-Nov-22	8:00 PM	65.5	62.6	60.2	67.3	63.3	47.6	27.4
21-Nov-22	8:10 PM	65.4	62.2	58.7	57.8	53.2	41.7	23.3
21-Nov-22	8:20 PM	64.3	61.7	58.3	56.9	53.0	40.7	22.5
21-Nov-22	8:30 PM	64.6	62.0	58.0	55.7	49.4	37.0	21.2
21-Nov-22	8:40 PM	66.3	63.4	58.9	56.6	49.4	37.8	26.4
21-Nov-22	8:50 PM	66.5	64.4	58.4	55.2	48.3	36.8	23.0
21-Nov-22	9:00 PM	66.8	65.1	58.0	54.4	50.7	37.5	23.1
21-Nov-22	9:10 PM	66.0	64.0	59.2	55.0	49.3	39.9	23.4
21-Nov-22	9:20 PM	66.5	64.3	59.0	55.0	49.3	38.7	22.5
21-Nov-22	9:30 PM	67.1	63.9	59.8	56.4	50.7	42.8	25.5
21-Nov-22	9:40 PM	68.1	63.8	59.0	54.9	48.5	40.2	26.3
21-Nov-22	9:50 PM	66.0	64.0	60.4	58.5	51.5	44.7	41.7
21-Nov-22	10:00 PM	64.4	64.1	58.6	54.9	49.4	39.3	24.0
21-Nov-22	10:10 PM	64.1	63.4	57.7	54.5	48.0	38.7	23.1
21-Nov-22	10:20 PM	64.7	63.5	57.2	55.4	49.2	39.9	26.8
21-Nov-22	10:30 PM	64.8	64.4	59.1	56.6	52.7	42.1	28.6
21-Nov-22	10:40 PM	64.4	63.3	58.4	61.2	55.3	43.5	27.8
21-Nov-22	10:50 PM	63.9	63.5	58.3	56.6	50.9	41.4	26.5
21-Nov-22	11:00 PM	62.6	62.6	57.5	57.1	55.5	41.4	23.1
21-Nov-22	11:10 PM	64.0	63.3	58.9	55.4	49.2	37.9	23.0
21-Nov-22	11:20 PM	63.4	63.6	58.6	55.3	48.9	39.1	26.7
21-Nov-22	11:30 PM	63.4	63.3	58.7	56.9	49.8	39.4	29.4
21-Nov-22	11:40 PM	64.3	63.6	58.3	56.0	49.5	38.5	27.6
21-Nov-22	11:50 PM	62.8	63.3	59.4	56.3	49.4	37.5	26.8
22-Nov-22	12:00 AM	64.6	63.8	61.1	58.7	52.0	39.6	26.8
22-Nov-22	12:10 AM	64.3	62.6	58.9	57.4	51.5	42.2	34.9
22-Nov-22	12:20 AM	63.6	63.3	59.8	57.0	50.1	40.2	32.5
22-Nov-22	12:30 AM	62.6	62.3	59.5	56.6	49.7	36.5	20.3
22-Nov-22	12:40 AM	61.6	61.2	58.4	56.1	48.4	36.4	19.8
22-Nov-22	12:50 AM	61.1	62.0	59.1	55.5	48.1	35.9	20.0
22-Nov-22	1:00 AM	61.9	62.8	60.2	57.4	50.7	35.7	17.7
22-Nov-22	1:10 AM	65.4	66.2	62.9	60.9	52.7	45.0	30.9
22-Nov-22	1:20 AM	62.2	63.3	59.5	57.0	47.5	34.0	24.0
22-Nov-22	1:30 AM	64.9	65.0	61.6	58.9	52.1	45.3	27.3
22-Nov-22	1:40 AM	77.3	72.4	65.9	61.6	55.2	61.2	41.3
22-Nov-22	1:50 AM	74.6	71.8	65.4	61.7	55.6	54.5	42.6
22-Nov-22	2:00 AM	72.0	68.0	63.2	61.1	54.6	49.3	41.0
22-Nov-22	2:10 AM	66.3	63.2	61.1	59.7	51.6	38.7	25.9
22-Nov-22	2:20 AM	63.6	62.7	60.5	59.2	51.2	38.3	24.3

Tuble	10-minute period Average Octave Band Sound Level, Leq, dB							
Date	beginning	63	125	250	500	1000	2000	4000
22-Nov-22	2:30 AM	62.7	63.1	60.3	59.3	51.1	38.7	26.0
22-Nov-22	2:40 AM	61.7	61.6	60.2	59.4	51.9	39.1	27.4
22-Nov-22	2:50 AM	62.2	62.2	60.1	59.4	51.6	38.8	26.5
22-Nov-22	3:00 AM	65.4	63.1	60.4	59.5	51.6	38.7	26.4
22-Nov-22	3:10 AM	60.9	61.0	59.4	58.7	50.6	38.6	26.7
22-Nov-22	3:20 AM	59.7	59.9	59.1	58.3	50.4	40.2	32.3
22-Nov-22	3:30 AM	66.4	64.4	59.5	59.1	51.1	39.4	27.4
22-Nov-22	3:40 AM	63.0	62.5	59.5	58.8	50.6	37.6	23.0
22-Nov-22	3:50 AM	60.4	60.9	59.0	58.1	50.6	37.8	23.1
22-Nov-22	4:00 AM	64.7	61.5	58.8	58.5	51.2	38.4	24.6
22-Nov-22	4:10 AM	60.8	61.0	58.8	58.0	50.6	38.0	23.9
22-Nov-22	4:20 AM	61.5	61.5	59.4	58.2	51.2	38.3	23.4
22-Nov-22	4:30 AM	61.9	60.9	58.5	57.9	50.4	38.1	23.1
22-Nov-22	4:40 AM	63.7	62.7	59.7	59.1	51.4	38.9	24.7
22-Nov-22	4:50 AM	64.2	62.5	59.4	58.8	51.3	38.8	23.9
22-Nov-22	5:00 AM	68.4	63.4	59.8	58.8	51.0	38.7	25.3
22-Nov-22	5:10 AM	69.3	64.9	60.3	59.7	51.9	39.9	26.2
22-Nov-22	5:20 AM	67.0	63.8	60.0	59.8	52.1	40.1	28.3
22-Nov-22	5:30 AM	66.0	63.8	60.3	60.4	52.1	40.1	28.3
22-Nov-22	5:40 AM	66.1	63.5	60.0	60.2	51.3	39.6	28.7
22-Nov-22	5:50 AM	66.3	63.1	60.1	58.8	50.5	38.0	24.2
22-Nov-22	6:00 AM	66.2	63.2	60.7	60.0	52.0	39.2	26.4
22-Nov-22	6:10 AM	66.1	63.5	60.3	59.4	51.3	38.7	26.0
22-Nov-22	6:20 AM	67.5	64.4	61.0	60.3	52.2	39.0	25.2
22-Nov-22	6:30 AM	66.6	64.9	61.5	59.9	51.9	39.3	27.0
22-Nov-22	6:40 AM	65.8	64.8	62.8	60.5	52.7	39.1	24.9
22-Nov-22	6:50 AM	65.8	64.8	61.6	59.5	52.0	39.5	29.8
22-Nov-22	7:00 AM	66.3	65.0	62.5	59.5	52.1	40.7	28.5
22-Nov-22	7:10 AM	68.6	65.4	63.5	59.8	52.0	40.4	28.4
22-Nov-22	7:20 AM	68.1	65.7	62.5	59.8	51.5	39.6	28.3
22-Nov-22	7:30 AM	67.9	65.6	62.0	59.8	52.0	37.6	22.8
22-Nov-22	7:40 AM	67.8	64.1	61.0	58.1	50.7	36.5	23.6
22-Nov-22	7:50 AM	67.6	63.8	60.4	57.6	50.3	37.0	25.3
22-Nov-22	8:00 AM	67.3	63.9	60.7	57.6	49.8	36.3	24.3
22-Nov-22	8:10 AM	66.1	63.4	60.4	58.1	49.0	38.7	33.1
22-Nov-22	8:20 AM	65.9	63.1	60.5	58.0	49.2	38.6	32.9
22-Nov-22	8:30 AM	66.3	67.6	65.2	66.5	57.0	45.1	31.7
22-Nov-22	8:40 AM	66.5	68.8	66.8	68.6	59.1	46.9	32.5
22-Nov-22	8:50 AM	65.9	68.5	66.7	68.3	59.0	46.7	32.4

	10-minute period	Average Octave Band Sound Level, Leq, dB								
Date	beginning	63	125	250	500	1000	2000	4000		
22-Nov-22	9:00 AM	65.0	68.1	66.8	68.3	58.9	46.5	31.9		
22-Nov-22	9:10 AM	64.3	67.7	66.8	67.9	58.6	46.2	31.5		
22-Nov-22	9:20 AM	64.1	67.3	67.0	67.4	58.2	46.2	33.4		
22-Nov-22	9:30 AM	67.2	69.2	68.8	68.1	59.6	51.5	36.9		
22-Nov-22	9:40 AM	65.4	67.6	67.5	67.0	58.2	45.7	31.2		
22-Nov-22	9:50 AM	64.9	67.4	67.5	66.7	58.2	45.4	30.7		
22-Nov-22	10:00 AM	65.7	68.3	67.8	66.5	58.4	45.2	30.7		
22-Nov-22	10:10 AM	65.8	69.1	67.8	66.3	58.6	46.5	36.6		
22-Nov-22	10:20 AM	64.3	68.0	67.8	66.2	58.3	45.9	32.6		
22-Nov-22	10:30 AM	64.3	68.3	68.0	66.2	58.3	46.2	31.1		
22-Nov-22	10:40 AM	64.3	67.6	67.9	66.2	58.0	45.8	30.7		
22-Nov-22	10:50 AM	64.6	67.9	68.0	66.2	57.8	45.4	31.3		
22-Nov-22	11:00 AM	64.4	68.4	68.0	66.7	58.3	46.1	30.8		
22-Nov-22	11:10 AM	64.1	68.0	68.0	66.4	58.3	46.4	32.3		
22-Nov-22	11:20 AM	65.1	67.9	67.2	65.7	57.6	46.2	31.1		
22-Nov-22	11:30 AM	64.1	65.8	63.4	63.0	55.5	44.7	30.0		
22-Nov-22	11:40 AM	63.2	66.3	63.4	62.7	55.6	43.8	30.3		
22-Nov-22	11:50 AM	63.4	66.6	63.5	62.4	55.6	44.3	33.7		
22-Nov-22	12:00 PM	63.0	66.4	63.7	62.6	55.6	42.9	28.1		
22-Nov-22	12:10 PM	63.5	66.7	64.1	62.3	55.7	43.6	29.4		
22-Nov-22	12:20 PM	62.8	66.3	64.0	62.4	55.8	44.0	28.8		
22-Nov-22	12:30 PM	63.5	66.3	63.9	62.3	55.7	43.6	30.6		
22-Nov-22	12:40 PM	64.5	66.1	62.7	60.5	53.8	41.9	27.5		
22-Nov-22	12:50 PM	63.6	65.5	60.4	56.3	49.3	40.8	32.8		
22-Nov-22	1:00 PM	64.6	65.5	59.4	56.2	49.8	43.4	32.1		
22-Nov-22	1:10 PM	64.1	66.1	60.7	56.9	50.2	41.8	27.9		
22-Nov-22	1:20 PM	63.5	65.2	59.8	56.5	50.1	42.7	26.6		
22-Nov-22	1:30 PM	64.1	65.7	60.2	56.9	50.8	44.4	31.7		
22-Nov-22	1:40 PM	65.2	66.1	61.2	57.4	51.3	44.8	35.0		
22-Nov-22	1:50 PM	66.1	65.8	60.7	57.4	51.1	44.1	33.5		
22-Nov-22	2:00 PM	65.2	65.9	60.6	57.1	50.9	44.5	32.0		
22-Nov-22	2:10 PM	66.2	66.4	61.0	57.9	51.3	44.3	32.0		
22-Nov-22	2:20 PM	65.6	66.4	60.9	57.5	50.8	43.8	30.2		
22-Nov-22	2:30 PM	65.1	66.3	60.5	57.1	50.7	44.0	29.8		
22-Nov-22	2:40 PM	65.2	66.2	60.8	57.3	50.6	44.0	30.2		
22-Nov-22	2:50 PM	64.8	66.0	60.0	56.6	50.3	42.7	28.7		
22-Nov-22	3:00 PM	64.7	65.8	59.8	56.3	49.7	41.1	28.5		
22-Nov-22	3:10 PM	65.6	66.5	60.4	58.3	50.4	42.2	26.4		
22-Nov-22	3:20 PM	65.2	66.2	61.6	57.1	49.6	40.8	27.9		

	10-minute period	Average Octave Band Sound Level, Leq, dB						
Date	beginning	63	125	250	500	1000	2000	4000
22-Nov-22	3:30 PM	64.5	63.8	60.0	57.3	49.8	39.6	28.4
22-Nov-22	3:40 PM	65.5	64.1	60.4	57.9	50.4	40.2	28.4
22-Nov-22	3:50 PM	67.9	66.9	61.0	58.1	51.1	42.3	32.8
22-Nov-22	4:00 PM	66.1	65.4	60.2	58.0	51.7	43.1	34.2

Table 2: A-weighted Hourly Noise Levels at LT-V2

	Table 2: A-weighted Hourly Noise Levels at LT-V2										
	Hour										
Date	beginning	Lmax	L01	L10	Leq	L50	L90	Lmin			
21-Nov-22	3:00 PM	82.7	73.4	62.0	61.7	56.1	55.1	52.5			
21-Nov-22	4:00 PM	87.2	73.2	63.0	64.1	57.6	55.7	54.4			
21-Nov-22	5:00 PM	85.5	71.5	61.7	61.9	57.9	57.1	54.9			
21-Nov-22	6:00 PM	80.6	69.5	60.0	60.3	56.3	55.6	54.2			
21-Nov-22	7:00 PM	92.2	69.8	63.8	65.3	59.0	57.3	53.7			
21-Nov-22	8:00 PM	85.2	77.8	67.8	66.6	59.6	56.5	53.5			
21-Nov-22	9:00 PM	81.1	65.9	56.9	58.8	54.2	53.5	52.5			
21-Nov-22	10:00 PM	89.0	69.6	59.8	61.8	55.4	54.2	53.1			
21-Nov-22	11:00 PM	87.8	79.9	69.7	69.9	64.9	59.4	53.5			
22-Nov-22	12:00 AM	88.4	71.4	60.5	63.8	55.9	54.6	52.2			
22-Nov-22	1:00 AM	85.5	69.7	58.8	60.8	55.4	54.2	52.6			
22-Nov-22	2:00 AM	87.5	70.5	60.4	62.2	55.5	53.4	50.8			
22-Nov-22	3:00 AM	84.9	67.5	56.7	58.9	52.9	51.3	48.7			
22-Nov-22	4:00 AM	82.8	69.0	59.0	60.3	54.3	52.8	50.5			
22-Nov-22	5:00 AM	86.2	74.9	66.1	64.6	59.0	56.0	53.4			
22-Nov-22	6:00 AM	82.6	77.2	67.4	65.8	60.1	57.7	55.6			
22-Nov-22	7:00 AM	86.9	77.6	67.0	66.0	57.8	56.2	53.3			
22-Nov-22	8:00 AM	81.9	76.0	65.1	64.4	57.5	55.7	54.5			
22-Nov-22	9:00 AM	87.6	74.7	64.8	63.5	56.8	54.5	51.6			
22-Nov-22	10:00 AM	93.7	78.7	68.2	68.4	58.2	55.5	53.1			
22-Nov-22	11:00 AM	87.0	77.4	67.6	65.7	56.8	54.5	52.0			
22-Nov-22	12:00 PM	89.7	79.6	68.5	68.0	58.8	53.7	51.2			
22-Nov-22	1:00 PM	89.8	77.8	66.0	65.6	55.6	53.1	51.1			
22-Nov-22	2:00 PM	89.2	76.9	66.4	66.7	57.9	54.5	52.0			

Table 2a: A-weighted 10-minute Noise Levels at LT-V2

Date	10-minute period beginning	Lmax	L01	L10	Leq	L50	L90	Lmin
21-Nov-22	2:30 PM	81.0	77.4	66.6	65.1	58.1	56.8	55.8
21-Nov-22	2:40 PM	87.8	75.7	62.8	65.4	57.2	56.3	55.7
21-Nov-22	2:50 PM	84.6	77.6	63.5	65.1	57.0	56.0	55.0
21-Nov-22	3:00 PM	78.3	71.7	63.3	61.6	57.2	56.0	55.5
21-Nov-22	3:10 PM	76.8	74.5	62.9	61.3	56.1	55.0	52.5
21-Nov-22	3:20 PM	75.9	68.9	58.4	58.5	55.3	54.2	53.5
21-Nov-22	3:30 PM	76.9	72.9	61.4	59.9	55.6	54.9	53.6

	10-minute							
Data	period	T	Τ Δ1	T 10	Tax	T 50	T 00	T
Date	beginning	Lmax	L01	L10	Leq	L50	L90	Lmin
21-Nov-22	3:40 PM	76.6	73.1	62.6	60.9	56.1	55.1	54.0
21-Nov-22	3:50 PM	82.7	79.2	63.2	65.0	56.3	55.3	54.2
21-Nov-22	4:00 PM	87.2	79.5	71.7	68.9	63.7	56.8	55.1
21-Nov-22	4:10 PM	79.5	75.5	63.0	62.0	56.8	55.5	54.7
21-Nov-22	4:20 PM	83.2	70.2	57.7	61.4	56.1	55.4	54.6
21-Nov-22	4:30 PM	69.3	65.6	57.4	57.0	55.7	55.0	54.5
21-Nov-22	4:40 PM	82.1	77.4	66.6	65.2	56.8	55.6	54.4
21-Nov-22	4:50 PM	77.6	71.1	61.3	60.1	56.7	55.8	55.2
21-Nov-22	5:00 PM	77.0	73.5	62.5	61.3	57.4	56.5	54.9
21-Nov-22	5:10 PM	85.5	78.0	65.1	65.0	58.1	57.2	56.4
21-Nov-22	5:20 PM	70.5	67.1	59.9	59.3	58.1	57.3	56.2
21-Nov-22	5:30 PM	82.4	76.2	64.7	63.7	58.4	57.4	56.4
21-Nov-22	5:40 PM	75.4	66.2	58.3	58.7	57.4	56.9	56.3
21-Nov-22	5:50 PM	73.2	68.0	59.7	59.1	57.7	57.0	56.3
21-Nov-22	6:00 PM	73.1	69.5	61.2	59.4	56.8	55.8	55.0
21-Nov-22	6:10 PM	80.6	77.2	67.2	64.7	57.0	55.9	55.1
21-Nov-22	6:20 PM	74.1	71.0	58.4	58.9	56.0	55.2	54.2
21-Nov-22	6:30 PM	68.4	66.0	58.8	57.5	56.0	55.4	54.4
21-Nov-22	6:40 PM	75.1	69.4	57.6	58.7	56.0	55.6	55.0
21-Nov-22	6:50 PM	73.8	63.8	56.7	57.0	55.9	55.4	54.6
21-Nov-22	7:00 PM	63.8	60.6	57.6	56.8	56.5	55.8	55.1
21-Nov-22	7:10 PM	64.2	61.9	57.5	56.9	56.6	55.9	55.2
21-Nov-22	7:20 PM	67.5	64.4	61.8	61.0	60.8	59.9	56.9
21-Nov-22	7:30 PM	88.4	74.6	70.8	67.7	61.8	59.8	57.6
21-Nov-22	7:40 PM	92.2	83.2	69.3	70.0	58.3	55.2	53.7
21-Nov-22	7:50 PM	80.6	73.8	65.7	63.5	59.9	57.3	56.3
21-Nov-22	8:00 PM	84.0	81.5	72.4	69.3	61.0	56.9	56.1
21-Nov-22	8:10 PM	85.2	81.1	68.4	68.3	59.7	57.5	56.5
21-Nov-22	8:20 PM	84.5	79.4	67.8	66.7	60.0	57.3	56.4
21-Nov-22	8:30 PM	81.9	74.5	67.2	64.4	60.0	56.6	55.1
21-Nov-22	8:40 PM	82.0	75.7	66.3	64.6	60.1	56.3	55.1
21-Nov-22	8:50 PM	77.6	74.6	64.6	62.1	56.6	54.3	53.5
21-Nov-22	9:00 PM	57.9	55.9	54.7	54.0	53.8	53.2	52.5
21-Nov-22	9:10 PM	81.1	76.8	57.7	61.7	54.2	53.5	53.0
21-Nov-22	9:20 PM	58.3	56.7	55.3	54.5	54.3	53.5	52.7
21-Nov-22	9:30 PM	81.1	75.9	56.2	61.7	54.4	53.5	53.0
21-Nov-22	9:40 PM	64.9	61.0	56.1	55.2	54.5	53.9	53.3
21-Nov-22	9:50 PM	76.4	69.3	61.2	58.8	54.1	53.1	52.6
21-Nov-22	10:00 PM	78.3	71.1	58.1	59.2	54.5	53.6	53.1

	10-minute							
.	period	Ţ.	T 04	T 40	·	T =0	T 00	
Date	beginning	Lmax	L01	L10	Leq	L50	L90	Lmin
21-Nov-22	10:10 PM	65.7	64.6	57.0	56.0	54.5	53.8	53.1
21-Nov-22	10:20 PM	65.7	61.4	55.0	54.8	54.3	53.8	53.2
21-Nov-22	10:30 PM	74.1	68.5	57.0	57.6	55.3	54.5	54.0
21-Nov-22	10:40 PM	81.8	77.4	67.1	64.9	56.9	55.2	54.4
21-Nov-22	10:50 PM	89.0	74.3	64.8	65.8	57.0	54.2	53.1
21-Nov-22	11:00 PM	84.1	77.9	66.2	64.8	57.7	55.3	53.9
21-Nov-22	11:10 PM	85.1	79.3	69.0	67.2	60.6	55.9	54.6
21-Nov-22	11:20 PM	86.7	83.4	66.5	68.4	58.4	54.9	53.5
21-Nov-22	11:30 PM	87.8	81.5	72.1	71.9	71.0	56.9	55.1
21-Nov-22	11:40 PM	80.6	76.8	72.8	71.6	71.0	70.6	70.3
21-Nov-22	11:50 PM	83.8	80.4	71.6	71.1	70.8	62.6	56.7
22-Nov-22	12:00 AM	86.0	76.6	60.2	63.9	57.1	55.5	54.3
22-Nov-22	12:10 AM	88.4	82.1	61.5	67.3	56.2	55.0	53.7
22-Nov-22	12:20 AM	67.7	60.1	57.2	56.4	56.0	55.0	54.2
22-Nov-22	12:30 AM	83.8	79.4	68.2	66.5	56.6	55.2	54.0
22-Nov-22	12:40 AM	84.0	73.2	60.4	61.1	54.9	53.5	52.2
22-Nov-22	12:50 AM	59.2	56.8	55.6	54.5	54.3	53.5	52.7
22-Nov-22	1:00 AM	85.5	77.4	57.5	63.6	55.0	53.5	52.6
22-Nov-22	1:10 AM	81.2	69.0	61.9	60.8	57.1	55.5	54.2
22-Nov-22	1:20 AM	71.6	65.9	57.4	56.7	55.5	53.8	53.0
22-Nov-22	1:30 AM	66.7	62.9	57.3	56.0	55.0	54.1	53.5
22-Nov-22	1:40 AM	78.0	65.2	58.0	58.1	55.2	54.4	53.7
22-Nov-22	1:50 AM	80.7	78.0	60.5	63.3	54.8	53.9	53.1
22-Nov-22	2:00 AM	76.1	68.4	58.5	58.1	55.3	54.3	53.8
22-Nov-22	2:10 AM	65.7	63.5	57.2	56.0	55.0	53.7	52.5
22-Nov-22	2:20 AM	76.5	70.0	57.5	58.3	54.8	53.0	51.6
22-Nov-22	2:30 AM	64.7	62.8	58.5	56.4	55.3	53.3	51.6
22-Nov-22	2:40 AM	86.3	80.6	61.8	65.5	55.7	53.5	51.5
22-Nov-22	2:50 AM	87.5	77.9	68.6	66.2	56.9	52.7	50.8
22-Nov-22	3:00 AM	63.8	61.0	56.0	54.4	53.7	51.8	51.0
22-Nov-22	3:10 AM	76.9	72.4	56.9	58.8	52.9	51.3	50.5
22-Nov-22	3:20 AM	63.4	59.2	54.1	53.1	52.3	51.6	50.8
22-Nov-22	3:30 AM	81.8	72.8	57.3	60.6	54.2	52.1	50.9
22-Nov-22	3:40 AM	66.2	61.5	55.6	53.6	52.1	50.5	49.2
22-Nov-22	3:50 AM	84.9	78.3	60.0	63.2	51.9	50.2	48.7
22-Nov-22	4:00 AM	62.8	59.4	54.1	53.3	52.8	51.7	50.5
22-Nov-22	4:10 AM	68.5	64.0	56.3	54.8	52.3	51.5	50.6
22-Nov-22	4:20 AM	69.1	65.7	57.1	55.8	53.3	52.2	51.0
22-Nov-22	4:30 AM	78.6	75.6	57.3	60.4	52.9	51.9	51.2

	10-minute							
D 4	period		T 01	T 10	T	T 50	T 00	
Date	beginning	Lmax	L01	L10	Leq	L50	L90	Lmin
22-Nov-22	4:40 AM	76.7	71.7	62.3	60.2	55.9	53.8	52.7
22-Nov-22	4:50 AM	82.8	77.6	66.9	65.3	58.6	55.9	54.6
22-Nov-22	5:00 AM	78.3	72.5	65.7	62.7	57.9	54.4	53.4
22-Nov-22	5:10 AM	81.2	75.3	67.5	64.6	60.4	56.2	54.8
22-Nov-22	5:20 AM	81.0	76.5	68.3	65.4	59.8	56.6	55.1
22-Nov-22	5:30 AM	86.2	81.6	66.7	67.6	58.2	56.1	54.6
22-Nov-22	5:40 AM	74.5	70.2	63.0	60.6	58.4	55.8	54.3
22-Nov-22	5:50 AM	80.4	73.4	65.4	63.2	59.0	56.7	55.5
22-Nov-22	6:00 AM	81.5	78.2	70.6	67.4	61.8	58.4	56.6
22-Nov-22	6:10 AM	80.9	75.7	63.7	63.2	58.4	57.5	56.7
22-Nov-22	6:20 AM	82.6	78.4	67.9	66.4	60.6	58.6	57.4
22-Nov-22	6:30 AM	82.0	78.8	70.9	67.5	60.6	58.0	56.9
22-Nov-22	6:40 AM	81.5	76.9	64.9	64.7	59.7	57.2	55.9
22-Nov-22	6:50 AM	79.8	75.1	66.1	64.0	59.6	56.5	55.6
22-Nov-22	7:00 AM	86.9	82.3	73.2	69.6	58.8	57.2	55.9
22-Nov-22	7:10 AM	84.1	78.0	66.4	65.9	57.9	56.5	55.3
22-Nov-22	7:20 AM	76.0	74.1	62.8	62.0	57.7	56.7	55.9
22-Nov-22	7:30 AM	79.1	76.4	67.0	65.1	59.1	57.0	56.2
22-Nov-22	7:40 AM	81.8	80.1	67.3	66.2	57.0	55.4	54.5
22-Nov-22	7:50 AM	76.3	74.5	65.0	62.5	56.2	54.6	53.3
22-Nov-22	8:00 AM	81.3	74.5	61.3	62.0	56.4	55.1	54.1
22-Nov-22	8:10 AM	81.7	79.6	71.5	67.6	58.0	55.5	54.6
22-Nov-22	8:20 AM	76.6	73.1	60.2	60.4	56.4	55.5	54.7
22-Nov-22	8:30 AM	79.6	77.3	66.3	64.5	57.3	55.7	54.4
22-Nov-22	8:40 AM	79.3	74.4	65.6	63.6	58.9	56.9	56.0
22-Nov-22	8:50 AM	81.9	77.0	65.7	64.8	57.8	55.3	53.3
22-Nov-22	9:00 AM	81.1	73.6	63.7	62.0	55.0	53.6	52.8
22-Nov-22	9:10 AM	78.6	73.5	60.8	60.6	55.8	52.7	51.6
22-Nov-22	9:20 AM	78.6	74.4	66.0	63.0	57.1	55.4	54.6
22-Nov-22	9:30 AM	79.8	77.3	69.1	66.1	59.6	57.2	55.9
22-Nov-22	9:40 AM	76.3	72.4	63.7	60.9	55.1	52.8	52.1
22-Nov-22	9:50 AM	87.6	76.7	65.5	65.4	58.2	55.2	52.4
22-Nov-22	10:00 AM	83.8	78.3	69.0	66.6	61.2	56.9	54.4
22-Nov-22	10:10 AM	77.8	73.2	65.7	62.7	57.5	55.7	54.4
22-Nov-22	10:20 AM	93.7	89.2	73.1	74.1	58.4	55.4	54.0
22-Nov-22	10:30 AM	78.5	76.6	67.1	64.0	57.9	54.9	54.0
22-Nov-22	10:40 AM	81.1	78.0	66.7	65.0	55.6	54.0	53.1
22-Nov-22	10:50 AM	83.1	76.6	67.8	65.2	58.3	56.2	55.6
22-Nov-22	11:00 AM	80.8	76.8	69.3	65.8	58.3	56.0	55.2

-	ì	commucu)	. A-weight	cu 10-IIIII	ute Noise L	cveis at L	1-12	1
	10-minute							
	period							
Date	beginning	Lmax	L01	L10	Leq	L50	L90	Lmin
22-Nov-22	11:10 AM	87.0	78.8	68.5	67.0	56.7	55.4	54.4
22-Nov-22	11:20 AM	78.8	73.5	63.6	62.0	56.4	54.8	53.5
22-Nov-22	11:30 AM	81.4	80.3	70.2	67.4	57.1	53.9	52.5
22-Nov-22	11:40 AM	78.6	75.3	66.4	63.2	55.1	53.4	52.0
22-Nov-22	11:50 AM	82.5	79.6	67.5	66.3	57.4	53.5	52.5
22-Nov-22	12:00 PM	79.9	76.2	64.8	63.3	57.6	54.0	52.5
22-Nov-22	12:10 PM	84.6	78.9	68.6	66.8	58.7	54.3	52.0
22-Nov-22	12:20 PM	84.3	78.8	67.4	65.8	55.6	53.4	51.9
22-Nov-22	12:30 PM	82.6	78.2	72.8	69.4	66.9	55.2	51.4
22-Nov-22	12:40 PM	89.7	85.8	71.5	71.3	59.4	52.9	51.3
22-Nov-22	12:50 PM	87.9	79.9	65.6	67.2	54.6	52.5	51.2
22-Nov-22	1:00 PM	79.7	74.4	63.6	61.9	54.5	52.7	51.1
22-Nov-22	1:10 PM	89.8	79.3	66.2	68.3	55.0	52.7	51.4
22-Nov-22	1:20 PM	82.8	78.1	63.8	63.7	54.6	52.5	51.2
22-Nov-22	1:30 PM	85.4	80.4	68.1	67.2	55.9	52.9	51.5
22-Nov-22	1:40 PM	80.6	77.5	66.1	64.6	56.7	53.8	52.4
22-Nov-22	1:50 PM	81.2	76.9	68.1	65.0	57.1	54.1	53.2
22-Nov-22	2:00 PM	89.2	80.9	67.1	68.1	58.9	54.8	53.4
22-Nov-22	2:10 PM	86.0	83.0	71.5	70.3	59.9	55.1	53.8
22-Nov-22	2:20 PM	82.4	78.1	70.5	66.9	59.6	55.0	53.6
22-Nov-22	2:30 PM	85.6	78.6	67.0	65.9	57.1	54.9	53.5
22-Nov-22	2:40 PM	77.7	69.7	60.1	59.3	55.0	53.2	52.0
22-Nov-22	2:50 PM	74.6	71.2	62.1	60.3	56.9	54.1	52.7
22-Nov-22	3:00 PM	78.5	74.5	61.7	61.0	54.8	54.0	53.2
22-Nov-22	3:10 PM	75.2	71.4	60.5	59.2	54.0	51.6	50.6

	10-minute period		Average	Octave I	Band Sou	nd Level,	Leq, dB	
Date	beginning	63	125	250	500	1000	2000	4000
21-Nov-22	2:30 PM	68.1	62.7	59.2	62.2	61.0	57.8	51.9
21-Nov-22	2:40 PM	62.4	61.1	56.5	60.7	59.3	61.1	53.2
21-Nov-22	2:50 PM	64.8	62.4	60.9	63.2	60.7	57.5	50.3
21-Nov-22	3:00 PM	64.6	62.6	59.0	60.0	57.2	53.0	45.3
21-Nov-22	3:10 PM	70.6	60.5	55.2	58.4	57.2	54.2	47.8
21-Nov-22	3:20 PM	62.1	58.0	54.9	56.2	55.2	49.2	42.1
21-Nov-22	3:30 PM	69.5	60.4	56.7	58.4	55.4	50.8	46.0
21-Nov-22	3:40 PM	66.2	61.7	57.7	58.9	56.7	52.7	46.3
21-Nov-22	3:50 PM	70.5	63.4	58.4	64.2	61.1	54.9	49.0
21-Nov-22	4:00 PM	77.4	74.4	66.6	66.3	64.8	59.3	54.4

	10-minute period				Band Sou			
Date	beginning	63	125	250	500	1000	2000	4000
21-Nov-22	4:10 PM	65.2	64.6	60.9	60.6	57.1	53.3	47.1
21-Nov-22	4:20 PM	63.3	61.6	57.1	59.7	57.3	52.3	48.0
21-Nov-22	4:30 PM	62.6	59.7	55.3	54.7	53.1	47.6	40.2
21-Nov-22	4:40 PM	66.1	61.9	58.2	62.4	60.8	58.5	53.0
21-Nov-22	4:50 PM	63.1	61.1	57.8	58.0	56.2	50.9	42.8
21-Nov-22	5:00 PM	64.0	61.0	57.1	59.3	57.1	52.9	47.5
21-Nov-22	5:10 PM	65.0	63.3	59.3	62.3	62.2	55.9	49.8
21-Nov-22	5:20 PM	63.2	60.7	56.8	57.5	55.5	49.3	42.2
21-Nov-22	5:30 PM	64.7	63.2	58.8	61.3	59.7	55.4	51.1
21-Nov-22	5:40 PM	62.5	59.3	55.7	56.9	54.9	49.3	42.2
21-Nov-22	5:50 PM	65.9	61.5	56.8	57.4	55.1	49.6	41.6
21-Nov-22	6:00 PM	71.8	61.8	56.4	57.9	55.1	48.9	40.0
21-Nov-22	6:10 PM	68.4	63.8	61.4	62.2	60.0	55.9	53.9
21-Nov-22	6:20 PM	64.8	60.7	57.0	57.5	54.5	49.1	43.0
21-Nov-22	6:30 PM	64.7	61.0	56.4	56.4	52.8	47.1	38.2
21-Nov-22	6:40 PM	64.2	61.2	56.4	56.9	54.0	50.2	43.8
21-Nov-22	6:50 PM	62.3	59.6	55.7	56.2	52.6	45.7	36.1
21-Nov-22	7:00 PM	64.0	61.7	56.6	55.9	51.9	45.1	35.0
21-Nov-22	7:10 PM	62.6	61.8	56.1	55.9	52.2	45.9	35.6
21-Nov-22	7:20 PM	66.7	64.2	58.6	59.7	57.0	50.0	42.1
21-Nov-22	7:30 PM	74.5	68.1	64.8	66.5	63.1	59.5	52.0
21-Nov-22	7:40 PM	76.2	67.3	64.6	70.2	64.6	60.7	53.0
21-Nov-22	7:50 PM	76.7	66.5	61.3	60.8	57.6	54.8	52.7
21-Nov-22	8:00 PM	74.5	69.2	64.6	68.4	65.7	59.0	50.3
21-Nov-22	8:10 PM	71.8	66.6	63.4	67.0	64.8	58.3	49.8
21-Nov-22	8:20 PM	70.4	67.0	62.8	65.1	63.2	56.7	50.1
21-Nov-22	8:30 PM	71.2	67.5	62.6	62.7	60.0	55.2	48.8
21-Nov-22	8:40 PM	70.2	67.4	62.6	62.8	59.5	56.5	49.4
21-Nov-22	8:50 PM	68.0	64.7	59.2	60.2	58.0	52.6	47.3
21-Nov-22	9:00 PM	61.9	59.0	53.7	54.0	48.2	39.8	31.4
21-Nov-22	9:10 PM	65.5	59.8	57.4	58.9	58.2	53.7	49.0
21-Nov-22	9:20 PM	63.0	58.7	54.4	54.5	48.9	39.6	30.9
21-Nov-22	9:30 PM	63.3	58.6	55.4	59.6	59.6	49.8	37.1
21-Nov-22	9:40 PM	63.5	58.9	55.1	55.2	49.6	41.9	33.7
21-Nov-22	9:50 PM	63.2	60.2	56.8	57.3	54.0	49.9	44.4
21-Nov-22	10:00 PM	63.6	60.2	56.3	57.9	54.8	49.2	45.5
21-Nov-22	10:10 PM	63.2	59.1	54.8	55.6	50.4	45.5	38.0
21-Nov-22	10:20 PM	63.9	58.6	54.3	55.0	49.4	39.1	27.2
21-Nov-22	10:30 PM	63.8	58.9	55.2	57.6	52.8	45.5	32.3

	10-minute period				Band Sou			
Date	beginning	63	125	250	500	1000	2000	4000
21-Nov-22	10:40 PM	67.6	65.5	60.9	63.9	61.3	54.1	46.1
21-Nov-22	10:50 PM	67.4	66.1	62.2	63.3	62.4	56.8	50.5
21-Nov-22	11:00 PM	69.0	65.8	61.8	62.9	60.8	55.5	48.6
21-Nov-22	11:10 PM	70.8	67.6	63.1	65.7	63.7	56.9	50.5
21-Nov-22	11:20 PM	68.5	65.2	61.7	68.1	65.1	56.3	45.8
21-Nov-22	11:30 PM	71.3	68.3	66.3	69.3	66.7	64.9	61.0
21-Nov-22	11:40 PM	77.3	67.7	65.9	69.1	65.9	65.2	61.0
21-Nov-22	11:50 PM	75.5	64.9	64.5	68.4	66.0	64.6	60.2
22-Nov-22	12:00 AM	65.7	61.0	57.6	63.7	60.2	48.8	35.2
22-Nov-22	12:10 AM	66.4	63.3	59.8	65.8	64.7	54.3	45.8
22-Nov-22	12:20 AM	64.8	61.0	56.4	56.6	50.9	40.2	28.5
22-Nov-22	12:30 AM	67.1	65.8	66.9	64.8	61.6	57.4	51.2
22-Nov-22	12:40 AM	64.5	62.0	56.8	57.7	55.1	53.2	51.7
22-Nov-22	12:50 AM	62.4	59.7	54.4	54.8	48.9	36.0	23.1
22-Nov-22	1:00 AM	64.9	60.0	57.1	62.8	61.2	47.3	31.4
22-Nov-22	1:10 AM	69.8	67.5	59.4	60.9	55.0	44.2	29.0
22-Nov-22	1:20 AM	65.5	62.9	56.3	57.2	50.2	40.5	28.8
22-Nov-22	1:30 AM	65.4	60.0	55.9	56.6	49.8	38.3	28.5
22-Nov-22	1:40 AM	66.7	61.5	55.9	57.7	53.6	46.0	36.8
22-Nov-22	1:50 AM	66.2	62.0	58.7	61.0	59.3	54.6	50.9
22-Nov-22	2:00 AM	66.8	69.0	59.0	56.9	50.9	43.3	35.7
22-Nov-22	2:10 AM	64.3	61.0	56.1	56.3	49.2	42.7	35.5
22-Nov-22	2:20 AM	65.0	62.5	56.3	57.1	53.4	48.5	41.9
22-Nov-22	2:30 AM	64.9	63.6	56.2	56.1	50.4	43.9	35.0
22-Nov-22	2:40 AM	65.9	62.7	58.4	64.2	62.8	52.6	44.9
22-Nov-22	2:50 AM	75.2	67.9	64.9	65.5	60.6	57.4	49.3
22-Nov-22	3:00 AM	66.4	61.9	54.9	53.9	47.8	40.2	29.1
22-Nov-22	3:10 AM	63.4	60.8	55.9	56.7	54.1	50.9	44.6
22-Nov-22	3:20 AM	61.3	58.8	53.3	53.5	46.8	37.6	27.7
22-Nov-22	3:30 AM	69.1	63.0	58.1	58.5	56.2	51.2	47.6
22-Nov-22	3:40 AM	63.3	59.8	54.2	54.2	46.3	35.3	28.3
22-Nov-22	3:50 AM	66.3	61.4	56.1	59.9	60.6	53.9	50.1
22-Nov-22	4:00 AM	66.8	60.5	53.6	53.5	46.1	34.8	24.9
22-Nov-22	4:10 AM	61.2	58.5	53.8	54.1	50.2	42.9	31.9
22-Nov-22	4:20 AM	62.4	59.4	54.6	55.0	51.3	44.1	37.1
22-Nov-22	4:30 AM	62.4	60.8	55.4	57.8	56.6	52.4	46.7
22-Nov-22	4:40 AM	66.5	64.7	57.7	58.6	55.7	50.7	43.6
22-Nov-22	4:50 AM	68.1	65.0	60.4	63.2	61.5	57.0	50.8
22-Nov-22	5:00 AM	70.6	67.1	60.0	60.5	58.6	53.1	45.4

	10-minute period			Octave I				
Date	beginning	63	125	250	500	1000	2000	4000
22-Nov-22	5:10 AM	73.7	70.9	62.8	62.5	60.2	54.3	46.0
22-Nov-22	5:20 AM	70.3	66.5	60.6	63.8	60.8	56.7	51.8
22-Nov-22	5:30 AM	66.3	62.7	60.5	66.5	64.5	57.0	46.2
22-Nov-22	5:40 AM	67.8	64.6	58.6	59.4	56.0	50.5	44.4
22-Nov-22	5:50 AM	71.2	65.2	59.6	61.1	58.5	54.9	49.2
22-Nov-22	6:00 AM	69.4	65.7	61.7	65.4	63.7	59.0	52.7
22-Nov-22	6:10 AM	70.6	64.4	60.1	62.3	59.4	52.3	44.4
22-Nov-22	6:20 AM	70.8	65.4	61.5	64.0	62.4	58.2	53.2
22-Nov-22	6:30 AM	71.1	67.9	63.1	64.9	63.2	59.7	54.9
22-Nov-22	6:40 AM	68.7	62.2	59.6	62.3	61.0	56.0	51.5
22-Nov-22	6:50 AM	67.3	62.9	59.6	62.3	59.6	55.8	48.3
22-Nov-22	7:00 AM	67.9	63.8	62.0	67.0	65.3	62.3	57.1
22-Nov-22	7:10 AM	70.3	63.3	61.9	64.0	62.3	56.6	51.2
22-Nov-22	7:20 AM	70.5	62.6	58.8	60.6	57.6	52.6	46.2
22-Nov-22	7:30 AM	72.6	68.4	63.0	63.5	59.5	55.9	52.6
22-Nov-22	7:40 AM	69.9	64.2	62.4	64.0	61.5	58.7	53.1
22-Nov-22	7:50 AM	71.4	64.4	60.6	61.1	57.9	53.0	47.2
22-Nov-22	8:00 AM	67.5	61.8	57.8	60.2	57.5	53.6	48.1
22-Nov-22	8:10 AM	73.5	65.3	61.9	64.9	63.3	60.1	54.8
22-Nov-22	8:20 AM	66.3	62.2	57.7	58.9	55.7	51.2	45.2
22-Nov-22	8:30 AM	73.4	67.8	62.8	62.7	59.3	56.3	49.4
22-Nov-22	8:40 AM	67.1	63.0	59.7	62.0	59.1	55.3	47.3
22-Nov-22	8:50 AM	71.7	64.2	63.1	63.7	59.4	56.1	49.1
22-Nov-22	9:00 AM	64.2	61.3	58.0	60.4	57.5	53.6	47.5
22-Nov-22	9:10 AM	65.3	62.3	56.5	59.0	56.0	52.1	45.6
22-Nov-22	9:20 AM	68.4	63.1	59.8	61.5	58.2	54.4	48.2
22-Nov-22	9:30 AM	70.7	66.4	63.7	65.6	60.3	57.2	49.3
22-Nov-22	9:40 AM	67.3	61.8	58.3	59.6	55.2	52.7	45.2
22-Nov-22	9:50 AM	72.8	72.2	65.6	62.5	60.4	55.9	50.6
22-Nov-22	10:00 AM	73.2	70.9	63.7	63.7	61.4	58.2	53.8
22-Nov-22	10:10 AM	68.0	65.0	60.6	61.0	57.4	54.6	49.1
22-Nov-22	10:20 AM	68.7	68.9	72.3	73.7	69.1	64.3	58.1
22-Nov-22	10:30 AM	68.5	68.2	61.8	61.8	59.6	55.3	49.2
22-Nov-22	10:40 AM	72.0	68.1	61.9	63.4	60.6	56.4	49.0
22-Nov-22	10:50 AM	67.8	67.8	61.5	63.3	60.7	57.2	51.0
22-Nov-22	11:00 AM	69.1	67.4	63.4	63.2	62.3	56.7	50.9
22-Nov-22	11:10 AM	69.9	66.4	65.6	65.4	63.5	56.2	50.1
22-Nov-22	11:20 AM	68.9	65.3	61.7	60.6	57.1	51.9	45.3
22-Nov-22	11:30 AM	79.3	65.7	64.7	65.7	63.0	58.9	52.6

	10-minute period		Average	Octave I	Band Sou	nd Level,	Leq, dB	
Date	beginning	63	125	250	500	1000	2000	4000
22-Nov-22	11:40 AM	67.9	62.7	58.4	60.8	59.3	54.8	49.9
22-Nov-22	11:50 AM	71.1	68.4	65.7	64.4	61.4	57.7	51.2
22-Nov-22	12:00 PM	69.2	65.2	59.2	60.3	58.2	55.8	53.1
22-Nov-22	12:10 PM	69.6	68.2	66.3	65.3	60.8	58.3	53.2
22-Nov-22	12:20 PM	68.5	65.1	60.2	63.4	61.9	58.0	51.3
22-Nov-22	12:30 PM	76.4	68.8	64.8	66.3	63.6	62.8	58.0
22-Nov-22	12:40 PM	71.9	66.7	65.6	70.4	66.9	60.5	55.1
22-Nov-22	12:50 PM	72.8	66.9	65.8	65.9	62.9	57.3	50.7
22-Nov-22	1:00 PM	67.5	63.5	57.3	59.4	57.5	53.8	48.8
22-Nov-22	1:10 PM	71.7	65.8	73.0	61.7	63.0	57.3	52.2
22-Nov-22	1:20 PM	64.6	62.1	57.9	60.6	60.3	55.6	50.4
22-Nov-22	1:30 PM	67.2	66.1	68.4	64.9	62.4	58.0	52.0
22-Nov-22	1:40 PM	68.2	65.3	61.0	62.6	60.2	56.4	50.2
22-Nov-22	1:50 PM	72.3	67.9	61.2	62.5	60.8	56.9	51.1
22-Nov-22	2:00 PM	70.3	70.3	66.5	66.6	63.9	58.4	53.1
22-Nov-22	2:10 PM	69.7	67.3	66.9	69.4	65.9	61.4	55.8
22-Nov-22	2:20 PM	68.7	66.8	62.7	64.3	62.2	59.0	55.2
22-Nov-22	2:30 PM	68.0	64.5	59.0	63.9	60.6	59.3	52.8
22-Nov-22	2:40 PM	69.5	62.7	56.8	57.7	55.0	49.7	43.6
22-Nov-22	2:50 PM	68.1	65.0	58.8	58.0	55.3	51.4	46.8
22-Nov-22	3:00 PM	69.3	64.2	59.8	59.5	55.9	52.2	47.1
22-Nov-22	3:10 PM	68.4	63.8	58.9	57.4	54.5	49.3	43.1

Table 3: A-weighted Hourly Noise Levels at LT-V3

	1		- B1100 01 111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Levels at		1	
5	Hour	_	T 0.4	T 40	_	- - 0	T 00	
Date	beginning	Lmax	L01	L10	Leq	L50	L90	Lmin
21-Nov-22	2:00 PM	87.1	67.8	59.7	58.4	54.5	52.5	50.7
21-Nov-22	3:00 PM	79.7	65.4	56.8	57.9	52.7	48.3	46.0
21-Nov-22	4:00 PM	68.1	58.3	54.0	52.8	51.1	50.1	48.6
21-Nov-22	5:00 PM	74.7	64.4	56.5	55.8	54.1	53.1	50.7
21-Nov-22	6:00 PM	71.1	60.7	54.7	54.5	52.5	51.6	50.3
21-Nov-22	7:00 PM	75.6	63.4	56.7	56.1	53.7	52.7	51.1
21-Nov-22	8:00 PM	83.0	68.4	58.6	60.1	55.0	54.0	52.4
21-Nov-22	9:00 PM	71.8	63.9	57.0	56.3	54.8	53.9	52.7
21-Nov-22	10:00 PM	77.0	64.9	58.4	58.3	55.0	53.9	52.4
21-Nov-22	11:00 PM	76.0	65.7	57.9	56.9	54.5	53.1	51.2
22-Nov-22	12:00 AM	76.2	64.2	57.6	57.2	55.5	54.2	52.0
22-Nov-22	1:00 AM	72.4	63.7	56.9	56.2	54.6	53.1	51.2
22-Nov-22	2:00 AM	70.4	61.7	54.7	53.9	52.4	51.2	48.7
22-Nov-22	3:00 AM	68.8	59.1	53.4	52.5	51.4	50.2	48.9
22-Nov-22	4:00 AM	62.7	56.8	54.1	52.7	52.2	50.9	49.1
22-Nov-22	5:00 AM	82.3	65.6	58.5	57.8	55.2	53.4	51.1
22-Nov-22	6:00 AM	75.1	65.3	59.4	58.3	57.2	55.5	53.0
22-Nov-22	7:00 AM	70.9	63.9	58.5	56.9	55.5	54.4	51.5
22-Nov-22	8:00 AM	73.2	67.1	59.2	58.9	55.3	53.6	52.7
22-Nov-22	9:00 AM	77.7	66.2	62.6	62.0	59.4	58.6	55.3
22-Nov-22	10:00 AM	70.8	65.9	60.2	58.6	57.0	55.9	54.7
22-Nov-22	11:00 AM	76.3	68.3	60.5	59.0	55.6	54.5	52.0
22-Nov-22	12:00 PM	77.7	64.5	57.4	56.3	53.7	52.0	49.1
22-Nov-22	1:00 PM	83.8	70.2	61.0	60.5	55.2	53.1	49.4
22-Nov-22	2:00 PM	80.2	70.8	65.3	62.3	57.3	54.7	52.2

Table 3a: A-weighted 10-minute Noise Levels at LT-V3

-		1		1	I DE LEVEIS		ı	
	10-minute							
	period							
Date	beginning	Lmax	L01	L10	Leq	L50	L90	Lmin
21-Nov-22	1:50 PM	82.0	76.8	61.2	63.2	54.3	52.3	51.3
21-Nov-22	2:00 PM	64.2	63.0	56.7	55.4	54.7	52.5	51.0
21-Nov-22	2:10 PM	87.1	73.6	65.4	65.3	57.7	53.7	52.3
21-Nov-22	2:20 PM	69.7	69.2	63.2	60.2	53.9	52.2	51.5
21-Nov-22	2:30 PM	73.7	68.3	58.1	57.2	53.9	52.7	51.2
21-Nov-22	2:40 PM	66.3	64.3	59.3	56.2	53.3	51.9	50.9
21-Nov-22	2:50 PM	73.2	68.2	55.7	55.9	53.2	52.0	50.7
21-Nov-22	3:00 PM	79.7	73.5	64.1	62.6	61.0	49.4	47.9
21-Nov-22	3:10 PM	64.4	61.9	53.3	51.2	48.8	47.2	46.0
21-Nov-22	3:20 PM	68.2	60.5	59.1	57.1	57.8	48.5	46.1
21-Nov-22	3:30 PM	64.4	57.0	51.6	50.2	48.9	47.8	46.6
21-Nov-22	3:40 PM	79.1	74.7	57.3	59.7	50.2	48.6	47.1
21-Nov-22	3:50 PM	71.8	64.7	55.1	53.5	49.4	48.2	47.5
21-Nov-22	4:00 PM	66.7	62.4	52.5	52.0	50.5	49.4	48.6

	10-minute							
Date	period	Lmax	L01	L10	Log	L50	L90	Lmin
21-Nov-22	beginning 4:10 PM	61.2	60.4	53.2	Leq 52.1	50.9	49.8	49.0
21-Nov-22	4:10 PM 4:20 PM	54.1	53.8	52.8	51.4	51.1	50.2	49.0
21-Nov-22	4:30 PM	56.9	54.1	52.2	51.4	50.9	50.2	49.2
21-Nov-22	4:40 PM	55.1	53.3	52.0	50.9	50.8	49.8	48.7
21-Nov-22	4:50 PM	68.1	65.6	61.1	56.4	52.3	51.0	49.7
21-Nov-22	5:00 PM	69.1	67.1	54.3	54.6	52.9	51.8	50.7
21-Nov-22	5:10 PM	72.5	68.2	60.2	57.8	54.2	53.0	52.1
21-Nov-22	5:20 PM	62.4	59.1	55.8	54.7	54.5	53.4	52.6
21-Nov-22	5:30 PM	65.3	64.3	57.1	55.8	54.5	53.4	52.4
21-Nov-22	5:40 PM	65.7	59.3	55.3	54.5	54.1	53.4	52.5
21-Nov-22	5:50 PM	74.7	68.3	56.2	56.6	54.1	53.4	52.7
21-Nov-22	6:00 PM	71.1	69.0	59.8	58.1	53.9	52.8	51.7
21-Nov-22	6:10 PM	69.3	66.6	53.9	54.3	52.2	51.4	50.6
21-Nov-22	6:20 PM	61.0	58.7	54.3	53.0	52.2	51.3	50.6
21-Nov-22	6:30 PM	70.8	59.4	53.2	53.4	52.1	51.2	50.3
21-Nov-22	6:40 PM	56.1	54.4	53.3	52.4	52.3	51.6	50.9
21-Nov-22	6:50 PM	61.3	56.1	53.4	52.5	52.2	51.3	50.5
21-Nov-22	7:00 PM	59.9	59.0	55.0	53.4	52.7	51.9	51.1
21-Nov-22	7:10 PM	58.1	55.0	53.9	53.1	52.9	52.3	51.5
21-Nov-22	7:20 PM	63.0	61.4	57.0	55.1	53.9	52.8	52.1
21-Nov-22	7:30 PM	74.3	68.3	59.3	58.0	53.8	52.6	51.6
21-Nov-22	7:40 PM	75.6	69.9	57.8	57.6	54.3	53.3	52.2
21-Nov-22	7:50 PM	69.4	66.9	57.3	56.8	54.5	53.5	52.4
21-Nov-22	8:00 PM	83.0	77.8	65.9	65.4	55.3	53.9	53.1
21-Nov-22	8:10 PM	75.0	70.9	58.4	58.9	56.0	55.1	54.2
21-Nov-22	8:20 PM	74.6	70.6	57.7	58.8	55.5	54.5	53.7
21-Nov-22	8:30 PM	70.2	64.6	56.4	55.5	54.3	53.3	52.4
21-Nov-22	8:40 PM	72.6	66.9	57.6	57.0	54.5	53.5	52.5
21-Nov-22	8:50 PM	61.0	59.4	55.5	54.7	54.4	53.7	53.1
21-Nov-22	9:00 PM	61.0	59.7	55.7	54.8	54.4	53.7	53.1
21-Nov-22	9:10 PM	66.2	63.3	57.3	56.3	55.4	54.6	53.9
21-Nov-22	9:20 PM	63.7	61.1	57.4	55.8	55.0	54.2	53.5
21-Nov-22	9:30 PM	71.8	68.2	58.6	57.6	55.2	54.3	53.4
21-Nov-22	9:40 PM	67.0	61.6	56.3	55.4	54.9	53.5	52.9
21-Nov-22	9:50 PM	70.0	69.2	56.9	57.2	54.1	53.3	52.7
21-Nov-22	10:00 PM	74.6	67.7	55.8	56.6	54.0	53.2	52.4
21-Nov-22	10:10 PM	56.1	55.6	54.5	54.0	53.9	53.3	52.7
21-Nov-22	10:20 PM	64.8	61.1	54.8	54.6	54.2	53.6	52.9
21-Nov-22	10:30 PM	70.2	66.6	57.3	56.9	55.5	54.2	53.7

	10-minute							
D 4	period	T	T 01	T 10	T	T 50	T 00	T .
Date	beginning	Lmax	L01	L10	Leq	L50	L90	Lmin
21-Nov-22	10:40 PM	68.5	65.1	60.6	57.4	55.4	54.6	53.9
21-Nov-22	10:50 PM	77.0	73.4	67.4	63.0	56.7	54.6	53.3
21-Nov-22	11:00 PM	71.9	69.8	59.7	58.0	53.4	52.2	51.2
21-Nov-22	11:10 PM	74.5	70.4	58.8	58.4	55.2	53.5	52.0
21-Nov-22	11:20 PM	76.0	68.9	57.4	57.2	54.1	53.0	52.4
21-Nov-22	11:30 PM	68.1	63.9	57.9	56.1	54.9	53.4	51.9
21-Nov-22	11:40 PM	63.7	62.0	57.1	55.6	54.8	53.2	52.1
21-Nov-22	11:50 PM	67.1	59.2	56.2	54.9	54.3	53.2	52.3
22-Nov-22	12:00 AM	76.2	72.0	59.0	59.6	56.4	54.5	53.4
22-Nov-22	12:10 AM	75.3	70.6	57.5	58.3	55.9	54.8	54.0
22-Nov-22	12:20 AM	63.7	59.8	58.2	56.6	56.3	55.0	54.1
22-Nov-22	12:30 AM	68.1	64.8	58.3	56.7	55.6	54.4	53.5
22-Nov-22	12:40 AM	62.8	59.1	56.6	54.9	54.3	52.8	52.0
22-Nov-22	12:50 AM	60.7	58.8	56.2	54.9	54.5	53.4	52.4
22-Nov-22	1:00 AM	72.4	67.9	57.3	57.4	55.2	53.8	52.4
22-Nov-22	1:10 AM	71.2	68.9	60.7	58.8	55.8	54.2	53.4
22-Nov-22	1:20 AM	68.2	61.1	56.0	54.7	53.9	52.7	51.6
22-Nov-22	1:30 AM	67.2	61.4	56.3	54.9	54.2	52.2	51.2
22-Nov-22	1:40 AM	65.9	63.0	56.5	55.6	55.0	53.1	51.7
22-Nov-22	1:50 AM	64.5	60.0	54.8	54.0	53.4	52.6	52.1
22-Nov-22	2:00 AM	65.7	60.6	54.5	53.7	53.0	52.1	51.3
22-Nov-22	2:10 AM	64.2	57.6	54.3	53.2	52.6	51.7	50.8
22-Nov-22	2:20 AM	57.5	56.1	53.8	52.6	52.4	51.4	50.5
22-Nov-22	2:30 AM	69.8	66.0	55.3	54.7	52.4	51.1	50.0
22-Nov-22	2:40 AM	70.4	64.9	55.3	54.3	52.4	51.0	49.7
22-Nov-22	2:50 AM	69.8	64.9	55.0	54.4	51.8	49.9	48.7
22-Nov-22	3:00 AM	66.7	62.0	53.9	53.2	52.1	50.6	49.2
22-Nov-22	3:10 AM	67.3	61.4	53.5	52.7	51.3	50.2	49.5
22-Nov-22	3:20 AM	63.0	55.2	51.9	51.1	50.7	49.8	49.1
22-Nov-22	3:30 AM	59.7	56.5	53.2	52.0	51.6	50.3	49.5
22-Nov-22	3:40 AM	68.8	63.0	54.3	53.5	51.6	50.6	49.8
22-Nov-22	3:50 AM	60.2	56.7	53.6	51.9	51.2	49.6	48.9
22-Nov-22	4:00 AM	58.4	55.8	52.6	51.6	51.2	50.2	49.4
22-Nov-22	4:10 AM	59.6	56.9	53.5	51.9	51.2	50.0	49.1
22-Nov-22	4:20 AM	58.2	55.6	53.4	52.2	51.9	50.7	49.5
22-Nov-22	4:30 AM	57.3	56.4	53.9	52.3	51.8	51.0	50.2
22-Nov-22	4:40 AM	59.2	57.8	55.3	53.8	53.6	51.4	50.7
22-Nov-22	4:50 AM	62.7	58.4	55.6	53.9	53.4	52.0	51.2
22-Nov-22	5:00 AM	63.3	59.2	56.1	54.3	53.6	52.0	51.1

	10-minute							
Date	period beginning	Lmax	L01	L10	Leq	L50	L90	Lmin
22-Nov-22	5:10 AM	82.3	66.4	62.3	60.3	56.2	54.0	52.6
22-Nov-22	5:20 AM	76.8	68.6	58.1	58.0	56.3	53.8	52.7
22-Nov-22	5:30 AM	75.0	71.1	59.2	58.7	54.5	52.9	51.7
22-Nov-22	5:40 AM	69.6	67.6	56.9	56.3	54.6	53.3	51.8
22-Nov-22	5:50 AM	64.8	60.9	58.3	56.6	56.1	54.1	52.1
22-Nov-22	6:00 AM	74.5	67.6	60.9	59.2	57.6	56.3	54.7
22-Nov-22	6:10 AM	75.1	67.6	60.8	59.6	58.3	56.9	55.3
22-Nov-22	6:20 AM	66.5	63.8	59.9	58.3	57.7	56.0	54.6
22-Nov-22	6:30 AM	71.8	66.4	59.9	58.6	57.7	55.3	54.5
22-Nov-22	6:40 AM	66.6	62.8	57.1	56.3	55.9	54.5	53.6
22-Nov-22	6:50 AM	67.9	63.6	57.8	56.6	55.8	54.1	53.0
22-Nov-22	7:00 AM	70.9	67.1	58.7	57.3	55.1	54.2	53.5
22-Nov-22	7:10 AM	68.0	62.7	58.1	56.4	55.1	54.2	53.2
22-Nov-22	7:20 AM	70.5	61.8	58.0	56.4	55.5	54.5	53.5
22-Nov-22	7:30 AM	70.9	65.7	58.8	57.8	56.7	55.7	54.8
22-Nov-22	7:40 AM	66.8	64.4	58.7	57.3	56.5	55.1	53.6
22-Nov-22	7:50 AM	66.1	61.7	58.5	55.9	54.2	52.9	51.5
22-Nov-22	8:00 AM	69.6	68.1	55.3	55.6	53.4	52.8	51.8
22-Nov-22	8:10 AM	66.1	63.9	55.5	54.5	52.6	51.6	50.7
22-Nov-22	8:20 AM	72.6	66.9	54.3	55.0	52.4	51.5	50.7
22-Nov-22	8:30 AM	70.8	62.9	59.6	57.2	56.7	53.1	52.4
22-Nov-22	8:40 AM	72.3	69.2	65.2	61.0	58.1	56.6	55.7
22-Nov-22	8:50 AM	73.2	71.3	65.4	62.9	58.8	56.1	55.1
22-Nov-22	9:00 AM	63.2	61.2	59.2	58.2	58.2	56.3	55.5
22-Nov-22	9:10 AM	68.7	59.8	57.2	56.9	56.4	56.0	55.3
22-Nov-22	9:20 AM	77.3	69.3	64.2	61.1	56.9	56.3	55.7
22-Nov-22	9:30 AM	75.6	74.0	66.0	65.4	63.8	63.4	62.3
22-Nov-22	9:40 AM	67.3	65.1	64.3	63.6	63.4	63.1	62.4
22-Nov-22	9:50 AM	77.7	67.9	64.6	61.2	57.9	56.6	56.0
22-Nov-22	10:00 AM	67.9	66.4	61.5	59.4	58.5	57.0	55.9
22-Nov-22	10:10 AM	70.3	68.2	61.5	59.4	57.4	56.1	55.4
22-Nov-22	10:20 AM	70.7	64.1	58.1	57.7	57.1	56.0	55.4
22-Nov-22	10:30 AM	68.4	62.4	58.4	56.8	55.8	55.2	54.7
22-Nov-22	10:40 AM	70.8	70.0	62.5	59.8	56.4	55.3	54.7
22-Nov-22	10:50 AM	67.3	64.0	58.9	57.5	56.7	55.8	54.8
22-Nov-22	11:00 AM	69.3	62.7	60.0	57.9	56.9	56.4	55.7
22-Nov-22	11:10 AM	72.4	70.6	62.5	60.1	56.6	56.0	55.4
22-Nov-22	11:20 AM	73.3	69.4	60.1	58.9	56.7	55.5	53.5
22-Nov-22	11:30 AM	74.7	71.0	59.9	58.5	54.3	53.4	52.3

Table 3a (continued): A-weighted 10-minute Noise Levels at LT-V3

	10-minute period							
Date	beginning	Lmax	L01	L10	Leq	L50	L90	Lmin
22-Nov-22	11:40 AM	70.2	62.8	56.5	55.7	54.9	52.7	52.0
22-Nov-22	11:50 AM	76.3	73.1	64.1	61.0	54.0	52.7	52.2
22-Nov-22	12:00 PM	72.5	60.1	55.7	54.8	53.5	52.6	51.9
22-Nov-22	12:10 PM	77.7	72.1	59.5	59.2	53.5	52.5	51.3
22-Nov-22	12:20 PM	64.1	60.8	55.8	54.3	53.5	52.3	51.7
22-Nov-22	12:30 PM	66.2	64.0	58.2	56.5	55.7	52.6	50.7
22-Nov-22	12:40 PM	67.0	62.9	58.0	55.4	53.6	51.5	49.8
22-Nov-22	12:50 PM	69.7	67.1	57.2	55.7	52.4	50.2	49.1
22-Nov-22	1:00 PM	65.9	63.5	58.4	55.4	53.6	50.9	49.4
22-Nov-22	1:10 PM	83.8	72.4	59.0	61.8	54.1	52.0	50.3
22-Nov-22	1:20 PM	74.7	71.9	61.1	60.3	55.3	52.9	51.3
22-Nov-22	1:30 PM	79.0	74.2	63.3	62.0	55.7	53.3	51.4
22-Nov-22	1:40 PM	73.1	68.2	59.0	58.0	55.1	54.0	52.7
22-Nov-22	1:50 PM	73.3	71.1	64.9	62.0	57.1	55.6	54.4
22-Nov-22	2:00 PM	66.6	65.4	64.4	60.5	56.5	55.0	52.5
22-Nov-22	2:10 PM	73.0	70.5	65.2	61.4	57.8	55.3	53.6
22-Nov-22	2:20 PM	80.2	76.4	66.4	64.1	57.5	53.8	52.2

	10-minute period			Octave I	•			
Date	beginning	63	125	250	500	1000	2000	4000
2022-11-21	1:50 PM	65.9	57.6	56.4	56.5	61.5	50.8	43.8
2022-11-21	2:00 PM	62.4	56.4	55.0	55.0	50.5	40.0	37.9
2022-11-21	2:10 PM	65.5	62.7	61.2	62.6	62.2	55.1	49.9
2022-11-21	2:20 PM	66.1	59.5	58.4	56.9	57.3	49.8	44.4
2022-11-21	2:30 PM	66.0	58.8	57.6	55.9	52.8	43.2	36.7
2022-11-21	2:40 PM	60.4	57.9	55.6	54.1	53.0	42.7	37.2
2022-11-21	2:50 PM	61.8	56.4	55.4	55.2	51.6	41.6	31.9
2022-11-21	3:00 PM	64.5	62.7	58.1	60.6	59.7	51.3	45.7
2022-11-21	3:10 PM	57.1	54.4	50.5	50.4	47.1	36.1	34.3
2022-11-21	3:20 PM	57.0	51.8	51.1	58.2	49.2	38.4	32.1
2022-11-21	3:30 PM	59.0	56.1	51.1	49.2	45.6	34.0	28.3
2022-11-21	3:40 PM	59.5	56.2	53.7	59.1	57.3	39.3	33.3
2022-11-21	3:50 PM	57.3	56.3	54.1	54.1	47.2	31.8	32.0
2022-11-21	4:00 PM	58.2	55.5	52.0	50.7	48.0	34.8	34.4
2022-11-21	4:10 PM	60.3	56.9	53.6	51.4	46.6	32.1	34.4
2022-11-21	4:20 PM	58.9	55.3	52.0	50.9	46.8	33.4	30.3
2022-11-21	4:30 PM	60.7	56.0	52.3	50.6	46.0	33.3	31.5
2022-11-21	4:40 PM	60.8	56.2	51.4	50.7	45.9	32.9	24.1

	10-minute period				Band Sou			
Date	beginning	63	125	250	500	1000	2000	4000
2022-11-21	4:50 PM	60.8	59.0	54.9	54.5	52.9	44.8	39.8
2022-11-21	5:00 PM	61.7	58.3	53.8	55.0	48.2	36.6	27.4
2022-11-21	5:10 PM	62.2	60.5	56.7	57.0	53.6	44.6	42.1
2022-11-21	5:20 PM	62.0	55.9	54.8	54.0	50.7	38.9	28.7
2022-11-21	5:30 PM	62.6	57.5	55.9	55.7	51.0	38.4	26.5
2022-11-21	5:40 PM	61.4	55.3	54.3	53.9	50.3	39.9	32.4
2022-11-21	5:50 PM	62.0	56.0	55.3	55.5	53.2	39.5	31.7
2022-11-21	6:00 PM	62.9	61.9	56.6	56.4	54.6	44.9	38.6
2022-11-21	6:10 PM	61.5	58.0	54.9	53.5	49.0	42.9	36.0
2022-11-21	6:20 PM	60.5	57.1	55.3	52.8	46.2	35.8	33.1
2022-11-21	6:30 PM	60.6	56.0	54.6	53.4	47.8	32.9	29.7
2022-11-21	6:40 PM	60.6	56.4	54.8	52.6	45.6	30.6	25.9
2022-11-21	6:50 PM	60.2	56.2	54.9	52.7	46.0	30.8	24.3
2022-11-21	7:00 PM	61.8	57.0	55.7	53.4	46.5	30.0	22.6
2022-11-21	7:10 PM	60.5	56.0	55.3	53.5	46.6	30.2	20.2
2022-11-21	7:20 PM	64.3	59.6	57.1	55.1	48.6	34.1	24.1
2022-11-21	7:30 PM	62.8	61.3	59.2	57.4	53.3	41.0	34.1
2022-11-21	7:40 PM	60.2	58.5	56.6	57.5	53.8	38.4	23.2
2022-11-21	7:50 PM	62.4	56.8	56.0	55.9	52.7	44.0	41.6
2022-11-21	8:00 PM	60.7	57.8	59.2	65.6	62.0	47.7	36.7
2022-11-21	8:10 PM	60.9	58.6	58.7	58.8	54.3	45.0	34.3
2022-11-21	8:20 PM	59.2	57.1	58.1	58.7	54.6	39.9	23.9
2022-11-21	8:30 PM	60.1	56.6	55.7	55.4	50.9	39.1	28.0
2022-11-21	8:40 PM	62.2	58.3	56.1	57.0	52.0	40.8	29.8
2022-11-21	8:50 PM	61.1	58.6	55.7	54.6	49.4	37.0	23.7
2022-11-21	9:00 PM	61.7	59.6	55.8	54.6	49.5	38.1	24.1
2022-11-21	9:10 PM	62.3	58.8	56.1	56.1	51.6	40.1	26.2
2022-11-21	9:20 PM	62.0	59.0	55.9	55.3	51.2	38.6	24.6
2022-11-21	9:30 PM	62.3	58.8	56.4	57.2	53.9	40.7	26.3
2022-11-21	9:40 PM	63.4	58.0	55.5	55.8	50.1	38.7	25.8
2022-11-21	9:50 PM	61.2	58.2	56.8	57.0	52.9	41.2	26.8
2022-11-21	10:00 PM	61.1	57.3	55.8	56.7	52.1	38.3	26.5
2022-11-21	10:10 PM	60.6	56.6	55.0	54.0	48.8	35.1	20.9
2022-11-21	10:20 PM	62.1	57.2	54.8	54.7	49.8	36.1	20.3
2022-11-21	10:30 PM	62.1	57.6	56.0	56.4	53.0	43.3	24.5
2022-11-21	10:40 PM	62.2	58.2	55.9	57.2	53.6	40.4	24.2
2022-11-21	10:50 PM	62.5	59.7	58.2	60.6	61.1	49.6	40.4
2022-11-21	11:00 PM	60.8	57.3	56.0	57.6	54.3	42.1	33.0
2022-11-21	11:10 PM	62.2	57.7	56.2	57.9	55.3	44.5	34.2

	10-minute period			Octave I				
Date	beginning	63	125	250	500	1000	2000	4000
2022-11-21	11:20 PM	61.3	58.5	56.0	56.4	53.6	40.8	28.6
2022-11-21	11:30 PM	62.3	57.7	56.4	55.7	51.9	38.8	26.2
2022-11-21	11:40 PM	62.9	57.5	55.3	55.1	51.7	38.7	26.6
2022-11-21	11:50 PM	61.3	56.8	54.5	54.4	51.0	36.6	25.6
2022-11-22	12:00 AM	62.2	57.7	57.2	59.6	55.7	43.6	34.9
2022-11-22	12:10 AM	62.6	57.5	56.9	58.1	54.5	39.6	22.8
2022-11-22	12:20 AM	62.4	57.6	56.6	56.1	52.7	38.0	25.8
2022-11-22	12:30 AM	61.6	57.0	56.8	55.9	53.3	39.2	28.3
2022-11-22	12:40 AM	61.4	55.7	54.8	54.3	51.1	36.6	24.9
2022-11-22	12:50 AM	61.6	55.6	54.7	54.6	50.8	34.1	20.3
2022-11-22	1:00 AM	60.5	55.9	55.8	57.0	54.3	36.4	19.4
2022-11-22	1:10 AM	65.1	61.8	58.9	59.2	53.4	40.7	23.9
2022-11-22	1:20 AM	61.8	57.9	55.4	55.1	49.3	33.4	19.9
2022-11-22	1:30 AM	64.1	57.5	55.4	54.9	50.1	34.8	19.6
2022-11-22	1:40 AM	66.6	58.7	56.3	55.2	50.9	36.4	22.9
2022-11-22	1:50 AM	62.1	56.1	54.7	54.0	49.2	33.0	18.8
2022-11-22	2:00 AM	62.6	57.7	54.9	53.8	48.7	30.4	20.5
2022-11-22	2:10 AM	61.6	55.4	55.0	53.1	47.8	29.6	22.2
2022-11-22	2:20 AM	60.5	55.4	54.5	52.7	47.2	30.2	20.3
2022-11-22	2:30 AM	61.6	56.9	55.8	54.0	50.3	39.7	33.1
2022-11-22	2:40 AM	61.7	56.2	55.7	54.1	49.5	35.4	22.4
2022-11-22	2:50 AM	61.2	56.7	53.9	54.5	50.0	31.7	20.8
2022-11-22	3:00 AM	62.4	57.1	54.8	53.0	48.3	29.2	20.7
2022-11-22	3:10 AM	60.3	55.1	53.4	53.2	47.5	31.6	20.6
2022-11-22	3:20 AM	59.1	54.8	52.5	51.4	45.6	30.8	18.6
2022-11-22	3:30 AM	62.8	57.2	53.8	51.8	46.3	30.4	19.2
2022-11-22	3:40 AM	60.8	56.2	54.5	54.1	47.5	30.3	17.1
2022-11-22	3:50 AM	59.0	55.1	53.1	52.0	46.7	30.1	17.0
2022-11-22	4:00 AM	61.6	55.0	52.9	51.5	46.2	30.5	17.3
2022-11-22	4:10 AM	59.0	55.0	52.8	52.0	46.8	31.5	17.2
2022-11-22	4:20 AM	59.3	54.5	52.9	52.3	47.4	31.2	17.3
2022-11-22	4:30 AM	58.8	55.4	53.0	52.2	47.8	31.9	21.1
2022-11-22	4:40 AM	61.4	57.5	54.6	53.5	49.2	32.6	18.0
2022-11-22	4:50 AM	60.5	56.5	54.1	53.8	49.7	31.8	18.3
2022-11-22	5:00 AM	62.5	57.3	54.0	53.6	50.3	37.4	31.9
2022-11-22	5:10 AM	65.4	59.3	55.8	57.1	57.1	51.2	46.6
2022-11-22	5:20 AM	64.5	58.7	55.0	57.6	53.3	46.6	34.3
2022-11-22	5:30 AM	63.5	57.8	56.1	58.3	54.8	40.0	29.4
2022-11-22	5:40 AM	63.6	59.1	55.4	55.3	52.3	43.1	37.8

	10-minute period	ĺ			Band Sou			
Date	beginning	63	125	250	500	1000	2000	4000
2022-11-22	5:50 AM	63.6	60.3	55.6	55.5	53.2	37.5	26.3
2022-11-22	6:00 AM	64.0	60.5	57.3	58.8	55.2	45.8	40.5
2022-11-22	6:10 AM	65.5	60.3	57.8	58.5	56.0	45.9	39.8
2022-11-22	6:20 AM	65.6	59.7	56.6	57.4	54.4	45.1	39.3
2022-11-22	6:30 AM	64.1	59.0	57.3	58.3	53.8	45.2	40.4
2022-11-22	6:40 AM	63.1	58.8	55.7	56.2	52.0	36.7	30.9
2022-11-22	6:50 AM	63.4	59.3	54.7	56.2	52.5	43.1	38.4
2022-11-22	7:00 AM	63.6	59.7	55.9	57.8	52.7	37.5	34.0
2022-11-22	7:10 AM	65.2	60.4	56.8	56.1	51.3	38.7	33.1
2022-11-22	7:20 AM	64.0	60.3	55.9	55.9	51.4	39.4	32.3
2022-11-22	7:30 AM	63.7	62.2	57.3	58.0	52.9	39.6	32.6
2022-11-22	7:40 AM	65.8	59.7	55.5	57.3	52.6	41.6	34.4
2022-11-22	7:50 AM	64.3	57.4	54.1	56.5	49.9	36.5	30.8
2022-11-22	8:00 AM	62.5	57.4	54.7	56.4	48.5	36.1	28.8
2022-11-22	8:10 AM	62.4	58.8	56.9	54.5	48.0	34.9	24.5
2022-11-22	8:20 AM	61.5	59.4	55.4	53.7	51.2	36.8	24.4
2022-11-22	8:30 AM	63.0	61.3	57.6	56.9	52.5	40.4	32.6
2022-11-22	8:40 AM	64.9	60.8	58.5	60.3	57.3	46.9	40.3
2022-11-22	8:50 AM	68.1	62.5	60.3	61.7	59.7	48.9	41.2
2022-11-22	9:00 AM	61.4	58.5	57.8	58.4	52.6	40.1	40.5
2022-11-22	9:10 AM	61.2	60.1	57.4	57.1	51.5	37.4	32.4
2022-11-22	9:20 AM	61.2	60.3	58.5	58.9	58.5	47.8	41.9
2022-11-22	9:30 AM	65.7	65.7	63.2	63.4	63.0	51.3	43.0
2022-11-22	9:40 AM	63.3	62.0	59.5	59.8	62.2	48.6	42.5
2022-11-22	9:50 AM	62.4	61.5	58.5	59.2	58.2	49.0	43.7
2022-11-22	10:00 AM	66.4	60.0	59.0	59.3	54.2	41.9	39.9
2022-11-22	10:10 AM	63.7	61.6	58.1	58.6	55.1	46.4	40.3
2022-11-22	10:20 AM	65.6	60.9	56.9	57.6	52.6	42.2	34.7
2022-11-22	10:30 AM	59.6	60.0	56.7	56.8	51.5	41.0	34.1
2022-11-22	10:40 AM	64.7	61.7	57.9	58.5	55.8	48.1	44.0
2022-11-22	10:50 AM	61.4	60.8	57.4	57.6	52.1	41.4	35.3
2022-11-22	11:00 AM	61.0	60.1	57.4	58.1	52.8	42.1	34.5
2022-11-22	11:10 AM	62.6	61.3	59.5	59.8	55.7	46.2	39.6
2022-11-22	11:20 AM	64.6	61.6	57.8	57.8	54.8	45.4	40.5
2022-11-22	11:30 AM	64.1	61.5	58.7	57.3	54.5	44.9	38.0
2022-11-22	11:40 AM	60.1	58.5	55.0	55.5	50.6	41.0	36.8
2022-11-22	11:50 AM	64.2	62.4	59.9	58.9	57.2	50.2	45.1
2022-11-22	12:00 PM	59.3	58.4	54.0	54.5	50.5	37.8	30.6
2022-11-22	12:10 PM	65.0	62.2	60.1	58.4	53.9	46.5	41.1

	10-minute period		Average	Octave I	Band Sou	nd Level,	Leq, dB	
Date	beginning	63	125	250	500	1000	2000	4000
2022-11-22	12:20 PM	59.9	57.6	53.2	54.0	49.6	41.0	32.4
2022-11-22	12:30 PM	60.6	58.8	53.7	55.9	50.8	45.3	43.7
2022-11-22	12:40 PM	63.2	59.3	53.9	54.1	51.5	42.1	37.4
2022-11-22	12:50 PM	63.1	62.1	56.3	54.7	50.6	42.2	38.5
2022-11-22	1:00 PM	62.8	59.7	53.3	54.4	51.1	43.8	36.8
2022-11-22	1:10 PM	64.9	60.8	63.1	57.8	58.0	51.5	47.3
2022-11-22	1:20 PM	62.7	59.7	55.8	56.3	58.2	47.1	41.1
2022-11-22	1:30 PM	64.7	61.9	60.8	60.1	58.1	51.3	45.9
2022-11-22	1:40 PM	62.6	61.1	55.4	56.0	53.9	47.9	44.4
2022-11-22	1:50 PM	66.0	62.2	57.5	60.3	58.8	50.7	44.2
2022-11-22	2:00 PM	66.2	62.0	56.2	59.3	57.1	47.7	41.1
2022-11-22	2:10 PM	67.6	63.7	59.3	60.0	57.7	49.1	42.8
2022-11-22	2:20 PM	63.0	60.8	58.0	59.5	57.4	57.2	57.0

Table 4: A-weighted Hourly Noise Levels at LT-V4

Table 4. A-weighted Hourly Noise Levels at D1-14											
	Hour										
Date	beginning	Lmax	L01	L10	Leq	L50	L90	Lmin			
21-Nov-22	2:00 PM	88.0	70.4	56.8	59.2	52.9	50.3	48.4			
21-Nov-22	3:00 PM	85.4	64.8	55.2	58.3	49.2	46.3	43.8			
21-Nov-22	4:00 PM	65.5	55.2	52.9	50.3	48.6	47.1	45.1			
21-Nov-22	5:00 PM	72.9	63.7	56.5	55.1	52.8	51.4	48.7			
21-Nov-22	6:00 PM	84.5	64.0	54.0	57.5	50.5	49.0	47.1			
21-Nov-22	7:00 PM	81.8	64.5	56.2	57.2	53.0	51.7	49.8			
21-Nov-22	8:00 PM	75.6	64.9	57.0	56.3	53.2	51.8	49.8			
21-Nov-22	9:00 PM	68.2	61.7	57.9	56.3	55.2	53.8	52.5			
21-Nov-22	10:00 PM	79.3	62.8	57.0	56.8	54.9	53.9	51.7			
21-Nov-22	11:00 PM	70.7	63.3	55.3	54.6	53.1	52.3	51.2			
22-Nov-22	12:00 AM	71.5	59.5	55.2	54.4	53.6	52.6	51.0			
22-Nov-22	1:00 AM	67.6	61.4	55.8	54.8	53.7	52.0	50.6			
22-Nov-22	2:00 AM	69.3	59.4	53.9	53.3	52.5	51.4	48.8			
22-Nov-22	3:00 AM	69.6	57.8	52.8	52.0	50.9	49.5	47.7			
22-Nov-22	4:00 AM	59.4	54.4	52.5	51.3	50.8	50.0	48.3			
22-Nov-22	5:00 AM	73.0	62.4	56.2	55.5	54.0	52.7	50.4			
22-Nov-22	6:00 AM	73.0	63.5	56.9	56.1	55.2	53.7	52.4			
22-Nov-22	7:00 AM	72.1	63.0	56.8	55.8	54.5	53.7	51.2			
22-Nov-22	8:00 AM	90.1	65.7	57.8	59.9	55.0	53.5	52.6			
22-Nov-22	9:00 AM	78.0	65.2	56.8	57.1	54.7	53.6	51.9			
22-Nov-22	10:00 AM	81.4	67.4	59.4	60.0	54.9	53.7	51.4			
22-Nov-22	11:00 AM	83.2	73.1	59.1	61.5	54.0	52.7	50.0			
22-Nov-22	12:00 PM	74.8	62.7	54.7	54.6	51.4	50.3	48.8			
22-Nov-22	1:00 PM	85.0	69.6	57.7	59.2	54.2	52.8	49.3			

	10-minute							
Data	period	T	Τ Δ1	T 10	Tax	T 50	T 00	T
Date	beginning	Lmax	L01	L10	Leq	L50	L90	Lmin
21-Nov-22	1:30 PM	74.1	68.5	54.3	55.4	49.8	48.8	47.8
21-Nov-22	1:40 PM	76.3	70.0	57.7	58.0	51.5	49.6	48.5
21-Nov-22	1:50 PM	66.3	64.8	57.1	55.0	52.5	51.1	50.2
21-Nov-22	2:00 PM	74.5	71.5	58.6	59.2	56.3	51.4	49.9
21-Nov-22	2:10 PM	86.5	79.7	63.4	65.9	55.5	51.5	50.0
21-Nov-22	2:20 PM	83.6	69.4	54.6	60.3	51.4	49.9	49.3
21-Nov-22	2:30 PM	88.0	79.1	56.5	65.3	51.8	50.2	48.7
21-Nov-22	2:40 PM	63.7	61.2	53.4	52.1	50.9	49.3	48.6
21-Nov-22	2:50 PM	65.5	61.3	54.0	52.6	51.4	49.5	48.4
21-Nov-22	3:00 PM	85.4	77.7	62.2	64.9	51.9	48.5	47.3
21-Nov-22	3:10 PM	56.1	54.5	50.8	48.2	46.8	44.9	43.8
21-Nov-22	3:20 PM	64.3	62.3	53.9	52.9	51.8	46.2	44.8
21-Nov-22	3:30 PM	65.0	60.8	51.7	50.8	47.5	45.8	44.7
21-Nov-22	3:40 PM	72.3	69.0	57.9	56.3	48.8	45.8	44.9
21-Nov-22	3:50 PM	66.7	64.6	54.7	52.8	48.3	46.4	45.6
21-Nov-22	4:00 PM	60.1	55.9	53.3	50.3	48.5	46.9	45.9
21-Nov-22	4:10 PM	65.5	59.4	53.2	51.0	48.8	46.7	45.7
21-Nov-22	4:20 PM	53.7	53.4	52.6	50.3	49.3	48.0	47.1
21-Nov-22	4:30 PM	53.9	53.6	52.6	49.8	48.6	47.3	46.2
21-Nov-22	4:40 PM	53.7	53.3	52.0	48.9	47.2	46.1	45.1
21-Nov-22	4:50 PM	59.7	55.3	53.6	50.9	49.1	47.8	46.9
21-Nov-22	5:00 PM	66.1	61.0	54.6	52.3	50.3	49.4	48.7
21-Nov-22	5:10 PM	65.3	63.3	56.0	54.5	52.8	50.6	49.8
21-Nov-22	5:20 PM	67.8	64.3	56.5	54.8	53.0	51.5	50.4
21-Nov-22	5:30 PM	67.8	65.7	58.9	56.5	53.2	51.4	50.6
21-Nov-22	5:40 PM	66.3	61.2	56.2	54.6	53.6	52.0	50.2
21-Nov-22	5:50 PM	72.9	66.5	56.6	56.5	53.8	53.2	52.7
21-Nov-22	6:00 PM	75.2	68.8	59.1	58.0	53.7	49.7	48.6
21-Nov-22	6:10 PM	84.5	74.6	53.2	62.0	49.3	48.4	47.6
21-Nov-22	6:20 PM	81.7	67.0	53.3	58.7	50.3	48.7	47.1
21-Nov-22	6:30 PM	56.6	55.3	52.9	50.7	49.5	48.7	47.8
21-Nov-22	6:40 PM	65.9	55.5	52.6	51.2	50.1	49.1	48.5
21-Nov-22	6:50 PM	70.0	62.8	52.9	52.4	49.9	49.2	48.5
21-Nov-22	7:00 PM	59.6	58.5	54.0	53.0	52.3	51.7	50.9
21-Nov-22	7:10 PM	55.5	55.1	54.5	53.3	52.9	52.3	51.8
21-Nov-22	7:20 PM	65.9	64.3	57.0	55.6	54.6	52.3	51.1
21-Nov-22	7:30 PM	68.6	63.9	56.2	54.6	51.6	50.5	49.8
21-Nov-22	7:40 PM	76.2	69.2	56.5	57.1	53.2	51.4	50.2
21-Nov-22	7:50 PM	81.8	76.0	59.1	61.9	53.4	51.7	50.5

	10-minute							
D-4-	period	T	T 01	T 10	T	1.50	T 00	T
Date	beginning	Lmax	L01	L10	Leq	L50	L90	Lmin
21-Nov-22	8:00 PM	74.5	71.3	61.0	59.5	54.2	51.8	50.9
21-Nov-22	8:10 PM	67.2	64.2	56.7	55.1	53.5	52.6	51.7
21-Nov-22	8:20 PM	75.6	68.9	56.8	57.3	53.9	52.5	51.6
21-Nov-22	8:30 PM	63.1	60.7	55.4	53.3	51.9	50.5	49.9
21-Nov-22	8:40 PM	69.5	66.7	55.8	55.0	52.4	51.1	49.8
21-Nov-22	8:50 PM	58.7	57.8	56.1	54.2	53.5	52.4	51.4
21-Nov-22	9:00 PM	60.9	58.4	56.8	54.7	54.0	53.1	52.5
21-Nov-22	9:10 PM	63.7	62.0	57.7	56.0	54.9	53.8	53.2
21-Nov-22	9:20 PM	62.3	59.6	57.5	55.4	54.4	53.4	52.7
21-Nov-22	9:30 PM	68.2	64.2	58.2	56.7	55.4	53.9	52.9
21-Nov-22	9:40 PM	64.1	60.1	58.1	56.5	56.2	54.3	53.5
21-Nov-22	9:50 PM	67.1	65.8	59.2	57.7	56.2	54.3	52.9
21-Nov-22	10:00 PM	67.6	63.2	56.4	55.2	53.8	52.9	52.0
21-Nov-22	10:10 PM	55.4	54.7	54.1	53.6	53.6	53.1	52.3
21-Nov-22	10:20 PM	69.2	58.7	54.8	54.3	53.6	53.2	52.7
21-Nov-22	10:30 PM	79.3	70.1	57.8	59.6	56.3	54.8	53.4
21-Nov-22	10:40 PM	68.8	65.0	59.3	57.8	56.7	55.9	55.4
21-Nov-22	10:50 PM	68.4	65.2	59.7	57.1	55.4	53.7	51.7
21-Nov-22	11:00 PM	68.2	64.4	55.1	54.8	53.2	52.4	51.4
21-Nov-22	11:10 PM	68.4	64.7	55.9	55.3	53.8	52.8	51.8
21-Nov-22	11:20 PM	70.7	65.8	54.4	54.8	53.0	52.2	51.4
21-Nov-22	11:30 PM	67.8	63.8	56.9	55.3	53.5	52.5	51.7
21-Nov-22	11:40 PM	66.4	63.3	55.1	54.1	52.7	52.1	51.2
21-Nov-22	11:50 PM	63.0	57.5	54.5	53.2	52.6	51.8	51.2
22-Nov-22	12:00 AM	71.5	65.9	56.2	55.9	54.3	52.9	51.8
22-Nov-22	12:10 AM	70.9	63.5	55.3	55.0	53.7	53.0	52.3
22-Nov-22	12:20 AM	61.7	58.4	56.0	54.4	53.8	52.8	51.8
22-Nov-22	12:30 AM	62.4	57.7	55.0	53.9	53.5	52.7	52.0
22-Nov-22	12:40 AM	59.0	56.2	54.4	53.3	53.1	52.2	51.0
22-Nov-22	12:50 AM	57.1	55.4	54.1	53.1	52.9	52.1	51.2
22-Nov-22	1:00 AM	66.9	61.7	55.8	54.5	53.3	51.9	50.9
22-Nov-22	1:10 AM	67.6	66.7	59.7	57.5	55.8	52.7	51.3
22-Nov-22	1:20 AM	64.1	60.5	54.6	53.8	53.2	51.8	50.8
22-Nov-22	1:30 AM	64.1	61.9	56.2	54.6	53.6	51.9	50.7
22-Nov-22	1:40 AM	63.9	61.9	55.0	54.4	53.9	52.4	51.6
22-Nov-22	1:50 AM	57.9	55.8	53.2	52.4	52.3	51.4	50.6
22-Nov-22	2:00 AM	60.0	57.9	53.8	53.1	52.7	51.9	51.3
22-Nov-22	2:10 AM	67.8	57.6	54.4	53.6	53.0	52.2	51.4
22-Nov-22	2:20 AM	55.1	54.8	54.3	53.6	53.6	53.0	52.4

	10-minute							
5	period	_	T 0.1	T 40	·	T =0	T 00	
Date	beginning	Lmax	L01	L10	Leq	L50	L90	Lmin
22-Nov-22	2:30 AM	67.0	63.9	54.6	54.5	53.5	51.9	50.5
22-Nov-22	2:40 AM	69.3	60.9	52.1	52.0	50.5	49.8	49.1
22-Nov-22	2:50 AM	64.3	61.3	54.2	52.7	51.5	49.4	48.8
22-Nov-22	3:00 AM	63.7	58.8	54.3	52.8	51.9	50.4	49.5
22-Nov-22	3:10 AM	69.6	65.0	52.7	53.0	50.4	49.5	48.3
22-Nov-22	3:20 AM	56.4	52.8	51.1	50.2	50.0	49.3	48.5
22-Nov-22	3:30 AM	55.6	54.7	53.5	52.1	52.1	50.1	49.5
22-Nov-22	3:40 AM	67.5	61.8	53.7	52.6	51.3	49.5	48.8
22-Nov-22	3:50 AM	55.7	53.8	51.7	50.1	49.8	48.4	47.7
22-Nov-22	4:00 AM	55.5	54.6	52.5	50.9	50.3	49.6	49.1
22-Nov-22	4:10 AM	59.4	53.4	51.4	50.2	49.8	49.1	48.3
22-Nov-22	4:20 AM	53.5	52.9	51.4	50.6	50.4	49.6	49.0
22-Nov-22	4:30 AM	53.9	53.1	51.7	50.7	50.5	49.7	49.1
22-Nov-22	4:40 AM	58.8	56.2	54.4	52.4	51.5	50.4	49.3
22-Nov-22	4:50 AM	59.1	56.3	53.3	52.5	52.3	51.3	50.7
22-Nov-22	5:00 AM	65.3	57.2	54.2	52.7	51.9	51.0	50.4
22-Nov-22	5:10 AM	67.5	59.4	55.8	54.3	53.6	52.3	51.6
22-Nov-22	5:20 AM	73.0	67.0	57.6	57.3	56.5	54.3	53.7
22-Nov-22	5:30 AM	69.1	67.6	58.1	57.4	55.0	54.0	52.1
22-Nov-22	5:40 AM	68.6	65.7	55.8	54.9	53.2	52.2	51.2
22-Nov-22	5:50 AM	61.6	57.7	55.7	54.1	53.6	52.5	51.8
22-Nov-22	6:00 AM	69.4	62.5	56.2	55.5	54.6	53.5	52.9
22-Nov-22	6:10 AM	63.7	60.5	57.7	56.5	56.6	54.5	53.7
22-Nov-22	6:20 AM	66.7	63.9	57.4	56.5	56.0	54.1	53.5
22-Nov-22	6:30 AM	73.0	67.4	58.6	57.7	56.0	53.7	52.9
22-Nov-22	6:40 AM	65.1	63.4	55.1	54.8	54.0	53.5	53.0
22-Nov-22	6:50 AM	69.3	63.4	56.1	55.2	54.1	53.1	52.4
22-Nov-22	7:00 AM	70.0	63.8	57.1	55.7	54.1	53.5	53.1
22-Nov-22	7:10 AM	68.4	61.2	57.0	55.6	54.7	53.6	52.7
22-Nov-22	7:20 AM	67.2	63.4	57.3	55.8	54.9	54.0	53.2
22-Nov-22	7:30 AM	72.1	68.1	58.2	57.6	55.4	54.8	54.0
22-Nov-22	7:40 AM	63.4	60.4	55.9	55.3	55.0	54.2	53.3
22-Nov-22	7:50 AM	64.5	61.0	55.1	54.0	53.0	52.1	51.2
22-Nov-22	8:00 AM	62.2	58.1	53.9	53.1	52.6	52.1	51.5
22-Nov-22	8:10 AM	62.5	61.5	55.7	53.8	52.2	51.3	50.4
22-Nov-22	8:20 AM	60.8	57.8	56.4	54.3	53.5	52.1	51.1
22-Nov-22	8:30 AM	71.4	69.8	58.9	59.1	57.6	54.6	53.0
22-Nov-22	8:40 AM	90.1	73.9	60.6	65.0	58.7	57.4	56.8
22-Nov-22	8:50 AM	78.2	73.1	61.2	60.7	55.6	53.2	52.5

—	Table 4a(continued): A-weighted 10-minute Noise Levels at L1-V4										
	10-minute										
Date	period beginning	Lmax	L01	L10	Leq	L50	L90	Lmin			
22-Nov-22	9:00 AM	74.4	69.2	56.0	57.2	55.0	53.4	52.5			
22-Nov-22	9:10 AM	78.0	67.7	54.0	57.1	53.2	52.4	51.9			
	9:20 AM	65.9	60.5	54.8	54.2	53.6	53.0				
22-Nov-22								52.5			
22-Nov-22	9:30 AM 9:40 AM	73.6	72.0	62.4	60.2	56.2	54.4	53.2			
22-Nov-22		66.6	61.9	57.1	55.5	54.4	53.6	53.2			
22-Nov-22	9:50 AM	61.0	60.0	56.7	55.9	55.6	54.8	54.0			
22-Nov-22	10:00 AM	65.5	64.7	58.2	57.8	57.1	55.7	54.9			
22-Nov-22	10:10 AM	75.9	71.3	62.7	60.8	56.3	55.2	54.5			
22-Nov-22	10:20 AM	73.0	71.1	58.3	58.6	55.2	54.2	53.4			
22-Nov-22	10:30 AM	62.5	58.2	55.4	53.8	53.1	52.4	51.9			
22-Nov-22	10:40 AM	81.4	78.0	64.1	64.7	53.2	52.2	51.4			
22-Nov-22	10:50 AM	61.9	60.9	57.5	55.3	54.4	52.6	51.6			
22-Nov-22	11:00 AM	77.3	72.4	59.1	59.5	54.4	53.5	52.8			
22-Nov-22	11:10 AM	82.0	76.6	63.6	63.7	54.8	53.7	53.1			
22-Nov-22	11:20 AM	83.2	74.7	58.2	61.6	55.0	52.8	51.1			
22-Nov-22	11:30 AM	82.4	79.8	63.2	64.7	54.1	52.8	51.9			
22-Nov-22	11:40 AM	72.0	67.0	55.8	56.3	53.6	52.1	50.0			
22-Nov-22	11:50 AM	73.8	67.9	54.5	55.6	51.9	51.0	50.3			
22-Nov-22	12:00 PM	65.0	62.3	54.8	53.1	51.3	50.5	49.9			
22-Nov-22	12:10 PM	56.9	55.3	53.0	51.6	51.3	50.3	49.5			
22-Nov-22	12:20 PM	65.3	60.7	52.7	52.3	51.2	50.4	49.8			
22-Nov-22	12:30 PM	66.1	60.2	53.6	53.0	52.4	50.7	49.5			
22-Nov-22	12:40 PM	68.1	64.5	57.0	54.3	51.3	50.3	48.8			
22-Nov-22	12:50 PM	74.8	72.9	56.9	58.7	50.8	49.7	49.0			
22-Nov-22	1:00 PM	75.1	72.0	54.9	57.2	51.5	50.3	49.3			
22-Nov-22	1:10 PM	69.8	64.7	55.2	54.5	52.9	51.7	50.9			
22-Nov-22	1:20 PM	69.5	66.4	56.9	55.8	53.4	52.3	51.4			
22-Nov-22	1:30 PM	70.8	66.5	60.6	57.4	54.5	53.1	52.0			
22-Nov-22	1:40 PM	75.6	71.9	59.3	59.9	57.0	54.7	53.6			
22-Nov-22	1:50 PM	85.0	76.3	59.3	63.6	56.0	54.9	54.0			
22-Nov-22	2:00 PM	69.6	66.8	58.9	57.1	55.1	54.1	52.9			

	10-minute period		Average Octave Band Sound Level, Leq, dB							
Date	beginning	63	125	250	500	1000	2000	4000		
21-Nov-22	1:30 PM	64.8	59.8	56.5	53.3	48.4	46.5	40.5		
21-Nov-22	1:40 PM	64.5	61.0	55.4	54.4	51.1	52.1	46.7		
21-Nov-22	1:50 PM	65.2	60.8	54.5	52.9	48.9	46.4	41.8		
21-Nov-22	2:00 PM	66.4	61.7	58.3	57.7	52.6	51.4	45.1		

	10-minute period	neriod Average Octave Band Sound Level, Leq, di						
Date	beginning	63	125	250	500	1000	2000	4000
21-Nov-22	2:20 PM	66.5	61.6	56.8	55.2	52.4	55.8	50.0
21-Nov-22	2:30 PM	68.9	61.5	67.2	63.9	58.5	55.9	49.4
21-Nov-22	2:40 PM	63.9	58.0	53.7	51.5	45.1	40.1	33.0
21-Nov-22	2:50 PM	65.2	57.7	53.4	50.9	46.4	43.0	36.5
21-Nov-22	3:00 PM	67.8	64.3	62.7	63.4	59.2	57.2	51.8
21-Nov-22	3:10 PM	58.1	53.3	48.7	46.9	42.1	38.8	30.0
21-Nov-22	3:20 PM	57.5	54.3	50.8	51.6	46.0	45.1	38.0
21-Nov-22	3:30 PM	60.3	55.8	50.6	47.3	44.7	43.7	38.2
21-Nov-22	3:40 PM	61.7	59.8	55.4	54.9	49.4	48.3	43.6
21-Nov-22	3:50 PM	59.6	56.8	54.0	51.8	45.3	43.5	37.4
21-Nov-22	4:00 PM	59.4	57.9	51.2	47.8	44.1	41.3	32.8
21-Nov-22	4:10 PM	60.8	58.2	52.3	48.3	43.9	42.8	34.9
21-Nov-22	4:20 PM	59.5	55.8	51.0	48.6	44.1	41.4	33.2
21-Nov-22	4:30 PM	59.8	55.7	50.3	48.2	43.5	40.8	33.1
21-Nov-22	4:40 PM	58.9	55.1	49.5	46.5	42.7	40.6	33.0
21-Nov-22	4:50 PM	60.5	56.3	51.3	49.3	44.6	41.8	34.4
21-Nov-22	5:00 PM	62.1	58.0	53.2	50.4	45.6	43.3	37.8
21-Nov-22	5:10 PM	61.9	58.6	54.3	52.7	48.2	45.8	41.5
21-Nov-22	5:20 PM	62.1	58.2	54.4	53.0	48.7	46.0	42.5
21-Nov-22	5:30 PM	63.2	59.2	55.9	56.3	49.8	45.7	42.7
21-Nov-22	5:40 PM	60.9	56.8	53.3	52.8	48.1	46.9	42.8
21-Nov-22	5:50 PM	61.4	61.8	57.5	56.1	48.6	47.0	42.1
21-Nov-22	6:00 PM	63.2	59.1	55.7	55.7	52.2	50.5	46.4
21-Nov-22	6:10 PM	63.8	64.6	57.8	58.4	55.6	55.8	52.9
21-Nov-22	6:20 PM	61.2	59.6	54.6	53.8	52.0	53.3	49.4
21-Nov-22	6:30 PM	59.5	56.3	52.7	50.2	42.5	39.5	30.9
21-Nov-22	6:40 PM	59.8	57.1	52.7	50.6	43.5	40.2	34.2
21-Nov-22	6:50 PM	59.6	57.1	52.9	51.4	44.7	43.6	38.5
21-Nov-22	7:00 PM	60.7	58.4	54.3	52.6	45.1	42.5	34.0
21-Nov-22	7:10 PM	59.2	56.8	53.2	53.1	46.1	44.0	35.7
21-Nov-22	7:20 PM	66.0	61.7	56.0	54.5	48.6	45.5	38.9
21-Nov-22	7:30 PM	63.7	60.4	57.0	54.2	46.4	42.0	33.7
21-Nov-22	7:40 PM	61.8	59.8	55.8	57.1	51.6	45.6	35.8
21-Nov-22	7:50 PM	66.1	61.1	58.0	58.7	55.3	54.9	53.3
21-Nov-22	8:00 PM	60.0	57.1	56.1	60.7	53.6	46.2	38.4
21-Nov-22	8:10 PM	60.7	58.0	55.6	55.4	48.0	43.4	37.0
21-Nov-22	8:20 PM	59.7	57.3	56.0	57.8	50.3	44.4	38.0
21-Nov-22	8:30 PM	59.2	56.6	53.4	52.7	46.4	43.7	38.5
21-Nov-22	8:40 PM	63.2	58.7	54.7	56.0	46.9	42.6	37.2

	10-minute period				Band Sound Level, Leq, dB				
Date	beginning	63	125	250	500	1000	2000	4000	
21-Nov-22	8:50 PM	63.3	58.9	54.4	53.6	47.0	44.1	39.2	
21-Nov-22	9:00 PM	64.3	59.6	54.7	54.0	48.3	44.4	38.1	
21-Nov-22	9:10 PM	64.1	59.3	54.9	55.1	50.2	46.3	40.1	
21-Nov-22	9:20 PM	64.2	59.8	54.8	54.4	49.5	45.4	39.1	
21-Nov-22	9:30 PM	64.6	59.6	55.3	55.7	51.5	46.6	40.1	
21-Nov-22	9:40 PM	66.4	62.3	55.4	55.2	50.2	47.0	40.1	
21-Nov-22	9:50 PM	63.2	63.5	57.2	56.6	51.4	47.4	40.7	
21-Nov-22	10:00 PM	63.0	60.1	54.8	54.6	48.9	44.3	38.1	
21-Nov-22	10:10 PM	63.1	60.9	54.3	53.8	46.1	37.9	29.4	
21-Nov-22	10:20 PM	64.3	60.8	54.2	54.0	47.7	41.4	36.6	
21-Nov-22	10:30 PM	64.4	62.2	58.3	57.5	53.2	52.4	47.6	
21-Nov-22	10:40 PM	64.5	61.9	56.5	57.8	52.1	46.3	37.4	
21-Nov-22	10:50 PM	64.4	61.1	56.6	56.4	51.5	46.6	40.2	
21-Nov-22	11:00 PM	63.4	60.5	55.7	55.1	48.1	39.3	30.3	
21-Nov-22	11:10 PM	64.0	60.0	55.8	55.4	49.5	40.7	30.2	
21-Nov-22	11:20 PM	63.8	61.2	55.1	55.2	47.9	40.9	30.2	
21-Nov-22	11:30 PM	63.7	60.7	55.9	55.1	48.5	42.5	37.7	
21-Nov-22	11:40 PM	63.8	60.4	54.7	54.7	47.0	35.8	28.7	
21-Nov-22	11:50 PM	64.1	61.5	54.3	53.1	45.8	35.3	29.6	
22-Nov-22	12:00 AM	65.8	61.0	56.3	56.0	50.3	39.4	28.2	
22-Nov-22	12:10 AM	64.3	59.7	55.6	55.4	48.4	37.5	28.1	
22-Nov-22	12:20 AM	63.6	59.5	56.0	54.8	47.0	36.3	28.3	
22-Nov-22	12:30 AM	63.3	58.8	55.9	54.2	46.9	36.1	28.7	
22-Nov-22	12:40 AM	62.7	58.0	55.5	53.5	46.0	35.1	27.8	
22-Nov-22	12:50 AM	62.7	58.2	55.3	53.4	45.4	34.1	28.4	
22-Nov-22	1:00 AM	62.3	57.9	55.6	55.1	47.7	35.3	27.9	
22-Nov-22	1:10 AM	67.3	63.8	58.6	57.9	50.0	40.6	28.2	
22-Nov-22	1:20 AM	64.2	58.9	55.6	54.7	45.1	33.2	27.3	
22-Nov-22	1:30 AM	66.4	61.5	56.0	54.8	46.5	39.5	28.0	
22-Nov-22	1:40 AM	66.2	60.2	56.4	54.6	46.5	35.5	27.9	
22-Nov-22	1:50 AM	63.6	58.7	54.9	52.7	43.7	32.9	27.8	
22-Nov-22	2:00 AM	64.5	59.5	55.9	53.4	43.4	32.4	27.2	
22-Nov-22	2:10 AM	63.3	59.4	55.8	53.3	45.1	40.1	37.2	
22-Nov-22	2:20 AM	62.6	59.5	55.4	53.6	45.5	42.2	33.9	
22-Nov-22	2:30 AM	62.7	59.5	55.7	54.0	47.1	44.6	37.5	
22-Nov-22	2:40 AM	62.2	58.1	54.4	52.5	43.5	32.7	27.1	
22-Nov-22	2:50 AM	63.6	59.9	54.6	52.8	44.7	34.1	27.2	
22-Nov-22	3:00 AM	65.7	60.2	55.7	52.8	42.8	30.0	27.5	
22-Nov-22	3:10 AM	61.8	58.2	54.9	52.2	45.2	41.7	37.6	

	10-minute period	Average Octave Band Sound Level, Leq, dB								
Date	beginning	63	125	250	500	1000	2000	4000		
22-Nov-22	3:20 AM	59.8	56.5	53.7	50.4	40.8	32.3	27.5		
22-Nov-22	3:30 AM	65.9	60.5	54.7	51.6	42.8	32.3	27.7		
22-Nov-22	3:40 AM	63.2	59.3	55.4	53.2	42.5	31.8	27.4		
22-Nov-22	3:50 AM	60.1	56.2	53.2	50.3	41.1	31.7	26.7		
22-Nov-22	4:00 AM	65.1	57.8	53.4	50.7	41.4	31.4	27.2		
22-Nov-22	4:10 AM	60.0	56.8	53.1	50.6	41.2	31.5	27.4		
22-Nov-22	4:20 AM	60.2	57.2	52.9	50.9	42.2	31.5	26.9		
22-Nov-22	4:30 AM	60.7	57.1	53.1	50.8	42.5	33.6	27.4		
22-Nov-22	4:40 AM	63.2	59.2	55.2	52.5	44.0	32.3	27.3		
22-Nov-22	4:50 AM	63.9	59.5	54.6	52.8	44.2	33.2	27.4		
22-Nov-22	5:00 AM	67.7	59.5	54.2	52.7	45.0	34.0	27.7		
22-Nov-22	5:10 AM	68.8	59.8	54.9	53.8	47.1	42.3	37.7		
22-Nov-22	5:20 AM	68.4	59.5	55.7	57.4	50.0	46.7	37.4		
22-Nov-22	5:30 AM	65.7	58.7	56.9	57.8	50.3	44.3	37.4		
22-Nov-22	5:40 AM	65.2	60.8	55.4	54.3	48.1	43.8	37.9		
22-Nov-22	5:50 AM	65.2	60.2	55.5	54.2	46.9	38.3	32.4		
22-Nov-22	6:00 AM	66.0	60.3	57.0	56.0	48.6	37.3	29.1		
22-Nov-22	6:10 AM	67.2	61.5	56.9	56.8	48.7	42.0	29.2		
22-Nov-22	6:20 AM	68.4	62.5	56.6	56.3	48.4	44.1	36.8		
22-Nov-22	6:30 AM	67.2	60.3	57.6	57.8	50.3	45.8	41.1		
22-Nov-22	6:40 AM	66.0	59.4	56.2	54.8	47.2	40.8	37.4		
22-Nov-22	6:50 AM	65.6	59.4	55.7	55.1	48.2	42.7	38.8		
22-Nov-22	7:00 AM	66.5	60.0	56.6	56.6	48.3	37.3	25.5		
22-Nov-22	7:10 AM	68.1	61.0	57.4	55.1	47.8	40.7	36.4		
22-Nov-22	7:20 AM	66.6	60.9	56.6	55.1	48.0	46.1	40.0		
22-Nov-22	7:30 AM	66.7	62.3	58.8	57.8	50.3	43.1	40.6		
22-Nov-22	7:40 AM	66.3	60.7	56.3	55.9	46.7	39.3	33.8		
22-Nov-22	7:50 AM	66.3	59.1	55.1	54.1	46.0	40.5	34.6		
22-Nov-22	8:00 AM	66.2	59.3	55.1	53.6	44.1	35.8	28.5		
22-Nov-22	8:10 AM	65.7	60.5	57.2	53.9	43.2	37.8	28.5		
22-Nov-22	8:20 AM	66.0	61.7	56.1	53.5	46.8	41.7	35.3		
22-Nov-22	8:30 AM	65.8	64.6	59.6	57.7	53.1	49.7	44.1		
22-Nov-22	8:40 AM	65.9	62.7	59.1	58.9	56.2	55.5	59.0		
22-Nov-22	8:50 AM	66.2	62.1	61.0	60.2	53.8	51.3	44.3		
22-Nov-22	9:00 AM	63.4	62.5	57.2	56.5	49.8	47.1	43.0		
22-Nov-22	9:10 AM	64.7	66.8	58.0	54.9	49.2	46.5	42.8		
22-Nov-22	9:20 AM	61.4	58.4	54.2	54.4	47.3	40.6	36.5		
22-Nov-22	9:30 AM	64.2	63.4	60.9	60.5	53.3	46.9	36.2		
22-Nov-22	9:40 AM	63.2	60.0	56.8	55.5	47.9	41.1	36.2		

	10-minute period	Average Octave Band Sound Level, Leq, dB								
Date	beginning	63	125	250	500	1000	2000	4000		
22-Nov-22	9:50 AM	63.0	60.9	56.4	55.7	48.7	43.6	34.7		
22-Nov-22	10:00 AM	74.0	62.9	58.5	57.3	50.0	45.0	38.2		
22-Nov-22	10:10 AM	73.7	65.5	58.6	57.7	54.6	52.6	49.5		
22-Nov-22	10:20 AM	71.4	64.6	57.6	57.0	51.9	49.4	43.6		
22-Nov-22	10:30 AM	62.1	62.6	54.8	53.3	46.3	40.0	28.5		
22-Nov-22	10:40 AM	67.4	64.4	62.0	62.5	58.6	57.9	52.5		
22-Nov-22	10:50 AM	62.4	62.8	55.9	54.6	48.1	43.4	38.2		
22-Nov-22	11:00 AM	65.6	63.5	59.0	58.0	53.0	51.0	45.1		
22-Nov-22	11:10 AM	66.8	65.1	61.9	62.2	57.6	55.9	49.3		
22-Nov-22	11:20 AM	65.5	64.1	61.9	60.6	55.2	52.3	46.4		
22-Nov-22	11:30 AM	64.2	67.5	65.1	63.5	57.8	56.1	50.7		
22-Nov-22	11:40 AM	61.9	61.7	55.7	54.1	50.0	48.3	42.2		
22-Nov-22	11:50 AM	61.8	61.9	55.4	53.3	49.0	47.8	41.5		
22-Nov-22	12:00 PM	61.3	61.6	52.8	52.7	45.7	40.4	35.0		
22-Nov-22	12:10 PM	62.4	61.6	52.4	50.4	43.5	37.9	31.8		
22-Nov-22	12:20 PM	60.7	61.6	51.6	50.2	44.8	43.5	35.7		
22-Nov-22	12:30 PM	61.3	62.2	52.3	51.7	46.2	42.0	34.8		
22-Nov-22	12:40 PM	63.3	62.3	53.6	52.4	47.8	45.1	39.9		
22-Nov-22	12:50 PM	64.4	65.1	60.3	57.5	51.4	48.9	42.0		
22-Nov-22	1:00 PM	62.7	63.4	55.2	54.3	51.3	49.8	44.0		
22-Nov-22	1:10 PM	62.6	63.4	54.5	51.7	47.9	46.0	37.9		
22-Nov-22	1:20 PM	63.2	63.3	54.4	53.6	50.0	47.3	41.1		
22-Nov-22	1:30 PM	63.0	63.8	56.2	53.9	53.3	47.4	39.6		
22-Nov-22	1:40 PM	64.6	65.3	59.1	57.9	53.9	52.2	45.7		
22-Nov-22	1:50 PM	68.3	64.8	61.8	62.4	57.3	55.9	50.1		
22-Nov-22	2:00 PM	63.4	64.9	56.4	55.3	50.7	48.0	41.4		

Table 5: A-weighted Hourly Noise Levels at LT-V5

	Hour		8	J - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	LEVEIS at			
Date	beginning	Lmax	L01	L10	Leq	L50	L90	Lmin
21-Nov-22	2:00 PM	83.1	65.5	58.1	58.3	54.9	53.6	50.8
21-Nov-22	3:00 PM	77.8	67.8	56.4	57.6	53.4	51.8	49.3
21-Nov-22	4:00 PM	76.3	64.4	57.0	56.7	54.9	53.8	52.2
21-Nov-22	5:00 PM	76.2	68.1	60.1	59.0	56.0	54.9	53.1
21-Nov-22	6:00 PM	74.8	66.0	60.6	60.3	58.0	56.6	53.8
21-Nov-22	7:00 PM	77.4	65.1	61.0	60.1	58.4	57.2	54.4
21-Nov-22	8:00 PM	88.0	69.6	60.6	62.7	58.9	57.0	54.3
21-Nov-22	9:00 PM	81.6	64.0	57.4	57.4	55.5	54.7	53.7
21-Nov-22	10:00 PM	87.2	68.5	58.0	61.2	55.8	54.8	53.5
21-Nov-22	11:00 PM	81.2	67.5	58.8	59.7	56.2	55.1	53.1
22-Nov-22	12:00 AM	78.7	61.6	55.3	56.2	54.2	53.4	51.5
22-Nov-22	1:00 AM	79.9	61.4	55.2	56.5	53.8	53.0	51.8
22-Nov-22	2:00 AM	79.1	68.8	58.8	59.5	55.8	55.0	51.3
22-Nov-22	3:00 AM	68.6	59.3	57.0	55.3	52.9	51.6	48.3
22-Nov-22	4:00 AM	77.8	56.7	54.8	55.8	52.0	50.8	49.0
22-Nov-22	5:00 AM	85.7	73.2	62.9	63.1	56.1	53.9	51.0
22-Nov-22	6:00 AM	83.9	70.8	61.8	61.4	55.9	54.4	52.1
22-Nov-22	7:00 AM	82.0	71.3	58.9	60.3	55.2	54.0	52.3
22-Nov-22	8:00 AM	80.6	73.7	63.6	61.9	55.3	53.9	52.8
22-Nov-22	9:00 AM	85.1	72.5	63.0	62.1	57.1	54.0	50.9
22-Nov-22	10:00 AM	84.9	72.6	66.4	65.6	63.3	62.1	59.9
22-Nov-22	11:00 AM	81.3	69.8	64.8	63.9	62.4	61.0	58.7
22-Nov-22	12:00 PM	81.0	69.2	63.9	63.6	62.6	61.9	59.6
22-Nov-22	1:00 PM	84.4	72.7	65.0	64.3	61.8	60.7	59.2
22-Nov-22	2:00 PM	80.5	71.5	65.6	64.6	63.0	62.2	60.9

Table 5a: A-weighted 10-minute Noise Levels at LT-V5

-		1			JISC LICYCIS			
	10-minute							
	period							
Date	beginning	Lmax	L01	L10	Leq	L50	L90	Lmin
21-Nov-22	2:10 PM	68.1	64.8	58.2	56.2	54.1	52.0	50.8
21-Nov-22	2:20 PM	77.6	72.3	61.3	60.0	54.6	53.3	51.6
21-Nov-22	2:30 PM	83.1	72.5	57.8	60.8	54.8	53.7	52.9
21-Nov-22	2:40 PM	61.1	58.4	56.1	55.1	55.0	53.7	52.9
21-Nov-22	2:50 PM	60.5	59.4	57.3	56.4	56.1	55.4	54.5
21-Nov-22	3:00 PM	73.3	70.6	57.2	58.1	54.1	52.0	50.9
21-Nov-22	3:10 PM	77.8	72.2	55.1	58.5	51.9	50.6	49.3
21-Nov-22	3:20 PM	64.1	59.7	54.4	53.0	52.0	50.5	49.3
21-Nov-22	3:30 PM	73.0	70.4	57.1	57.7	53.2	51.9	51.2
21-Nov-22	3:40 PM	66.3	60.9	57.4	55.3	54.1	52.5	51.7
21-Nov-22	3:50 PM	77.3	72.9	57.1	59.7	54.8	53.3	52.5
21-Nov-22	4:00 PM	58.9	57.0	55.8	54.4	54.1	53.0	52.2
21-Nov-22	4:10 PM	67.2	65.4	57.4	56.5	55.1	53.9	52.5
21-Nov-22	4:20 PM	70.8	66.6	57.2	57.3	55.9	54.7	53.3

		(continuea)	. A-weight	ica 10-mm	ute Moise I		1 15	
	10-minute							
Date	period beginning	Lmax	L01	L10	Leq	L50	L90	Lmin
21-Nov-22	4:30 PM	64.6	57.9	56.5	55.4	55.2	54.1	53.2
21-Nov-22	4:40 PM	71.1	68.4	57.3	57.2	54.6	53.6	52.7
21-Nov-22	4:50 PM	76.3	70.9	57.7	58.5	54.4	53.5	52.9
21-Nov-22	5:00 PM	76.2	70.0	60.7	59.0	54.9	54.1	53.1
21-Nov-22	5:10 PM	74.6	72.7	62.2	60.7	56.1	54.8	54.1
21-Nov-22	5:20 PM	73.3	66.7	57.8	57.4	55.8	55.0	54.5
21-Nov-22	5:30 PM	70.9	69.4	59.1	58.9	56.6	55.6	54.9
		69.4						
21-Nov-22	5:40 PM	1	64.5	57.2	56.9	56.1	55.0	54.3
21-Nov-22	5:50 PM	69.4	65.1	63.8	59.7	56.2	55.0	54.2
21-Nov-22	6:00 PM	73.3	70.5	64.7	62.4	60.2	59.3	58.5
21-Nov-22	6:10 PM	74.8	73.7	64.4	63.0	60.6	59.8	59.1
21-Nov-22	6:20 PM	74.6	71.6	62.9	61.7	59.9	55.7	54.2
21-Nov-22	6:30 PM	72.1	64.4	58.9	57.3	56.0	55.2	54.3
21-Nov-22	6:40 PM	61.8	57.9	56.2	55.6	55.5	54.7	53.8
21-Nov-22	6:50 PM	59.9	58.1	56.7	55.9	55.8	55.0	54.4
21-Nov-22	7:00 PM	66.3	60.7	57.7	56.6	56.0	55.1	54.5
21-Nov-22	7:10 PM	65.0	64.5	63.6	59.0	56.2	55.1	54.4
21-Nov-22	7:20 PM	70.7	63.1	62.0	61.5	61.4	60.7	60.1
21-Nov-22	7:30 PM	75.6	72.0	64.2	62.8	61.4	58.3	57.3
21-Nov-22	7:40 PM	77.4	70.4	60.1	60.2	58.1	57.2	56.0
21-Nov-22	7:50 PM	62.6	59.8	58.5	57.6	57.4	56.7	55.9
21-Nov-22	8:00 PM	79.2	76.9	61.7	63.6	58.6	57.3	55.7
21-Nov-22	8:10 PM	81.0	76.5	61.3	63.2	59.3	58.3	57.5
21-Nov-22	8:20 PM	88.0	79.4	63.5	66.9	62.4	60.0	58.0
21-Nov-22	8:30 PM	67.3	63.8	61.5	59.7	60.6	55.9	55.2
21-Nov-22	8:40 PM	64.7	62.0	58.2	56.9	56.2	55.4	54.6
21-Nov-22	8:50 PM	61.6	58.7	57.6	56.3	56.0	55.0	54.3
21-Nov-22	9:00 PM	68.2	61.6	56.9	55.8	55.1	54.4	53.7
21-Nov-22	9:10 PM	59.3	58.0	56.9	55.6	55.2	54.5	53.8
21-Nov-22	9:20 PM	68.6	64.1	57.8	56.8	55.8	55.0	54.2
21-Nov-22	9:30 PM	81.6	73.5	57.8	60.8	56.2	55.2	54.6
21-Nov-22	9:40 PM	60.2	58.9	57.2	56.0	55.6	54.7	54.0
21-Nov-22	9:50 PM	71.8	67.8	57.8	57.1	55.1	54.3	53.7
21-Nov-22	10:00 PM	74.1	71.2	61.4	59.6	55.6	54.6	53.5
21-Nov-22	10:10 PM	68.8	61.7	55.8	55.8	55.2	54.8	54.0
21-Nov-22	10:20 PM	71.1	68.3	55.9	56.8	54.8	54.2	53.5
21-Nov-22	10:30 PM	68.7	57.8	56.1	55.7	55.3	54.7	54.1
21-Nov-22	10:40 PM	87.2	81.0	60.3	67.1	57.7	55.7	55.0
21-Nov-22	10:50 PM	74.8	70.8	58.7	58.6	56.4	54.9	54.2

	10-minute							
D 4	period	_	T 01	T 10	T	T 50	T 00	.
Date	beginning	Lmax	L01	L10	Leq	L50	L90	Lmin
21-Nov-22	11:00 PM	77.0	72.6	62.7	61.0	56.7	54.4	53.4
21-Nov-22	11:10 PM	74.1	71.0	60.6	60.2	57.3	56.5	56.0
21-Nov-22	11:20 PM	81.2	78.3	58.4	63.0	57.1	56.3	55.7
21-Nov-22	11:30 PM	71.3	63.4	57.8	57.1	56.3	55.2	53.8
21-Nov-22	11:40 PM	62.1	60.5	58.0	56.1	55.2	54.1	53.1
21-Nov-22	11:50 PM	70.9	58.9	55.4	55.3	54.5	53.8	53.1
22-Nov-22	12:00 AM	78.7	72.3	56.4	59.0	54.9	53.9	53.0
22-Nov-22	12:10 AM	77.6	72.3	55.6	58.5	54.6	53.7	52.7
22-Nov-22	12:20 AM	56.5	55.7	54.9	54.1	53.9	53.2	52.1
22-Nov-22	12:30 AM	57.5	56.3	55.3	54.3	54.1	53.4	52.7
22-Nov-22	12:40 AM	59.0	56.8	54.6	53.8	53.6	52.8	51.5
22-Nov-22	12:50 AM	60.0	55.9	54.7	54.0	53.8	53.1	52.3
22-Nov-22	1:00 AM	79.9	73.0	55.0	59.9	53.7	53.1	52.4
22-Nov-22	1:10 AM	79.1	71.1	57.9	58.9	54.5	53.2	52.3
22-Nov-22	1:20 AM	59.5	55.8	54.5	53.6	53.5	52.7	51.8
22-Nov-22	1:30 AM	57.2	56.5	54.6	53.9	53.7	53.1	52.1
22-Nov-22	1:40 AM	57.7	56.2	55.0	54.0	53.9	53.1	52.1
22-Nov-22	1:50 AM	56.7	55.5	54.2	53.5	53.4	52.6	52.0
22-Nov-22	2:00 AM	77.5	70.6	56.4	58.8	53.6	52.7	51.9
22-Nov-22	2:10 AM	66.6	61.4	54.7	54.2	53.6	52.6	51.3
22-Nov-22	2:20 AM	72.6	70.6	60.5	59.8	55.8	54.5	53.7
22-Nov-22	2:30 AM	74.2	72.2	60.7	61.1	58.4	57.9	57.4
22-Nov-22	2:40 AM	79.1	73.7	60.3	61.9	58.6	58.1	57.7
22-Nov-22	2:50 AM	72.5	64.3	60.2	57.7	55.0	54.2	53.5
22-Nov-22	3:00 AM	68.6	62.1	56.5	55.3	54.0	53.3	52.6
22-Nov-22	3:10 AM	64.4	60.0	58.5	55.2	53.6	52.8	52.3
22-Nov-22	3:20 AM	61.7	60.3	58.9	56.0	53.8	52.9	52.0
22-Nov-22	3:30 AM	67.1	66.3	63.7	58.6	54.3	51.1	49.6
22-Nov-22	3:40 AM	56.8	54.5	52.5	51.2	50.9	49.5	48.3
22-Nov-22	3:50 AM	53.0	52.8	52.0	50.9	50.8	49.7	48.4
22-Nov-22	4:00 AM	53.9	53.3	52.2	51.3	51.2	50.2	49.0
22-Nov-22	4:10 AM	53.0	52.7	52.2	51.2	51.2	50.0	49.1
22-Nov-22	4:20 AM	54.3	53.1	52.5	51.6	51.4	50.7	49.7
22-Nov-22	4:30 AM	64.8	53.6	52.6	52.0	51.7	51.0	49.7
22-Nov-22	4:40 AM	54.8	54.3	53.4	52.4	52.4	51.2	50.2
22-Nov-22	4:50 AM	77.8	73.4	66.1	61.9	54.1	51.9	50.8
22-Nov-22	5:00 AM	76.1	73.2	64.8	61.2	53.4	52.0	51.0
22-Nov-22	5:10 AM	78.0	70.6	58.8	59.0	54.4	53.6	52.6
22-Nov-22	5:20 AM	76.6	70.4	56.7	58.5	54.1	53.1	52.4

	10-minute		A-weigh		1,0250 1	20 (015 40 12	1 , 0	
	period							
Date	beginning	Lmax	L01	L10	Leq	L50	L90	Lmin
22-Nov-22	5:30 AM	85.7	79.9	71.2	68.1	59.0	54.4	53.4
22-Nov-22	5:40 AM	78.2	75.5	65.2	63.3	60.2	56.3	55.6
22-Nov-22	5:50 AM	71.9	69.6	60.5	58.8	55.2	54.1	52.9
22-Nov-22	6:00 AM	80.5	76.1	59.6	62.4	55.7	54.1	53.5
22-Nov-22	6:10 AM	76.0	73.6	66.2	62.9	57.4	55.5	54.4
22-Nov-22	6:20 AM	77.7	74.5	64.9	62.2	56.4	55.1	54.1
22-Nov-22	6:30 AM	78.9	71.5	61.3	60.4	56.1	54.7	53.7
22-Nov-22	6:40 AM	83.9	71.8	63.4	62.1	55.5	53.6	52.8
22-Nov-22	6:50 AM	64.3	57.5	55.6	54.5	54.3	53.1	52.1
22-Nov-22	7:00 AM	82.0	76.1	57.1	61.7	54.5	53.2	52.3
22-Nov-22	7:10 AM	81.9	74.8	59.1	61.4	55.8	54.7	54.0
22-Nov-22	7:20 AM	68.0	61.5	57.2	55.9	55.2	53.8	52.7
22-Nov-22	7:30 AM	77.8	69.8	61.1	59.8	55.7	54.6	53.9
22-Nov-22	7:40 AM	82.0	72.4	56.9	60.3	54.7	53.7	52.6
22-Nov-22	7:50 AM	75.0	73.4	62.0	60.5	55.0	53.7	52.4
22-Nov-22	8:00 AM	76.0	74.1	63.1	61.4	54.5	53.5	52.5
22-Nov-22	8:10 AM	77.1	71.9	61.9	60.6	55.0	53.6	52.8
22-Nov-22	8:20 AM	79.8	76.0	65.0	63.4	56.8	55.4	54.3
22-Nov-22	8:30 AM	77.9	73.2	62.4	61.0	56.0	54.6	53.7
22-Nov-22	8:40 AM	72.9	71.3	62.2	59.7	54.8	53.1	51.5
22-Nov-22	8:50 AM	80.6	75.5	66.8	63.6	54.6	52.9	51.7
22-Nov-22	9:00 AM	77.3	71.1	61.5	59.4	54.2	53.0	52.3
22-Nov-22	9:10 AM	79.6	78.2	67.8	65.5	60.2	55.5	51.6
22-Nov-22	9:20 AM	75.7	72.3	61.3	61.3	60.6	55.5	55.1
22-Nov-22	9:30 AM	72.8	66.9	60.2	57.8	55.3	53.0	51.6
22-Nov-22	9:40 AM	85.1	74.5	63.0	62.8	54.1	52.1	50.9
22-Nov-22	9:50 AM	79.6	72.2	64.0	61.6	58.3	54.8	52.1
22-Nov-22	10:00 AM	84.9	75.6	68.3	66.3	62.4	61.6	61.1
22-Nov-22	10:10 AM	79.1	77.5	68.5	66.4	63.4	61.9	61.3
22-Nov-22	10:20 AM	84.1	78.0	67.1	67.3	64.3	63.2	61.0
22-Nov-22	10:30 AM	77.8	72.1	65.7	64.9	63.8	62.8	61.4
22-Nov-22	10:40 AM	63.8	63.0	62.6	61.6	61.2	60.5	59.9
22-Nov-22	10:50 AM	79.2	69.6	66.0	65.0	64.5	62.7	61.5
22-Nov-22	11:00 AM	78.2	67.1	65.8	65.4	65.2	64.4	63.6
22-Nov-22	11:10 AM	81.3	73.4	65.5	64.9	63.4	61.5	60.4
22-Nov-22	11:20 AM	74.5	71.4	65.2	62.9	61.5	60.1	59.3
22-Nov-22	11:30 AM	65.0	63.7	61.9	60.8	60.8	59.3	58.7
22-Nov-22	11:40 AM	71.0	67.8	62.9	62.1	61.8	60.2	59.3
22-Nov-22	11:50 AM	79.5	75.2	67.6	65.1	61.9	60.4	59.6

Table 5a (continued): A-weighted 10-minute Noise Levels at LT-V5

	10-minute period							
Date	beginning	Lmax	L01	L10	Leq	L50	L90	Lmin
22-Nov-22	12:00 PM	71.1	67.3	64.2	63.1	62.9	61.6	59.6
22-Nov-22	12:10 PM	81.0	78.5	64.4	65.9	63.2	62.8	62.3
22-Nov-22	12:20 PM	73.4	70.8	64.7	63.6	62.5	61.8	61.3
22-Nov-22	12:30 PM	70.9	64.8	62.5	62.1	61.9	61.6	61.1
22-Nov-22	12:40 PM	70.6	68.4	64.3	63.2	62.7	61.8	61.1
22-Nov-22	12:50 PM	66.6	65.1	63.1	62.4	62.4	61.5	60.8
22-Nov-22	1:00 PM	66.4	64.2	63.0	61.8	61.5	60.5	59.6
22-Nov-22	1:10 PM	81.3	74.5	65.6	64.1	61.0	60.0	59.4
22-Nov-22	1:20 PM	77.9	75.6	62.6	63.4	60.3	59.7	59.2
22-Nov-22	1:30 PM	84.4	75.9	66.8	65.9	61.3	60.4	59.6
22-Nov-22	1:40 PM	78.0	75.2	65.8	64.9	62.7	61.6	61.0
22-Nov-22	1:50 PM	77.7	71.0	65.9	64.6	63.9	62.0	60.5
22-Nov-22	2:00 PM	78.7	75.3	64.9	64.7	62.8	61.5	60.9
22-Nov-22	2:10 PM	76.7	73.6	66.3	64.6	62.8	61.8	61.2
22-Nov-22	2:20 PM	80.5	77.1	69.9	66.8	63.0	62.4	61.9
22-Nov-22	2:30 PM	68.7	68.3	63.7	63.3	63.0	62.4	62.0
22-Nov-22	2:40 PM	65.7	64.0	63.1	62.7	62.7	62.2	61.8
22-Nov-22	2:50 PM	78.2	70.4	65.7	64.4	63.6	62.8	62.3
22-Nov-22	3:00 PM	64.8	64.3	63.8	63.3	63.2	62.8	62.3

Table 5b: un-weighted 10-minute Octave Band Leq Noise Levels at LT-V5

	10-minute period		Average	Octave I	Band Sou	nd Level,	Leq, dB	
Date	beginning	63	125	250	500	1000	2000	4000
21-Nov-22	2:10 PM	63.3	60.2	57.7	54.4	50.1	47.2	38.3
21-Nov-22	2:20 PM	66.5	60.0	57.8	56.9	55.8	51.8	46.4
21-Nov-22	2:30 PM	62.8	64.5	59.6	57.8	56.8	51.4	48.4
21-Nov-22	2:40 PM	62.3	61.4	57.3	53.1	49.3	43.8	39.1
21-Nov-22	2:50 PM	64.4	61.3	58.1	54.5	50.9	45.5	39.8
21-Nov-22	3:00 PM	63.1	60.4	57.2	54.7	54.7	49.0	39.6
21-Nov-22	3:10 PM	62.8	60.2	55.8	55.3	54.7	49.9	45.6
21-Nov-22	3:20 PM	62.5	59.5	54.3	51.3	47.4	42.3	33.3
21-Nov-22	3:30 PM	64.0	63.0	56.2	55.4	53.3	48.3	43.4
21-Nov-22	3:40 PM	64.8	62.3	57.4	53.2	48.9	44.8	37.1
21-Nov-22	3:50 PM	66.5	62.4	58.0	59.4	55.1	47.7	35.5
21-Nov-22	4:00 PM	65.1	62.8	56.1	52.6	47.8	43.3	33.5
21-Nov-22	4:10 PM	63.8	62.0	56.4	53.5	52.7	44.5	38.2
21-Nov-22	4:20 PM	63.7	61.8	56.0	55.5	52.0	49.5	38.9
21-Nov-22	4:30 PM	63.8	61.7	56.9	53.1	50.2	44.8	38.3
21-Nov-22	4:40 PM	63.3	61.6	56.5	52.8	54.3	45.8	38.1

	10-minute period	Average Octave Band Sound Level, Leq, dB						
Date	beginning	63	125	250	500	1000	2000	4000
21-Nov-22	4:50 PM	64.8	61.8	56.8	52.5	55.9	49.1	40.0
21-Nov-22	5:00 PM	64.0	62.5	57.6	53.1	55.5	52.1	42.7
21-Nov-22	5:10 PM	64.4	62.5	58.2	57.1	57.3	51.7	47.0
21-Nov-22	5:20 PM	64.4	62.1	57.6	54.1	53.6	47.0	40.4
21-Nov-22	5:30 PM	64.7	62.5	59.2	58.2	53.0	49.0	41.3
21-Nov-22	5:40 PM	63.8	61.2	57.6	54.4	52.0	47.9	40.7
21-Nov-22	5:50 PM	66.2	63.1	59.7	55.5	52.5	55.2	37.8
21-Nov-22	6:00 PM	68.3	63.6	62.0	58.1	56.7	57.3	45.4
21-Nov-22	6:10 PM	68.9	65.9	63.1	60.9	58.5	53.8	47.1
21-Nov-22	6:20 PM	67.3	65.6	63.6	59.3	56.6	52.4	45.7
21-Nov-22	6:30 PM	67.5	66.4	59.5	56.1	49.6	44.2	41.0
21-Nov-22	6:40 PM	66.8	65.3	58.8	54.7	47.2	39.7	32.5
21-Nov-22	6:50 PM	65.8	64.6	59.5	55.1	47.6	39.7	28.5
21-Nov-22	7:00 PM	67.4	64.9	59.9	55.7	48.1	41.9	38.9
21-Nov-22	7:10 PM	66.1	68.4	60.2	55.9	50.1	53.2	34.2
21-Nov-22	7:20 PM	69.8	74.1	62.8	58.9	54.0	51.8	40.4
21-Nov-22	7:30 PM	71.0	72.9	64.0	60.2	57.4	52.4	44.3
21-Nov-22	7:40 PM	66.4	65.5	62.0	59.3	55.0	46.7	37.7
21-Nov-22	7:50 PM	65.6	62.7	60.9	56.8	51.2	42.9	33.6
21-Nov-22	8:00 PM	68.4	63.9	62.4	63.8	59.0	50.0	37.0
21-Nov-22	8:10 PM	69.2	65.3	62.8	62.2	59.1	52.3	39.1
21-Nov-22	8:20 PM	70.7	69.8	64.4	64.4	64.7	53.7	40.3
21-Nov-22	8:30 PM	66.4	66.6	61.4	58.4	53.9	48.9	39.7
21-Nov-22	8:40 PM	64.4	62.8	59.6	55.8	50.5	44.7	35.9
21-Nov-22	8:50 PM	64.0	62.1	58.7	55.2	50.0	43.8	36.9
21-Nov-22	9:00 PM	63.9	62.1	57.6	54.6	50.0	44.0	37.6
21-Nov-22	9:10 PM	63.8	61.0	57.4	54.2	50.1	44.7	37.8
21-Nov-22	9:20 PM	64.9	61.5	58.3	55.4	51.1	46.4	40.8
21-Nov-22	9:30 PM	64.6	61.3	59.1	58.2	58.3	50.3	39.6
21-Nov-22	9:40 PM	64.1	61.4	57.4	54.2	50.6	45.5	38.7
21-Nov-22	9:50 PM	63.1	61.0	58.0	55.5	52.6	46.5	39.4
21-Nov-22	10:00 PM	64.1	62.2	58.5	56.6	55.8	50.1	46.4
21-Nov-22	10:10 PM	62.6	60.3	57.9	54.4	50.4	44.4	37.7
21-Nov-22	10:20 PM	62.7	60.5	56.8	55.8	52.3	44.8	36.5
21-Nov-22	10:30 PM	64.0	60.3	56.9	54.3	50.7	44.1	35.5
21-Nov-22	10:40 PM	65.5	62.6	59.1	65.9	64.5	55.4	43.5
21-Nov-22	10:50 PM	66.1	61.9	58.7	57.7	54.2	47.1	35.0
21-Nov-22	11:00 PM	66.3	63.0	59.0	57.6	57.2	52.7	46.6
21-Nov-22	11:10 PM	66.7	62.1	60.0	58.9	56.0	50.0	35.7

	10-minute period	Average Octave Band Sound Level, Leq, dB						
Date	beginning	63	125	250	500	1000	2000	4000
21-Nov-22	11:20 PM	65.2	62.2	59.5	63.0	58.8	51.7	35.8
21-Nov-22	11:30 PM	64.1	62.2	58.8	55.9	51.5	45.5	33.7
21-Nov-22	11:40 PM	65.4	62.1	58.2	54.5	50.1	44.5	34.9
21-Nov-22	11:50 PM	63.5	60.5	57.1	54.2	50.2	42.4	32.7
22-Nov-22	12:00 AM	63.6	60.2	58.5	58.3	55.0	44.8	32.4
22-Nov-22	12:10 AM	63.2	60.2	57.9	57.9	54.1	45.2	31.8
22-Nov-22	12:20 AM	62.3	59.9	56.7	53.2	47.7	39.8	30.3
22-Nov-22	12:30 AM	62.6	60.2	57.0	53.4	48.0	39.8	29.9
22-Nov-22	12:40 AM	62.0	59.8	56.4	52.8	47.6	39.1	29.4
22-Nov-22	12:50 AM	61.8	59.9	56.4	52.9	48.0	40.1	29.2
22-Nov-22	1:00 AM	62.6	59.5	58.6	59.4	56.1	44.3	27.1
22-Nov-22	1:10 AM	65.6	62.9	58.8	59.4	52.6	43.9	26.6
22-Nov-22	1:20 AM	62.6	60.5	56.5	52.9	46.9	37.4	26.1
22-Nov-22	1:30 AM	63.4	60.2	56.8	53.2	46.9	37.8	26.2
22-Nov-22	1:40 AM	63.1	60.1	57.1	53.7	46.9	37.0	25.4
22-Nov-22	1:50 AM	62.7	60.2	56.9	52.6	46.2	36.7	25.5
22-Nov-22	2:00 AM	64.5	62.6	57.8	56.0	54.9	48.7	45.5
22-Nov-22	2:10 AM	62.7	59.9	56.8	52.7	46.8	44.8	31.1
22-Nov-22	2:20 AM	64.7	64.6	59.7	56.7	54.9	51.6	44.7
22-Nov-22	2:30 AM	65.0	65.8	61.0	57.6	56.5	52.4	45.9
22-Nov-22	2:40 AM	66.7	65.6	62.0	59.3	57.8	52.1	46.2
22-Nov-22	2:50 AM	66.4	62.3	57.7	54.8	52.1	51.2	37.5
22-Nov-22	3:00 AM	65.0	61.0	55.9	52.9	49.0	47.7	35.6
22-Nov-22	3:10 AM	63.3	62.7	56.6	52.6	49.4	45.7	35.1
22-Nov-22	3:20 AM	66.4	63.4	57.5	53.6	50.2	46.1	35.5
22-Nov-22	3:30 AM	67.4	67.7	59.1	54.5	52.4	51.4	43.6
22-Nov-22	3:40 AM	58.8	58.2	54.5	51.1	41.2	31.9	20.4
22-Nov-22	3:50 AM	58.6	58.1	54.3	50.8	41.4	32.5	20.6
22-Nov-22	4:00 AM	61.4	58.6	54.8	50.7	42.0	32.8	20.5
22-Nov-22	4:10 AM	59.0	58.4	54.7	50.6	42.4	33.7	25.3
22-Nov-22	4:20 AM	59.7	58.7	55.1	50.9	43.1	33.1	20.4
22-Nov-22	4:30 AM	60.7	59.0	55.1	50.7	44.2	38.5	27.1
22-Nov-22	4:40 AM	61.1	60.3	55.8	51.4	44.4	35.5	22.0
22-Nov-22	4:50 AM	64.2	62.8	58.5	59.0	57.7	54.0	49.0
22-Nov-22	5:00 AM	67.0	63.8	57.9	58.1	57.4	52.8	47.7
22-Nov-22	5:10 AM	64.7	62.7	59.0	57.2	54.1	49.7	42.1
22-Nov-22	5:20 AM	65.0	61.8	57.4	55.7	54.1	49.5	44.6
22-Nov-22	5:30 AM	67.0	64.5	64.3	65.1	64.5	59.3	56.4
22-Nov-22	5:40 AM	66.4	64.5	59.2	59.4	59.2	55.5	51.1

	10-minute period	Average Octave Band Sound Level, Leq. dB						
Date	beginning	63	125	250	500	1000	2000	4000
22-Nov-22	5:50 AM	64.6	62.6	57.5	56.4	54.4	48.6	45.5
22-Nov-22	6:00 AM	65.2	62.4	60.1	61.2	59.5	48.4	33.2
22-Nov-22	6:10 AM	66.1	64.0	60.7	60.6	59.1	53.4	48.6
22-Nov-22	6:20 AM	66.1	63.6	59.8	59.4	58.0	53.9	48.8
22-Nov-22	6:30 AM	65.5	62.1	58.0	57.0	55.8	49.9	50.0
22-Nov-22	6:40 AM	66.1	64.5	60.6	60.2	57.6	51.6	49.1
22-Nov-22	6:50 AM	65.5	60.9	56.4	53.0	48.7	41.6	31.5
22-Nov-22	7:00 AM	64.1	62.6	59.2	61.9	57.3	48.2	28.4
22-Nov-22	7:10 AM	66.4	62.8	59.3	60.3	58.3	48.8	38.9
22-Nov-22	7:20 AM	64.1	61.9	57.4	54.5	51.0	41.4	29.0
22-Nov-22	7:30 AM	69.8	63.8	60.5	58.5	54.2	48.2	44.4
22-Nov-22	7:40 AM	64.8	63.5	60.4	56.4	54.7	51.9	50.3
22-Nov-22	7:50 AM	64.0	63.1	58.7	56.7	56.6	52.1	45.3
22-Nov-22	8:00 AM	68.1	62.8	59.7	58.9	58.1	50.5	46.2
22-Nov-22	8:10 AM	66.6	62.7	59.7	58.0	55.9	52.0	46.4
22-Nov-22	8:20 AM	67.0	64.2	60.6	61.2	59.4	54.1	49.3
22-Nov-22	8:30 AM	66.2	62.8	59.3	58.3	56.6	52.4	48.0
22-Nov-22	8:40 AM	65.5	61.7	59.3	56.4	55.4	51.5	43.8
22-Nov-22	8:50 AM	66.0	64.1	60.8	60.6	60.0	54.1	50.6
22-Nov-22	9:00 AM	63.4	61.4	58.6	57.6	55.1	49.3	45.2
22-Nov-22	9:10 AM	66.4	66.4	61.7	63.2	61.4	56.5	51.6
22-Nov-22	9:20 AM	65.5	63.0	57.5	58.6	57.5	52.0	46.7
22-Nov-22	9:30 AM	65.2	63.1	59.6	56.8	51.6	46.5	38.4
22-Nov-22	9:40 AM	65.6	64.6	61.1	60.5	58.3	54.5	49.4
22-Nov-22	9:50 AM	72.7	71.2	63.6	58.0	51.0	56.3	41.6
22-Nov-22	10:00 AM	74.4	73.9	66.2	63.8	60.6	58.3	51.4
22-Nov-22	10:10 AM	73.6	73.8	66.9	63.8	62.2	56.3	50.9
22-Nov-22	10:20 AM	70.0	73.1	68.0	63.2	64.4	56.6	50.0
22-Nov-22	10:30 AM	72.7	75.9	66.4	61.0	60.0	54.9	49.6
22-Nov-22	10:40 AM	71.3	74.0	63.4	58.1	56.0	50.0	41.2
22-Nov-22	10:50 AM	68.1	72.9	71.7	59.5	57.9	53.8	49.3
22-Nov-22	11:00 AM	66.4	72.6	73.4	59.7	57.1	51.3	41.0
22-Nov-22	11:10 AM	68.3	71.6	70.2	61.9	59.3	53.0	46.7
22-Nov-22	11:20 AM	69.1	71.3	65.7	59.7	58.0	52.7	45.5
22-Nov-22	11:30 AM	70.1	72.9	62.1	57.7	55.3	50.1	38.5
22-Nov-22	11:40 AM	70.9	73.9	63.0	58.6	56.8	52.2	45.1
22-Nov-22	11:50 AM	72.3	73.3	64.8	62.0	60.1	56.5	52.9
22-Nov-22	12:00 PM	68.9	71.8	65.6	63.4	55.7	52.1	45.2
22-Nov-22	12:10 PM	71.8	74.9	66.2	63.1	63.0	52.6	41.5

	10-minute period	Average Octave Band Sound Level, Leq, dB							
Date	beginning	63	125	250	500	1000	2000	4000	
22-Nov-22	12:20 PM	72.3	75.8	67.2	60.7	56.6	52.7	46.1	
22-Nov-22	12:30 PM	72.5	75.7	67.0	57.4	54.4	49.3	40.2	
22-Nov-22	12:40 PM	73.0	75.4	67.3	59.2	56.6	52.0	44.8	
22-Nov-22	12:50 PM	73.9	75.5	67.6	58.3	54.2	48.9	40.7	
22-Nov-22	1:00 PM	72.9	73.9	66.3	57.7	54.8	50.1	40.9	
22-Nov-22	1:10 PM	70.3	72.3	64.3	61.1	59.4	54.4	49.8	
22-Nov-22	1:20 PM	69.0	72.5	64.1	60.7	58.1	53.3	49.1	
22-Nov-22	1:30 PM	72.8	73.0	64.9	62.7	61.0	57.6	52.7	
22-Nov-22	1:40 PM	69.9	73.2	65.7	61.2	60.3	56.3	50.7	
22-Nov-22	1:50 PM	70.4	73.5	66.1	60.3	59.8	56.3	49.9	
22-Nov-22	2:00 PM	70.0	73.9	65.9	60.8	59.3	56.2	51.5	
22-Nov-22	2:10 PM	71.7	74.6	66.9	60.7	59.2	55.3	50.1	
22-Nov-22	2:20 PM	72.2	74.6	67.7	63.4	62.3	57.4	53.0	
22-Nov-22	2:30 PM	74.1	74.6	66.8	60.6	54.8	52.8	48.4	
22-Nov-22	2:40 PM	76.0	74.6	63.8	60.7	54.5	52.5	48.5	
22-Nov-22	2:50 PM	76.6	76.5	68.5	59.3	55.3	51.7	47.4	
22-Nov-22	3:00 PM	78.6	74.9	68.7	59.4	53.3	47.3	40.2	

3

1	Appendix E
2	Soil Management Plan, Berths 191 through 194

SOIL MANAGEMENT PLAN PORT OF LOS ANGELES BERTHS 191 THROUGH 194 WILMINGTON, CALIFORNIA

Prepared For CITY OF LOS ANGELES HARBOR DEPARTMENT

425 SOUTH PALOS VERDES STREET SAN PEDRO, CALIFORNIA 90731

Prepared By LEIGHTON CONSULTING, INC.

2600 MICHELSON DRIVE, SUITE 400 IRVINE, CALIFORNIA 92612

Project No. 13832.009 APP No. 170720-511 H

December 7, 2023

SOIL MANAGEMENT PLAN PORT OF LOS ANGELES BERTHS 191 THROUGH 194 WILMINGTON, CALIFORNIA

Prepared For:

City of Los Angeles Harbor Department

425 SOUTH PALOS VERDES STREET SAN PEDRO, CALIFORNIA 90731

Prepared By:

LEIGHTON CONSULTING, INC.

Project No. 13832.009

December 7, 2023

Prepared by:

Mark Withrow, PE Principal Engineer

Michael Priestaf, MS, PG Project Geologist

TABLE OF CONTENTS

Sect	<u>ion</u>		<u>Page</u>						
1.0	INTR	RODUCTION	1						
2.0	SITE BACKGROUND								
	2.1 2.2 2.3	Site Location and Description Site History Contaminants of Concern 2.3.1 Soil 2.3.2 Groundwater 2.3.3 Soil Vapor	3 5 6						
3.0	PLA	NNED CONSTRUCTION ACTIVITIES							
	3.1	Recommended Areas for Special Handling	7						
4.0	PROJECT RESPONSIBILITIES AND TRAINING REQUIREMENTS								
	4.1 4.2 4.3 4.4	DeveloperGeneral ContractorTraining and Other Regulatory RequirementsHarbor Department Notifications	10 10						
5.0	HEA	LTH AND SAFETY PLAN	13						
6.0	GENERAL MANAGEMENT REQUIREMENTS								
0.0	6.1 6.2 6.3 6.4 6.5 6.6 6.7	Soil Management Plan Limitations Site Control Dust and Air Pollution Control Stormwater Control Soil Stockpiling and Staging Soil Sampling and Analysis Water Sampling and Analysis Decontamination Procedures	14 14 16 16 17						
		6.8.1 General Decontamination Procedures6.8.2 Decontamination of Heavy Equipment and Trucks6.8.3 Decontamination Water and Wastewaters	22						
7.0	WAS	STE MANAGEMENT REQUIREMENTS	24						
	7.1 7.2 7.3 7.4	Waste Minimization Waste Handling Waste Classification Waste Disposal	24 25						
		7.4.1 Soil Waste	26						

			Liquid Waste.						
		7.4.3	Solid Waste						28
	7.5	Wast	e Documentatio	n					28
8.0	ОТН	ER POI	LLUTION PRE\	/ENTION A	AND CON	NTROL			29
	8.1	Mate	rial and Equipm	ent Staging	g Area				29
	8.2	Loadi	ing Areas						29
	8.3		eling Operations						
	8.4	•	Prevention Mea						
	8.5	Onsit	e Accidental Re	leases and	d Mitigatio	on Plans			31
9.0	BAC	KFILL I	MATERIAL RE	QUIREMEI	NTS				33
Figu	re 1 – S		ing Figures and cation Map n	<u>Appendice</u>	<u>:S</u>				
Арре	endix A	– Refe	rences						
Appe	endix B		eline Environme essment	ntal Assess	sment, Ac	ddendun	n, and H	luman He	ealth Risk
Appe	endix C	- SCA	QMD Rule 1166	3, SCAQMI	D Rule 14	166, and	SCAQ	MD Rule	403
Appe	endix D		of Los Angeles ember 2021	Environme	ental Guid	lance for	· Industr	ial Fill Ma	aterial
Арре	endix E	- DTS	C Advisory Clea	ın Import F	ill Materia	al Octobe	er 2001		
Appe	endix F	- Reco	mmended Was	te Disposa	I Facilities	S			

1.0 INTRODUCTION

Leighton Consulting, Inc. (Leighton), on the behalf of the City of Los Angeles Harbor Department (Harbor Department) Environmental Management Division (EMD), has prepared this Soil Management Plan (SMP) for the Port of Los Angeles (POLA) Berths 191 through 194, referred to herein as "the Site", located in Wilmington, California (Figure 1).

Based on information provided by EMD, Leighton understands that the Site may be redeveloped into a cement-processing facility. The proposed redevelopment plan, which includes the construction of product intake hoppers and conveyors, mills, silos, workshop and office buildings, storage yards, stormwater infrastructure, and waterside improvements, is anticipated to include soil excavation, stockpiling, sampling, characterization, and off-site disposal, as well as handling of groundwater that may be encountered during construction activities.

The objectives of this SMP are:

- Identify known contamination at the Site.
- Identify key roles and responsibilities of the workers during future development activities at the Site.
- Identify project responsibilities and training requirements to protect worker health and safety, ensure proper management of waste streams, and support long-term stewardship of the Site.
- Reduce the potential for workers at the Site to be exposed to hazardous materials originating from the subsurface of the Site during planned and future intrusive activities.
- Provide procedures and protocols to be followed for the management of impacted soil and other wastes during intrusive activities at the Site.
- Identify proper handling and management practices to minimize waste generation and disposal during planned and future intrusive activities at the Site.
- Ensure waste generated at the Site is properly documented and disposed of in accordance with federal, state, and local regulations.
- Minimize the potential for a release of hazardous materials from beneath the Site to the environment (i.e., surface water, soils, sediments, and air).

This SMP shall be followed for any future development activities at the Site. Section 4.0 identifies the key roles, responsibilities, and training requirements during implementation of this SMP.

2.0 SITE BACKGROUND

2.1 Site Location and Description

The Site encompasses approximately 5.66 acres and is located east of Canal Street and south of Yacht Street in Wilmington, California (Figure 1). The Site partially occupies portions of two parcels identified by the Los Angeles County Assessor's Office as APN 7440-010-910 and APN 7440-013-909. At present, the Site is developed with a boatyard and associated equipment storage areas and Harbor Department-owned laydown areas. The vicinity is developed for industrial use and consists of fueling terminals, container storage yards, boat repair and restoration, and berths associated with container shipping activities.

2.2 Site History

Historically, the Site was associated with the Former Wilmington Liquid Bulk Terminals, Inc. (Earth Tech, 2002), a yacht club, docks for boats, and a marine gas and oil station (Locus Technologies, 2010).

In 2017, Leighton completed a baseline environmental assessment of the Site, whereas the site was screened for existing conditions. Leighton observed the advancement of 49 soil borings and installation of 19 soil vapor probes. In addition, 19 grab groundwater samples were collected. Total Petroleum Hydrocarbons (TPH) were detected in 14 soil samples at concentrations exceeding health riskbased regulatory screening levels for industrial/commercial receptors, and Title 22 metals, including copper and lead, were detected in soil samples from four borings at concentrations exceeding hazardous waste criteria. TPH as Diesel Range Organics (DRO) and Gasoline Range Organics (GRO) as well as the chlorinated solvents tetrachloroethene (PCE) and trichloroethene (TCE) were detected in groundwater at concentrations exceeding health risk-based screening levels for industrial/commercial receptors (Leighton, 2018). In addition, PCE, TCE, and their degradation products cis-1,2-dichloroethene (cis-1,2-DCE) and vinyl chloride were detected in soil vapor at concentrations exceeding health-risk based screening levels for industrial/commercial receptors. Elevated concentrations of chlorinated solvents in soil gas could potentially be attributed to off-gassing from impacted groundwater.

In 2018, Enviro-Tox Services, Inc. (Enviro-Tox) prepared a human health risk assessment (HHRA) for the Site and concluded that an increased risk to human health, posed by potential exposure to impacted soil, groundwater, and soil vapor,

was present in the western boundary and northern portion of the Site. The HHRA concluded that volatile organic compounds (VOCs) detected at soil gas location LB1-4 exceeds the generally accepted human health risk for commercial industrial workers. Volatilization of VOCs detected in groundwater at sampling locations LB1-GW, LB6-GW, LB37-GW, LB39-GW, LB40-GW, LB41-GW, LB48-GW, and LB49-GW could pose a vapor intrusion potential and cancer risks for future indoor workers if exposed. To mitigate such potential exposure, the HHRA recommended that some form of vapor mitigation measures (such as an impermeable membrane and passive venting system) be implemented at and around the soil gas and groundwater sampling locations mentioned above if a structure with worker occupancy is to be constructed in these areas, which are generally in the northern half of the Site (Appendix B, Figure 2). For the rest of the Site, the HHRA concluded that there is no significant health risk associated with vapor intrusion into future onsite buildings as normally constructed (i.e., without special mitigation measures or engineering controls).

The HHRA concluded that DRO detected in soil at the Site could exceed human health screening levels established by the United States Environmental Protection Agency and/or California Department of Toxic Substances Control. Soil sampling locations that exhibited DRO concentrations that exceed human health screening levels include LB17, LB28, LB33, and LB35 (Figure 2), and are generally located along the western boundary of the Site. LB35 is currently outside of the proposed project limits. As such, these areas shall remain covered by at least four feet of soil, paving, or buildings, to minimize potential human health impacts to onsite workers. If redevelopment activities require soil excavation at these locations, excavated soil from these locations must be properly managed as described in this SMP.

In 2023, Leighton completed an addendum to the baseline environmental assessment of the Site in which the Site boundary was expanded to the northeast (Appendix B). The purpose of the expanded assessment was to screen the existing conditions beneath the expanded project boundary. Leighton observed the advancement of 10 soil borings and the installation of four soil vapor probes in the expanded northeastern portion of the Site. Grab groundwater samples were also collected from three of the 10 soil borings. DRO was detected in one soil sample at a concentration exceeding health risk-based regulatory screening levels for industrial/commercial receptors, lead and arsenic were detected in one sample at concentrations exceeding health-risk based regulatory screening levels for industrial/commercial receptors, and lead was detected in one sample at a

concentration exceeding hazardous waste criteria. In addition, Semi-Volatile Organic Compounds (SVOCs). specifically benzo(a)pyrene, dibenzo(a,h)anthracene, and naphthalene, were detected in two soil samples at concentrations exceeding health risk-based regulatory screening levels for industrial/commercial receptors. Finally, PCE was detected in one soil vapor sample at a concentration exceeding health risk-based regulatory screening levels for industrial/commercial receptors with an applied conservative attenuation factor (AF) of 0.03. Based on these results, Leighton recommended that a SMP be prepared for the Site and implemented during potential future redevelopment activities to minimize worker and public exposure to hazardous materials. Figure 2 depicts the approximate locations of soil samples identified by Leighton as exceeding health risk-based regulatory screening levels and hazardous waste criteria. If these areas remain undisturbed during future Site development, they should be covered with pavement to mitigate any future risk of exposure. If these soils are disturbed during future Site development, they should be excavated and managed in accordance with the procedures outlined in this SMP.

The baseline environmental investigation report and addendum and the HHRA are included in Appendix B. These documents show all of the historical sampling locations completed for the Site.

2.3 Contaminants of Concern

Previous environmental investigations at the Site have identified contaminants in environmental media at the Site. These Contaminants of Concern (COCs) depend on the specific environmental media (e.g., soil, groundwater, and soil vapor) as follows:

2.3.1 Soil

Known soil contaminants at the Site include:

- TPH as DRO.
- Title 22 Metals, specifically arsenic, copper, and lead.
- SVOCs, specifically benzo(a)pyrene, dibenzo(a,h)anthracene, and naphthalene.
- Polychlorinated biphenyls (PCBs), specifically Aroclor 1254 and Aroclor 1260.

Although VOCs have not previously been identified as COCs in soil at the Site, analysis for VOCs is required for waste profiling purposes. Soil excavated within the Site boundary shall be sampled for VOCs in addition to the COCs specified above, in accordance with procedures described in Section 6.6 of this SMP, prior to waste classification as summarized in Section 7.3 of this SMP.

2.3.2 **Groundwater**

Known groundwater contaminants at the Site include:

- TPH as DRO and GRO.
- VOCs.

2.3.3 Soil Vapor

Known soil vapor contaminants at the Site include:

VOCs, specifically cis-1,2-DCE, PCE, TCE, and vinyl chloride.

3.0 PLANNED CONSTRUCTION ACTIVITIES

Based on information provided by the Harbor Department, Leighton understands that the Site will be redeveloped into a cement-processing facility. The proposed redevelopment plan, which includes the construction of product intake hoppers and conveyors, mills, silos, workshop and office buildings, storage yards, stormwater infrastructure, and waterside improvements, is anticipated to include soil excavation, stockpiling, sampling, characterization, and off-site disposal, as well as handling of groundwater that may be encountered during construction activities.

3.1 Recommended Areas for Special Handling

Although all soils as the site should be managed in accordance with the SMP, below is a list of areas that if disturbed during future development require special handling due to previous environmental site characterizations and known contaminants that were encountered:

- Soil in the vicinity of boring LB5 located at northing 1,736,738.07, easting 6,483,379.90 and shown on Figure 2. The soil is known to be contaminated with lead in exceedance of hazardous waste criteria and must be segregated, sampled, and disposed of in accordance with the procedures described in this SMP. The resulting excavation should be backfilled with clean import material as described in Section 9.0 of this SMP.
- Soil in the vicinity of boring LB17 located at northing 1,736,731.77, easting 6,483,040.33 and shown on Figure 2. The soil is known to be contaminated with lead in exceedance of hazardous waste criteria and DRO in exceedance of health risk-based screening criteria and must be segregated, sampled, and disposed of in accordance with the procedures described in this SMP. The resulting excavation should be backfilled with clean import material as described in Section 9.0 of this SMP.
- Soil in the vicinity of boring LB28 located at northing 1,736,400.27, easting 6,483,110.62 and shown on Figure 2. The soil is known to be contaminated with DRO in exceedance of health risk-based screening criteria and must be segregated, sampled, and disposed of in accordance with the procedures described in this SMP. The resulting excavation should be backfilled with clean import material as described in Section 9.0 of this SMP.

- Soil in the vicinity of boring LB31 located at northing 1,736,298.63, easting 6,483,126.75 and shown on Figure 2. The soil is known to be contaminated with lead in exceedance of hazardous waste criteria and must be segregated, sampled, and disposed of in accordance with the procedures described in this SMP. The resulting excavation should be backfilled with clean import material as described in Section 9.0 of this SMP.
- Soil in the vicinity of boring LB33 located at northing 1,736,175.43, easting 6,483,118.28 and shown on Figure 2. The soil is known to be contaminated with lead in exceedance of hazardous waste criteria and DRO in exceedance of health risk-based screening criteria and must be segregated, sampled, and disposed of in accordance with the procedures described in this SMP. The resulting excavation should be backfilled with clean import material as described in Section 9.0 of this SMP.
- Soil in the vicinity of boring LB52 located at northing 1,736,990.15, easting 6,483,698.72 and shown on Figure 2. The soil is known to be contaminated with lead in exceedance of hazardous waste criteria and SVOCs in exceedance of health risk-based screening criteria and must be segregated, sampled, and disposed of in accordance with the procedures described in this SMP. The resulting excavation should be backfilled with clean import material as described in Section 9.0 of this SMP.
- Soil in the vicinity of boring LB54 located at northing 1,737,014.12, easting 6,483,637.05 and shown on Figure 2. The soil is known to be contaminated with DRO and SVOCs in exceedance of health risk-based screening criteria and must be segregated, sampled, and disposed of in accordance with the procedures described in this SMP. The resulting excavation should be backfilled with clean import material as described in Section 9.0 of this SMP.
- Soil in the vicinity of boring LB58 located at northing 1,737,015.40, easting 6,483,550.94 and shown on Figure 2. The soil is known to be contaminated with arsenic lead in exceedance of hazardous waste criteria and health risk-based screening criteria and must be segregated, sampled, and disposed of in accordance with the procedures described in this SMP. The resulting excavation should be backfilled with clean import material as described in Section 9.0 of this SMP.

If the above areas are not disturbed during construction, then special handling is not required. However, these areas should be covered with pavement to mitigate any future risk of exposure.

4.0 PROJECT RESPONSIBILITIES AND TRAINING REQUIREMENTS

4.1 <u>Developer</u>

The developer will be responsible for selecting the redevelopment general contractor (GC) and ensuring they are properly trained, capable of implementing the SMP and monitoring the GC's implementation to ensure compliance with the SMP requirements.

4.2 **General Contractor**

The GC and/or their authorized representative shall implement the SMP and be responsible for ensuring proper handling of the following:

- Stockpiling of excavated soil. Stockpiling shall be conducted in a manner to permit representative sample collection in accordance with this SMP. Stockpile requirements are further discussed in Sections 6.5 and 6.6.
- Waste segregation and characterization.
- Documentation and labeling of waste drums/containers, including pre-transport requirements (packing, marking, labeling, storing, and placarding of hazardous wastes before shipping).
- Tracking and maintaining waste inventory.
- Site-specific Health and Safety Plan (HASP) preparation and implementation.
- Procurement of waste profiles and manifests, signatures, qualified transporter, and disposal records (e.g., weight tickets, bill(s) of lading, and waste manifests).

Personnel at the Site shall also be required to comply with the requirements in this SMP in addition to any design specifications provided by the Harbor Department prior to construction.

4.3 <u>Training and Other Regulatory Requirements</u>

Field personnel implementing any soil disturbance activities at the Site must complete the training requirements of Occupational Safety and Health Administration (OSHA) hazardous communication 29 Code of Federal Regulations (CFR) 1910.1200. This training will be updated continuously, as environmental

concerns are addressed at tailgate safety meetings, or as needed. In addition, construction personnel must complete a Hazardous Waste Operations and Emergency Response (HAZWOPER) 24-hour or 40-hour training course, as applicable to their responsibilities, and an annual 8-hour refresher course, according to OSHA standard 29 CFR Part 1910.120 and 8 CCR § 5192.

Personnel visiting the Site shall, at a minimum, follow the health and safety requirements as described in a Site-specific HASP (Section 5.0), as well as the instructions of the designated Site Health and Safety Officer (SHSO) when work is in progress. Equipment operators will be instructed regarding moving equipment in a manner that minimizes job hazards and any impacts to the environment.

Contractors testing and handling different types of waste must have appropriate qualifications, licenses, registrations, and required permits including, but not limited to, California Professional Engineering/Geologist licenses, California contractor and/or hazardous waste remediation contractor license (for excavation and handling of hazardous waste), California Department of Transportation (DOT) registration (for the transportation of hazardous waste), and South Coast Air Quality Management District (SCAQMD) Rule 1166 and 1466 permits (Appendix C), as necessary, to complete the proposed redevelopment work.

Depending on the results of analytical testing, soil excavated from the ground within the Site boundary may be reused on-site if it meets the requirements outline in the Harbor Department's *December 2021 Environmental Guidance for Industrial Fill Material* (Appendix D) or disposed of as waste at an appropriately licensed disposal/treatment facility. Water removed from the ground within the Site boundary must be disposed of as waste at an appropriately licensed treatment/disposal facility or through an appropriate National Pollutant Discharge Elimination System (NPDES) permit for discharge into the stormdrain. Therefore, the procedures and protocols described in this SMP for sampling and chemical analysis must be implemented for assessment of on-site reuse potential and waste characterization for off-site disposal.

All work must be conducted in accordance with the requirements identified in the Mitigation Monitoring and Reporting Program (MMRP) and Lease Measure (LM) prepared in the Environmental Impact Report.

4.4 Harbor Department Notifications

If any unexpected free product or other conditions not mentioned in this document are encountered during construction, the Contractor shall notify EMD (Ms. Rita Brenner at rbrenner@portla.org) within 24 hours of discovery.

5.0 HEALTH AND SAFETY PLAN

A HASP must be prepared for the Site by the Contractor and be reviewed by field staff prior to beginning work. The HASP will outline the minimum health and safety requirements to safely conduct work at the Site, based on known contamination and site conditions. A HASP provides guidance for the handling of known and unknown hazards that may be encountered at the Site as well as guidance to ensure a safe work environment for Contractor and subcontractor personnel working at the Site and in the vicinity. The HASP will incorporate the requirements specified by Cal-OSHA Hazardous Waste Operations Standards (Title 29 CFR, Section 1910.120) and California Code of Regulations (Title 8 CCR, Section 5192). The HASP outlines the anticipated physical and chemical hazards that may be encountered at the Site during construction. The HASP must be approved by a Certified Industrial Hygienist.

In addition, the HASP will address the appropriate level of Personal Protective Equipment (PPE) for onsite workers during construction activities at the Site. Use of Level D PPE, including steel-toed boots, hard hats, safety goggles, hearing protection, and work gloves, is anticipated. The HASP will include a description of conditions, events, or encounters that may affect the required level of PPE.

The Contractor will hold tailgate safety meetings to discuss potential hazards at the beginning of each workday, when new personnel are introduced to the Site, and when new conditions or hazards arise to warrant such meetings. These meetings will identify potential workplace hazards and problems so that appropriate control measures can be implemented. Copies of tailgate safety meeting notes and a list of attendees will be kept onsite by the Contractor until the completion of the project for documentation purposes.

6.0 GENERAL MANAGEMENT REQUIREMENTS

Chemically impacted soil (CIS) will likely be encountered beneath the Site during intrusive activities. This section presents the requirements for the sampling, handling, and management of soils and water removed from beneath the Site.

6.1 Soil Management Plan Limitations

The requirements and procedures defined in this SMP are applicable only within the Site boundaries. The extent of the Site is shown on Figures 1 and 2. Areas beyond the Site boundary are not included within the purview of this SMP.

6.2 Site Control

Access to soil disturbance work areas will be controlled to prevent exposure of unauthorized persons to CIS. Access to soil disturbance work areas will be controlled using temporary fencing, delineators, cones, caution tape, or other measures to clearly designate the area and/or prevent access by the public or other unauthorized personnel.

6.3 <u>Dust and Air Pollution Control</u>

To reduce the generation and potential migration of contaminated dust, the Contractor will implement dust control measures in accordance with SCAQMD Rule 1466 during the excavation, loading, stockpiling, transport, grading, and compaction of all soil within the boundary of the Site. The dust control measures to be implemented include but are not limited to the following:

- Wet suppression of exposed soil prior to excavation or other earthwork activities, during excavation or other earthwork activities, and prior to loading into bins or trucks for transportation and off-site disposal. Water will be applied as needed to dampen the surface without generating runoff.
- Modifying earthwork procedures to minimize dust generation e.g., emptying excavator or loader buckets more slowly and/or from minimal heights.
- Reduction of vehicle speeds in areas with exposed soil.
- Mandatory covering of soil bins and truck beds or trailers using deployable tarps or lids prior to leaving the Site.
- Immediate cleanup and removal of any spilled soil.

- Loose soil will be removed in the designated decontamination area prior to loads departing the Site.
- Proper covering of exposed soil excavations or stockpiles at the end of each workday or while not involved in active work activities. Additional requirements regarding the management of soil stockpiles are described in Section 6.5.
- Use of approved track-out control devices at vehicle access points to the work area.
- Prevention of track-out more than 25 feet beyond the property boundary.
- Daily removal of track-out using a vacuum and high efficiency particulate air filter.
- Monitoring of airborne particulate matter with diameters of 10 micrometers or less (PM10) along the work area perimeter using two or more stationary aerosol monitors. Implementation of additional dust control measures and/or cessation of earthwork if perimeter PM10 concentrations, as determined by the difference between the upwind and downwind samples collected by the aerosol monitors, exceed 25 micrograms per cubic meter (μg/m³).
- Cessation of earthwork if measured wind speeds exceed 15 miles per hour (mph) over a 15-minute period or if instantaneous wind speeds exceed 25 mph.

Air monitoring is required per SCAQMD Rules 403, 1166, and 1466 during any grading and dust generating activities at the Site. Air monitoring protocols are dependent and specific to each SCAQMD Rule and will be determined by conditions encountered during construction activities, and/or as determined by the HASP. If odors are evident, all work will stop, and appropriate monitoring will be conducted to determine whether the level of PPE needs to be upgraded and to determine steps needed to comply with any permits. The HASP will identify action levels of potential contaminants that may be encountered for upgrades and downgrades of PPE. If the air monitoring readings from the excavation soil are more than 50 parts per million by volume (ppmv) as detected by a photo-ionization detector (PID), then it is considered VOC-impacted, and the Contractor is required to notify SCAQMD in accordance with a Rule 1166. Copies of Rules 1166, 1466, and 403 are provided in Appendix C.

6.4 Stormwater Control

Stormwater pollution controls will be implemented by the Contractor during earthwork activities within the Site boundary to minimize stormwater runoff, which may entrain CIS. The Contractor will be responsible for preparing a project Storm Water Pollution Prevention Plan (SWPPP) prior to the start of work. The SWPPP must be prepared by a California certified Qualified SWPPP Developer (QSD) and SWPPP monitoring must be conducted by a California certified Qualified SWPPP Practitioner (QSP). The SWPPP will specify stormwater Best Management Practices (BMPs) and controls to be implemented, which may include but are not limited to staging soil stockpiles away from storm drain inlets, covering and protecting in-place nearby storm drains, covering soil stockpiles and excavations prior to forecasted rain events, installation of temporary berms, silt fences, and straw bales around soil stockpiles and open excavations, and compliance sampling.

6.5 Soil Stockpiling and Staging

Solid and liquid waste will require appropriate handling to protect worker exposure and reduce potential impacts to the environment. All solid and liquid wastes should be sampled and tested as specified in this SMP and/or following specific waste profiling requirements set forth by the disposal/treatment facilities and local, state, and federal regulatory requirements. Appropriate waste disposal methods and facilities will be determined through completion of the chemical analyses and waste profiling process.

Soil excavated within the subject area will be either temporarily stockpiled or placed in an appropriate container, such as a waste roll-off bin or United States Department of Transportation (DOT)/United Nations (UN)-approved 55-gallon drum, in a waste staging area adjacent to the excavation (if possible) or within a controlled area of the Site as described in Section 6.2. The following procedures and controls will be implemented regarding the stockpiling and staging of soil:

- Soil to be stockpiled or containerized will be wetted prior to excavation, transportation, and stockpiling or containerization to minimize dust generation during these activities. Additional dust control requirements are described in Section 6.3.
- Soil stockpiles will **not** be staged in or near storm drain inlets or channels or areas of high stormwater flow.

- Soil stockpiles will be protected from stormwater run-on using a temporary perimeter sediment barrier such as berms, dikes, silt fences, or sand/gravel bags.
- Soil stockpiles will be placed on a relatively impermeable material such as tarp or heavy plastic sheeting.
- At the end of each workday, prior to a forecasted storm or wind event, or when
 not involved in active work activities, soil stockpiles will be covered with a
 relatively impermeable material, such as tarp or plastic sheeting, and waste
 containers will be covered with a secured lid to minimize dust emissions and
 sediment runoff from stormwater. When deployed on a soil stockpile, the
 impermeable material will be secured in place with sandbags or other weights.
- Soil stockpiles and waste containers will be removed from the Site and disposed of in a timely manner following chemical profiling. Stockpiled or containerized soil that is determined to be hazardous waste will be stored in accordance with hazardous waste regulations and removed from the Site within 90 days of accumulation.

In addition to the guidelines provided above, stormwater BMPs will be incorporated into soil management procedures and as part of the project SWPPP.

6.6 Soil Sampling and Analysis

To determine the appropriate number of stockpile samples to be collected, the stockpile quantity will need to be estimated and the sampling frequency depicted below will be used to calculate the total number of soil samples to be collected from a specific stockpile. Sampling frequencies will be based on the guidance provided in the POLA Environmental Guidance for Industrial Fill Material (Appendix D) and the following:

- If the soil stockpile volume is estimated to be less than or equal to 1,000 cubic yards (CY), the total number of samples to be collected will be one (1) per 250 CY.
- If the soil stockpile volume is estimated to be 1,000 to 5,000 CY, the total number of samples to be collected will be four (4) samples for the first 1,000 CY plus one (1) for each additional 500 CY.

• If the soil stockpile volume is estimated to be greater than 5,000 CY, the total number of samples to be collected will be 12 for the first 5,000 CY plus one (1) for each additional 1,000 CY.

Once the number of samples to be collected has been determined, sampling may be conducted. To ensure collection of adequately representative samples, each sample shall be a composite of four sub-samples representing different areas within the stockpile. The stockpile, depending on its size, may be divided into sub-stockpiles for planned sampling. The sub-stockpile (or stockpile if less than the minimum quantity of 250 CY) soil sample will be collected as follows:

- 1. Divide the sub-stockpile into quadrants (four sections of equal size),
- 2. Collect a discrete sub-sample from each quadrant at a different depth, and
- 3. Submit the sub-samples to the laboratory for a composite sample analysis per sub-stockpile.

The following graphic illustrates the stockpiling, sub-dividing, and sampling technique to be used.

Soil Stockpile Subdividing and Sampling

For metals and other non-VOC analytes, the testing laboratory will composite subsamples from each sub-stockpile in the laboratory prior to conducting the prescribed analyses. For VOCs, only the sub-sample (not the composite sample) with the highest field VOC concentration collected by a PID from each substockpile shall be analyzed by the laboratory using the following protocol:

- Collect a VOC headspace reading from each sub-sample of the same substockpile using a PID in the field.
- Obtain Terracore® samples (USEPA Method 5035) as described below from the sub-sample that registers the highest PID reading in the field.
- Submit the Terracore® samples to the laboratory for a discrete sample analysis.

The stockpile soil sub-samples shall be collected manually using standard drilling and soil sampling equipment typically consisting of a slide hammer hand sampler and stainless-steel sleeves, or a trowel/shovel and laboratory-supplied 8-ounce glass jars. Each sub-sample should consist of two sleeves/jars. One of the sample sleeves/jars with the stockpile samples shall be screened in the field for VOCs, while the other sample sleeve(s) and its entire content shall be sealed with Teflon® sheets (after collection of the Terracore® sample) and plastic end caps.

All soil sub-samples shall be labeled with the project name, sample identification number, as well as the date and time of collection.

Composite soil samples will be analyzed by a National Environmental Laboratory Accreditation Program (NELAP)-accredited analytical laboratory for the following constituents by the analytical and sample preparation methods specified:

- Title 22 Metals by USEPA Methods 6010B/7471A.
- VOCs (for discrete Terracore® samples from the sub-sample with the highest PID reading) by USEPA Method 5035/8260B.
- TPH as DRO, GRO and Oil Range Organics (ORO) by USEPA Method 8015M.
- Polychlorinated biphenyls (PCBs) by USEPA Method 8082.
- SVOCs by USEPA Method 8270C SIM.

- Soluble Threshold Limit Concentration (STLC), as necessary, if the total concentration of each analyte meets or exceeds its respective ten times STLC value.
- Toxicity Characteristic Leaching Potential (TCLP), as necessary, if the total concentration of each analyte meets or exceeds its respective 20 times TCLP value.
- Any other analyses as required by the receiving landfill.

Sample preparation and analysis shall be completed within the required method holding time.

The soil samples shall be logged on a chain-of-custody form and stored on ice in a thermally insulated cooler at a temperature of 4 degrees Celsius ($^{\circ}$ C) \pm 2 $^{\circ}$ C immediately following collection of samples, and during transport to the laboratory.

The Waste Extraction Test (WET) and associated leachate analysis must be performed if the total bulk concentration of an analyte meets or exceeds ten times its respective STLC but does not meet or exceed its respective Total Threshold Limit Concentration (TTLC). The TCLP and associated leachate analysis must be performed if the total bulk concentration of an analyte meets or exceeds 20 times its respective TCLP value. All sample analyses must be performed within the required holding times.

Additional analyses may be required if excavated soil is further segregated due to odors, discoloration, or other evidence of non-characteristic contamination. EMD will be notified if for any reason workers suspect evidence of contamination other than those identified above.

In-situ sampling prior to excavation can be conducted for direct loading. This approach may be necessary if sufficient area is not available to stage stockpiles or containers. However, in-situ sampling does not provide the same level of confidence compared to sampling a stockpile where contamination can be observed. As a result, the number of samples needed for in-situ sampling is usually more than from a stockpile or container.

6.7 Water Sampling and Analysis

Earthwork activities within the Site boundary may result in the generation of wastewater. As described in Section 6.8, equipment that has contacted soil

originating from beneath the Site may require decontamination, which may result in the generation of wastewater and fluids. In addition, dewatering of water seepage from excavations or trenches may be required for certain construction activities. Sampling and analysis of wastewaters, regardless of the origin, will be required prior to discharge and/or off-site disposal.

Wastewater samples will be labeled with the project name, the sampler's name, a unique sample identification name and/or number, the requested analyses, and the date and time of sample collection. For each sample collected, an entry shall be made on a Chain-of-Custody form documenting the custody of the samples from collection through transport and analysis. Immediately following collection, all water samples will be stored along with the Chain-of-Custody form in a thermally insulated ice-cooled chest at a temperature of 4°C for transport to the analytical laboratory.

Each waste stream type (e.g., decontamination wastewater, decontamination fluids, dewatered wastewater, etc.) will be sampled separately in appropriately preserved laboratory-supplied containers and analyzed, at a minimum, for the following constituents by the analytical methods specified:

- Title 22 Metals by USEPA Methods 6010B/7470A.
- VOCs by USEPA Method 8260B.
- TPH as DRO, GRO, and ORO by USEPA Method 8015M:

Trip blanks provided by the laboratory shall also be analyzed when samples are submitted to the laboratory for VOC analysis. Sample preparation and analysis shall be completed within the required method holding time.

6.8 <u>Decontamination Procedures</u>

The following decontamination procedures will be followed:

6.8.1 General Decontamination Procedures

Prior to leaving the site, for general decontamination of tools, vehicles, and other equipment, dry or wet methods shall be used as follows:

 Loose soil will be removed from surfaces using dry decontamination methods, including but not limited to sweeping, brushing, scraping, or vacuuming.

 Viscous or other soil that cannot be readily dislodged from surfaces using dry decontamination methods will be removed using wet decontamination methods, including but not limited to scrubbing, pressure washing, or steam cleaning.

Decontamination will be conducted on plastic sheeting or within secondary containment to prevent potential dispersal of CIS and decontamination wastewater. CIS removed during general decontamination shall be collected and containerized or stockpiled for disposal as described in Section 6.5. Wastewater shall be accumulated in either DOT/UN-approved 55-gallon drums or temporary storage tanks (e.g., Baker tanks) and sampled for discharge and/or disposal as described in Section 6.7.

6.8.2 Decontamination of Heavy Equipment and Trucks

To prevent cross-contamination of waste material, decontamination procedures will be implemented.

Prior to leaving the site, all vehicles including heavy equipment and trucks entering areas of possible contamination will be decontaminated. Decontamination of trucks will first include wheel shakers to remove gross soil particles, followed by brushing off the tires/wheels. If brushing does not prove effective, the Contractor will use a pressure washer which will be made available near the decontamination area to provide wash fluids to thoroughly clean the tires. If wash fluids are used at the Site, care will be taken to clean vehicles such that the wash fluids remain within a visqueen lined decontamination area. Where possible, personal vehicles will not be driven or parked in areas of potential contamination to minimize the generation of decontamination fluids.

6.8.3 Decontamination Water and Wastewaters

Decontamination water and any wastewater that may be accumulated during the excavation/construction activities will be containerized in DOT/UN-approved 55-gallon drums or temporary storage tanks (e.g., Baker tanks) and sampled and discharged and/or disposed of in accordance with Sections 6.7 and 7.4.2. Stormwater BMPs will be implemented to ensure all stormwater will be captured and temporarily stored onsite in a secure manner, without inflow or outflow.

Removal of infiltrated/seeped groundwater from the excavations through pumping may be required for certain construction activities. The water generated from the dewatering activities shall be collected and containerized in the same manner as decontamination water or discharged in accordance with the requirements set forth in a NPDES or other applicable permits based on the work conducted.

7.0 WASTE MANAGEMENT REQUIREMENTS

It is anticipated that excavation and grading activities will generate waste streams that may consist of CIS, decontamination water, stormwater runoff, excavation dewatering, and general trash. In addition, any materials contaminated by spills or accidental releases during construction would be considered as a waste material. The waste will be characterized prior to disposal by evaluating its generation process (or sources), physical and chemical properties, and concentrations against applicable federal, state, and local waste classification criteria.

7.1 Waste Minimization

Workers at the Site shall make every effort to minimize debris, soil, dust, and water generated during construction activities. Waste minimization refers to the reduction in quantities generated, and types of waste that must be disposed of offsite. Methodologies that shall be implemented to minimize waste are:

- Conducting work activities involving waste close to the origin of the waste and in designated areas only.
- Minimizing transfer, transportation, and handling of waste to minimize the potential for spillage.
- Lining waste containers, truck beds, and equipment with plastic sheeting or other barriers to minimize the amount of decontamination required.
- Performing excavation and other intrusive activities in a manner such that waste materials may be easily segregated.

7.2 Waste Handling

Solid and liquid wastes require appropriate handling to protect workers, the public, and the environment from exposures and releases. As described in Section 4.0, workers will be required to complete specific training prior to participating in operations involving potential exposure to hazardous materials. In addition, all solid and liquid wastes will be sampled, analyzed, characterized, and disposed of as specified in this SMP and in accordance with federal, state, and local regulations and the requirements of both the Harbor Department and the disposal/treatment facilities. Appropriate waste disposal methods and facilities will be identified during the waste profiling process.

7.3 Waste Classification

Analytical results of waste samples will be compared to applicable federal, state, and local waste characterization criteria, including but not limited to hazardous characteristics (corrosivity, reactivity, ignitability, and toxicity), Resource Conservation and Recovery Act (RCRA) TCLP and California TTLC and STLC values, landfill waste discharge requirements issued by the Regional Water Quality Control Board or other local governing agency, to classify the waste and determine disposal requirements. Waste soil being assessed for on-site reuse potential must meet all testing requirements as stated in the POLA industrial fill requirements, which are included in Appendix D. The necessary documentation must be submitted to the Harbor Department's Environmental Management Division to obtain approval for soil reuse and prior to bringing any proposed fill source soils to the Site:

Rita Brenner
Marine Environmental Supervisor, Site Restoration Group
Port of Los Angeles
rbrenner@portla.org

In addition, soil producing a surface measurement of VOCs greater than 50 ppmv, as measured by a properly calibrated PID, will be classified as VOC-impacted, and the Contractor will be required to notify SCAQMD in accordance with Rule 1166.

Based on classification standards, wastes may be classified as one or more of the following categories:

- Non-hazardous: wastes that are not listed, do not exhibit hazardous characteristics, and contain concentrations of regulated chemical constituents below federal (RCRA) and state (non-RCRA) hazardous waste limits.
- California hazardous (non-RCRA hazardous) waste: wastes that are listed, exhibit hazardous characteristics, and/or contain concentrations of regulated chemical constituents above hazardous waste limits (TTLCs and/or STLCs) according to California (non-RCRA) hazardous waste criteria, but that are not federal (RCRA) hazardous wastes.
- Federal hazardous (RCRA hazardous) waste: wastes that are listed, exhibit hazardous characteristics, and/or contain concentrations of regulated chemical constituents above federal (RCRA) hazardous waste limits (TCLP values).

Liquid wastes, such as wastewater generated from equipment decontamination or seepage dewatered from excavations, will be sampled as described in Section 6.7 and analyzed according to requirements specified by either the off-site treatment facility or the approved NPDES permit. Liquid wastes designated for on-site discharge must meet the requirements of the approved NPDES permit while liquid wastes designated for off-site disposal will be classified as non-hazardous, California (non-RCRA) hazardous, or federal (RCRA) hazardous waste as determined by its characteristics and chemical concentrations.

7.4 Waste Disposal

Care should be exercised during the loading, removal, transportation, reuse, and disposal of waste generated at the Site in accordance with federal, state, and local regulations and requirements. These include but are not limited to CCR Titles 22, 23, and 26 et. seq.; California Health and Safety Code §25100 et. seq; and other regulations governing the waste disposal/treatment facility. All solid and liquid waste transported for offsite disposal/treatment must be accompanied by a non-hazardous or uniform hazardous waste manifest signed by an authorized representative. Disposal/treatment facilities must be established by the generator prior to receiving waste originating from the Site. Although not required, attached as Appendix F is a list of recommended disposal facilities used by the Harbor Department.

7.4.1 Soil Waste

Soil waste must be either reused on-site or disposed of at an approved disposal facility based on its waste classification. Following sampling and the receipt of laboratory analytical results, waste soil will be classified into the following categories:

- Non-hazardous and suitable for on-site reuse in accordance with POLA industrial fill requirements
- Non-hazardous and unsuitable for on-site reuse
- California hazardous (non-RCRA hazardous)
- Federal hazardous (RCRA hazardous)

In accordance with Harbor Department reuse requirements, neither Federal hazardous (RCRA hazardous) nor California hazardous (non-RCRA

hazardous) soil may be reused on-site. In addition, soil to be reused on-site must meet POLA industrial fill requirements (Appendix D).

Recommended disposal facilities for each waste category are included in Appendix F and below:

- Non-hazardous: Local landfills or non-hazardous waste treatment facilities. The temporary waste storage time shall not exceed 90 days from the start of waste generation.
- California hazardous (non-RCRA hazardous): Waste Management Kettleman Hills Hazardous Waste Facility in Kettleman City, California. The temporary waste storage time shall not exceed 90 days from the start of waste generation.
- Federal hazardous (RCRA hazardous): US Ecology in Beatty, Nevada. The temporary waste storage time shall not exceed 90 days from the start of waste generation.

7.4.2 Liquid Waste

Liquid waste may either be discharged on-site in accordance with an approved NPDES permit or disposed of at an approved disposal/treatment facility. Recommended disposal facilities for each waste category are included in Appendix F and below:

- Non-hazardous: World Oil Recycling in Compton, California. The temporary waste storage time shall not exceed 90 days from the start of waste generation.
- California hazardous (non-RCRA hazardous): Waste Management Kettleman Hills Hazardous Waste Facility in Kettleman City, California (for in-state disposal as California hazardous (non-RCRA hazardous) waste); La Paz County Landfill in Parker, Arizona (for out-of-state disposal as non-hazardous. The temporary waste storage time shall not exceed 90 days from the start of waste generation.
- Federal hazardous (RCRA hazardous): US Ecology in Beatty, Nevada.
 The temporary waste storage time shall not exceed 90 days from the start of waste generation.

Liquid waste determined to be hazardous under federal or state regulations may under no circumstances be discharged into the ground, public sewers, storm drains, or surface water bodies without regulatory approval.

Disposal of liquid waste into a nearby storm drain must be conducted in accordance with an approved NPDES permit. The Clean Water Act prohibits anybody from discharging "pollutants" through a "point source" into a "water of the United States" unless they have an NPDES permit. The permit will contain limits on what you can discharge, monitoring and reporting requirements, and other provisions to ensure that the discharge does not hurt water quality or people's health. Under no circumstances should the liquid waste be discharged into the ground, public sewers, storm drains, or surface water bodies without appropriate regulatory permits.

7.4.3 Solid Waste

Solid waste other than soil, such as used PPE, construction debris, and general trash will be disposed of in accordance with all applicable local, state, and federal regulations. Appropriate dumpsters or other containers will be used for common debris and waste. Any contaminated sorbent material, oily rags, or used oil filters shall be segregated from other solid waste, properly stored and labeled, and disposed of offsite in accordance with applicable laws and regulations. Solid waste that is not chemically impacted may be disposed of as municipal waste in accordance with applicable laws and regulations.

7.5 Waste Documentation

Original copies of laboratory analytical reports associated with waste characterization and chemical profiling; work logs documenting field activities involving waste sampling, handling, management, transportation, and disposal; and waste disposal records, including signed waste manifests, bills of lading, and weight tickets, shall be retained by the Site tenant. The tenant shall be the generator of all wastes and obtain their own EPA generator identification number, as needed.

8.0 OTHER POLLUTION PREVENTION AND CONTROL

This section describes the safety measures to be implemented during excavation, sampling, and construction activities. These include preventative measures to be used within the staging areas to ensure no accidental release of hazardous materials or long-term effects of contamination affect previously non-impacted soil and the environment, including surface and groundwater surrounding the excavation areas. The Contractor's Site Manager or designee will conduct visual inspection of the worksite to ensure compliance with this SMP and keep written records of inspection.

Any unanticipated releases which occur during construction shall be controlled and properly characterized and disposed of associated wastes as soon as feasible. Any release which impacts or has the potential to impact the waters of the State (i.e., channels, harbor, storm drains, etc.) shall be immediately reported to the Harbor Department in accordance with applicable regulations to coordinate additional notification of appropriate regulatory agencies, if required (See Section 4.0 for key roles and responsibilities).

8.1 <u>Material and Equipment Staging Area</u>

If material and/or equipment staging onsite is necessary, the area will be clearly demarcated and diesel fuel, gasoline, oil, grease, and/or other petroleum or chemical products that will be used during excavation/construction will be properly labelled and stored in this area. The storage area will be bermed around the perimeter with a 110% containment capacity. Maintenance of equipment will take place, if necessary, in a designated maintenance area or offsite. Preventative measures will be employed to minimize the potential of a spill. Any waste petroleum and or chemical products will be stored in properly labeled, corrosion resistant containers and removed from the Site as soon as practical, in compliance with all applicable regulations.

8.2 Loading Areas

Onsite trucks will be loaded with soil in the specified loading area for transport to the designated stockpile area if access restrictions prevent stockpiling adjacent to excavations. Trucks and trailers will be loaded with soil or debris using wheel loaders within this specified loading area for transporting to the disposal or treatment facility.

8.3 Refueling Operations

All trucks/vehicles will be refueled at an offsite fueling station. Refueling of heavy field equipment will occur only in the designated refueling area when necessary. The following safety measures will occur while refueling heavy field equipment:

- The engine will be stopped.
- Never completely fill the tank; allow some space for expansion.
- Avoid spillage by holding onto or staying with the nozzle until refueling is complete. In case of spills, clean up immediately, refer to Section 8.4.
- No smoking during refueling operations.
- Refuel in the open air.
- Keep a working fire extinguisher nearby.

A spill kit with absorbent must be kept near the designated fueling area in case of accidental discharge of fuel. In case of accidental discharge of fuel, utilize the spill kit and absorbent to remove as much free-flowing fuel as possible. Used absorbent shall be removed and stored in drums at the hazardous waste storage area. Listed wastes or hazardous wastes will be properly labeled, sealed, manifested, and hauled by an appropriate transporter to a disposal facility approved for receiving such hazardous waste.

8.4 **Spill Prevention Measures**

Chemicals such as gasoline, spray paint, and hydraulic oil may be hazardous unless handled properly in accordance with instructions outlined in the Safety Data Sheets (SDS) or Globally Harmonized System of Classification and Labelling of Chemicals Safety Data Sheets. SDS will be reviewed prior to handling any chemicals, including cleanup of spills. All chemicals will be properly handled, and appropriate protective equipment and clothing be required. The following measures shall be implemented to ensure safe handling of these chemicals:

- Where hazards exist due to chemical storage, special provisions must be made for handling or working around them. Handling and use of poisons, acids, caustics, and hazardous chemicals will be done by appropriately trained supervisory personnel.
- Review the SDS prior to using any material.

- Mixing chemicals will be prohibited unless chemical properties are known, and the Site Manager/supervisor is confident that no hazard exists.
- Fire-fighting equipment must be compatible with any chemicals or gases present.
- Appropriate protective equipment and sanitary facilities must be provided and used where contact with corrosive and toxic materials is possible or likely.
- To the extent possible, disposal of surplus or excess material will be avoided. If reuse is not possible, disposal of surplus or excess materials and containers must be handled in accordance with applicable laws and regulations.
- Containers, which have been used for toxic substances or poison, should never be used to store any other material.
- When handling volatile organic compounds or toxic chemicals, ensure adequate ventilation and that appropriate PPE is worn.
- Where there is any question regarding the safe use of a material, the Site Manager is to be notified. Mishandling of chemicals, oil, and fuel is dangerous and can result in injury or spillage, causing contaminated soil generation.

If a spill should occur the following steps will be taken:

- 1. Stop the leak or spill.
- Notify the Site Manager.
- 3. Contain spilled material with sorbent material.
- 4. Clean up the spilled and contaminated material.
- 5. Containerize the sorbent material into a container (metal drum for oily rags). Move the container to visqueen lined containment area at the Site.

8.5 Onsite Accidental Releases and Mitigation Plans

By following this SMP and implementing preventative measures, the potential of a hazardous release or spill is greatly reduced. However, onsite accidental releases can still occur and may include debris falling from trucks during transport to the storage area or fuel spills during refueling of excavation equipment, or oil spills during equipment repair. To further minimize this potential, all trucks transporting excavated soil from the Site will be covered with a tarp from the point of origin to

the point of unloading. It is recommended that the site Safety Officer or supervisor conduct periodic audits to make sure the proper procedures and protocols documented in the SMP are followed.

9.0 BACKFILL MATERIAL REQUIREMENTS

Excavation, trenching, and other intrusive activities within the Site boundary will require backfilling. Backfill materials shall meet current Harbor Department and DTSC requirements for imported fill material, as outlined in the "Environmental Guidance for Industrial Fill Material" (POLA, 2021) and "DTSC Fact Sheet: Information Advisory Clean Import Fill Material" (DTSC, 2001), included as Appendix D and Appendix E, respectively. The Contractor will ensure that imported backfill material is free of contaminants, oversized material, significant organic material, and construction debris. Soil that does not meet established compaction requirements defined in the design specifications will be excavated and replaced with properly compactable fill. The results of compaction testing, and the observations of overseeing field technicians will be recorded as required in the design specifications.

APPENDIX A

References

APPENDIX A

REFERENCES

- California Code of Regulations (CCR), Title 22, Division 4.5, Chapter 11, Article 3, Characteristics of Hazardous Waste.
- Department of Toxic Substances Control (DTSC), 2008. "Determination of a Southern California Regional Background Arsenic Concentration in Soil."
- Department of Toxic Substances Control (DTSC), 2011. "Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance)". October.
- Department of Toxic Substances Control (DTSC), 2020. "Supplemental Guidance: Screening and Evaluating Vapor Intrusion Draft." February.
- Department of Toxic Substances Control (DTSC), 2022. "Human and Ecological Risk Office (HERO), Human Health Risk Assessment (HHRA) Note Number 3: DTSC-modified Screening Levels." May. https://dtsc.ca.gov/wpcontent/uploads/sites/31/2022/02/HHRA-Note-3-June2020-Revised-May2022A.pdf
- Department of Toxic Substances Control (DTSC), 2014. "Human and Ecological Risk Office (HERO), Human Health Risk Assessment (HHRA) Note Number 5: Health-based Indoor Air Screening Criteria for Trichloroethylene." August 23.
- Department of Toxic Substances Control (DTSC), Los Angeles Regional Water Quality Control (LARWQCB), and San Francisco Bay Regional Water Quality Control Board (SFBRWQCB), 2015. "Advisory Active Soil Gas Investigations." July.
- Earth Tech, 2002. "Phase II Site Investigation Port of Los Angeles, Former Wilmington Liquid Bulk Terminals, Inc., Berths 191, 192, and 193, Los Angeles, California 90744." January.
- Enviro-Tox Services, Inc (Enviro-Tox), 2018. "Human Health Risk Assessment Berths 191-193, Wilmington, California." June 19.
- Leighton Consulting, Inc. (Leighton), 2018. "Baseline Environmental Site Characterization Report, Port of Los Angeles, Berths 191 through 193, Wilmington, California." April 13.
- Leighton Consulting, Inc. (Leighton), 2023. "Baseline Environmental Site Characterization Report Addendum, Port of Los Angeles, Berths 191 through 194, Wilmington, California." February 28.

- Locus Technologies (Locus), 2010. "Phase I/II Environmental Site Assessment, Berth 193 Port of Los Angeles." November 30.
- Port of Los Angeles (POLA), 2021. "Environmental Guidance for Industrial Fill Material." December.
- San Francisco Bay Regional Water Quality Control Board (SFBRWQCB), 2019. Environmental Screening Levels (ESLs) Summary Tables (Revision 2). https://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/esl.html January.
- United States Environmental Protection Agency (USEPA), 2023. Region 9 Industrial Regional Screening Levels (RSLs) Generic Tables | Risk Assessment. May. https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables

APPENDIX B

Baseline Environmental Site Assessment, Addendum, and Human Health Risk Assessment

BASELINE ENVIRONMENTAL SITE CHARACTERIZATION REPORT ADDENDUM PORT OF LOS ANGELES BERTHS 191 THROUGH 194 WILMINGTON, CALIFORNIA

Prepared For CITY OF LOS ANGELES HARBOR DEPARTMENT

425 SOUTH PALOS VERDES STREET SAN PEDRO, CALIFORNIA 90731

Prepared By LEIGHTON CONSULTING, INC.

2600 MICHELSON DRIVE, SUITE 400 IRVINE, CALIFORNIA 92612

APP# 170720-511 H

Project No. 12736.024

February 28, 2023

This document was prepared under the technical direction of the undersigned. We appreciate the opportunity to assist the City of Los Angeles Harbor Department on this project. If you have questions regarding this report addendum please call us at your convenience at *866-LEIGHTON*, directly at the phone extension and/or e-mail address listed below.

Respectfully submitted,

LEIGHTON CONSULTING, INC.

Mark Withrow, PE 83229

Associate Engineer

Ext 4211, <u>mwithrow@leightongroup.com</u>

MDW/Ir

Distribution: (1 PDF) Addressee

TABLE OF CONTENTS

<u>Sect</u>	ection ection			<u>Page</u>		
1.0	INTR	ODUCTION		1		
	1.1 1.2		ork			
2.0	BACKGROUND					
	2.1 2.2	Site DescriptionPrevious Investigations				
3.0	GEO	LOGIC AND H	HYDROGEOLOGIC CONDITIONS	3		
4.0	INVESTIGATIVE METHODOLOGY					
	4.1	Pre-field Act	ivities	5		
		4.1.2 Utility	h and Safety Plan Clearanceits	5		
	4.2 Field Activities		5			
		4.2.2 Grour	nvestigation ndwater Investigation/apor Survey	6		
	4.3 Laboratory Analysis			8		
			ndwater Laboratory Analyses Sas Laboratory Analyses			
5.0	INVE	STIGATIVE R	ESULTS	11		
	5.1 5.2 5.3	5.2 Analytical Results for Groundwater Samples				
6.0	CON	CLUSIONS		15		
	6.1 Soil			16		
7.0	REC	OMMENDATIO	ONS	18		
8.0	LIMI	TATIONS		19		
9.0	REFERENCES					

ATTACHMENTS:

Figure 1 – Site Location Map

Figure 2 – Site Plan

Table 1 – TPH in Soil

Table 2 – Metals in Soil

Table 3 – Soil Waste Characterization

Table 4 – VOCs in Soil

Table 5 – PAHs in Soil

Table 6 – PCBs in Soil

Table 7 – VOCs and Methane in Soil Vapor

Table 8 – TPH in Groundwater

Table 9 – Metals in Groundwater

Table 10 - VOCs in Groundwater

Table 11 – PAHs in Groundwater

Appendix A – Baseline Environmental Site Characterization Report

Appendix B – 2018 Human Health Risk Assessment

Appendix C – Boring Logs

Appendix D – Boring Permit

Appendix E – Laboratory Reports and Chain-of-Custody Documents

1.0 INTRODUCTION

Leighton Consulting, Inc. (Leighton Consulting) is pleased to present the City of Los Angeles Harbor Department (Harbor Department), Environmental Management Division (EMD) this report addendum summarizing the results of a baseline environmental site characterization of soil, soil gas, and groundwater at the Port of Los Angeles (POLA) Berths 191 through 194 located in Wilmington, California (Site, Figure 1). Our understanding of this project is based on the information provided to us by EMD and review of conceptual drawing "Ecocem Port of LA Site Layout." We understand the Site may undergo future development as a cement-processing facility. The proposed development plan includes product intake hoppers and conveyors to mills, siloes, workshop and office buildings, storage yards, stormwater infrastructure, electrical substation, and waterside improvements.

1.1 Objective

The objective of this baseline environmental site characterization is to determine what, if any, environmental impacts are present in the shallow soil, soil gas, and groundwater from activities on or near the Site prior to leasing the Site to a new tenant. In addition, this report addendum will provide data in areas of the Site that was not previously characterized.

1.2 Scope of Work

The scope of work included the following:

- Advancement of 10 exploratory soil borings to total depths between 4 feet and 10 feet below ground surface (bgs);
- Installation of soil gas probes in 4 of the 10 soil borings.
- Collection of soil, soil gas, and groundwater samples for chemical analysis; and
- Preparation of this report summarizing our findings and conclusions, including tables, illustrations and appendices.

2.0 BACKGROUND

2.1 <u>Site Description</u>

The Site encompasses roughly 5.66 acres and is located east of Canal Street and south of Yacht Street in Wilmington, California. Historically, the Site was associated with the Former Wilmington Liquid Bulk Terminals, Inc. (Earth Tech, 2002), a yacht club, docks for boats and a marine gas and oil station (Locus Technologies, 2010). The surrounding vicinity is industrial in nature, consisting of fueling terminals, container storage yards, and various berths associated with cargo/container shipping activities.

2.2 **Previous Investigations**

In 2017, Leighton Consulting completed a baseline site characterization of the Site. Leighton Consulting observed the installation of 49 soil borings and 19 soil vapor probes. In addition, 19 grab groundwater samples were collected. Total petroleum hydrocarbons (TPH) were detected in soil at concentrations exceeding health risk-based regulatory screening levels in 14 soil samples, and metals including copper and lead exceeded hazardous waste thresholds in soil from four boring locations. TPH and chlorinated volatile organic compounds (VOCs) were detected in grab groundwater samples. Tetrachloroethene and trichloroethene exceeded risk-based screening criteria. In addition, VOCs were detected in soil vapor at concentrations exceeded health risk-based screening criteria for commercial receptors (Leighton Consulting, 2018). Elevated soil vapor concentrations may be a result of off-gassing of contaminated groundwater. The baseline environmental site characterization report for this investigation is included in Appendix A.

A human health risk assessment (HHRA) was prepared for the Site by Enviro-Tox Services, Inc. (Enviro-Tox Services, 2018). The HHRA concluded that there was potential elevated risk due to exposure to contaminated soil and via a vapor intrusion pathway including contaminated groundwater. The HHRA recommended vapor mitigation and soil removals be implemented if redevelopment activities disturb certain areas. The HHRA is included in Appendix B.

3.0 GEOLOGIC AND HYDROGEOLOGIC CONDITIONS

The Site is located within the Los Angeles Coastal Plain (California Department of Water Resources [CDWR], 1961) of the Peninsular Ranges geomorphic province of southern California (Norris and Webb, 1990), approximately 17 miles south of downtown Los Angeles at the northern end of the Los Angeles Harbor. The Los Angeles Coastal Plain is a deep structural trough that has been filled primarily with unconsolidated Miocene through Recent age sediments or alluvium that are underlain by earlier Cenozoic bedrock. The Los Angeles Coastal Plain is bounded on the north by the Santa Monica Mountains; on the northeast by the low-lying Elysian, Repetto, Merced, and Puente Hills; on the east and southeast by the Santa Ana Mountains and San Joaquin Hills; on the south by the Palos Verdes Hills and the Pacific Ocean; and on the west by the Pacific Ocean (CDWR, 1961).

The Los Angeles Coastal Plain has been spatially divided by the CDWR into four groundwater basins (West Coast Basin, Central Basin, Santa Monica Basin, and Hollywood Basin) based on the hydrogeologic characteristics of the underlying strata and the locations of bounding geologic structures such as non-water-bearing rock and/or faults that impede groundwater movement. The Site is located within the West Coast Basin, west of the Central Basin and south of the Santa Monica and Hollywood groundwater Basins. The West Coast Basin is bordered on the east by the Newport-Inglewood Fault; on the west by Santa Monica Bay; on the north by the Ballona Gap (north of the Los Angeles International Airport), and on the south by the Palos Verdes Hills.

Based on lateral distribution and varying hydrogeologic characteristics, five major aquifers have been identified in the geologic formations underlying the West Coast Basin (CDWR, 1961). The aquifers consist of (from oldest to youngest) the Silverado and Lynwood Aquifers of the San Pedro Formation; the Gage Aquifer of the Lakewood Formation; and the Gaspur and semiperched aquifers of the recent Holocene age Alluvium. In general, the older/deeper Silverado and Lynwood aquifers are currently designated as drinking water sources and the younger shallow aquifers (Gage, Gaspur, and semiperched) are not currently used for drinking water purposes due to low yield and/or generally poor quality. Note that the in the Regional Water Quality Control Board's (RWQCB) August 28, 1998, Municipal and Domestic Water Supply Policy Staff Report, the portion of the West Basin including the Site has been de-designated and its underlying aquifers are no longer considered to be of beneficial use for drinking water.

Soils encountered during the investigation consisted primarily of gravel and silty sand in the shallow soil (less than 2.5 feet bgs) and sand in the deeper soil (greater than 2.5 feet

bgs). Stained soil was noted in one of the ten borings (LB51). Photoionization detector (PID) readings for the collected soil cuttings were all 0.0 parts per million by volume (ppmv), and are noted on the boring logs in Appendix C.

Groundwater was encountered between 4 and 5 feet bgs at the Site. The direction of groundwater flow is anticipated to be south-southeast towards the harbor and is expected to be tidally influenced.

4.0 INVESTIGATIVE METHODOLOGY

The investigative methodology developed for this project includes, and is limited to, the activities summarized below.

4.1 Pre-field Activities

4.1.1 Health and Safety Plan

A Site-Specific Health and Safety Plan (HSP) was prepared for work performed at the Site. All onsite Leighton Consulting personnel signed the HSP acknowledging acceptance. The document was kept onsite at all times during the field activities. The HSP was prepared in compliance with Title 8 Section 5192 of the California Code of Regulations (CCR), and the Occupational Safety and Health Administration (OSHA) Chapter 29 of the Code of Federal Regulations (29 CFR) 1910.120.

4.1.2 **Utility Clearance**

DigAlert of Southern California was contacted at least 72-hours prior to commencement of fieldwork to mark the location of public utilities that may enter the Site from nearby streets. The locations of the proposed borings were clearly marked with a stake and flag or white paint prior to contacting DigAlert. In addition, borings were cleared using hand auger equipment in the upper 5 feet of soil.

4.1.3 Permits

Prior to commencement of field activities, Leighton Consulting obtained a well permit from the County of Los Angeles Public Health, Department of Environmental Health (DEH). The permit was required for the advancement of select borings into groundwater. A copy of this permit is included in Appendix D.

4.2 Field Activities

4.2.1 Soil Investigation

On December 6, 2022, Leighton Consulting oversaw the advancement of 10 soil borings at the Site (LB50 through LB59). Boring locations are depicted on Figure 2. The borings were advanced using hand auger and

truck-mounted direct-push drilling equipment operated by Millennium Environmental, Inc. (Millennium) of Anaheim, California, a State of California licensed drilling contractor. During boring advancement, a PID was used to evaluate the soil cuttings for the presence or absence of volatile organic hydrocarbon vapors and monitor the worker breathing zone for health and safety purposes. Soil encountered during drilling was classified and logged in accordance with the Unified Soil Classification System (USCS). Detailed boring logs are included in Appendix C.

Soil samples were collected for chemical analysis from borings LB50 through LB59 at depths of 0.5 feet, 2.5 feet, 5 feet bgs, or until boring refusal or groundwater was encountered.

Soil samples were retained in 8-ounce laboratory-supplied glass jars or acetate sleeves capped with Teflon sheets and plastic end caps, and placed in an ice-cooled chest for storage and delivery to Jones Environmental Inc. (Jones) in Santa Fe Springs, California for chemical analysis. Jones is a State of California Environmental Laboratory Accreditation Program-certified (ELAP) laboratory. Each soil sample was field screened using a PID to evaluate the soil sample for the presence of volatile organic hydrocarbon vapors.

Down-hole drilling and sampling equipment was decontaminated between boreholes by washing in a solution of non-phosphate detergent and water, rinsing with potable water, final rinsing with distilled water, and allowing to air-dry.

Upon completion of soil sampling, groundwater sampling (described below), and soil gas survey (described below), the soil borings were backfilled with hydrated bentonite chips and the surface was returned to its original finish.

4.2.2 Groundwater Investigation

On December 6, 2022, grab groundwater samples were collected from three borings (LB50, LB51, and LB55). Boring locations are depicted on Figure 2. Groundwater was encountered during this investigation at depths ranging between 4 feet and 5 feet bgs. Each grab groundwater sample was collected by utilizing a Hydropunch® sampling device. The Hydropunch® sampling tool consisted of an approximately 2-inch diameter hollow steel rod equipped with an inner 4-foot long, 0.010-inch screened, steel rod. The

sampler was fitted with an expendable drive point at the bottom. The Hydropunch® sampling tool was advanced to the desired depth and the outer hollow steel rod was withdrawn 4-feet to expose the screen. Disposable tubing was then lowered through the hollow steel rods in the water column and extracted through the tubing with a peristaltic pump to bring the groundwater samples to the surface. The groundwater samples were retained in laboratory supplied containers, clearly marked with sample identification, placed in an ice-cooled chest for temporary storage, and transported to Jones for chemical analysis. Chain-of-custody protocol was followed throughout all phases of the sample handling process.

4.2.3 Soil Vapor Survey

A soil vapor survey was performed at the Site in accordance with the *Advisory – Active Soil Gas Investigations, Revised July 2015*, jointly developed by California Environmental Protection Agency – Department of Toxic Substances Control (DTSC) and California Regional Water Quality Control Board – Los Angeles and San Francisco Region's (LARWQCB and SFRWQCB).

On December 6, 2022, Leighton Consulting oversaw the installation of soil gas probes in the four soil boring locations (LB56 through LB59) as shown on Figure 2. Soil gas probes were installed at a depth of 3 feet bgs, based on the observed groundwater depth of 4 feet bgs. The soil gas probes consisted of inert ¼-inch nylaflow tubing fitted with a porous polyethylene implant at the terminus, which was set within one foot of sand, one foot of dry bentonite above, followed by hydrated bentonite. The surface end of the probe was fitted with a gas-tight luerlock to prevent infiltration of water or air. The soil gas probes were allowed to equilibrate for at least 72 hours prior to sampling.

Soil gas sample collection and chemical analysis was performed on December 13, 2022, by Jones Environmental, Inc. (Jones) of Santa Fe Springs, California. Samples were collected in Summa® canisters and analyzed at Jones fixed/stationary laboratory.

A shut-in test was conducted along the sampling train setup at each sampling depth and location, prior to purging each probe. If a leak was detected, the above-ground sampling train connections were checked and adjusted until no leaks are detected.

At each sampling depth and location, an electric vacuum pump (set to draw 0.200 liters per minute of soil gas at a maximum vacuum of 100-inches of water) was attached to the probe to purge the probe prior to sample collection. To remove stagnant air from the sampling system so that representative samples could be collected, a standard of three purge volumes was used.

Subsequent to purging, soil gas samples were obtained by drawing the sample through the luerlock connection, which connects the sampling probe to the sample container, 1-liter summa canisters under vacuum.

A tracer gas mixture of pentane, hexane, n-propanol, and isopropanol was applied onto a cloth in the area of the soil gas probes at each point of connection in which ambient air could enter the sampling system. These connection points included the top of the sampling probe where the tubing meets the probe connection and the surface bentonite seals. The tracer gas was not detected in the soil gas samples collected indicating that no ambient air compromised the soil gas analytical test data.

In addition, a methane soil vapor survey was conducted on December 6 and 13, 2022, to assess the presence of methane at the Site and determine the level of appropriate mitigation, if any, in accordance with City of Los Angeles Department of Building and Safety Information Bulletin P/BC 2020-101. Methane measurements were taken utilizing a RKI Eagle 4 Gas Meter and pressure was measured utilizing a magnahelic gauge.

Soil gas sampling points were abandoned by pulling the nylaflow tubing from the ground and the surface restored to its original condition.

4.3 <u>Laboratory Analysis</u>

Soil Laboratory Analyses

Soil samples collected from the Site at intervals of 0.5, 2.5, and 5.0 feet bgs were analyzed for total petroleum hydrocarbons (TPH) in the gasoline range (GRO), diesel range (DRO), and oil range (ORO) by Environmental Protection Agency (EPA) Method 8015M and 8620B and California Code of Regulations, and Title 22, Article 11 metals (CAM 17 metals) by EPA Methods 6010B/7000 series.

Select soil samples, based on the results of the above analyses, field screening methods (PID, visual, or olfactory), or boring location relative to known environmental concerns, were analyzed for the following:

- VOCs (22 total) by EPA Method 8260B, using EPA Method 5035 sample preservation protocols;
- Polynuclear aromatic hydrocarbons (PAHs) (10 total) by EPA Method 8270SIM; and
- Polychlorinated biphenyls (PCBs) (10 total) by EPA Method 8082;

Soil samples with detected concentrations of GRO above the reporting limit, DRO exceeding 500 milligrams per kilogram (mg/kg), ORO exceeding 1,000 mg/kg, or detected PID concentrations above 5 parts per million (ppm) were analyzed for the following:

- VOCs by EPA Method 8260B, using EPA Method 5035 sample preservation protocols;
- PAHs by EPA Method 8270SIM; and
- PCBs by EPA Method 8082.

Soil samples with arsenic, chromium, copper, and lead exceeding waste characterization criteria as defined in California Code of Regulations, Title 22, Chapter 11, Article 3, were analyzed using the soluble threshold limit concentration (STLC) waste extraction test (WET) using EPA Method 6010B and the toxicity characteristic leaching procedure (TCLP) test using EPA Method 1311.

4.3.1 Groundwater Laboratory Analyses

Groundwater samples collected from the Site were analyzed for the following constituents:

- GRO, DRO, and ORO by EPA Methods 8620B and 8015M;
- VOCs by EPA Method 8260B;
- Title 22 metals by EPA Method 6010B/7000 series;
- PAHs by EPA Method 8270SIM.

4.3.2 Soil Gas Laboratory Analyses

Soil vapor samples were analyzed for the following constituents:

- GRO and VOCs by EPA Method 8260B;
- Methane by RKI Eagle 4 Gas Meter

Soil vapor samples that were collected in Summa® canisters were submitted to the laboratory on a normal turnaround time basis (seven business days) and in accordance with standard QA/QC protocol.

Copies of the chain of custody forms and complete analytical reports are included in Appendix E.

5.0 INVESTIGATIVE RESULTS

5.1 Analytical Results for Soil Samples

The soil sample analytical results were compared to the following screening criteria:

- EPA Industrial Regional Screening Levels (RSLs) and DTSC Office of Human and Ecological Risk (HERO) Note Number 3 (DTSC-SL) values in an industrial setting for, metals (except arsenic), PAHs, PCBs, and VOCs;
- Environmental Screening Levels (ESLs) for direct exposure of TPH developed by the San Francisco Bay Regional Water Quality Control Board and updated in January 2019;
- The DTSC Southern California Background concentration of 12 milligrams per kilogram (mg/kg) for arsenic; and
- California Code of Regulations, Title 22, Division 4.5, Chapter 11, Article 3, Characteristics of Hazardous Waste.

The analytical results for soil samples are summarized in Tables 1 through 6 and as follows:

- GRO was detected in 3 of the 22 soil samples analyzed at concentrations ranging from 0.35 milligrams per kilogram (mg/kg) in boring LB58 at 0.5 feet bgs to 3.11 mg/kg in boring LB54 at 0.5 feet bgs. These concentrations of GRO do not exceed the Industrial ESL of 2,000 mg/kg.
- DRO was detected in 13 of the 22 soil samples that were analyzed at concentrations ranging from 27.1 mg/kg in boring LB53 at 2.5 feet bgs to 1,710 mg/kg in boring LB54 at 0.5 feet bgs. One sample, LB54-0.5, exceeded the Industrial ESL of 1,200 mg/kg.
- ORO was detected in 13 of the 22 soil samples analyzed at concentrations ranging from 479 mg/kg in boring LB53 at 2.5 feet bgs to 14,600 mg/kg in boring LB54 at 0.5 feet bgs. These concentrations of ORO do not exceed the Industrial ESL of 180,000 mg/kg.
- Title 22 Metals were detected in all of the soil samples analyzed with the exception of beryllium, selenium, silver, and thallium. Two metals were

detected at concentrations exceeding their respective industrial screening levels during this investigation.

- Arsenic was detected 3 of the 22 soil samples analyzed at concentrations ranging from 9.2 mg/kg in boring LB51 at 0.5 feet bgs to 938 mg/kg in boring LB58 at 2.5 feet bgs. One sample, LB58-2.5, exceeded the screening criteria of 12 mg/kg.
- Lead is detected in all of the soil samples analyzed at concentrations ranging from 1.0 mg/kg in boring LB51 at 2.5 feet bgs to 514 mg/kg in boring LB58 at 2.5 feet bgs. One sample, LB58-2.5, exceeded the Industrial DTSC-SL of 500 mg/kg.

Soil samples containing total arsenic, chromium, copper, and/or lead at concentrations above 10 times the STLC and 20 times the TCLP were analyzed using the STLC and TCLP waste extraction tests. The results of these analyses are summarized in Table 3 and below:

- Arsenic STLC was analyzed in one soil sample at a concentration less than 0.01 milligram per liter (mg/L) in boring LB58 at 2.5 feet bgs. This is below the STCL threshold value of 5 mg/L.
- Arsenic TCLP was analyzed in one soil sample at a concentration less than 0.10 mg/L in LB58 at 2.5 feet bgs. This is below the TCLP threshold value of 5 mg/L.
- Chromium STLC was analyzed in one soil sample at a concentration of 0.02 mg/L in boring LB58 at 2.5 feet bgs. This is below the STLC threshold value of 5 mg/L.
- Copper STLC was analyzed in two soil samples at concentrations of 0.98 mg/L in boring LB58 at 2.5 feet bgs and 5.30 mg/L in boring LB52 at 5 feet bgs. These are below the STLC threshold value of 25 mg/L.
- Lead STLC was analyzed in five soil samples with at concentrations ranging from 1.44 mg/L in boring LB57 at 0.5 feet bgs to 6.68 mg/L in boring LB52 at 5 feet bgs. One sample, LB52 at 5 feet bgs, exceeded the lead STLC threshold of 5 mg/L.
- Lead TCLP was analyzed in two soil samples at concentrations of 4.81 mg/L in LB52 at 5 feet bgs and less than 0.01 mg/L in LB58 at 2.5 feet bgs. The detected TCLP concentrations was below the TCLP threshold value 5 mg/L.

- VOCs Twelve VOCs were detected in the 22 soil samples and the detected concentrations were all below screening levels.
- PAHs Fifteen PAHs were detected in the 10 soil samples and the maximum detected concentrations are summarized as follows:

PAH	Concentration	RSL/DTSC-SL	Boring
Acenaphthene	380 μg/kg	23,000,000 µg/kg	LB55-0.5
Acenaphthylene	500 μg/kg	Not established	LB52-0.5
Anthracene	1,200 μg/kg	130,000,000 μg/kg	LB52-0.5
Benzo(a)anthracene	1,500 μg/kg	12,000 μg/kg	LB52-0.5
Benzo(a)pyrene	1,800 μg/kg	1,300 μg/kg	LB52-0.5
Benzo(b)fluoranthene	3,500 μg/kg	13,000 μg/kg	LB52-0.5
Benzo(g,h,i)perylene	1,200 μg/kg	Not established	LB52-0.5
Benzo(k)fluoranthene	990 μg/kg	130,000 μg/kg	LB52-0.5
Chrysene	3,000 μg/kg	1,200,000 μg/kg	LB52-0.5
Dibenz(a,h)anthracene	320 μg/kg	310 μg/kg	LB52-0.5
Fluoranthene	3,500 μg/kg	18,000,000 μg/kg	LB55-0.5
Indeno(1,2,3-cd)pyrene	1,200 μg/kg	13,000 μg/kg	LB52-0.5
Naphthalene	9,300 μg/kg	6,500 μg/kg	LB54-0.5
Phenanthrene	4,500 μg/kg	Not established	LB55-0.5
Pyrene	6,300 μg/kg	13,000,000 μg/kg	LB52-0.5

Note: Bold concentrations exceed screening criteria.

 PCBs – were not detected above laboratory reporting limits in the 10 soil samples analyzed.

5.2 <u>Analytical Results for Groundwater Samples</u>

Results of the chemical analyses of the groundwater samples were compared to the ESLs developed by the San Francisco Bay Regional Water Quality Control Board and updated in January 2019. Aquatic habit screening levels for saltwater were chosen for screening purposes since the Site is adjacent to the harbor.

The analytical results for groundwater samples are summarized in Tables 8 through 11 and as follows:

- GRO was not detected above the laboratory reporting limit of 0.10 mg/L.
- DRO was not detected above the laboratory reporting limit of 1.0 mg/L.
- ORO was not detected above the laboratory reporting limit of 1.0 mg/L.
- Title 22 Metals barium, molybdenum, vanadium, and zinc were detected in the groundwater samples analyzed and none of the detected concentrations exceeded associated ESL screening levels.
- VOCs Four VOCs were detected in the groundwater samples analyzed and none of the detected concentrations exceeded associated ESL screening levels.
- PAHs Seven PAHs were detected in the groundwater samples analyzed and none of the detected concentrations exceeded associated ESL screening levels.

5.3 Analytical Results for Soil Gas Samples

Results of the chemical analyses of the soil gas samples were compared to the adjusted DTSC-SLs and EPA RSLs for indoor air in an industrial setting assuming a future slab attenuation factor of 0.0005 (DTSC, 2011) and 0.03 (DTSC, 2020). The results of the laboratory analysis for the soil gas samples are summarized in Table 7.

VOCs were detected in three of the four soil gas samples analyzed. Four VOCs were detected with maximum concentrations as follows:

voc	Concentration	DTSC-SL	Boring	Probe Depth
PCE	0.104 μg/L	0.067 μg/L	LB59	3 feet bgs
Trichlorofluoromethane	0.044 μg/L	177 μg/L	LB59	3 feet bgs
1,2,4-Trimethylbenzene	0.010 μg/L	8.67 µg/L	LB56	3 feet bgs
m,p-Xylene	0.027 μg/L	14.7 μg/L	LB59	3 feet bgs

Note: Bold concentration exceeds the DTSC-SL using an attenuation factor of 0.03 (DTSC, 2020). This concentration does not exceed the DTSC-SL using an attenuation factor of 0.0005 (DTSC, 2011).

Methane was detected in all four of the soil gas samples analyzed at concentrations of ranging from 460 ppmv in LB56 at 3 feet bgs to 500 ppmv in LB59 at 3 feet bgs. Pressure readings were not detected above 0 inches of water.

6.0 CONCLUSIONS

The purpose of this investigation was to establish an environmental baseline for future tenants and to screen for the potential presence of hazardous substances in soil, soil gas, and groundwater at Berths 191 through 194 in Wilmington, California that could present a health risk to future commercial/industrial occupants of the Site. This investigation was intended to provide data in areas of the Site that was not previously characterized in 2017. To accomplish the objectives set forth in this investigation, 10 borings were advanced at the Site with the installation of four soil gas probes and collection of three grab groundwater samples.

6.1 Soil

DRO was detected above the Industrial ESL of 1,200 mg/kg in 1 of the 22 soil samples analyzed during this investigation from boring LB54 at 0.5 feet bgs (1,710 mg/kg). While there is no discernable trend in DRO impacted soil, DRO was found primarily within the surficial soil throughout the Site. This is consistent with the findings of the 2017 investigation.

Arsenic was detected above the Southern California Background concentration of 12 mg/kg in 1 of the 22 soil samples analyze during this investigation from boring LB58 at 2.5 feet bgs (938 mg/kg). Soil from this boring exceeded total threshold limit concentrations of 500 mg/kg but did not exceed TCLP thresholds. Therefore, soil in this area may be classified as non-resource conservation and recovery act (non-RCRA) hazardous waste (California hazardous) if removed from the Site.

Lead was detected above the Industrial DTSC-SL concentration of 500 mg/kg in 1 of the 22 soil samples analyze during this investigation from boring LB58 at 2.5 feet bgs (514 mg/kg). Soil from this boring did not exceed the STLC or TCLP thresholds. Therefore, soil in this area may be classified as non-hazardous waste if removed from the Site.

Lead was detected above the STLC threshold of 5.0 mg/L in boring LB52 at 5 feet bgs but did not exceed the TCLP threshold. Therefore, soil in this area may be classified as non-resource conservation and recovery act (non-RCRA) hazardous waste (California hazardous) if removed from the Site.

Three PAHs, benzo(a)pyrene, dibenz(a,h)anthracene, and naphthalene, had soil concentrations exceeding Industrial DTSC-SLs of 1,300 μ g/kg, 310 μ g/kg, and 6,500 μ g/kg, respectively. These exceedances occurred in borings LB52 at 0.5 feet bgs and LB54 at 0.5 feet bgs.

GRO, ORO, VOCs, PCBs, and metals other than arsenic and lead were not detected in the soil samples analyzed during this investigation at concentrations exceeding their respective industrial screening levels.

6.2 **Groundwater**

TPH was not detected in any of the groundwater samples analyzed during this investigation.

Barium, molybdenum, vanadium, and zinc were detected in the groundwater samples analyzed; however, detected concentrations did not exceed the ESL screening criteria. Since the groundwater beneath the Site is non-beneficial for municipal use and direct contact with groundwater beneath the Site is unlikely, these concentrations of metals in groundwater should not pose a risk to future commercial/industrial occupants of the Site.

Four VOCs, cis-1,2-dichloroethene, MTBE, PCE, and TCE, were detected in the groundwater samples analyzed; however, detected concentrations did not exceed the ESL screening criteria. Based on results of the 2017 investigation, the primary VOC contaminants of concern in groundwater were PCE and TCE. During this investigation, PCE and TCE concentrations were at least two orders of magnitude lower than detections from 2017.

Seven PAHs were detected in one groundwater sample from boring LB51.; however, detected concentrations did not exceed the ESL screening criteria.

6.3 Soil Gas

One VOC, PCE, was detected in soil gas at a concentration above the DTSC-SL of 0.067 $\mu g/L$ using an attenuation factor of 0.03. This exceedance occurred in vapor probe LB59 at 3 feet bgs at a concentration of 0.104 $\mu g/L$. This concentration did not exceed the DTSCL-SL of 4.0 $\mu g/L$ using an attenuation factor of 0.0005. Based on results of the 2017 investigation, the primary VOC contaminants of concern in soil gas were PCE, TCE, and vinyl chloride. During this investigation, TCE and vinyl chloride were not detected above laboratory reporting limits, and PCE was detected two orders of magnitude lower than the maximum PCE concentration from the 2017 investigation. Based on the results of this investigation, it appears that the location of the proposed workshop and office building has a low risk for vapor intrusion and is suitable for commercial/industrial

receptors. In addition, the methane testing results for this area were below 1,000 ppmv and vapor pressures were below two inches of water; therefore, the Site would be classified as Site Design Level I in accordance with the Los Angeles Municipal Code Ordinance No. 175790.

7.0 RECOMMENDATIONS

Based on the results of this investigation and the previous 2017 sampling, the Site soil contains contaminants of concern that exceed health-risked based screening criteria for commercial/industrial receptors and hazardous waste thresholds. We recommend a waste management plan be prepared for the Site and implemented during future redevelopment activities to minimize onsite worker and public exposure to hazardous materials. The waste management plan should identify known areas of concern and develop protocols to manage unforeseen conditions if encountered.

In general, observations should be made during any future Site redevelopment for areas of possible contamination such as, but not limited to, the presence of underground facilities, buried debris, waste drums, tanks, stained soil or odorous soils. Should such materials be encountered, further investigation and analysis may be necessary at that time.

8.0 LIMITATIONS

This investigation was conducted in a manner consistent with the level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions.

The observations and conclusions presented in this report are professional opinions based on the scope of activities, work schedule, and information obtained through the activities described herein, and are limited to the portion of the Site investigated. Opinions presented herein apply to property conditions existing at the time of our study and cannot necessarily be taken to apply to property conditions outside of the area investigated or changes that we are not aware of or have not had the opportunity to evaluate. It must be recognized that conclusions drawn from these data are limited to the portion of the Site investigated, and the amount, type, distribution, and integrity of the information collected at the time of the investigation, and the methods utilized to collect and evaluate the data. Although Leighton Consulting has taken steps to obtain true copies of available information, we make no representation or warranty with respect to the accuracy or completeness of the information provided by others.

9.0 REFERENCES

- California Code of Regulations, Title 22, Division 4.5, Chapter 11, Article 3, Characteristics of Hazardous Waste.
- California Department of Water Resources (DWR), 1961, Planned Utilization of the Ground Water Basins of the Coastal Plain of Los Angeles County, Bulletin No. 104.
- Department of Toxic Substance Control, Determination of a Southern California Regional Background Arsenic Concentration in Soil, 2008.
- Department of Toxic Substances Control, Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance), October 2011.
- Department of Toxic Substances Control, 2020. "Supplemental Guidance: Screening and Evaluating Vapor Intrusion Draft." February.
- Department of Toxic Substances Control, Human and Ecological Risk Office, Human Health Risk Assessment Note Number: 3, DTSC-modified Screening Levels, May 2022.
- Department of Toxic Substances Control, Human and Ecological Risk Office, Human Health Risk Assessment Note Number: 5, Health-based Indoor Air Screening Criteria for Trichloroethylene, August 23, 2014.
- Department of Toxic Substances Control Los Angeles Regional Water Quality Control Board and San Francisco Regional Water Quality Control Board, 2012, Advisory Active Soil Gas Investigations, July 2015.
- Earth Tech, Phase II Site Investigation Port of Los Angeles, Former Wilmington Liquid Bulk Terminals, Inc., Berths 191, 192 and 193, Los Angeles, California 90744, January 2002
- Enviro-Tox Services, Inc. Human Health Risk Assessment Berths 191-193, Wilmington, California, June 19, 2018.
- Leighton Consulting, Inc. Baseline Environmental Site Characterization Report, Port of Los Angeles, Berths 191 through 193, Wilmington, California, April 13, 2018.
- Locus Technologies, Phase I/II Environmental Site Assessment, Berth 193 Port of Los Angeles, November 30, 2010.

San Francisco Bay Regional Water Quality Control Board, Environmental Screening Levels, January 2019.

United States Environmental Protection Agency, 2022, Residential Regional Screening Levels, November 2022.

FIGURES

TABLE 1 TPH IN SOIL Berth 191-194

Wilmington, 0	California
---------------	------------

Sample ID	Depth (feet bgs)	Date	Units	GRO	DRO	ORO
HERO HHRA Note 3 II			mg/kg		500	18,000
RWQCB ESL Co	mmercial/Indust	rial Soil	mg/kg	2,000	1,200	180,000
LB50-0.5	0.5	12/6/2022	mg/kg		117	2,470
LB50-2.5	2.5	12/6/2022	mg/kg	<0.20	90.4	2,930
LB50-5	5	12/6/2022	mg/kg	<0.20	93.9	3,020
LB51-0.5	0.5	12/6/2022	mg/kg	<0.20	39.0	513
LB51-2.5	2.5	12/6/2022	mg/kg		<10.0	<10.0
LB52-0.5	0.5	12/6/2022	mg/kg	<0.20	551	5,960
LB52-2.5	2.5	12/6/2022	mg/kg	<0.20	223	9,790
LB52-5	5	12/6/2022	mg/kg	<0.20	<10.0	<10.0
LB53-0.5	0.5	12/6/2022	mg/kg	0.52	690	8,660
LB53-2.5	2.5	12/6/2022	mg/kg	<0.20	27.1	479
LB54-0.5	0.5	12/6/2022	mg/kg	3.11	1,710	14,600
LB54-2.5	2.5	12/6/2022	mg/kg	<0.20	<10.0	<10.0
LB55-0.5	0.5	12/6/2022	mg/kg	<0.20	281	8,940
LB55-2.5	2.5	12/6/2022	mg/kg	<0.20	<10.0	<10.0
LB56-0.5	0.5	12/6/2022	mg/kg	<0.20	32.7	1,050
LB56-2.5	2.5	12/6/2022	mg/kg	<0.20	<10.0	<10.0
LB57-0.5	0.5	12/6/2022	mg/kg	<0.20	<10.0	<10.0
LB57-2.5	2.5	12/6/2022	mg/kg	<0.20	<10.0	<10.0
LB58-0.5	0.5	12/6/2022	mg/kg	0.35	176	4,380
LB58-2.5	2.5	12/6/2022	mg/kg	<0.20	<10.0	<10.0
LB59-0.5	0.5	12/6/2022	mg/kg	<0.20	204	5,760
LB59-2.5	2.5	12/6/2022	mg/kg	<0.20	<10.0	<10.0

Notes:

TPH = total petroleum hydrocarbons

bgs = below ground surface

mg/kg = milligrams per kilogram

ESL = RWQCB Environmental Screening Level (February 2019)

HERO Note 3 = Department of Toxic Substances Control (DTSC) Office of Human and Ecological Risk (HERO) Note Number 3 (May 2022)

<0.20 = Not detected above the reporting detection limit.

-- = Not analyzed or not applicable

GRO = Gasoline Range Petroleum Hydrocarbons

DRO = Diesel Range Petroleum Hydrocarbons

ORO = Oil Range Petroleum Hydrocarbons

Bold concentrations were detected above laboratory reporting limit

Highlighted values exceed Industrial RSL

TABLE 2 METALS IN SOIL Berth 191-194 Wilmington, California

Sample ID	Depth (feet bgs)	Date	Units	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
USEPA RSL In	dustrial Soil	•	mg/kg	470	3.00	220,000	2,300	100		350	47,000	800	46	390	11,000	5,800	5,800	12	5,800	350,000
HERO HHRA Note 3 Industr	rial Soil Screening (Criteria	mg/kg		0.36		230	79				500	4.4		11,000					
STLC	x 10		mg/kg	150	50	1,000	7.5	10	50	800	250	50	2.0	3,500	200	10	50	70	240	2,500
TCLP	x 20		mg/kg		100	2,000		20	100			100	4.0			20	100			
Arsenic Backgrou	nd (DTSC, 2008)		mg/kg		12															
LB50-0.5	0.5	12/6/2022	mg/kg	<5.0	<5.0	83.8	<0.5	1.2	14.1	5.4	17.3	20.2	0.069	<0.5	14.9	<5.0	<0.5	<5.0	25.5	56.1
LB50-2.5	2.5	12/6/2022	mg/kg	<5.0	<5.0	90.8	<0.5	1.1	12.6	4.5	17.6	25.4	0.104	<0.5	13.3	<5.0	<0.5	<5.0	21.7	59.2
LB50-5	5	12/6/2022	mg/kg	<5.0	<5.0	59.2	<0.5	1.0	9.0	3.7	14.5	22.9	0.099	0.5	11.1	<5.0	<0.5	<5.0	19.2	55.3
LB51-0.5	0.5	12/6/2022	mg/kg	<5.0	9.2	95.9	<0.5	1.9	21.6	6.0	148	41.3	0.141	1.0	14.8	<5.0	<0.5	<5.0	31.0	153
LB51-2.5	2.5	12/6/2022	mg/kg	<5.0	<5.0	22.5	<0.5	0.8	7.4	3.1	3.0	1.0	0.041	<0.5	3.8	<5.0	<0.5	<5.0	19.4	17.7
LB52-0.5	0.5	12/6/2022	mg/kg	<5.0	<5.0	61.2	<0.5	1.4	11.7	5.0	89.4	34.0	0.126	<0.5	15.1	<5.0	<0.5	<5.0	25.4	106
LB52-2.5	2.5	12/6/2022	mg/kg	<5.0	<5.0	41.7	<0.5	0.8	5.8	3.6	14.8	5.6	0.040	<0.5	13.8	<5.0	<0.5	<5.0	22.0	28.8
LB52-5	5	12/6/2022	mg/kg	9.4	9.3	164	<0.5	3.3	21.3	8.8	377	171	0.138	<0.5	13.0	<5.0	<0.5	<5.0	37.2	173
LB53-0.5	0.5	12/6/2022	mg/kg	<5.0	<5.0	76.3	<0.5	1.5	13.2	5.5	52.5	30.9	0.096	<0.5	16.3	<5.0	<0.5	<5.0	30.7	145
LB53-2.5	2.5	12/6/2022	mg/kg	12.4	<5.0	74.3	<0.5	1.5	15.8	4.7	44.1	97.6	0.330	<0.5	7.9	<5.0	<0.5	<5.0	24.4	81.8
LB54-0.5	0.5	12/6/2022	mg/kg	<5.0	<5.0	78.3	<0.5	1.3	12.6	5.6	25.3	25.0	0.472	<0.5	16.2	<5.0	<0.5	<5.0	27.5	63.4
LB54-2.5	2.5	12/6/2022	mg/kg	<5.0	<5.0	30.6	<0.5	0.7	6.9	2.8	85.9	6.6	0.032	<0.5	3.4	<5.0	<0.5	<5.0	16.1	23.9
LB55-0.5	0.5	12/6/2022	mg/kg	<5.0	<5.0	83.3	<0.5	2.0	17.1	6.6	35.8	58.0	0.101	<0.5	15.4	<5.0	<0.5	<5.0	32.2	152
LB55-2.5	2.5	12/6/2022	mg/kg	<5.0	<5.0	35.1	<0.5	0.9	8.3	3.8	4.7	2.1	0.070	<0.5	4.6	<5.0	<0.5	<5.0	17.8	20.2
LB56-0.5	0.5	12/6/2022	mg/kg	<5.0	<5.0	51.8	<0.5	1.2	10.4	4.5	16.6	38.6	0.206	<0.5	8.9	<5.0	<0.5	<5.0	23.9	66.2
LB56-2.5	2.5	12/6/2022	mg/kg	<5.0	<5.0	31.8	<0.5	0.8	7.2	3.4	3.9	1.2	0.023	<0.5	4.6	<5.0	<0.5	<5.0	15.2	24.6
LB57-0.5	0.5	12/6/2022	mg/kg	<5.0	<5.0	80.8	<0.5	1.4	12.3	5.2	30.3	96.7	0.481	<0.5	10.4	<5.0	<0.5	<5.0	26.5	93.3
LB57-2.5	2.5	12/6/2022	mg/kg	<5.0	<5.0	33.9	<0.5	0.9	7.8	3.4	6.8	5.7	0.090	<0.5	4.4	<5.0	<0.5	<5.0	18.6	27.7
LB58-0.5	0.5	12/6/2022	mg/kg	<5.0	<5.0	51.2	<0.5	1.1	10.3	4.9	10.4	12.5	0.053	<0.5	10.8	<5.0	<0.5	<5.0	23.2	166
LB58-2.5	2.5	12/6/2022	mg/kg	6.7	938	65.0	<0.5	6.7	85.2	3.7	2010	514	0.059	<0.5	14.7	<5.0	<0.5	<5.0	20.3	1070
LB59-0.5	0.5	12/6/2022	mg/kg	<5.0	<5.0	49.7	<0.5	1.0	8.7	4.1	26.5	14.1	0.032	<0.5	11.8	<5.0	<0.5	<5.0	22.7	74.0
LB59-2.5	2.5	12/6/2022	mg/kg	<5.0	<5.0	29.4	<0.5	1.1	8.8	3.0	9.3	18.2	0.055	<0.5	6.8	<5.0	<0.5	<5.0	20.9	62.6

Notes:

mg/kg = milligrams per kilogram

bgs = below ground surface

ND<2.0 = Not detected above laboratory reporting limit as shown

-- = Not analyzed or not applicable

RSL = EPA Region 9 Industrial Regional Screening Level (November 2022)

Arsenic Background = DTSC Determination of a Southern California Regional Background Arsenic Concentration in Soil (DTSC, 2008)

HERO Note 3 = Department of Toxic Substances Control (DTSC) Office of Human and Ecological Risk (HERO) Note Number 3 (May 2022)

Bold concentrations were detected above laboratory reporting limit

Highlighted concentrations exceeds selected screening criteria

SOIL WASTE CHARACTERIZATION

Berth 191-194

Wilmington, California

Sample ID	Depth (feet bgs)	Date	Units	Arsenic (STLC/TCLP)	Chromium (STLC)	Copper (STLC)	Lead (STLC/TCLP)
ST	LC limit		mg/L	5	5	25	5.0
TC	LP limit		mg/L	5	5	-	5.0
LB52-5	5	12/6/2022	mg/L			5.30	6.68 / 4.81
LB53-2.5	2.5	12/6/2022	mg/L			-	ND<0.01 /
LB55-0.5	0.5	12/6/2022	mg/L				2.02 /
LB57-0.5	0.5	12/6/2022	mg/L			-	1.44 /
LB58-2.5	2.5	12/6/2022	mg/L	ND<0.10/ND<0.10	0.02	0.98	3.47 / ND<0.01

mg/L = milligrams per liter

bgs = below ground surface

ND<2.0 = Not detected above laboratory reporting limit as shown

-- = Not analyzed or not applicable

STLC = Soluble Threshold Limit Concentration

TCLP = Toxicity Characteristic Leaching Procedure

Highlighted concentrations exceeds selected screening criteria

TABLE 4 VOCs in SOIL Berth 191-194 Wilmington, California

							vviiiiiiiigto	, •								
Sample ID	Depth (feet bgs)	Date	Units	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	4-Isopropyltoluene	Ethylbenzene	Isopropylbenzene	m,p-Xylene	Naphthalene	n-Propylbenzene	o-Xylene	Tetrachloroethene	Toluene	Trichloroethene	Other VOCs
USEPA I	RSL Industrial Soil		μg/kg	1,800,000	1,500,000		25,000	9,900,000	2,400,000	8,600	24,000,000	2,800,000	100,000	47,000,000	6,000	varies
HERO HHRA Note 3 II	ndustrial Soil Scre	ening Criteria	μg/kg							6,500			2,700	5,300,000		varies
LB50-0.5	0.5	12/6/2022	μg/kg	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND
LB50-2.5	2.5	12/6/2022	μg/kg	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND
LB50-5	5	12/6/2022	μg/kg	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND
LB51-0.5	0.5	12/6/2022	μg/kg	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND
LB51-2.5	2.5	12/6/2022	μg/kg	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND
LB52-0.5	0.5	12/6/2022	μg/kg	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND
LB52-2.5	2.5	12/6/2022	μg/kg	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND
LB52-5	5	12/6/2022	μg/kg	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND
LB53-0.5	0.5	12/6/2022	μg/kg	10.2	6.8	ND<1.0	ND<1.0	ND<1.0	ND<2.0	32.8	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND
LB53-2.5	2.5	12/6/2022	μg/kg	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND
LB54-0.5	0.5	12/6/2022	μg/kg	69.7	ND<1.0	8.8	6.0	5.5	5.2	339	6.7	4.4	ND<1.0	ND<1.0	1.0	ND
LB54-2.5	2.5	12/6/2022	μg/kg	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND
LB55-0.5	0.5	12/6/2022	μg/kg	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	28.4	ND<1.0	ND<1.0	10.9	ND<1.0	ND<1.0	ND
LB55-2.5	2.5	12/6/2022	μg/kg	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND
LB56-0.5	0.5	12/6/2022	μg/kg	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND
LB56-2.5	2.5	12/6/2022	μg/kg	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND
LB57-0.5	0.5	12/6/2022	μg/kg	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND
LB57-2.5	2.5	12/6/2022	μg/kg	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND
LB58-0.5	0.5	12/6/2022	μg/kg	ND<1.0	ND<1.0	ND<1.0	40.5	ND<1.0	289	ND<5.0	ND<1.0	59.6	ND<1.0	1.1	ND<1.0	ND
LB58-2.5	2.5	12/6/2022	μg/kg	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND
LB59-0.5	0.5	12/6/2022	μg/kg	ND<1.0	ND<1.0	ND<1.0	10.9	ND<1.0	81.3	ND<5.0	ND<1.0	17.5	ND<1.0	ND<1.0	ND<1.0	ND
LB59-2.5	2.5	12/6/2022	μg/kg	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<5.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND

Notes:

VOCs = volatile organic compounds

bgs = below ground surface

μg/kg = micrograms per kilogram

ND<0.88 = Not detected above the laboratory reporting limit

-- = Not analyzed or not applicable

RSL = EPA Region 9 Industrial Regional Screening Level (November 2022)

HERO Note 3 = Department of Toxic Substances Control (DTSC) Office of Human and Ecological Risk (HERO) Note Number 3 (May 2022)

TABLE 5PAHs IN SOIL Berth 191-194 Wilmington, California

Sample ID	Depth (feet bgs)	Date	Units	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
USEF	PA RSL Industrial Soil		μg/kg	45,000,000		230,000,000	21,000	2,100	21,000		210,000	2,100,000	2,100	30,000,000	30,000	21,000	8,600		23,000,000
HERO HHRA Note	3 Industrial Soil Scree	ening Criteria	μg/kg	23,000,000		130,000,000	12,000	1,300	13,000		130,000	1,300,000	310	18,000,000	17,000	13,000	6,500		13,000,000
LB50-0.5	0.5	12/6/2022	μg/kg	ND<50	ND<50	ND<50	77	ND<50	ND<100	93	ND<50	57	ND<50	60	ND<100	ND<50	ND<50	ND<50	ND<100
LB50-5	5	12/6/2022	μg/kg	ND<50	70	120	150	ND<50	140	160	ND<50	120	ND<50	200	ND<100	60	ND<50	140	220
LB52-0.5	0.5	12/6/2022	μg/kg	ND<50	500	1,200	1,500	1,800	3,500	1,200	990	3,000	320	1,600	ND<100	1,200	ND<50	290	6,300
LB52-2.5	2.5	12/6/2022	μg/kg	ND<50	ND<50	ND<50	50	ND<50	ND<100	83	ND<50	ND<50	ND<50	ND<50	ND<100	ND<50	ND<50	ND<50	ND<100
LB53-0.5	0.5	12/6/2022	μg/kg	ND<50	170	430	690	640	1,200	570	480	1,200	ND<50	1,100	ND<100	490	ND<50	460	1,600
LB54-0.5	0.5	12/6/2022	μg/kg	ND<50	400	370	570	ND<50	ND<100	310	ND<50	1,100	ND<50	1,800	ND<100	ND<50	9,300	1,600	1,700
LB55-0.5	0.5	12/6/2022	μg/kg	380	120	980	580	ND<50	ND<100	170	ND<50	670	ND<50	3,500	ND<100	90	ND<50	4,500	3,100
LB56-0.5	0.5	12/6/2022	μg/kg	ND<10	ND<5.0	ND<5.0	7.0	ND<10	ND<10	11	ND<10	12	ND<5.0	8.3	ND<10	ND<5.0	ND<5.0	7.0	ND<10
LB58-0.5	0.5	12/6/2022	μg/kg	ND<50	ND<50	ND<50	110	ND<50	ND<100	100	ND<50	93	ND<50	ND<50	ND<100	ND<50	ND<50	77	110
LB59-0.5	0.5	12/6/2022	μg/kg	ND<50	ND<50	ND<50	73	ND<50	ND<100	140	ND<50	160	ND<50	57	ND<100	ND<50	ND<50	60	ND<100

Notes:

PAHs = Polynuclear aromatic hydrocarbons

bgs = below ground surface

ug/kg = micrograms per kilogram

ND<50 = Not detected above the laboratory reporting limit

-- = Not analyzed or not applicable

RSL = EPA Region 9 Industrial Regional Screening Level (November 2022)

HERO Note 3 = Department of Toxic Substances Control (DTSC) Office of Human and Ecological Risk (HERO) Note Number 3 (May 2022)

TABLE 6 PCBs IN SOIL Berth 191-194 Wilmington, California

Sample ID	Depth (feet bgs)	Date	Units	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Aroclor 1262	Aroclor 1268
USEPA RSL In	dustrial Soil		mg/kg	27	0.83	0.72	0.95	0.94	0.97	0.99		
HERO HHRA Note 3 Indust	rial Soil Screenir	ng Criteria	mg/kg	17	0.53	0.49	0.58	0.58	0.59	0.60		
LB50-0.5	0.5	12/6/2022	mg/kg	ND<0.050								
LB50-5	5	12/6/2022	mg/kg	ND<0.050								
LB52-0.5	0.5	12/6/2022	mg/kg	ND<0.050								
LB52-2.5	2.5	12/6/2022	mg/kg	ND<0.050								
LB53-0.5	0.5	12/6/2022	mg/kg	ND<0.050								
LB54-0.5	0.5	12/6/2022	mg/kg	ND<0.050								
LB55-0.5	0.5	12/6/2022	mg/kg	ND<0.050								
LB56-0.5	0.5	12/6/2022	mg/kg	ND<0.050								
LB58-0.5	0.5	12/6/2022	mg/kg	ND<0.050								
LB59-0.5	0.5	12/6/2022	mg/kg	ND<0.050								

Notes:

PCBs = Polychlorinated Biphenyls

bgs = below ground surface

mg/kg = milligrams per kilogram

ND<4.6 = Not detected above the reporting limit.

D1 = Sample required dilution due to possible matrix interference

RSL = EPA Region 9 Industrial Regional Screening Level (November 2022)

HERO Note 3 = Department of Toxic Substances Control (DTSC) Office of Human and Ecological Risk (HERO) Note Number 3 (May 2022)

VOCs AND METHANE IN SOIL VAPOR

Berth 191 - 194 Wilmington, California

		T		Ī	· ·			1	1	
Sample ID	Date	Depth (feet bgs)	Units	Tetrachloroethene	Trichloroethene	Trichlorofluoromethane (Freon 11)	1,2,4-Trimethylbenzene	m,p-Xylene	Other VOCs	Methane (ppmv)
	USEPA RS	L Industrial A	ir (AF = 0.0005)	94	6.0		520	880	varies	
	USEPA	RSL Industria	I Air (AF = 0.03)	1.57	0.1		8.67	14.7	varies	
	DTSC HERO No	ote 3 industri	al (AF = 0.0005)	4.0		10,600	1	1	varies	
	DTSC HERO	Note 3 indus	trial (AF = 0.03)	0.067		177			varies	
LB56-3	12/13/2022	3.0	μg/L	0.013	<0.008	<0.016	0.010	0.017	ND	460
LB57-3	12/13/2022	3.0	μg/L	<0.008	<0.008	<0.016	<0.008	<0.008	ND	490
LB58-3	12/13/2022	3.0	μg/L	0.050	<0.008	<0.016	<0.008	<0.008	ND	490
LB59-3	12/13/2022	3.0	μg/L	0.104	<0.008	0.044	<0.008	0.027	ND	500

Notes:

Screening levels are adjusted using a 0.0005 attenuation factor for future commercial/industrial use are from Table 2 of the 2011 Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance) In addition, an 0.03 attenuation factor was evaluted based on Draft DTSC Guidance (DTSC, 2020).

 μ g/L = micrograms per liter

ppmv= parts per million by volume

bgs = below ground surface

HERO Note 3 = Department of Toxic Substances Control (DTSC) Office of Human and Ecological Risk (HERO) Note Number 3 (May 2022)

RSL = EPA Region 9 Industrial Regional Screening Level (November 2022)

Methane values were collected with an RKI Eagle field instrument

-- = Not available

ND = non-detect

TPH IN GROUNDWATER

Berth 191-194

Wilmington, California

Sample ID	Date	Units	GRO	DRO	ORO
ESLs Saltwater Tox	ί.	mg/L	3.7	0.64	0.64
LB50-GW	12/06/22	mg/L	ND<0.10	ND<1.0	ND<1.0
LB51-GW	12/06/22	mg/L	ND<0.10	ND<1.0	ND<1.0
LB55-GW	12/06/22	mg/L	ND<0.10	ND<1.0	ND<1.0

Notes:

TPH = total petroleum hydrocarbons

mg/L = milligrams per liter

GRO = Gasoline Range Petroleum Hydrocarbons

DRO = Diesel Range Petroleum Hydrocarbons

ORO = Oil Range Petroleum Hydrocarbons

ESLs Saltwater Tox. = Environmental Screening Levels (ESLs) developed by the San Francisco Bay Regional Water Quality Control Board (February 2019) for saltwater aquatic habits

regional water Quality Control Board (1 chidaly 2015) for saltwater at

ND<0.05 = Not detected above laboratory reporting limit

-- = not applicable

METALS IN GROUNDWATER Berth 191-194 Wilmington, California

Sample ID	Date	Units	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
ESLs Saltwater Tox.		mg/L	0.5	0.036		-1	0.0093		1	0.0031	0.0081	0.000025		0.0082	0.071	0.00019	0.21		0.081
LB50-GW	12/06/22	mg/L	ND<0.100	ND<0.100	0.050	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.00010	0.022	ND<0.010	ND<0.100	ND<0.100	ND<0.100	ND<0.010	0.032
LB51-GW	12/06/22	mg/L	ND<0.100	ND<0.100	0.082	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.00010	0.018	ND<0.010	ND<0.100	ND<0.100	ND<0.100	0.012	0.024
LB55-GW	12/06/22	mg/L	Nd<0.100	ND<0.100	0.052	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.00010	0.031	ND<0.010	ND<0.100	ND<0.100	ND<0.100	ND<0.010	0.020

Notes:

mg/L = milligrams per liter

ESLs Saltwater Tox. = Environmental Screening Levels (ESLs) developed by the San Francisco Bay Regional Water Quality Control Board (February 2019) for saltwater aquatic habits

ND<0.13 = Not detected above laboratory reporting limit

-- = not applicable

VOCs IN GROUNDWATER

Berth 191-194 Wilmington, California

Sample ID	Date	Units	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Dibromochloromethane	MTBE	Tetrachloroethene	trans-1,2-Dichloroethene	Trichloroethene	Vinyl chloride
ESLs Saltwater To	ox.	μg/L	22,000	11,000	22,000	3,200	8,000	230	22,000	200	
LB50-GW	12/06/22	μg/L	ND<0.5	ND<0.5	3.3	ND<0.5	5.0	0.7	ND<0.5	2.9	ND<0.5
LB51-GW	12/06/22	μg/L	ND<0.5	ND<0.5	ND<0.5	ND<0.5	6.7	ND<0.5	ND<0.5	ND<0.5	ND<0.5
LB55-GW	12/06/22	μg/L	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5

Notes:

VOCs = volatile organic compounds

MTBE = methyl tertiary butyl ether

μg/L = micrograms per liter

ESLs Saltwater Tox. = Environmental Screening Levels (ESLs) developed by the San Francisco Bay Regional Water Quality Control Board (February 2019) for saltwater aquatic habits

ND<0.13 = Not detected above laboratory reporting limit

TABLE 11 PAHs IN GROUNDWATER Berth 191-194 Wilmington, California

Sample ID	Date	Units	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
ESLs Saltwate	er Tox.	μg/L	30	15	15	15	15	15	15	15	15	15	15	8.0	15	15	15	4.6	15
LB50-GW	12/06/22	μg/L	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00
LB51-GW	12/06/22	μg/L	ND<1.00	ND<1.00	ND<1.00	ND<1.00	1.98	1.22	3.78	ND<1.00	1.02	3.02	ND<1.00	1.22	ND<1.00	ND<1.00	ND<1.00	ND<1.00	1.56
LB55-GW	12/06/22	μg/L	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00

Notes:

PAHs = polynuclear aromatic hydrocarbons

μg/L = micrograms per liter
ESLs Saltwater Tox. = Environmental Screening Levels (ESLs) developed by the San Francisco Bay Regional Water Quality Control Board (February 2019) for saltwater aquatic habits

ND<0.13 = Not detected above laboratory reporting limit

-- = not applicable

APPENDIX A

Baseline Environmental Site Characterization Report

BASELINE ENVIRONMENTAL SITE CHARACTERIZATION REPORT PORT OF LOS ANGELES BERTHS 191 THROUGH 193 WILMINGTON, CALIFORNIA

Prepared For:

City of Los Angeles Harbor Department

425 South Palo Verdes Street San Pedro, California 90731

APP: 170720-511 Leighton Project No. 11618.005

April 13, 2018

April 13, 2018

APP: 170720-511

City of Los Angeles Harbor Department Environmental Management Division 425 South Palo Verdes Street San Pedro, California 90731

Subject: Baseline Environmental Site Characterization Report

Port of Los Angeles Berths 191 through 193,

Wilmington, California

INTRODUCTION

Leighton Consulting, Inc. (Leighton) is pleased to present the City of Los Angeles Harbor Department, Environmental Management Division (EMD) this report summarizing the results of a baseline environmental site characterization of soil, soil gas, and groundwater at the Port of Los Angeles (POLA) Berths 191 through 193 located in Wilmington, California (Site, Figure 1).

BACKGROUND

The Site encompasses roughly 6.8 acres and is located east of Canal Street and south of Yacht Street in Wilmington, California. Historically, the Site was associated with the Former Wilmington Liquid Bulk Terminals, Inc. (Earth Tech, 2002), a yacht club, docks for boats and a marine gas and oil station (Locus Technologies, 2010). The surrounding vicinity is industrial in nature, consisting of fueling terminals, container storage yards, and various berths associated with cargo/container shipping activities. References are included in Appendix A.

OBJECTIVE

The objective of this screening level environmental site characterization of soil, soil gas, and groundwater is to establish environmental baseline conditions for the future tenant and to determine what, if any, environmental impacts were present in the shallow soil, soil gas, and groundwater from activities on or near the Site which could present a health risk to future commercial/industrial occupants of the Site.

SCOPE OF WORK

The scope of work included the following:

- Advancement of 49 exploratory soil borings to total depths between 5 and 9 feet below ground surface (bgs);
- Installation of soil gas probes in 19 of the 49 soil borings.
- Collection of soil, soil gas, and groundwater samples for chemical analysis; and
- Preparation of this report summarizing our findings and conclusions, including tables, illustrations and appendices.

INVESTIGATIVE METHODOLOGY

The investigative methodology developed for this project includes, and is limited to, the activities summarized below.

Pre-field Activities

Health and Safety Plan

A Site Specific Health and Safety Plan (HSP) was prepared for work performed at the Site. All onsite Leighton personnel signed the HSP acknowledging acceptance. The document was kept onsite at all times during the field activities. The HSP was prepared in compliance with Title 8 Section 5192 of the California Code of Regulations (CCR), and the Occupational Safety and Health Administration (OSHA) Chapter 29 of the Code of Federal Regulations (29 CFR) 1910.120.

Underground Services Alert and Private Subsurface Utility Survey

Underground Service Alert (USA; also referred to as DigAlert) was contacted at least 48-hours prior to commencement of fieldwork to mark the location of public utilities that may enter the Site from nearby streets. The locations of the proposed borings were clearly marked with a stake and flag or white paint prior to contacting USA.

Additionally, prior to each round of sampling all of the proposed borings were checked for subsurface utilities by conducting a geophysical utility survey of the project area to evaluate for the presence of detectable buried magnetic, metallic, and electrically conductive features such as metal pipelines, buried tanks, debris, electrical lines, and other subsurface features in the area of the proposed borings. Boring locations that conflicted with identified underground utilities were relocated.

<u>Permits</u>

Prior to commencement of field activities, Leighton obtained a well permit from the County of Los Angeles Public Health, Department of Environmental Health (DEH). The permit was required for the advancement of select borings into groundwater. A copy of this permit is included in Appendix B.

Field Activities

Soil Investigation

On October 11 through 13 and December 13, 2017, Leighton oversaw the advancement of 49 soil borings at the Site (LB1 through LB49). Boring locations are depicted on Figure 2. The borings were advanced using truck-mounted direct-push drilling equipment operated by Millennium Environmental, Inc. (Millennium) of Anaheim, California, a State of California licensed drilling contractor. During boring advancement, a photoionization detector (PID) was used to evaluate the soil cuttings for the presence or absence of volatile organic hydrocarbon vapors and monitor the worker breathing zone for health and safety purposes. Soil encountered during drilling was classified and logged in accordance with the Unified Soil Classification System (USCS). Detailed boring logs are included in Appendix C.

Soil samples were collected for chemical analysis from borings LB1 through LB35 and LB45 through LB47, at depths of 0.5 feet, 2.5 feet, 5 feet bgs, or until boring refusal or groundwater was encountered. Soil samples were not collected from borings LB36

through LB44, LB48, and LB49, since these locations were selected for soil gas and groundwater assessment only.

Soil samples were retained in 8-ounce laboratory-supplied glass jars or acetate sleeves capped with Teflon sheets and plastic end caps, and placed in an ice-cooled chest for storage and delivery to Advanced Technology Laboratories, Inc. (ATL) in Signal Hill, California for chemical analysis. ATL is a State of California Environmental Laboratory Accreditation Program-certified (ELAP) laboratory.

Down-hole drilling and sampling equipment was decontaminated between boreholes by washing in a solution of non-phosphate detergent and water, rinsing with potable water, final rinsing with distilled water, and allowing to air-dry.

Upon completion of soil sampling and soil gas survey (described below), the soil borings were backfilled with hydrated bentonite chips and the surface was returned to its original finish.

Groundwater Investigation

On October 11 through 13 and December 13, 2017, grab groundwater samples were collected from 19 of the 49 borings (LB1, LB6, LB13, LB23, LB25, LB27, LB31, LB34, LB36 through LB44, LB48, and LB49). Boring locations are depicted on Figure 2. Groundwater was encountered during this investigation at depths ranging between 5.5 feet and 6 feet bgs. Each grab groundwater sample was collected by utilizing a Hydropunch[®] sampling device. The Hydropunch[®] sampling tool consisted of an approximately 2-inch diameter hollow steel rod equipped with an inner 4-foot long, 0.010-inch screened, steel rod. The sampler was fitted with an expendable drive point at the bottom. The Hydropunch® sampling tool was advanced to the desired depth and the outer hollow steel rod was withdrawn 4-feet to expose the screen. Disposable tubing was then lowered through the hollow steel rods in the water column and extracted through the tubing with a peristaltic pump to bring the groundwater samples to the surface. The groundwater samples were retained in laboratory supplied containers, clearly marked with sample identification, placed in an ice-cooled chest for temporary storage, and transported to ATL for chemical analysis. Chain-of-custody protocol was followed throughout all phases of the sample handling process.

Soil Gas Survey

A soil gas survey was performed at the Site in accordance with the *Advisory – Active Soil Gas Investigations*, *Revised July 2015*, jointly developed by California Environmental Protection Agency – Department of Toxic Substances Control (DTSC) and California Regional Water Quality Control Board – Los Angeles and San Francisco Region's (LARWQCB and SFRWQCB).

On October 11 through 13 and December 13, 2017, Leighton oversaw the installation of soil gas probes in the 19 of the 49 soil boring locations (LB1, LB6, LB13, LB23, LB25, LB27, LB31, LB34, LB36 through LB44, LB48, and LB49) as shown on Figure 2. Soil gas probes were installed at a depth of 4 feet bgs, based on the observed groundwater depth of 5 feet bgs. The soil gas probes consisted of inert ¼-inch nylaflow tubing fitted with a porous polyethylene implant at the terminus, which was set within one foot of sand, one foot of dry bentonite above, followed by hydrated bentonite. The surface end of the probe was fitted with a gas-tight luerlock to prevent infiltration of water or air. The soil gas probes were allowed to equilibrate for at least 72 hours prior to sampling.

Soil gas sample collection and chemical analysis was performed on October 17 and December 18, 2017, by an onsite mobile laboratory operated by Jones Environmental, Inc. (Jones) of Santa Fe Springs, California.

A shut-in test was conducted along the sampling train setup at each sampling depth and location, prior to purging each probe. If a leak was detected, the above-ground sampling train connections were checked and adjusted until no leaks are detected.

At each sampling depth and location, an electric vacuum pump (set to draw 0.200 liters per minute of soil gas at a maximum vacuum of 100-inches of water) was attached to the probe to purge the probe prior to sample collection with the exception of LB34. LB34 was manually evacuated using a glass syringe. To remove stagnant air from the sampling system so that representative samples could be collected, a standard of three purge volumes was used.

Subsequent to purging, soil gas samples were obtained by drawing the sample through the luerlock connection, which connects the sampling probe to the sample container. Soil gas samples were immediately injected into the onsite mobile laboratory gas chromatograph/purge and trap system after collection.

A tracer gas mixture of pentane, hexane, and heptane was applied onto a cloth in the area of the soil gas probes at each point of connection in which ambient air could enter the sampling system. These connection points included the top of the sampling probe

where the tubing meets the probe connection and the surface bentonite seals. The tracer gas was not detected in the soil gas samples collected indicating that no ambient air compromised the soil gas analytical test data.

Two duplicate soil gas samples were obtained and analyzed for the two-day soil gas survey.

Soil Laboratory Analyses

Soil samples were analyzed for total petroleum hydrocarbons (TPH) in the gasoline range (GRO), diesel range (DRO), and oil range (ORO) by Environmental Protection Agency (EPA) Method 8015M and California Code of Regulations, and Title 22, Article 11 metals (CAM 17 metals) by EPA Methods 6010B/7471A.

Soil samples with detected concentrations of GRO above the reporting limit, DRO exceeding 500 milligrams per kilogram (mg/kg), ORO exceeding 1,000 mg/kg, or detected PID concentrations above 5 parts per million (ppm) were analyzed for the following:

- Volatile organic compounds (VOCs) by EPA Method 8260B, using EPA Method 5035 sample preservation protocols; and
- Polynuclear aromatic hydrocarbons (PAHs) by EPA Method 8270SIM.

Soil samples with detected concentrations of total TPH above 1,000 mg/kg or collected from locations adjacent to pole-mounted transformers were analyzed for polychlorinated biphenyls (PCBs) by EPA Method 8082.

One randomly selected soil sample with elevated concentrations of total TPH (LB17-0.5) was analyzed for dioxin/furans by EPA Method 8290.

Soil samples with lead, copper, and mercury exceeding waste characterization criteria as defined in California Code of Regulations, Title 22, Chapter 11, Article 3, were analyzed for soluble lead, copper, and mercury using the soluble threshold limit concentration (STLC) waste extraction test (WET) using EPA Method 6010B and the toxicity characteristic leaching procedure (TCLP) test using EPA Method 1311.

Groundwater Laboratory Analyses

Groundwater samples were analyzed for GRO, DRO, and ORO by EPA Method 8015B, CAM 17 metals by EPA Method 6010B/7471A, VOCs by EPA Method 8260B, and PAHs by EPA Method 8270SIM.

Soil Gas Laboratory Analyses

Soil gas samples, including duplicates, were analyzed for the tracer gas and VOCs by EPA Method 8260B.

Copies of the chain of custody forms and complete analytical reports are included in Appendix D.

INVESTIGATIVE RESULTS

Geologic and Hydrogeologic Conditions

The Site is located within the Los Angeles Coastal Plain (California Department of Water Resources [CDWR], 1961) of the Peninsular Ranges geomorphic province of southern California (Norris and Webb, 1990), approximately 17 miles south of downtown Los Angeles at the northern end of the Los Angeles Harbor. The Los Angeles Coastal Plain is a deep structural trough that has been filled primarily with unconsolidated Miocene through Recent age sediments or alluvium that are underlain by earlier Cenozoic bedrock. The Los Angeles Coastal Plain is bounded on the north by the Santa Monica Mountains; on the northeast by the low-lying Elysian, Repetto, Merced, and Puente Hills; on the east and southeast by the Santa Ana Mountains and San Joaquin Hills; on the south by the Palos Verdes Hills and the Pacific Ocean; and on the west by the Pacific Ocean (CDWR, 1961).

The Los Angeles Coastal Plain has been spatially divided by the CDWR into four groundwater basins (West Coast Basin, Central Basin, Santa Monica Basin, and Hollywood Basin) based on the hydrogeologic characteristics of the underlying strata and the locations of bounding geologic structures such as non-water-bearing rock and/or faults that impede groundwater movement. The Site is located within the West Coast Basin, west of the Central Basin and south of the Santa Monica and Hollywood groundwater Basins. The West Coast Basin is bordered on the east by the Newport-Inglewood Fault; on the west by Santa Monica Bay; on the north by the Ballona Gap

(north of the Los Angeles International Airport), and on the south by the Palos Verdes Hills.

Based on lateral distribution and varying hydrogeologic characteristics, five major aquifers have been identified in the geologic formations underlying the West Coast Basin (CDWR, 1961). The aquifers consist of (from oldest to youngest) the Silverado and Lynwood Aquifers of the San Pedro Formation; the Gage Aquifer of the Lakewood Formation; and the Gaspur and semiperched aquifers of the recent Holocene age Alluvium. In general, the older/deeper Silverado and Lynwood aquifers are currently designated as drinking water sources and the younger shallow aquifers (Gage, Gaspur, and semiperched) are not currently used for drinking water purposes due to low yield and/or generally poor quality. Note that the in the Regional Water Quality Control Board's (RWQCB) August 28, 1998, Municipal and Domestic Water Supply Policy Staff Report, the portion of the West Basin including the Site has been de-designated and its underlying aquifers are no longer considered to be of beneficial use for drinking water.

Soils encountered during the investigation consisted primarily of gravel and silt in the shallow soil (less than 2.5 feet bgs) and silt and sand in the deeper soil (greater than 2.5 feet bgs). Stained or odorous soil was noted in a few borings (LB4, LB14, LB45, and LB46). Detections observed on the PID ranged from 0 to 1.5 parts per million by volume (ppmv), and are shown on the boring logs in Appendix C. The maximum PID reading of 1.5 ppmv was observed in boring LB4 at a depth of 3.5 feet bgs.

Groundwater was encountered between 5.5 and 6 feet bgs at the Site. The direction of groundwater flow is anticipated to be south-southeast towards the harbor and is expected to be tidally influenced.

Analytical Results for Soil Samples

The soil sample analytical results were compared to the following screening criteria:

- EPA Region 9 Industrial Regional Screening Levels (RSLs) and DTSC Office of Human and Ecological Risk (HERO) Note Number 3 values in an industrial setting for TPH, metals (except arsenic), PAHs, PCBs, and VOCs;
- The DTSC Southern California Background concentration of 12 milligrams per kilogram (mg/kg) for arsenic; and

- DTSC HERO Note Number 2 screening level of 22 picograms per gram (pg/g) for dioxins/furans; and
- California Code of Regulations, Title 22, Division 4.5, Chapter 11, Article 3, Characteristics of Hazardous Waste.

The analytical results for soil samples are summarized in Tables 1 through 7 and as follows:

- GRO was only detected in the soil sample collected from boring LB28 at 5 feet bgs (LB28-5.0) at a concentration of 400 mg/kg. This concentration does not exceed the Industrial RSL of 420 mg/kg.
- DRO was detected in all of the soil samples analyzed at concentrations ranging from 1.2 mg/kg in boring LB6 at 5.0 feet bgs to 11,000 mg/kg in boring LB28 at 5.0 feet bgs. Fourteen soil samples had DRO concentrations exceeding the Industrial RSL of 440 mg/kg (Figure 3). There is no discernable trend in DRO impacted soil.
- ORO was detected in all of the soil samples analyzed at concentrations ranging from 1.5 mg/kg in boring LB10 at 5.0 feet bgs to 17,000 mg/kg in boring LB35 at 5.0 feet bgs. The detected concentrations of ORO did not exceed the Industrial RSL of 33,000 mg/kg.
- Title 22 Metals were detected in all of the soil samples analyzed with the exception
 of beryllium, selenium, and thallium. Metals in soil at concentrations exceeding their
 respective industrial screening levels were not detected during this investigation.

Soil samples containing total copper, lead, and/or mercury at concentrations above 10 times the STLC and 20 times the TCLP were analyzed using the STLC and TCLP waste extraction tests. The results of these analyses are shown on Figure 4 and summarized below:

- Copper STLC was analyzed in three soil samples with resulting concentrations ranging from 2.6 milligram per liter (mg/L) in boring LB2 at 0.5 feet bgs to 25 mg/L in boring LB11 at 0.5 feet bgs. One sample, LB11 at 0.5 feet bgs, equaled the copper STLC threshold of 25 mg/L.
- Copper TCLP was analyzed in soil sample LB11 at 0.5 with a resulting concentration 0.77 mg/L. There is no corresponding TCLP limit for copper.

- Lead STLC was analyzed in eleven soil samples with resulting concentrations ranging from 1.0 mg/L in boring LB28 at 2.5 feet bgs to 13 mg/L in boring LB31 at 0.5 feet bgs. Four samples, LB5 at 2.5 feet bgs, LB17 at 0.5 feet bgs, LB31 at 0.5 feet bgs, and LB33 at 2.5 feet bgs, exceeded the lead STLC threshold of 5 mg/L.
- Lead TCLP was analyzed in seven soil samples with resulting concentrations ranging from non-detect (five soil samples) to 0.33 mg/L in LB31 at 0.5 feet bgs. The detected TCLP concentrations were below the TCLP threshold value 5 mg/L. It should be noted that TCLP analysis of soil samples LB5 at 2.5 feet bgs and LB17 at 0.5 feet bgs were not completed because the quantity of soil sample remaining was not enough to meet the required aliquot for the test method.
- Mercury STLC was analyzed in soil sample LB11 at 0.5. The mercury STLC result did not exceed the laboratory detection limit of 0.00023 mg/L.
- Mercury TCLP was analyzed in soil sample LB11 at 0.5. The mercury TCLP result did not exceed the laboratory detection limit of 0.00005 mg/L.
- VOCs Carbon disulfide and tetrachloroethene (PCE) were the only VOCs detected in the 29 soil samples analyzed during this investigation. Carbon disulfide was detected in four of the 29 soil samples at concentrations ranging from 5.3 microgram per kilogram (μg/kg) in sample LB2 at 0.5 feet bgs to 13 μg/kg in sample LB10 at 2.5 feet bgs. The detected concentrations are below the carbon disulfide Industrial RSL of 3,500,000 μg/kg. PCE was detected in one of the 29 soil samples (LB4 at 0.5 feet bgs) at a concentration of 27 μg/kg, which is below the Industrial HERO Note 3 screening value of 2,700 μg/kg.
- PAHs 2-Methylnaphthalene, benzo(b)fluoranthene, fluoranthene, and pyrene were the only PAHs detected in the 28 soil samples analyzed. 2-Methylnaphthalene was detected in one of the 28 soil samples (LB28 at 5.0 feet bgs) at a concentration of 7,800 μg/kg. Benzo(b)fluoranthene, fluoranthene, and pyrene were detected in one of the 28 soil samples (LB2 at 2.5 feet bgs) at concentrations of 10 μg/kg, 12 μg/kg, and 11 μg/kg, respectively. The four detected PAHs were below their respective Industrial RSLs.
- PCBs Aroclor 1254 and Aroclor 1260 were the only PCBs detected in eight of the 18 soil samples analyzed. Aroclor 1254 was detected in two soil samples at concentrations of 0.870 mg/kg and 0.110 mg/kg in soil samples LB11 at 0.5 feet bgs and LB16 at 2.5 feet bgs, respectively. Aroclor 1260 was detected in six soil samples

at concentrations ranging from 0.019 mg/kg in sample LB10 at 0.5 feet bgs to 0.180 mg/kg in sample LB47 at 0.5 feet bgs. The detected concentrations of Aroclor 1254 and Aroclor 1260 did not exceed their Industrial RSLs of 0.970 mg/kg and 0.990 mg/kg, respectively.

Dioxins and Furans – LB17 at 0.5 feet bgs was analyzed for dioxin and furans. The
results of the analysis were used to calculate a Total Toxic Equivalency (TTE). The
TTE for LB17 at 0.5 feet bgs was 5.27 pg/g, which is below the DTSC HERO Note 2
screening level of 22 pg/g.

Analytical Results for Groundwater Samples

Results of the chemical analyses of the groundwater samples were compared to the Environmental Screening Levels (ESLs) developed by the San Francisco Bay Regional Water Quality Control Board and updated in February 2016. Aquatic habit screening levels for saltwater were chosen for screening purposes since the Site is adjacent to the harbor and groundwater beneath the Site is of non-beneficial use.

The analytical results for groundwater samples are summarized in Tables 8 through 11 and as follows:

- GRO was detected in three of the eight groundwater samples analyzed during this
 investigation at concentrations ranging from 0.08 mg/L in sample LB25-GW to 9.9
 mg/L in sample LB1-GW. The concentration of GRO detected in sample LB1-GW
 exceeded the ESL screening criteria concentration of 3.7 mg/L (Figure 5).
- DRO was detected in the eight groundwater samples analyzed during this
 investigation at concentrations ranging from 0.15 mg/L in sample LB34-GW to 0.93
 mg/L in sample LB1-GW. The concentration of DRO detected in sample LB1-GW
 exceeded the ESL screening criteria concentration of 0.64 mg/L (Figure 5).
- ORO was detected in all eight groundwater samples analyzed during this
 investigation at concentrations ranging from 0.10 mg/L in sample LB34-GW to 0.43
 mg/L in sample LB1-GW. None of the eight samples exceeded the ORO ESL
 screening criteria concentration of 0.64 mg/L (Figure 5).
- **Title 22 Metals** were detected in all of the groundwater samples analyzed during this investigation with the exception of beryllium, cadmium, lead, mercury, selenium, silver, and thallium. The maximum concentrations detected were as follows:

Metal	Concentration	ESL	Boring
Antimony	0.013 mg/L	0.5 mg/L	LB25
Arsenic	0.013 mg/L	0.036 mg/L	LB27
Barium	0.31 mg/L		LB27
Chromium	0.022 mg/L		LB27
Cobalt	0.0086 mg/L		LB27
Copper	0.016 mg/L	0.0031 mg/L	LB27
Molybdenum	0.021 mg/L		LB25
Nickel	0.016 mg/L	0.0082 mg/L	LB27
Vanadium	0.034 mg/L		LB27
Zinc	0.090 mg/L	0.081 mg/L	LB27

Note: Bold concentrations exceed ESL screening criteria.

Copper was detected in three of the eight groundwater samples analyzed at concentrations of 0.011 mg/L in LB1-GW, 0.0090 mg/L in LB6-GW, and 0.016mg/L in LB27-GW (Figure 6). These concentrations exceeded the ESL screening criteria of 0.0031 mg/L for copper in groundwater.

Nickel was detected in five of the eight groundwater samples analyzed at concentrations ranging from 0.0060 mg/L in LB13-GW to 0.016 mg/L in LB27-GW (Figure 6). Three of these concentrations, 0.011 mg/L in LB1-GW, 0.0083 mg/L in LB25-GW, and 0.016 mg/L in LB27-GW exceeded the ESL screening criteria of 0.0082 mg/L for nickel in groundwater.

Zinc was detected in one of the eight groundwater samples analyzed (LB27-GW) at a concentration of 0.090 mg/L (Figure 6). This concentration exceeded the ESL screening criteria of 0.081 mg/L for zinc in groundwater.

 VOCs were detected in 16 of the 19 groundwater samples analyzed during this investigation. Thirteen VOC chemicals were detected with maximum concentrations as follows:

VOC	Concentration	ESL	Boring
1,1-Dichloroethene	13 μg/L	22,000 μg/L	LB41
1,2-Dichloroethane	1.1 µg/L	11,000 µg/L	LB43

VOC	Concentration	ESL	Boring
Benzene	0.81 μg/L	350 µg/L	LB6
Bromodichloromethane	0.70 μg/L	3,200 μg/L	LB38
Bromoform	4.2 μg/L	3,200 μg/L	LB38
Carbon Disulfide	3.5 µg/L		LB40
cis-1,2-Dichloroethene	8,500 µg/L	22,000 μg/L	LB41
Dibromochloromethane	2.7 μg/L	3,200 μg/L	LB38
MTBE	19 μg/L	8,000 µg/L	LB6
PCE	19,000 μg/L	230 μg/L	LB1
trans-1,2- Dichloroethene	290 μg/L	22,000 µg/L	LB41
Trichloroethene (TCE)	7,900 μg/L	200 μg/L	LB1
Vinyl Chloride	57 μg/L		LB41 and LB49

Note: Bold concentrations exceed ESL screening criteria.

PCE was detected in 11 of the 19 groundwater samples analyzed at concentrations ranging from 0.52 μ g/L in LB49 to 19,000 μ g/L in LB1. Three groundwater samples with PCE concentrations of 19,000 μ g/L in LB1, 440 μ g/L in LB37, and 380 μ g/L in LB39 exceeded the ESL screening criteria of 230 μ g/L for PCE in groundwater (Figure 7).

TCE was detected in 11 of the 19 groundwater samples analyzed at concentrations ranging from 0.78 μ g/L in LB23 to 7,900 μ g/L in LB1. Three groundwater samples with TCE concentrations of 7,900 μ g/L in LB1, 870 μ g/L in LB37, and 890 μ g/L in LB39 exceeded the ESL screening criteria of 200 μ g/L for TCE in groundwater (Figure 7).

• **PAHs** were not detected above the laboratory reporting limits in the groundwater samples analyzed during this investigation.

Analytical Results for Soil Gas Samples

Results of the chemical analyses of the soil gas samples were compared to the adjusted DTSC HERO Notes 3 and 5 and EPA Region 9 RSLs for indoor air in an industrial setting assuming a future slab attenuation factor of 0.0005 (DTSC, 2011). The results of the laboratory analysis for the soil gas samples are summarized in Table 12.

VOCs were detected in 14 of the 17 soil gas samples analyzed (including duplicate samples). Twenty-eight VOC chemicals were detected with maximum concentrations as follows:

voc	Concentration	HERO Note 3 & 5	Boring	Probe Depth
Benzene	0.024 μg/L	0.84 μg/L	LB1	4 feet bgs
Bromobenzene	0.009 μg/L	520 μg/L	LB43	4 feet bgs
n-Butylbenzene	0.013 μg/L		LB43	4 feet bgs
sec-Butylbenzene	0.014 μg/L		LB43	4 feet bgs
tert-Butylbenzene	0.013 μg/L		LB43	4 feet bgs
Chloroform	0.167 μg/L	1.06 µg/L	LB1	4 feet bgs
2-Chlortoluene	0.009 µg/L		LB43	4 feet bgs
4-Chlortoluene	0.010 μg/L		LB43	4 feet bgs
Dichlorodifluoromethane	0.011 μg/L	880 µg/L	LB38 and LB43	3 and 4 feet bgs
1,1-Dichloroethene	0.056 μg/L	620 µg/L	LB39	4 feet bgs
cis-1,2-Dichloroethene	70.1 μg/L	70 μg/L	LB39	4 feet bgs
trans-1,2-Dichloroethene	3.56 µg/L	700 μg/L	LB1	4 feet bgs
Ethylbenzene	0.030 μg/L	9.8 μg/L	LB27	4 feet bgs
Isopropylbenzene	0.12 μg/L	3,600 µg/L	LB43	4 feet bgs
4-Isopropyltoluene	0.771 μg/L		LB36	4 feet bgs
n-Propylbenzene	0.014 μg/L	8,800 µg/L	LB43	4 feet bgs
Styrene	0.009 μg/L	7,800 µg/L	LB36	4 feet bgs

voc	Concentration	HERO Note 3 & 5	Boring	Probe Depth
1,1,2,2-Tetrachloroethane	0.011 μg/L	0.42 µg/L	LB36	4 feet bgs
PCE	148 µg/L	4.0 μg/L	LB1	4 feet bgs
Toluene	0.081 μg/L	2,600 µg/L	LB36	4 feet bgs
1,1,2-Trichloroethane	0.304 μg/L	1.54 µg/L	LB36	4 feet bgs
TCE	23.2 μg/L	16 µg/L	LB1	4 feet bgs
Trichlorofluoromethane	3.71 µg/L	10,800 μg/L	LB38	4 feet bgs
1,2,4-Trimethylbenzene	0.234 μg/L	520 μg/L	LB36	4 feet bgs
1,3,5-Trimethylbenzene	0.013 μg/L	520 μg/L	LB43	4 feet bgs
Vinyl Chloride	3.20 μg/L	0.32 μg/L	LB6	4 feet bgs
m,p-Xylene	0.136 μg/L	880 µg/L	LB27	4 feet bgs
o-Xylene	0.038 µg/L	880 µg/L	LB27	4 feet bgs

Note: Bold concentrations exceed respectively screening levels.

Cis-1,2-dichloroethene was detected in eight of the 17 soil gas samples analyzed at concentrations ranging from 0.011 μ g/L in LB27 at 4 feet bgs to 70.1 μ g/L in LB39 at 4 feet bgs. The soil gas concentration of 70.1 μ g/L from boring LB39 at 4 feet bgs exceeded the adjusted Industrial HERO Note 3 value of 70 μ g/L for cis-1,2-dichloroethene (Figure 8).

PCE was detected in 12 of the 17 soil gas samples analyzed at concentrations ranging from 0.011 μ g/L in LB43 at 4 feet bgs to 148 μ g/L in LB1 at 4 feet bgs. The soil gas concentrations of 148 μ g/L in LB1 at 4 feet bgs and 8.75 μ g/L in LB39 at 4 feet bgs exceeded the adjusted Industrial HERO Note 3 value of 4 μ g/L for PCE (Figure 8).

TCE was detected in 10 of the 17 soil gas samples analyzed at concentrations ranging from 0.014 μ g/L in LB42 at 4 feet bgs to 23.2 μ g/L in LB1 at 4 feet bgs. The soil gas concentrations of 23.2 μ g/L in LB1 at 4 feet bgs and 18.4 μ g/L in LB39 at 4 feet bgs exceeded the adjusted Industrial HERO Note 5 value of 16 μ g/L for TCE (Figure 8).

Vinyl chloride was detected in three of the 17 soil gas samples analyzed at concentrations of 3.2 μ g/L in LB6 at 4 feet bgs, 0.014 μ g/L in LB39 at 4 feet bgs, and 0.021 μ g/L in LB49 at 4 feet bgs. The soil gas concentration of 3.2 μ g/L from boring LB6 at 4 feet bgs exceeded the adjusted Industrial HERO Note 3 value of 0.32 μ g/L for vinyl chloride (Figure 8).

It should be noted that the soil gas probes installed in borings LB34, LB41, LB44, and LB48 were unable to be sampled due to groundwater intrusion.

CONCLUSIONS

The purpose of this site assessment was to establish an environmental baseline for future tenant and to screen for the potential presence of hazardous substances in soil, soil gas, and groundwater at POLA Berths 191 through 193 in Wilmington, California that could present a health risk to future commercial/industrial occupants of the Site.

Soil

DRO was detected above the Industrial RSL in 14 of the 104 soil samples analyzed during this investigation. While there is no discernable trend in DRO impacted soil, DRO was found primarily within the surficial soil in the northern portion of the Site and in deeper soil (5 feet bgs) in the southern portion of the Site.

Copper and lead exceeded the STLC limits in of 5.0 mg/L in soil samples collected from borings LB5, LB11, LB17, LB31, and LB33. Soil in the vicinity of these borings may be classified as non-RCRA hazardous waste (California hazardous) if removed from the Site. The copper and lead-impacted soil appears to be limited to the upper 3 feet bgs.

GRO, ORO, VOCs, PAHs, PCBs, and dioxin/furans were not detected in the soil samples analyzed during this investigation at concentrations exceeding their respective industrial screening levels.

Groundwater

TPH was detected in a majority of the groundwater samples analyzed during this investigation. One groundwater sample, LB1, had a concentration of GRO and DRO exceeding the ESL screening criteria. Based on the site-wide TPH impacts to groundwater, it is likely that the Site is located within a regional plume of TPH-impacted groundwater.

Elevated levels of copper, nickel, and zinc were detected in groundwater samples collected from borings LB1, LB6, LB25, and LB27 at concentrations exceeding the ESL screening criteria. Since the groundwater beneath the Site is non-beneficial for municipal use and direct contact with groundwater beneath the Site is unlikely, these elevated concentrations of metals in groundwater should not pose a risk to future commercial/industrial occupants of the Site.

Two VOCs, PCE and TCE, were detected in groundwater at concentrations above their respective ESL screening criteria from three borings (LB1, LB37, and LB39). The elevated concentrations of VOCs in groundwater were limited to the northern portion of the Site. The primary VOC contaminants of concern in groundwater are PCE and TCE; however, other chlorinated VOCs such as cis- and trans-1,2-dichloroethene, 1,2-dichloroethene, 1,1-dichloroethee, and vinyl chloride were detected along with fuel constituents such as benzene and MTBE. Iso-concentration maps of PCE and TCE are included as Figures 9 and 10.

PAHs were not detected in the groundwater samples analyzed during this investigation.

Soil Gas

Four VOCs, cis-1,2-dichloroethene, PCE, TCE, and vinyl chloride, were detected in soil gas at concentrations above their respective adjusted industrial screening levels in three borings (LB1, LB6, and LB39). Elevated concentrations of the same VOCs were detected in groundwater samples collected at these three locations and it is likely that the impacted soil gas is a result of off-gassing of the contaminated groundwater.

RECOMMENDATIONS

Leighton recommends the completion of a human health risk assessment (HHRA). The HHRA should discuss health risks associated with commercial land use at the Site and determine if removals are necessary based on the contaminants present at the Site.

Soil in the vicinity of borings LB5, LB11, LB17, LB31, and LB33 has concentrations of copper and lead exceeding the STLC limits. If soil removals are to take place at the Site during redevelopment activities, additional soil waste characterization is warranted in the area of these borings and there is a potential for soil in these areas to be classified as non-RCRA hazardous waste (California hazardous). The copper and leadimpacted soil appears to be limited to the upper 3 feet bgs.

In general, observations should be made during any future Site redevelopment for areas of possible contamination such as, but not limited to, the presence of underground facilities, buried debris, waste drums, tanks, stained soil or odorous soils. Should such materials be encountered, further investigation and analysis may be necessary at that time.

LIMITATIONS

This investigation was conducted in a manner consistent with the level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions.

The observations and conclusions presented in this report are professional opinions based on the scope of activities, work schedule, and information obtained through the activities described herein, and are limited to the portion of the Site investigated. Opinions presented herein apply to property conditions existing at the time of our study and cannot necessarily be taken to apply to property conditions outside of the area investigated or changes that we are not aware of or have not had the opportunity to evaluate. It must be recognized that conclusions drawn from these data are limited to the portion of the Site investigated, and the amount, type, distribution, and integrity of the information collected at the time of the investigation, and the methods utilized to collect and evaluate the data. Although Leighton has taken steps to obtain true copies of available information, we make no representation or warranty with respect to the accuracy or completeness of the information provided by others.

We appreciate the opportunity to assist EMD on this project. If you have questions regarding our proposal or information that would update our scope of work, please call us at your convenience at **866-LEIGHTON**, directly at the phone extension and/or e-mail address listed below.

McCULLOCH No. 8798

Respectfully submitted,

LEIGHTON CONSULTING, INC.

Brynn McCulloch, PG 8794

Associate Geologist

Ext 4287, bmcculloch@leightongroup.com

BFM/KCH

Distribution: (1 PDF) Addressee

ATTACHMENTS:

Figure 1 – Site Location Map

Figure 2 – Site Plan

Figure 3 – TPH in Soil

Figure 4 – California Hazardous Waste in Soil

Figure 5 – TPH in Groundwater

Figure 6 – Metals in Groundwater

Figure 7 – VOCs in Groundwater

Figure 8 – VOCs in Soil Gas

Figure 9 – PCE in Groundwater

Figure 10 – TCE in Groundwater

Table 1 – TPH in Soil

Table 2 – Metals in Soil

Table 3 – Soil Waste Characterization

Table 4 – VOCs in Soil

Table 5 – PAHs in Soil

Table 6 - PCBs in Soil

Table 7 – Dioxins and Furans in Soil

Table 8 – TPH in Groundwater

Table 9 – Metals in Groundwater

Table 10 – VOCs in Groundwater

Table 11 – PAHs in Groundwater

Table 12 - VOCs in Soil Gas

Appendix A – References

Appendix B – Boring Permit

Appendix C – Boring Logs

Appendix D – Laboratory Reports and Chain-of-Custody Documents

Scale: Approx. 1" = 100' Date: February 2018

Base Map: Google Earth 2016 drafted by Mark Withrow

SITE PLAN

Berth 191-193 Wilmington, California

Base Map: Google Earth 2016 drafted by Mark Withrow

Berth 191-193 Wilmington, California

Leighton

Scale: Approx. 1" = 100' Date: April 2018

Base Map: Google Earth 2016 drafted by Mark Withrow

TPH IN GROUNDWATER

Berth 191-193 Wilmington, California

Berth 191-193 Wilmington, California

Base Map: Google Earth 2016 drafted by Mark Withrow

Base Map: Google Earth 2016 drafted by Mark Withrow

Berth 191-193 Wilmington, California Leighton

Scale: Approx. 1" = 100' Date: February 2018

Base Map: Google Earth 2016 drafted by Mark Withrow

VOCS IN SOIL GAS

Berth 191-193 Wilmington, California

Base Map: Google Earth 2016 drafted by Mark Withrow

Berth 191-193 Wilmington, California Leighton

Base Map: Google Earth 2016 drafted by Mark Withrow

Berth 191-193 Wilmington, California Leighton

TABLE 1 TPH IN SOIL Berth 191-193 Wilmington, California

Sample ID	Depth (feet bgs)	Date	Units	GRO	DRO	ORO	Total TPH
USEPA	RSL Industrial Soil		mg/kg	420	440	33,000	
LB1-0.5	0.5	10/11/17	mg/kg	ND<0.20	200	460	660
LB1-2.5	2.5	10/11/17	mg/kg	ND<0.20	8.4	7.1	15.5
LB1-5.0	5	10/11/17	mg/kg	ND<0.20	5.0	4.4	9.4
LB2-0.5	0.5	10/11/17	mg/kg	ND<0.20	720	1,700	2,420
LB2-2.5	2.5	10/11/17	mg/kg	ND<0.20	8.7	13	21.7
LB2-5.0	5	10/11/17	mg/kg	ND<0.20	8.1	8.3	16.4
LB3-0.5	0.5	10/11/17	mg/kg	ND<0.20	20	41	61
LB3-2.5	2.5	10/11/17	mg/kg	ND<0.20	6.1	5.4	11.5
LB3-5.0	5	10/11/17	mg/kg	ND<0.20	10	9.1	19.1
LB4-0.5	0.5	10/11/17	mg/kg	ND<0.20	640	1,900	2,540
LB4-2.5	2.5	10/11/17	mg/kg	ND<0.20	22	52	74
LB4-3.5	3.5	10/11/17	mg/kg	ND<0.20	70	140	210
LB5-0.5	0.5	10/11/17	mg/kg	ND<0.21	470	1,500	1,970
LB5-2.5	2.5	10/11/17	mg/kg	ND<0.18	20	46	66
LB5-5.0	5	10/11/17	mg/kg	ND<0.21	19	15	34
LB6-0.5	0.5	10/12/17	mg/kg	ND<0.20	7.1	16	23.1
LB6-2.5	2.5	10/12/17	mg/kg	ND<0.20	6.8	5.1	11.9
LB6-5.0	5	10/12/17	mg/kg	ND<0.20	1.2	1.6	2.8
LB7-0.5	0.5	10/12/17	mg/kg	ND<0.20	270	630	900
LB7-2.5	2.5	10/12/17	mg/kg	ND<0.20	92	130	222
LB7-5.0	5	10/12/17	mg/kg	ND<0.20	10	11	21
LB8-0.5	0.5	10/11/17	mg/kg	ND<0.20	180	580	760
LB8-2.5	2.5	10/11/17	mg/kg	ND<0.20	4.8	5.0	9.8
LB8-5.0	5	10/11/17	mg/kg	ND<0.20	3.7	3.7	7.4
LB9-0.5	0.5	10/11/17	mg/kg	ND<0.22	690	2,500	3,190
LB9-2.5	2.5	10/11/17	mg/kg	ND<0.19	75	160	235
LB9-5.0	5	10/11/17	mg/kg	ND<0.17	8.9	5.7	14.6
LB10-0.5	0.5	10/12/17	mg/kg	ND<0.20	840	3,800	4,640
LB10-2.5	2.5	10/12/17	mg/kg	ND<0.20	5.2	7.3	12.5
LB10-5.0	5	10/12/17	mg/kg	ND<0.20	1.3	1.5	2.8
LB11-0.5	0.5	10/12/17	mg/kg	ND<0.20	310	730	1,040
LB11-2.5	2.5	10/12/17	mg/kg	ND<0.20	8.6	7.9	16.5
LB11-5.0	5	10/12/17	mg/kg	ND<0.20	12	9.3	21.3
LB12-0.5	0.5	10/11/17	mg/kg	ND<0.20	180	420	600
LB12-2.5	2.5	10/11/17	mg/kg	ND<0.20	5.7	5.7	11.4
LB12-5.0	5	10/11/17	mg/kg	ND<0.20	6.4	6.6	13
LB13-0.5	0.5	10/11/17	mg/kg	ND<0.20	350	1,200	1,550
LB13-2.5	2.5	10/11/17	mg/kg	ND<0.20	6.9	8.4	15.3
LB13-5.0	5	10/11/17	mg/kg	ND<0.20	6.7	6.7	13.4
LB14-0.5	0.5	10/11/17	mg/kg	ND<0.20	160	440	600
LB14-2.5	2.5	10/11/17	mg/kg	ND<0.24	9.2	15	24.2
LB14-5.0	5	10/11/17	mg/kg	ND<0.20	3.6	3.1	6.7
LB15-0.5	0.5	10/12/17	mg/kg	ND<0.20	20	35	55
LB15-2.5	2.5	10/12/17	mg/kg	ND<0.20	4.0	4.6	8.6
LB15-5.0	5	10/12/17	mg/kg	ND<0.20	2.9	2.5	5.4
LB16-0.5	0.5	10/12/17	mg/kg	ND<0.20	7.7	10	17.7

TABLE 1 TPH IN SOIL Berth 191-193 Wilmington, California

	1						
Sample ID	Depth (feet bgs)	Date	Units	GRO	DRO	ORO	Total TPH
USEPA	RSL Industrial Soil		mg/kg	420	440	33,000	
LB16-2.5	2.5	10/12/17	mg/kg	ND<0.20	390	1,100	1,490
LB16-5.0	5	10/12/17	mg/kg	ND<0.20	63	130	193
LB17-0.5	0.5	10/11/17	mg/kg	ND<0.20	1,400	3,400	4,800
LB17-2.5	2.5	10/11/17	mg/kg	ND<0.20	11	9.6	20.6
LB17-5.0	5	10/11/17	mg/kg	ND<0.20	6.7	6.2	12.9
LB18-0.5	0.5	10/11/17	mg/kg	ND<0.20	110	280	390
LB18-2.5	2.5	10/11/17	mg/kg	ND<0.20	6.1	5.9	12
LB18-5.0	5	10/11/17	mg/kg	ND<0.20	11	9.8	20.8
LB19-0.5	0.5	10/11/17	mg/kg	ND<0.20	8.8	7.9	16.7
LB19-2.5	2.5	10/11/17	mg/kg	ND<0.20	3.3	3.7	7.0
LB19-5.0	5	10/11/17	mg/kg	ND<0.20	3.9	4.0	7.9
LB20-0.5	0.5	10/11/17	mg/kg	ND<0.20	14	26	40
LB20-2.5	2.5	10/11/17	mg/kg	ND<0.20	3.2	3.7	6.9
LB20-5.0	5	10/11/17	mg/kg	ND<0.20	4.2	3.1	7.3
LB21-0.5	0.5	10/12/17	mg/kg	ND<0.20	9.1	9.9	19
LB21-2.5	2.5	10/12/17	mg/kg	ND<0.20	20	17	37
LB21-5.0	5	10/12/17	mg/kg	ND<0.20	7.2	8.5	15.7
LB22-0.5	0.5	10/12/17	mg/kg	ND<0.20	11	21	32
LB22-2.5	2.5	10/12/17	mg/kg	ND<0.20	8.6	10	18.6
LB22-5.0	5	10/12/17	mg/kg	ND<0.20	9.6	9.2	18.8
LB23-0.5	0.5	10/11/17	mg/kg	ND<0.20	14	12	26
LB23-2.5	2.5	10/11/17	mg/kg	ND<0.20	6.3	7.1	13.4
LB23-5.0	5	10/11/17	mg/kg	ND<0.20	8.7	7.6	16.3
LB24-0.5	0.5	10/11/17	mg/kg	ND<0.20	5.1	6.2	11.3
LB24-2.5	2.5	10/11/17	mg/kg	ND<0.20	5.6	5.6	11.2
LB24-5.0	5	10/11/17	mg/kg	ND<0.20	4.3	4.7	9.0
LB25-0.5	0.5	10/11/17	mg/kg	ND<0.20	2.6	2.2	4.8
LB25-2.5	2.5	10/11/17	mg/kg	ND<0.20	2.1	1.9	4.0
LB25-5.0	5	10/11/17	mg/kg	ND<0.20	2.4	2.6	5.0
LB26-0.5	0.5	10/12/17	mg/kg	ND<0.20	11	14	25
LB26-2.5	2.5	10/12/17	mg/kg	ND<0.20	12	12	24
LB26-5.0	5	10/12/17	mg/kg	ND<0.20	20	18	38
LB27-0.5	0.5	10/12/17	mg/kg	ND<0.20	41	80	121
LB27-2.5	2.5	10/12/17	mg/kg	ND<0.20	9.5	11	20.5
LB27-5.0	5	10/12/17	mg/kg	ND<0.20	8.1	8.4	16.5
LB28-0.5	0.5	10/12/17	mg/kg	ND<0.20	530	930	1,460
LB28-2.5	2.5	10/12/17	mg/kg	ND<0.20	480	1,000	1,480
LB28-5.0	5	10/12/17	mg/kg	400	11,000	5,600	16,600
LB29-0.5	0.5	10/12/17	mg/kg	ND<0.20	54	100	154
LB29-2.5	2.5	10/12/17	mg/kg	ND<0.20	8.8	8.8	17.6
LB29-5.0	5	10/12/17	mg/kg	ND<0.20	5.4	5.6	11
LB30-0.5	0.5	10/12/17	mg/kg	ND<0.20	32	36	68
LB30-2.5	2.5	10/12/17	mg/kg	ND<0.20	220	450	670
LB30-5.0	5	10/12/17	mg/kg	ND<0.20	9.2	13	22.2
LB31-0.5	0.5	10/12/17	mg/kg	ND<0.20	230	490	720
LB31-2.5	2.5	10/12/17	mg/kg	ND<0.20	5.7	6.0	11.7

TABLE 1 TPH IN SOIL Berth 191-193 Wilmington, California

Sample ID	Depth (feet bgs)	Date	Units	GRO	DRO	ORO	Total TPH
USEPA	RSL Industrial Soil		mg/kg	420	440	33,000	
LB31-5.0	5	10/12/17	mg/kg	ND<0.20	9.3	9.4	18.7
LB32-0.5	0.5	10/12/17	mg/kg	ND<0.20	170	360	530
LB32-2.5	2.5	10/12/17	mg/kg	ND<0.20	6.8	9.5	16.3
LB32-5.0	5	10/12/17	mg/kg	ND<0.20	13	12	25
LB33-0.5	0.5	10/12/17	mg/kg	ND<0.20	78	160	238
LB33-2.5	2.5	10/12/17	mg/kg	ND<0.20	2,500	6,800	9,300
LB33-5.0	5	10/12/17	mg/kg	ND<0.20	9.0	8.1	17.1
LB34-0.5	0.5	10/13/17	mg/kg	ND<0.20	1,100	4,000	5,100
LB34-2.5	2.5	10/13/17	mg/kg	ND<0.20	30	59	89
LB34-5.0	5	10/13/17	mg/kg	ND<0.20	5.0	7.1	12.1
LB35-0.5	0.5	10/13/17	mg/kg	ND<0.20	2,400	7,800	10,200
LB35-2.5	2.5	10/13/17	mg/kg	ND<0.20	1,800	7,400	9,200
LB35-5.0	5	10/13/17	mg/kg	ND<0.20	6,300	17,000	23,300

Notes:

TPH = total petroleum hydrocarbons

bgs = below ground surface

mg/kg = milligrams per kilogram

RSL = USEPA Regional Screening Level, industrial (November 2017). Most conservative value between aromatic/aliphatic

ND<0.20 = Not detected above the reporting detection limit.

GRO = Gasoline Range Petroleum Hydrocarbons

DRO = Diesel Range Petroleum Hydrocarbons

ORO = Oil Range Petroleum Hydrocarbons

Bold concentrations were detected above laboratory reporting limit

Highlighted values exceed Industrial RSL

	Depth																			
Sample ID	(feet bgs)	Date	Units	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
USEPA RSL Indust	rial Soil		mg/kg	470	3.0	220,000	2,300	980	1,800,000	350	47,000	800	46	5,800	22,000	5,800	5,800	12	5,800	350,000
HERO HHRA Note 3 Industrial S	oil Screening C	riteria	mg/kg				210	7.3	170,000	-		320	4.5		3,100		1,500		1,000	
Arsenic Background ([DTSC, 2008)		mg/kg		12															
LB1-0.5	0.5	10/11/17	mg/kg	ND<0.51	2.6	50	ND<0.03	ND<0.14	9.2	5.1	29	22	0.17	ND<0.12	11	ND<0.40	ND<0.12	ND<0.38	23	40
LB1-2.5	2.5	10/11/17	mg/kg	ND<0.51	1.7	28	ND<0.03	ND<0.14	6.3	2.9	2.9	ND<0.18	0.17	ND<0.12	4.0	ND<0.40	ND<0.12	ND<0.38	13	14
LB1-5.0	5	10/11/17	mg/kg	ND<0.51	2.0	26	ND<0.03	ND<0.14	6.7	3.5	3.8	ND<0.18	ND<0.005	ND<0.12	4.3	ND<0.40	ND<0.12	ND<0.38	15	16
LB2-0.5	0.5	10/11/17	mg/kg	ND<0.51	4.0	93	ND<0.03	ND<0.14	29	7.2	670	110	0.28	1.9	22	ND<0.40	ND<0.12	ND<0.38	30	120
LB2-2.5	2.5	10/11/17	mg/kg	ND<0.51	1.7	50	ND<0.03	ND<0.14	7.9	4.0	5.2	5.8	0.16	ND<0.12	5.6	ND<0.40	ND<0.12	ND<0.38	15	32
LB2-5.0	5	10/11/17	mg/kg	ND<0.51	3.5	25	ND<0.03	1.2	7.5	4.8	4.2	1.7	0.11	ND<0.12	5.6	ND<0.40	ND<0.12	ND<0.38	15	17
LB3-0.5	0.5	10/11/17	mg/kg	ND<0.51	2.2	53	ND<0.03	ND<0.14	10	4.0	8.8	29	0.25	ND<0.12	7.9	ND<0.40	ND<0.12	ND<0.38	20	65
LB3-2.5	2.5	10/11/17	mg/kg	ND<0.51	2.0	29	ND<0.03	ND<0.14	6.1	3.6	3.5	ND<0.18	0.15	ND<0.12	4.6	ND<0.40	ND<0.12	ND<0.38	12	18
LB3-5.0	5	10/11/17	mg/kg	ND<0.51	1.4	33	ND<0.03	ND<0.14	6.6	3.6	3.1	ND<0.18	0.12	ND<0.12	4.8	ND<0.40	ND<0.12	ND<0.38	12	18
LB4-0.5	0.5	10/11/17	mg/kg	5.1	2.3	96	ND<0.03	ND<0.14	16	3.9	58	130	0.72	ND<0.12	11	ND<0.40	ND<0.12	ND<0.38	18	160
LB4-2.5	2.5	10/11/17	mg/kg	ND<0.51	2.3	51	ND<0.03	ND<0.14	7.4	3.0	11	20	0.34	ND<0.12	6.2	ND<0.40	ND<0.12	ND<0.38	13	43
LB4-3.5	3.5	10/11/17	mg/kg	ND<0.51	8.0	94	ND<0.03	ND<0.14	8.5	4.5	590	5.0	0.13	ND<0.12	8.0	ND<0.40	ND<0.12	ND<0.38	23	43
LB5-0.5	0.5	10/11/17	mg/kg	ND<0.51	2.8	73	ND<0.03	ND<0.14	13	5.7	22	14	ND<0.005	ND<0.12	12	ND<0.40	ND<0.12	ND<0.38	23	51
LB5-2.5	2.5	10/11/17	mg/kg	2.5	5.5	89	ND<0.03	ND<0.14	12	5.1	51	99	1.4	ND<0.12	12	ND<0.40	ND<0.12	ND<0.38	23	160
LB5-5.0	5	10/11/17	mg/kg	ND<0.51	1.6	47	ND<0.03	ND<0.14	9.5	5.3	6.3	ND<0.18	0.18	ND<0.12	7.2	ND<0.40	ND<0.12	ND<0.38	17	25
LB6-0.5	0.5	10/11/17	mg/kg	ND<0.51	ND<0.12	12	ND<0.03	ND<0.14	2.9	1.2	2.4	7.3	0.16	ND<0.12	2.1	ND<0.40	ND<0.12	ND<0.38	4.9	16
LB6-2.5	2.5	10/12/17		ND<0.51	ND<0.12 ND<0.12	9.8	ND<0.03	ND<0.14 ND<0.14	2.3	1.2	ND<0.19	ND<0.18	0.16	ND<0.12	1.6	ND<0.40	ND<0.12	ND<0.38	3.7	6.7
LB6-2.5 LB6-5.0	5		mg/kg			9.0			1.7	ND<0.07	ND<0.19 ND<0.19	ND<0.18		ND<0.12 ND<0.12	1.0		ND<0.12 ND<0.12		3.0	
LB0-5.0 LB7-0.5	0.5	10/12/17	mg/kg	ND<0.51	ND<0.12		ND<0.03	ND<0.14					0.20 ND<0.005	ND<0.12 ND<0.12		ND<0.40		ND<0.38		5.3
	-	10/12/17	mg/kg	ND<0.51	ND<0.12	110	ND<0.03	ND<0.14	12	11	27	16			12	ND<0.40	ND<0.12	ND<0.38	36	71
LB7-2.5	2.5	10/12/17	mg/kg	ND<0.51	1.5	52	ND<0.03	ND<0.14	9.3	4.5	50	49	0.25	ND<0.12	14	ND<0.40	1.5	ND<0.38	16	89
LB7-5.0	5	10/12/17	mg/kg	ND<0.51	ND<0.12	29	ND<0.03	ND<0.14	6.6	3.5	4.1	1.0	ND<0.005	ND<0.12	5.0	ND<0.40	ND<0.12	ND<0.38	13	19
LB8-0.5	0.5	10/11/17	mg/kg	ND<0.51	5.0	100	ND<0.03	ND<0.14	17	6.1	42	29	0.21	ND<0.12	15	ND<0.40	ND<0.12	ND<0.38	27	170
LB8-2.5	2.5	10/11/17	mg/kg	ND<0.51	2.9	34	ND<0.03	ND<0.14	6.9	3.4	3.5	1.4	ND<0.005	ND<0.12	4.6	ND<0.40	ND<0.12	ND<0.38	15	18
LB8-5.0	5	10/11/17	mg/kg	ND<0.51	2.9	26	ND<0.03	ND<0.14	6.8	3.1	3.1	2.0	ND<0.005	ND<0.12	3.9	ND<0.40	ND<0.12	ND<0.38	19	15
LB9-0.5	0.5	10/11/17	mg/kg	ND<0.51	2.7	90	ND<0.03	ND<0.14	13	6.2	19	13	0.12	ND<0.12	12	ND<0.40	ND<0.12	ND<0.38	27	44
LB9-2.5	2.5	10/11/17	mg/kg	ND<0.51	3.2	55	ND<0.03	ND<0.14	11	5.9	14	13	0.27	ND<0.12	9.7	ND<0.40	ND<0.12	ND<0.38	22	46
LB9-5.0	5	10/11/17	mg/kg	ND<0.51	2.0	21	ND<0.03	ND<0.14	5.8	3.1	2.6	ND<0.18	0.12	ND<0.12	3.8	ND<0.40	ND<0.12	ND<0.38	13	14
LB10-0.5	0.5	10/12/17	mg/kg	ND<0.51	ND<0.12	21	ND<0.03	ND<0.14	3.1	1.6	5.7	5.0	0.21	ND<0.12	4.7	ND<0.40	ND<0.12	ND<0.38	6.3	18
LB10-2.5	2.5	10/12/17	mg/kg	ND<0.51	ND<0.12	21	ND<0.03	ND<0.14	3.8	2.2	2.3	ND<0.18	0.51	ND<0.12	3.0	ND<0.40	ND<0.12	ND<0.38	6.5	11
LB10-5.0	5	10/12/17	mg/kg	ND<0.51	ND<0.12	11	ND<0.03	ND<0.14	2.4	1.3	ND<0.19	ND<0.18	0.24	ND<0.12	1.6	ND<0.40	ND<0.12	ND<0.38	3.8	6.4
LB11-0.5	0.5	10/12/17	mg/kg	ND<0.51	12	61	ND<0.03	ND<0.14	25	5.1	890	150	2.2	ND<0.12	11	ND<0.40	ND<0.12	ND<0.38	17	780
LB11-2.5	2.5	10/12/17	mg/kg	ND<0.51	5.0	79	ND<0.03	ND<0.14	14	9.0	16	3.9	ND<0.005	ND<0.12	13	ND<0.40	ND<0.12	ND<0.38	32	38
LB11-5.0	5	10/12/17	mg/kg	ND<0.51	2.9	110	ND<0.03	ND<0.14	19	9.3	19	3.9	ND<0.005	ND<0.12	14	ND<0.40	ND<0.12	ND<0.38	33	46
LB12-0.5	0.5	10/11/17	mg/kg	ND<0.51	5.4	140	ND<0.03	ND<0.14	18	6.3	52	38	0.34	ND<0.12	16	ND<0.40	ND<0.12	ND<0.38	28	200
LB12-2.5	2.5	10/11/17	mg/kg	ND<0.51	3.4	30	ND<0.03	ND<0.14	7.9	2.6	ND<0.19	1.2	ND<0.005	ND<0.12	3.1	ND<0.40	ND<0.12	ND<0.38	28	13
LB12-5.0	5	10/11/17	mg/kg	ND<0.51	3.7	46	ND<0.03	ND<0.14	8.5	4.6	4.7	1.6	0.17	ND<0.12	6.0	ND<0.40	ND<0.12	ND<0.38	19	23
LB13-0.5	0.5	10/11/17	mg/kg	ND<0.51	4.8	100	ND<0.03	ND<0.14	15	5.5	34	42	0.62	ND<0.12	13	ND<0.40	ND<0.12	ND<0.38	27	210
LB13-2.5	2.5	10/11/17	mg/kg	ND<0.51	3.7	47	ND<0.03	ND<0.14	9.3	4.9	6.3	6.3	ND<0.005	ND<0.12	7.4	ND<0.40	ND<0.12	ND<0.38	22	31
LB13-5.0	5	10/11/17	mg/kg	ND<0.51	2.8	25	ND<0.03	ND<0.14	6.7	3.1	2.0	1.2	ND<0.005	ND<0.12	4.0	ND<0.40	ND<0.12	ND<0.38	17	15
LB14-0.5	0.5	10/11/17	mg/kg	ND<0.51	3.6	84	ND<0.03	ND<0.14	24	6.7	33	28	0.28	ND<0.12	16	ND<0.40	ND<0.12	ND<0.38	27	86
LB14-2.5	2.5	10/11/17	mg/kg	ND<0.51	ND<0.12	97	ND<0.03	ND<0.14	8.5	4.2	9.3	ND<0.18	0.15	ND<0.12	5.6	ND<0.40	ND<0.12	ND<0.38	18	26
LB14-5.0	5	10/11/17	mg/kg	ND<0.51	1.5	57	ND<0.03	ND<0.14	11	6.2	7.8	ND<0.18	0.21	ND<0.12	8.3	ND<0.40	ND<0.12	ND<0.38	21	30
LB15-0.5	0.5	10/12/17	mg/kg	ND<0.51	ND<0.12	78	ND<0.03	ND<0.14	7.8	3.9	9.2	4.5	ND<0.005	ND<0.12	6.4	ND<0.40	ND<0.12	ND<0.38	15	31
LB15-2.5	2.5	10/12/17	mg/kg	ND<0.51	ND<0.12	15	ND<0.03	ND<0.14	2.9	1.8	2.1	ND<0.18	0.22	ND<0.12	2.3	ND<0.40	ND<0.12	ND<0.38	5.6	8.7
LB15-5.0	5	10/12/17	mg/kg	ND<0.51	ND<0.12	8.3	ND<0.03	ND<0.14	1.7	ND<0.07	ND<0.19	ND<0.18	0.17	ND<0.12	1.2	ND<0.40	ND<0.12	ND<0.38	2.8	4.6
LB16-0.5	0.5	10/12/17	mg/kg	ND<0.51	2.2	74	ND<0.03	ND<0.14	6.7	6.0	27	5.0	ND<0.005	ND<0.12	7.1	ND<0.40	ND<0.12	ND<0.38	17	180
LB16-2.5	2.5	10/12/17	mg/kg	ND<0.51	2.5	78	ND<0.03	ND<0.14	10	5.6	19	33	ND<0.005	ND<0.12	11	ND<0.40	ND<0.12	ND<0.38	18	160
LB16-5.0	5	10/12/17	mg/kg	ND<0.51	2.4	65	ND<0.03	ND<0.14	7.3	3.7	12	4.9	ND<0.005	ND<0.12	6.5	ND<0.40	ND<0.12	ND<0.38	14	39

Committe ID	Depth	Dete	11-14-	A 1	A	Davisson	Dom III	Co duelium	Chara and in one	Cabalt	60	l a a d	D.4	No a la da da casa casa	NI: al. al	Calanina	Cilver	The alliance	Manadiona	7:
Sample ID	(feet bgs)	Date	Units	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
USEPA RSL Industi	rial Soil	•	mg/kg	470	3.0	220,000	2,300	980	1,800,000	350	47,000	800	46	5,800	22,000	5,800	5,800	12	5,800	350,000
HERO HHRA Note 3 Industrial S	oil Screening C	riteria	mg/kg				210	7.3	170,000			320	4.5		3,100		1,500		1,000	
Arsenic Background (D	OTSC, 2008)		mg/kg		12															
LB17-0.5	0.5	10/11/17	mg/kg	ND<0.51	1.4	75	ND<0.03	ND<0.14	14	4.0	16	51	0.73	ND<0.12	10	ND<0.40	ND<0.12	ND<0.38	22	250
LB17-2.5	2.5	10/11/17	mg/kg	ND<0.51	1.3	46	ND<0.03	ND<0.14	9.1	4.9	6.0	ND<0.18	ND<0.005	ND<0.12	6.7	ND<0.40	ND<0.12	ND<0.38	20	24
LB17-5.0	5	10/11/17	mg/kg	ND<0.51	1.0	51	ND<0.03	ND<0.14	8.5	5.1	5.3	ND<0.18	0.10	ND<0.12	6.6	ND<0.40	ND<0.12	ND<0.38	16	24
LB18-0.5	0.5	10/11/17	mg/kg	ND<0.51	2.5	99	ND<0.03	ND<0.14	35	7.3	100	33	0.23	3.5	32	ND<0.40	ND<0.12	ND<0.38	23	150
LB18-2.5	2.5	10/11/17	mg/kg	ND<0.51	2.1	28	ND<0.03	ND<0.14	7.0	3.3	3.1	ND<0.18	ND<0.005	ND<0.12	4.5	ND<0.40	ND<0.12	ND<0.38	16	16
LB18-5.0	5	10/11/17	mg/kg	ND<0.51	2.2	35	ND<0.03	ND<0.14	7.5	4.3	3.9	ND<0.18	ND<0.005	ND<0.12	5.3	ND<0.40	ND<0.12	ND<0.38	17	18
LB19-0.5	0.5	10/11/17	mg/kg	ND<0.51	3.1	37	ND<0.03	ND<0.14	7.5	3.7	3.6	1.6	ND<0.005	ND<0.12	4.9	ND<0.40	ND<0.12	ND<0.38	19	21
LB19-2.5	2.5	10/11/17	mg/kg	ND<0.51	3.4	20	ND<0.03	ND<0.14	6.0	2.9	ND<0.19	1.4	ND<0.005	ND<0.12	3.3	ND<0.40	ND<0.12	ND<0.38	17	14
LB19-5.0	5	10/11/17	mg/kg	ND<0.51	3.0	33	ND<0.03	ND<0.14	6.6	3.8	3.2	1.1	ND<0.005	ND<0.12	4.9	ND<0.40	ND<0.12	ND<0.38	14	19
LB20-0.5	0.5	10/11/17	mg/kg	ND<0.51	3.7	52	ND<0.03	ND<0.14	15	6.1	39	35	0.22	ND<0.12	21	ND<0.40	ND<0.12	ND<0.38	32	110
LB20-2.5	2.5	10/11/17	mg/kg	ND<0.51	3.3	30	ND<0.03	ND<0.14	6.6	3.4	3.0	1.8	ND<0.005	ND<0.12	4.5	ND<0.40	ND<0.12	ND<0.38	13	17
LB20-5.0	5	10/11/17	mg/kg	ND<0.51	2.9	36	ND<0.03	ND<0.14	7.1	3.7	3.1	2.3	ND<0.005	ND<0.12	4.8	ND<0.40	ND<0.12	ND<0.38	15	18
LB21-0.5	0.5	10/12/17	mg/kg	ND<0.51	1.3	20	ND<0.03	ND<0.14	5.6	2.8	3.1	ND<0.18	ND<0.005	ND<0.12	3.8	ND<0.40	ND<0.12	ND<0.38	12	14
LB21-2.5	2.5	10/12/17	mg/kg	ND<0.51	2.1	38	ND<0.03	ND<0.14	8.1	4.4	4.8	ND<0.18	ND<0.005	ND<0.12	6.2	ND<0.40	ND<0.12	ND<0.38	14	22
LB21-5.0	5	10/12/17	mg/kg	ND<0.51	2.4	65	ND<0.03	ND<0.14	11	6.5	8.3	ND<0.18	ND<0.005	ND<0.12	8.9	ND<0.40	ND<0.12	ND<0.38	19	33
LB22-0.5	0.5	10/12/17	mg/kg	ND<0.51	2.3	50	ND<0.03	ND<0.14	11	5.3	9.8	5.5	ND<0.005	ND<0.12	8.7	ND<0.40	ND<0.12	ND<0.38	19	97
LB22-2.5	2.5	10/12/17	mg/kg	ND<0.51	ND<0.12	69	ND<0.03	ND<0.14	15	7.1	12	1.3	0.17	ND<0.12	11	ND<0.40	ND<0.12	ND<0.38	23	40
LB22-5.0	5	10/12/17	mg/kg	ND<0.51	1.7	19	ND<0.03	ND<0.14	4.1	2.1	2.5	ND<0.18	ND<0.005	ND<0.12	2.9	ND<0.40	ND<0.12	ND<0.38	7.2	10
LB23-0.5	0.5	10/11/17	mg/kg	ND<0.51	ND<0.12	24	ND<0.03	ND<0.14	6.0	2.4	2.8	ND<0.18	ND<0.005	ND<0.12	3.0	ND<0.40	ND<0.12	ND<0.38	14	11
LB23-2.5	2.5	10/11/17	mg/kg	ND<0.51	1.1	36	ND<0.03	ND<0.14	8.4	4.2	5.9	ND<0.18	0.10	ND<0.12	5.7	ND<0.40	ND<0.12	ND<0.38	15	20
LB23-5.0	5	10/11/17	mg/kg	ND<0.51	1.7	28	ND<0.03	ND<0.14	5.8	2.9	2.6	ND<0.18	ND<0.005	ND<0.12	4.0	ND<0.40	ND<0.12	ND<0.38	10	15
LB24-0.5	0.5	10/11/17	mg/kg	ND<0.51	4.5	59	ND<0.03	ND<0.14	12	6.7	9.7	2.9	ND<0.005	ND<0.12	9.4	ND<0.40	ND<0.12	ND<0.38	28	35
LB24-2.5	2.5	10/11/17	mg/kg	ND<0.51	3.3	36	ND<0.03	ND<0.14	7.2	3.7	3.3	1.5	ND<0.005	ND<0.12	5.2	ND<0.40	ND<0.12	ND<0.38	14	19
LB24-5.0	5	10/11/17	mg/kg	ND<0.51	4.4	23	ND<0.03	ND<0.14	5.8	2.9	ND<0.19	1.2	ND<0.005	ND<0.12	3.6	ND<0.40	ND<0.12	ND<0.38	15	14
LB25-0.5	0.5	10/11/17	mg/kg	ND<0.51	2.8	18	ND<0.03	ND<0.14	5.8	2.6	2.4	1.9	ND<0.005	ND<0.12	3.2	ND<0.40	ND<0.12	ND<0.38	17	12
LB25-2.5	2.5	10/11/17	mg/kg	ND<0.51	3.4	48	ND<0.03	ND<0.14	8.6	5.0	4.7	1.8	ND<0.005	ND<0.12	6.5	ND<0.40	ND<0.12	ND<0.38	18	25
LB25-5.0	5	10/11/17	mg/kg	ND<0.51	2.4	24	ND<0.03	ND<0.14	5.6	2.6	ND<0.19	1.1	ND<0.005	ND<0.12	3.5	ND<0.40	ND<0.12	ND<0.38	12	14
LB26-0.5	0.5	10/12/17	mg/kg	ND<0.51	2.2	13	ND<0.03	ND<0.14	4.2	2.1	2.4	1.1	ND<0.005	ND<0.12	2.7	ND<0.40	ND<0.12	ND<0.38	8.0	11
LB26-2.5	2.5	10/12/17	mg/kg	ND<0.51	2.0	23	ND<0.03	ND<0.14	5.5	2.6	2.7	ND<0.18	ND<0.005	ND<0.12	3.8	ND<0.40	ND<0.12	ND<0.38	8.8	14
LB26-5.0	5	10/12/17	mg/kg	ND<0.51	1.6	62	ND<0.03	ND<0.14	9.8	5.8	7.0	ND<0.18	ND<0.005	ND<0.12	7.7	ND<0.40	ND<0.12	ND<0.38	18	30
LB27-0.5	0.5	10/12/17	mg/kg	ND<0.51	4.0	98	ND<0.03	ND<0.14	18	8.7	28	130	ND<0.005	ND<0.12	15	ND<0.40	ND<0.12	ND<0.38	32	120
LB27-2.5	2.5	10/12/17	mg/kg	ND<0.51	2.1	43	ND<0.03	ND<0.14	9.4	5.5	6.5	ND<0.18	ND<0.005	ND<0.12	7.1	ND<0.40	ND<0.12	ND<0.38	16	26
LB27-5.0	5	10/12/17	mg/kg	ND<0.51	1.1	16	ND<0.03	ND<0.14	3.8	1.8	ND<0.19	ND<0.18	ND<0.005	ND<0.12	2.4	ND<0.40	ND<0.12	ND<0.38	6.7	9.5
LB28-0.5	0.5	10/12/17	mg/kg	ND<0.51	4.2	45	ND<0.03	ND<0.14	8.3	4.1	17	85	ND<0.005	ND<0.12	12	ND<0.40	ND<0.12	ND<0.38	16	190
LB28-2.5	2.5	10/12/17	mg/kg	ND<0.51	5.0	63	ND<0.03	ND<0.14	13	5.3	27	53	ND<0.005	ND<0.12	13	ND<0.40	ND<0.12	ND<0.38	20	120
LB28-5.0	5	10/12/17	mg/kg	ND<0.51	2.5	81	ND<0.03	ND<0.14	19	4.1	9.2	4.0	ND<0.005	ND<0.12	11	ND<0.40	ND<0.12	ND<0.38	18	50
LB29-0.5	0.5	10/12/17	mg/kg	ND<0.51	2.4	17	ND<0.03	ND<0.14	4.1	2.2	10	10	ND<0.005	ND<0.12	4.0	ND<0.40	ND<0.12	ND<0.38	9.7	43
LB29-2.5	2.5	10/12/17	mg/kg	ND<0.51	2.1	18	ND<0.03	ND<0.14	5.1	2.3	2.1	ND<0.18	ND<0.005	ND<0.12	3.0	ND<0.40	ND<0.12	ND<0.38	9.9	11
LB29-5.0	5	10/12/17	mg/kg	ND<0.51	1.4	35	ND<0.03	ND<0.14	7.0	3.8	4.4	ND<0.18	ND<0.005	ND<0.12	5.3	ND<0.40	ND<0.12	ND<0.38	12	19
LB30-0.5	0.5	10/12/17	mg/kg	ND<0.51	1.6	48	ND<0.03	ND<0.14	10	4.6	8.3	5.0	ND<0.005	ND<0.12	6.5	ND<0.40	ND<0.12	ND<0.38	18	26
LB30-2.5	2.5	10/12/17	mg/kg	ND<0.51	1.6	82	ND<0.03	ND<0.14	16	5.4	91	180	0.25	ND<0.12	24	ND<0.40	ND<0.12	ND<0.38	38	130
LB30-5.0	5	10/12/17	mg/kg	ND<0.51	ND<0.12	44	ND<0.03	ND<0.14	10	7.0	8.1	3.0	ND<0.005	ND<0.12	7.4	ND<0.40	ND<0.12	ND<0.38	18	29
LB31-0.5	0.5	10/12/17	mg/kg	ND<0.51	4.3	63	ND<0.03	ND<0.14	12	5.2	110	110	0.89	ND<0.12	9.7	ND<0.40	ND<0.12	ND<0.38	21	140
LB31-2.5	2.5	10/12/17	mg/kg	ND<0.51	ND<0.12	13	ND<0.03	ND<0.14	3.6	1.8	2.2	ND<0.18	ND<0.005	ND<0.12	2.2	ND<0.40	ND<0.12	ND<0.38	6.8	8.3
LB31-5.0	5	10/12/17	mg/kg	ND<0.51	1.6	53	ND<0.03	ND<0.14	9.6	5.8	6.8	ND<0.18	ND<0.005	ND<0.12	7.8	ND<0.40	ND<0.12	ND<0.38	17	29
LB32-0.5	0.5	10/12/17	mg/kg	ND<0.51	3.7	60	ND<0.03	ND<0.14	13	6.1	29	7.5	ND<0.005	ND<0.12	11	ND<0.40	ND<0.12	ND<0.38	22	48
LB32-2.5	2.5	10/12/17	mg/kg	ND<0.51	1.6	28	ND<0.03	ND<0.14	5.9	3.0	3.3	ND<0.18	ND<0.005	ND<0.12	4.4	ND<0.40	ND<0.12	ND<0.38	10	19
LB32-5.0	5	10/12/17	mg/kg	ND<0.51	1.7	63	ND<0.03	ND<0.14	11	6.6	9.7	ND<0.18	ND<0.005	ND<0.12	9.1	ND<0.40	ND<0.12	ND<0.38	20	32

Sample ID	Depth (feet bgs)	Date	Units	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
USEPA RSL Industr	rial Soil		mg/kg	470	3.0	220,000	2,300	980	1,800,000	350	47,000	800	46	5,800	22,000	5,800	5,800	12	5,800	350,000
HERO HHRA Note 3 Industrial So	oil Screening C	riteria	mg/kg				210	7.3	170,000			320	4.5		3,100		1,500		1,000	
Arsenic Background (D	TSC, 2008)		mg/kg		12	-		-			-						-			
LB33-0.5	0.5	10/12/17	mg/kg	ND<0.51	1.7	44	ND<0.03	ND<0.14	13	6.2	6.1	1.5	ND<0.005	ND<0.12	9.3	ND<0.40	ND<0.12	ND<0.38	22	34
LB33-2.5	2.5	10/12/17	mg/kg	ND<0.51	6.9	73	ND<0.03	ND<0.14	14	9.0	230	110	0.23	ND<0.12	20	ND<0.40	ND<0.12	ND<0.38	22	790
LB33-5.0	5	10/12/17	mg/kg	ND<0.51	2.0	55	ND<0.03	ND<0.14	9.7	6.1	7.9	ND<0.18	ND<0.005	ND<0.12	8.0	ND<0.40	ND<0.12	ND<0.38	19	29
LB34-0.5	0.5	10/13/17	mg/kg	ND<0.51	3.1	100	ND<0.03	ND<0.14	20	5.1	23	25	ND<0.005	ND<0.12	12	ND<0.40	ND<0.12	ND<0.38	20	79
LB34-2.5	2.5	10/13/17	mg/kg	ND<0.51	ND<0.12	99	ND<0.03	ND<0.14	7.5	3.7	7.6	ND<0.18	ND<0.005	ND<0.12	5.8	ND<0.40	ND<0.12	ND<0.38	15	26
LB34-5.0	5	10/13/17	mg/kg	ND<0.51	1.7	52	ND<0.03	ND<0.14	8.7	5.2	6.8	ND<0.18	ND<0.005	ND<0.12	7.0	ND<0.40	ND<0.12	ND<0.38	15	27
LB35-0.5	0.5	10/13/17	mg/kg	ND<0.51	ND<0.12	71	ND<0.03	ND<0.14	6.7	4.6	8.1	4.1	ND<0.005	ND<0.12	15	ND<0.40	ND<0.12	ND<0.38	24	30
LB35-2.5	2.5	10/13/17	mg/kg	ND<0.51	ND<0.12	67	ND<0.03	ND<0.14	6.1	3.7	5.3	1.1	ND<0.005	ND<0.12	13	ND<0.40	ND<0.12	ND<0.38	19	74
LB35-5.0	5	10/13/17	mg/kg	ND<0.51	ND<0.12	39	ND<0.03	ND<0.14	6.7	3.2	5.1	8.5	ND<0.005	ND<0.12	12	ND<0.40	ND<0.12	ND<0.38	17	29

Notes:

mg/kg = milligrams per kilogram

ug/kg= micrograms per kilogram

bgs = below ground surface

<2.0 = Not detected above laboratory reporting limit as shown

-- = Not analyzed or not applicable

RSL = EPA Region 9 Industrial Regional Screening Level (November 2017)

SoCal Background = DTSC Determination of a Southern California Regional Background Arsenic Concentration in Soil (DTSC, 2008)

HERO Note 3 = Department of Toxic Substances Control (DTSC) Office of Human and Ecological Risk (HERO) Note Number 3 (June 2017)

Bold concentrations were detected above laboratory reporting limit

Highlighted concentrations exceeds selected screening criteria

TABLE 3

SOIL WASTE CHARACTERIZATION

Berth 191-193

Wilmington, California

Sample ID	Depth (feet bgs)	Date	Units	Copper (STLC/TCLP)	Lead (STLC/TCLP)	Mercury (STLC/TCLP)
ST	LC limit		mg/L	25	5.0	0.2
TO	CLP limit		mg/L		5.0	0.2
LB2-0.5	0.5	10/11/2017	mg/L	2.6 D1	2.5 D1 / ND<0.047 D5	
LB4-0.5	0.5	10/11/2017	mg/L		3.7 D1 / ND<0.024 D1	
LB4-3.5	3.5	10/11/2017	mg/L	18 D1		
LB5-2.5	2.5	10/11/2017	mg/L		5.8 D1	
LB11-0.5	0.5	10/12/2017	mg/L	25 D1 / 0.77	2.2 D1 / ND<0.024 D1	ND<0.00023 / ND<0.00005
LB17-0.5	0.5	10/11/2017	mg/L		7.0 D1	
LB27-0.5	0.5	10/12/2017	mg/L		1.9 D1 / 0.33 D1	
LB28-0.5	0.5	10/12/2017	mg/L		4.8 D1	
LB28-2.5	2.5	10/12/2017	mg/L		1.0 D1	
LB30-2.5	2.5	10/12/2017	mg/L		2.2 D1 / ND<0.024 D1	
LB31-0.5	0.5	10/12/2017	mg/L		13 D1 / 0.33 D1	
LB33-2.5	2.5	10/12/2017	mg/L		11 D1 / ND<0.024 D1	

mg/kg = milligrams per kilogram

ug/kg= micrograms per kilogram

bgs = below ground surface

<2.0 = Not detected above laboratory reporting limit as shown

-- = Not analyzed or not applicable

D1 = Sample required dilution due to possible matrix interference

D5 = Sample diluted due to failing internal standard on the original run

STLC = Soluble Threshold Limit Concentration

TCLP = Toxicity Characteristic Leaching Procedure

Highlighted concentrations exceeds selected screening criteria

TABLE 4 VOCs in Soil Berth 191-193 Wilmington, California

Sample ID	Depth (feet bgs)	Date	Units	Carbon Disulfide	Tetrachloroethene
USEPA F	RSL Industrial Soil		ug/kg	3,500,000	100,000
HERO HHRA Note 3 Ir	ndustrial Soil Scre	ening Criteria	ug/kg		2,700
LB2-0.5	0.5	10/11/2017	ug/kg	5.3	ND<1.5
LB2-2.5	2.5	10/11/2017	ug/kg	7.4 H7	ND<1.4 H7
LB4-0.5	0.5	10/11/2017	ug/kg	ND<3.5	27
LB4-2.5	2.5	10/11/2017	ug/kg	ND<3.3	ND<1.5
LB5-0.5	0.5	10/11/2017	ug/kg	ND<3.2	ND<1.4
LB5-2.5	2.5	10/11/2017	ug/kg	ND<3.7	ND<1.7
LB9-0.5	0.5	10/11/2017	ug/kg	ND<3.3	ND<1.5
LB9-2.5	2.5	10/11/2017	ug/kg	ND<3.7	ND<1.7
LB10-0.5	0.5	10/12/2017	ug/kg	ND<3.4	ND<1.5
LB10-2.5	2.5	10/12/2017	ug/kg	13	ND<1.4
LB11-0.5	0.5	10/12/2017	ug/kg	ND<3.4	ND<1.5
LB11-2.5	2.5	10/12/2017	ug/kg	ND<3.4	ND<1.5
LB13-0.5	0.5	10/11/2017	ug/kg	ND<3.3	ND<1.5
LB13-2.5	2.5	10/11/2017	ug/kg	ND<3.8	ND<1.7
LB16-2.5	2.5	10/12/2017	ug/kg	ND<3.4	ND<1.5
LB16-5.0	5	10/12/2017	ug/kg	ND<3.3	ND<1.5
LB17-0.5	0.5	10/11/2017	ug/kg	12	ND<1.6
LB17-2.5	2.5	10/11/2017	ug/kg	ND<3.9	ND<1.7
LB28-0.5	0.5	10/12/2017	ug/kg	ND<3.7	ND<1.7
LB28-2.5	2.5	10/12/2017	ug/kg	ND<3.5	ND<1.5
LB28-5.0	5	10/12/2017	ug/kg	ND<3.9	ND<1.7
LB33-2.5	2.5	10/12/2017	ug/kg	ND<3.3	ND<1.5
LB33-5.0	5	10/12/2017	ug/kg	ND<3.7	ND<1.6
LB34-0.5	0.5	10/13/2017	ug/kg	ND<3.9	ND<1.7
LB34-2.5	2.5	10/13/2017	ug/kg	ND<4.8	ND<2.1
LB34-5.0	5	10/13/2017	ug/kg	ND<4.3	ND<1.9
LB35-0.5	0.5	10/13/2017	ug/kg	ND<4.5	ND<2.0
LB35-2.5	2.5	10/13/2017	ug/kg	ND<4.5	ND<2.0
LB35-5.0	5	10/13/2017	ug/kg	ND<3.9	ND<1.7

Notes:

VOCs = volatile organic compounds

bgs = below ground surface

ug/kg = micrograms per kilogram

ND<0.88 = Not detected above the laboratory reporting limit

H7 = The sample was logged past hold time

RSL = EPA Region 9 Industrial Regional Screening Level (November 2017)

HERO Note 3 = Department of Toxic Substances Control (DTSC) Office of Human and Ecological Risk (HERO) Note Number 3 (June 2017)

TABLE 5 PAHs IN SOIL Berth 191-193 Wilmington, California

Sample ID	Depth (feet bgs)	Date	Units	2-Methylnaphthalene	Benzo(b)fluoranthene	Fluoranthene	Pyrene
USEPA RSI	L Industrial So	il	ug/kg	3,000,000	21,000	30,000,000	23,000,000
LB2-0.5	0.5	10/11/17	ug/kg	ND<60 D1	ND<220 D1	ND<45 D1	ND<51 D1
LB2-2.5	2.5	10/11/17	ug/kg	ND<1.2 H4	10 H4	12 H4	11 H4
LB4-0.5	0.5	10/11/17	ug/kg	ND<60 D1	ND<220 D1	ND<45 D1	ND<51 D1
LB4-2.5	2.5	10/11/17	ug/kg	ND<12 D1	ND<43 D1	ND<9.0 D1	ND<10 D1
LB5-0.5	0.5	10/11/17	ug/kg	ND<60 D1	ND<220 D1	ND<45 D1	ND<51 D1
LB5-2.5	2.5	10/11/17	ug/kg	ND<3.0	ND<11	ND<2.2	ND<2.6
LB9-0.5	0.5	10/11/17	ug/kg	ND<60 D1	ND<220 D1	ND<45 D1	ND<51 D1
LB9-2.5	2.5	10/11/17	ug/kg	ND<30 D1	ND<110 D1	ND<22 D1	ND<26 D1
LB10-0.5	0.5	10/12/17	ug/kg	ND<120 D1	ND<430 D1	ND<90 D1	ND<100 D1
LB10-2.5	2.5	10/12/17	ug/kg	ND<0.60	ND<2.2	ND<0.45	ND<0.51
LB11-0.5	0.5	10/12/17	ug/kg	ND<12 D1	ND<43 D1	ND<9.0 D1	ND<10 D1
LB11-2.5	2.5	10/12/17	ug/kg	ND<0.60	ND<2.2	ND<0.45	ND<0.51
LB13-0.5	0.5	10/11/17	ug/kg	ND<60 D1	ND<220 D1	ND<45 D1	ND<51 D1
LB13-2.5	2.5	10/11/17	ug/kg	ND<0.60	ND<2.2	ND<0.45	ND<0.51
LB16-2.5	2.5	10/12/17	ug/kg	ND<30 D1	ND<110 D1	ND<22 D1	ND<26 D1
LB16-5.0	5	10/12/17	ug/kg	ND<30 D1	ND<110 D1	ND<22 D1	ND<26 D1
LB17-0.5	0.5	10/11/17	ug/kg	ND<30 D1	ND<110 D1	ND<22 D1	ND<26 D1
LB17-2.5	2.5	10/11/17	ug/kg	ND<0.60	ND<2.2	ND<0.45	ND<0.51
LB28-0.5	0.5	10/12/17	ug/kg	ND<30 D1	ND<110 D1	ND<22 D1	ND<26 D1
LB28-2.5	2.5	10/12/17	ug/kg	ND<120 D1	ND<430 D1	ND<90 D1	ND<100 D1
LB28-5.0	5	10/12/17	ug/kg	7,800	ND<43	ND<9.0	ND<10
LB33-2.5	2.5	10/12/17	ug/kg	ND<120 D1	ND<430 D1	ND<90 D1	ND<100 D1
LB33-5.0	5	10/12/17	ug/kg	ND<0.60	ND<2.2	ND<0.45	ND<0.51
LB34-0.5	0.5	10/13/17	ug/kg	ND<300 D1	ND<1100 D1	ND<220 D1	ND<260 D1
LB34-2.5	2.5	10/13/17	ug/kg	ND<0.60	ND<2.2	ND<0.45	ND<0.51
LB35-0.5	0.5	10/13/17	ug/kg	ND<300 D1	ND<1100 D1	ND<220 D1	ND<260 D1
LB35-2.5	2.5	10/13/17	ug/kg	ND<600 D1	ND<2200 D1	ND<450 D1	ND<510 D1
LB35-5.0	5	10/13/17	ug/kg	ND<750 D1	ND<2700 D1	ND<560 D1	ND<640 D1

Notes:

PAHs = Polynuclear aromatic hydrocarbons

bgs = below ground surface

ug/kg = micrograms per kilogram

ND<0.88 = Not detected above the laboratory reporting limit

D1 = Sample required dilution due to possible matrix interference

H4 = Change order analysis requested past the sample holding time

RSL = EPA Region 9 Industrial Regional Screening Level (November 2017)

TABLE 6

PCBs IN SOIL Berth 191-193

Wilmington, California

Sample ID	Depth (feet bgs)	Date	Units	Aroclor 1254	Aroclor 1260
USEPA RSL Ir	dustrial Soil		mg/kg	0.970	0.990
LB2-0.5	0.5	10/11/2017	mg/kg	ND<0.0046	ND<0.0046
LB4-0.5	0.5	10/11/2017	mg/kg	ND<0.0046	0.079
LB5-0.5	0.5	10/11/2017	mg/kg	ND<0.0046	ND<0.0046
LB9-0.5	0.5	10/11/2017	mg/kg	ND<0.0046	ND<0.0046
LB10-0.5	0.5	10/12/2017	mg/kg	ND<0.0046	0.21
LB11-0.5	0.5	10/12/2017	mg/kg	0.870	ND<0.0046
LB13-0.5	0.5	10/11/2017	mg/kg	ND<0.0046	0.021
LB16-2.5	2.5	10/12/2017	mg/kg	0.110	ND<0.0046
LB17-0.5	0.5	10/11/2017	mg/kg	ND<0.0046	0.032
LB19-0.5	0.5	10/11/2017	mg/kg	ND<0.0046	ND<0.0046
LB28-5.0	5	10/12/2017	mg/kg	ND<0.0046	ND<0.0046
LB33-2.5	2.5	10/12/2017	mg/kg	ND<0.0091	ND<0.0091
LB34-0.5	0.5	10/13/2017	mg/kg	ND<0.0046	ND<0.0046
LB35-0.5	0.5	10/13/2017	mg/kg	ND<0.046 D1	ND<0.046 D1
LB35-5.0	5	10/13/2017	mg/kg	ND<0.0091	ND<0.0091
LB45-0.5	0.5	12/13/2017	mg/kg	<0.016	0.068
LB46-0.5	0.5	12/13/2017	mg/kg	<0.016	<0.016
LB47-0.5	0.5	12/13/2017	mg/kg	<0.016	0.180

Notes:

PCBs = Polychlorinated Biphenyls

bgs = below ground surface

mg/kg = milligrams per kilogram

ND<4.6 = Not detected above the reporting limit.

D1 = Sample required dilution due to possible matrix interference

RSL = EPA Region 9 Industrial Regional Screening Level (November 2017)

Sample ID Depth (feet bgs)	Date	Units	2,3,7,8-TCDD	1,2,3,7,8-PeCDD	1,2,3,4,7,8-HxCDD	1,2,3,6,7,8-HxCDD	1,2,3,7,8,9-HxCDD	1,2,3,4,6,7,8-HpCDD	осър	Total TCDD	Total PeCDD	Total HxCDD	Total HpCDD	2,3,7,8-TCDF	1,2,3,7,8-PeCDF	2,3,4,7,8-PeCDF	1,2,3,4,7,8-HxCDF	1,2,3,6,7,8-HxCDF	2,3,4,6,7,8-HxCDF	1,2,3,7,8,9-HxCDF	1,2,3,4,6,7,8-HpCDF	1,2,3,4,7,8,9-HpCDF	OCDF	Total TCDF	Total PeCDF	Total HxCDF	Total HpCDF	Total Toxic Equivalency
Toxic Equivalency	Factor		1	1	0.1	0.1	0.1	0.01	0.0003	N/A	N/A	N/A	N/A	0.1	0.03	0.3	0.1	0.1	0.1	0.1	0.01	0.01	0.0003	N/A	N/A	N/A	N/A	N/A
LB17-0.5 0.5	10/11/17	pg/g	ND<0.172	ND<0.327	ND<0.327	7.34	ND<0.315	245	2150	ND<0.480	8.34	80.9	564	ND<0.0886	ND<0.412	2.82 J	ND<0.518	3.47 J	ND<0.319	ND<0.425	22.6	ND<0.378	86.7	26.8	44.1 / 50.5 EMPC	48.1	66.7	5.27*

Notes:

pg/g = picograms per gram
ND <0.327= Not detected above estimated detection limit

J = Estimated concentration found below the lower quantitation limit but greater than zero.

EMPC = Estimated Maximum possible concentration due to ion abundance ratio failure

* = The total toxic equivalency of 5.27 is below the DTSC Human and Ecological Risk Office Human Health Risk Assessment Note 2 (April 2017) conservative value of 22 pg/g for industrial/commercial workers.

TABLE 8

TPH IN GROUNDWATER

Berth 191-193

Wilmington, California

Sample ID	Date	Units	GRO	DRO	ORO
ESLs Saltwater Tox	ζ.	mg/L	3.7	0.64	0.64
LB1-GW	10/11/17	mg/L	9.9	0.93	0.38
LB6-GW	10/12/17	mg/L	0.09	0.47	0.43
LB13-GW	10/11/17	mg/L	ND<0.05	0.47	0.42
LB23-GW	10/11/17	mg/L	ND<0.05	0.33	0.38
LB25-GW	10/11/17	mg/L	0.08	0.23	0.16
LB27-GW	10/12/17	mg/L	ND<0.05	0.35	0.27
LB31-GW	10/12/17	mg/L	ND<0.05	0.38	0.33
LB34-GW	10/13/17	mg/L	ND<0.05	0.15	0.10

Notes:

TPH = total petroleum hydrocarbons

mg/L = milligrams per liter

GRO = Gasoline Range Petroleum Hydrocarbons

DRO = Diesel Range Petroleum Hydrocarbons

ORO = Oil Range Petroleum Hydrocarbons

ESLs Saltwater Tox. = Environmental Screening Levels (ESLs) developed by the San Francisco Bay Regional Water Quality Control Board (February 2016) for saltwater aquatic habits

ND<0.05 = Not detected above laboratory reporting limit

-- = not applicable

Highlighted values exceed Port Screening Criteria

Sample ID	Date	Units	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
ESLs Saltwater Tox.		mg/L	0.5	0.036			0.0093			0.0031	0.0081	0.00094		0.0082	0.071	0.00034	0.21		0.081
LB1-GW	10/11/17	mg/L	ND<0.0088	ND<0.0078	0.11	ND<0.0016	ND<0.0024	0.015	ND<0.0016	0.011	ND<0.0047	ND<0.00005	0.027	0.011	ND<0.0093	ND<0.0024	ND<0.0085	0.011	ND<0.0057
LB6-GW	10/12/17	mg/L	ND<0.0088	ND<0.0078	0.098	ND<0.0016	ND<0.0024	0.0087	0.0035	0.0090	ND<0.0047	ND<0.00005	0.022	0.0067	ND<0.0093	ND<0.0024	ND<0.0085	0.018	ND<0.0057
LB13-GW	10/11/17	mg/L	ND<0.0088	ND<0.0078	0.12	ND<0.0016	ND<0.0024	0.0094	ND<0.0016	ND<0.0038	ND<0.0047	ND<0.00005	0.0093	0.0060	ND<0.0093	ND<0.0024	ND<0.0085	0.013	ND<0.0057
LB23-GW	10/11/17	mg/L	ND<0.0088	ND<0.0078	0.089	ND<0.0016	ND<0.0024	ND<0.0020	ND<0.0016	ND<0.0038	ND<0.0047	ND<0.00005	0.0087	ND<0.0046	ND<0.0093	ND<0.0024	ND<0.0085	0.0036	ND<0.0057
LB25-GW	10/11/17	mg/L	0.013	ND<0.0078	0.062	ND<0.0016	ND<0.0024	0.012	ND<0.0016	ND<0.0038	ND<0.0047	ND<0.00005	0.021	0.0083	ND<0.0093	ND<0.0024	ND<0.0085	0.0043	ND<0.0057
LB27-GW	10/12/17	mg/L	ND<0.0088	0.013	0.31	ND<0.0016	ND<0.0024	0.022	0.0086	0.016	ND<0.0047	ND<0.00005	ND<0.0030	0.016	ND<0.0093	ND<0.0024	ND<0.0085	0.034	0.090
LB31-GW	10/12/17	mg/L	ND<0.0088	ND<0.0078	0.047	ND<0.0016	ND<0.0024	ND<0.0020	ND<0.0016	ND<0.0038	ND<0.0047	ND<0.00005	0.0059	ND<0.0046	ND<0.0093	ND<0.0024	ND<0.0085	0.0067	ND<0.0057
LB34-GW	10/13/17	mg/L	ND<0.0088	ND<0.0078	0.13	ND<0.0016	ND<0.0024	ND<0.0020	0.0034	ND<0.0038	ND<0.0047	ND<0.00005	ND<0.0030	ND<0.0046	ND<0.0093	ND<0.0024	ND<0.0085	ND<0.0022	ND<0.0057

Notes:

mg/L = milligrams per liter

ESLs Saltwater Tox. = Environmental Screening Levels (ESLs) developed by the San Francisco Bay Regional Water Quality Control Board (February 2016) for saltwater aquatic habits

ND<0.13 = Not detected above laboratory reporting limit

-- = not applicable

Highlighted values exceed Port Screening Criteria

TABLE 10

VOCs IN GROUNDWATER

Berth 191-193 Wilmington, California

Sample ID	Date	Units	1,1-Dichloroethene	1,2-Dichloroethane	Benzene	Bromodichloromethane	Bromoform	Carbon disulfide	cis-1,2-Dichloroethene	Dibromochloromethane	MTBE	Tetrachloroethene	trans-1,2-Dichloroethene	Trichloroethene	Vinyl chloride
ESLs Saltwater To	OX.	ug/L	22,000	11,000	350	3,200	3,200		22,000	3,200	8,000	230	22,000	200	
LB1-GW	10/11/17	ug/L	ND<14	ND<20	ND<10	ND<16	ND<7.0	ND<11	3,300	ND<5.3	ND<4.6	19,000	210	7,900	ND<13
LB6-GW	10/12/17	ug/L	ND<0.28	ND<0.39	0.81	ND<0.32	ND<0.14	ND<0.21	78	ND<0.11	19	ND<0.18	33	ND<0.15	43
LB13-GW	10/11/17	ug/L	ND<0.28	ND<0.39	ND<0.21	ND<0.32	ND<0.14	ND<0.21	0.61	ND<0.11	ND<0.09	2.0	ND<0.15	1.6	ND<0.25
LB23-GW	10/11/17	ug/L	ND<0.28	ND<0.39	ND<0.21	ND<0.32	ND<0.14	ND<0.21	ND<0.39	ND<0.11	ND<0.09	1.3	ND<0.15	0.78	ND<0.25
LB25-GW	10/11/17	ug/L	ND<0.28	ND<0.39	ND<0.21	ND<0.32	ND<0.14	ND<0.21	1.5	ND<0.11	ND<0.09	6.2	ND<0.15	3.5	ND<0.25
LB27-GW	10/12/17	ug/L	ND<0.28	ND<0.39	ND<0.21	ND<0.32	ND<0.14	ND<0.21	ND<0.39	ND<0.11	ND<0.09	ND<0.18	ND<0.15	ND<0.15	ND<0.25
LB31-GW	10/12/17	ug/L	ND<0.28	ND<0.39	ND<0.21	ND<0.32	ND<0.14	ND<0.21	ND<0.39	ND<0.11	ND<0.09	ND<0.18	ND<0.15	ND<0.15	ND<0.25
LB34-GW	10/13/17	ug/L	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
LB36-GW	12/13/17	ug/L	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	7.6	ND<0.5	1.3	2.6	0.50	3.8	0.73
LB37-GW	12/13/17	ug/L	7.2	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	2,400	ND<0.5	ND<0.5	440	230	870	4.0
LB38-GW	12/13/17	ug/L	ND<0.5	ND<0.5	ND<0.5	0.70	4.2	ND<0.5	24	2.7	ND<0.5	ND<0.5	0.78	ND<0.5	2.7
LB39-GW	12/13/17	ug/L	9.6	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	4,900	ND<0.5	1.2	380	220	890	7.7
LB40-GW	12/13/17	ug/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	3.5	380	ND<1.0	2.0	12	19	21	11
LB41-GW	12/13/17	ug/L	13	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	8,500	ND<0.5	ND<0.5	40	290	110	57
LB42-GW	12/13/17	ug/L	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	4.7	ND<0.5	ND<0.5	ND<0.5	ND<0.5
LB43-GW	12/13/17	ug/L	ND<0.5	1.1	ND<0.5	ND<0.5	ND<0.5	ND<0.5	5.9	ND<0.5	15	ND<0.5	ND<0.5	ND<0.5	2.4
LB44-GW	12/13/17	ug/L	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	17	ND<0.5	6.3	ND<0.5	ND<0.5	ND<0.5	ND<0.5
LB48-GW	12/13/17	ug/L	2.8	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1,100	ND<0.5	ND<0.5	7.6	38	10	8.3
LB49-GW	12/13/17	ug/L	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	180	ND<0.5	6.8	0.52	35	1.8	57

Notes:

VOCs = volatile organic compounds

MTBE = methyl tertiary butyl ether

ug/L = micrograms per liter

ESLs Saltwater Tox. = Environmental Screening Levels (ESLs) developed by the San Francisco Bay Regional Water Quality Control Board (February 2016) for saltwater aquatic habits

ND<0.13 = Not detected above laboratory reporting limit

Highlighted values exceed Port Screening Criteria

Sample ID	Date	Units	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
ESLs Saltwate	er Tox.	ug/L	30	40	30									8.0	30		240		
LB1-GW	10/11/17	ug/L	ND<0.02	ND<0.02	ND<0.02	ND<0.01	ND<0.01	ND<0.01	ND<0.06	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02
LB6-GW	10/11/17	ug/L	ND<0.02	ND<0.02	ND<0.02	ND<0.01	ND<0.01	ND<0.01	ND<0.06	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02
LB13-GW	10/11/17	ug/L	ND<0.02	ND<0.02	ND<0.02	ND<0.01	ND<0.01	ND<0.01	ND<0.06	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02
LB23-GW	10/11/17	ug/L	ND<0.02	ND<0.02	ND<0.02	ND<0.01	ND<0.01	ND<0.01	ND<0.06	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02
LB25-GW	10/12/17	ug/L	ND<0.02	ND<0.02	ND<0.02	ND<0.01	ND<0.01	ND<0.01	ND<0.06	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02
LB27-GW	10/12/17	ug/L	ND<0.02	ND<0.02	ND<0.02	ND<0.01	ND<0.01	ND<0.01	ND<0.06	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02
LB31-GW	10/13/17	ug/L	ND<0.02	ND<0.02	ND<0.02	ND<0.01	ND<0.01	ND<0.01	ND<0.06	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02
LB34-GW	10/12/17	ug/L	ND<0.02	ND<0.02	ND<0.02	ND<0.01	ND<0.01	ND<0.01	ND<0.06	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02

Notes:

PAHs = polynuclear aromatic hydrocarbons

ug/L = micrograms per liter

ESLs Saltwater Tox. = Environmental Screening Levels (ESLs) developed by the San Francisco Bay Regional Water Quality Control Board (February 2016) for saltwater aquatic habits

ND<0.13 = Not detected above laboratory reporting limit

-- = not applicable

Sample ID	Date	Depth (feet bgs)	Units	enzene	romobenzene	Butylbenzene	c-Butylbenzene	rt-Butylbenzene	Chloroform	Chlorotoluene	Chlorotoluene	Dichlorodifluoromethane	1-Dichloroethene	s-1,2-Dichloroethene	ans-1,2-Dichloroethene	Ethylbenzene	sopropylbenzene	Isopropyltoluene	Propylbenzene	yrene	1,2,2-Tetrachloroethane	etrachloroethene	roluene	1,2-Trichloroethane	richloroethene	richlorofluoromethane	,2,4-Trimethylbenzene	3,5-Trimethylbenzene	Vinyl Chloride	y-Xylene	o-Xylene
		I ISEDA RSI	L Industrial Air*	3.2	5 20	<u>:</u> 	S	<u> </u>	1.06	- 2	 4	880	1,760	 Ci	<u> </u>	5 9.8	<u>s</u>	4	£ 8,800	8,800 S	0.42	94	44,000	ਜ਼ੇ 1.54	F	F	520	520	5.6	880	880
	D		ote 3 industrial*	0.84									620	70	700					7,800		4.0	2,600			10,800			0.32		000
			ote 5 industrial*																	7,800		4.0			16						
LB1-4	10/17/2017	4.0	ug/L	0.024	<0.008	<0.008	<0.008	<0.008	0.167	<0.008	<0.008	0.027	0.024	30.6	3.56	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	148	0.055	<0.008	23.2	0.016	0.008	<0.008	<0.008		<0.008
LB6-4	10/17/2017	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	2.15	0.445	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008		<0.008	<0.008		<0.008	<0.008	3.20	<0.008	<0.008
LB13-4	10/17/2017	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	0.035	<0.008	<0.008	0.026	<0.008	<0.008	<0.008	<0.008		<0.008
LB23-4	10/17/2017	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008			<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008		<0.008	<0.008		<0.008	<0.008	_			<0.008		
LB23-4 REP	10/17/2017	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008			<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008		<0.008	<0.008				<0.008		<0.008
LB25-4	10/17/2017	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	0.262	<0.008	<0.008	0.021	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008
LB27-4	10/17/2017	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	0.011	<0.008	0.030	<0.008	<0.008	<0.008	<0.008	<0.008	0.102	0.066	<0.008	0.029	<0.008	0.038	<0.008	<0.008	0.136	0.038
LB31-4	10/17/2017	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008
LB34-4	10/17/2017	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	0.274	0.038	<0.008	0.029	<0.008	<0.008	<0.008	<0.008	0.016	<0.008
LB36-4'	12/18/2017	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	0.010	<0.008	<0.008	<0.008	0.019	0.011	0.771	0.012	0.009	0.011	0.141	0.081	0.304	<0.008	3.59	0.234	0.010	<0.008	0.046	0.019
LB37-4'	12/18/2017	4.0	ug/L													No	o flow, wa	ater in pro	be												
LB38-3'	12/18/2017	3.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	0.011	<0.008	<0.008	<0.008	<0.008	<0.008	0.106	<0.008	<0.008	<0.008	<0.008	0.016	<0.008	<0.008	3.71	0.036	<0.008	<0.008	<0.008	<0.008
LB39-4'	12/18/2017	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	0.026	<0.008	<0.008	0.010	0.056	70.1	2.67	<0.008	<0.008	0.023	<0.008	<0.008	<0.008	8.75	0.011	0.015	18.4	<0.008	<0.008	<0.008	0.014	<0.008	<0.008
LB40-4'	12/18/2017	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	0.009	<0.008	0.218	0.012	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	0.243	<0.008	0.012	0.146	0.010	<0.008	<0.008	<0.008	<0.008	<0.008
LB41-4'	12/18/2017	4.0	ug/L										1	1				ater in pro	1	1 1		1		ı	1		T	T	T		
LB42-4'	12/18/2017	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008		<0.008	<0.008	<0.008	0.110	<0.008	<0.008	<0.008	0.206	<0.008	<0.008	<0.008	0.066	0.010	<0.008	0.014	0.052	0.066	<0.008	<0.008		
LB42-4' REP	12/18/2017	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	0.133	<0.008	<0.008	<0.008	0.206	<0.008	<0.008	<0.008	0.075	0.012	<0.008	0.030	0.054	0.070	<0.008	<0.008	<0.008	
LB43-4'	12/18/2017	4.0	ug/L	<0.008	0.009	0.013	0.014	0.013	<0.008	0.009	0.010	0.011	<0.008	<0.008	<0.008	0.012	0.012	0.026	0.014	<0.008	<0.008	0.011	0.021	0.118	<0.008	0.009	0.021	0.013	<0.008	0.021	0.011
LB44-4'	12/18/2017	4.0	ug/L															ater in pro													
LB48-4'	12/18/2017	4.0	ug/L		1		1	1			1							ater in pro		1 1						T			T	T	
LB49-4'	12/18/2017	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	< 0.008	<0.008	0.100	<0.008	<0.008	<0.008	0.014	<0.008	<0.008	<0.008	0.090	<0.008	<0.008	0.064	< 0.008	< 0.008	< 0.008	0.021	< 0.008	< 0.008

Notes:

*= Screening levels are adjusted using a 0.0005 attenuation factor for future commercial/industrial use are from Table 2 of the 2011 Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance)

ug/L = micrograms per liter

bgs = below ground surface

APPENDIX A References

APPENDIX A

References

- California Code of Regulations, Title 22, Division 4.5, Chapter 11, Article 3, Characteristics of Hazardous Waste.
- California Department of Water Resources (DWR), 1961, Planned Utilization of the Ground Water Basins of the Coastal Plain of Los Angeles County, Bulletin No. 104.
- Department of Toxic Substance Control, Determination of a Southern California Regional Background Arsenic Concentration in Soil, 2008.
- Department of Toxic Substances Control, Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance), October 2011.
- Department of Toxic Substances Control, Human and Ecological Risk Office, Human Health Risk Assessment Note Number: 3, DTSC-modified Screening Levels, February 2018.
- Department of Toxic Substances Control, Human and Ecological Risk Office, Human Health Risk Assessment Note Number: 2, Soil Remedial Goals for Dioxins and Dioxin-like Compounds for Consideration at California Hazardous Waste Sites, April 2017.
- Department of Toxic Substances Control, Human and Ecological Risk Office, Human Health Risk Assessment Note Number: 5, Health-based Indoor Air Screening Criteria for Trichloroethylene, August 23, 2014.
- Department of Toxic Substances Control Los Angeles Regional Water Quality Control Board and San Francisco Regional Water Quality Control Board, 2012, Advisory Active Soil Gas Investigations, July 2015.
- San Francisco Bay Regional Water Quality Control Board, Environmental Screening Levels, February 2016.
- United States Environmental Protection Agency, 2017, Region 9 Residential Regional Screening Levels, November 2017.

APPENDIX B Boring Permit

ENVIRONMENTAL HEALTH

DATE: September 26, 2017

Drinking Water Program

5050 Commerce Drive, Baldwin Park, CA 91706

Telephone: (626) 430-5420 • Facsimile: (626) 813-3013 • Email: waterquality@ph.lacounty.gov

http://publichealth.lacounty.gov/eh/ep/dw/dw_main.htm

SR0120054

Berth 191-193, Canal Street & Yacht Street, Wilmington, CA 90744 **Work Plan Approval**

TO BE COMPLETED BY APPLICANT

	TO BE COMIT EETED BY	ALLEGANI.	
WORK SITE ADDRESS	CITY	ZIP	EMAIL ADDRESS FOR WELL PERMIT APPROVAL
WORK SITE ADDICESS	OILI		LIVIALE ADDITIONAL
		İ	
		i	
Berth 191-193, Canal Street & Yacht Street	Wilmington	90744	bmcculloch@leightongroup.com
Borar 101 100, Carlar Caroot a racin Caroot	; vviii iii igtori	, 007 11	billoodiloon eloigittorigioup.com

NOTICE:

- WORK PLAN APPROVALS ARE VALID FOR 180 DAYS. 30 DAY EXTENSIONS OF WORK PLAN APPROVALS ARE CONSIDERED ON AN INDIVIDUAL (CASE-BY-CASE) BASIS AND MAY BE SUBJECT TO ADDITIONAL PLAN REVIEW FEES (HOURLY RATE AS APPLICABLE).
- WORK PLAN MODIFICATIONS MAY BE REQUIRED IF WELL AND GEOLOGIC CONDITIONS ENCOUNTERED AT THE SITE INSPECTION ARE FOUND TO DIFFER FROM THE SCOPE OF WORK PRESENTED TO THE DEPARTMENT OF PUBLIC HEALTH—DRINKING WATER PROGRAM.
- WORK PLAN APPROVALS ARE LIMITED TO COMPLIANCE WITH THE CALIFORNIA WELL STANDARDS AND THE LOS ANGELES COUNTY CODE AND DOES NOT GRANT ANY RIGHTS TO CONSTRUCT, RENOVATE, OR DECOMMISSION ANY WELL. THE APPLICANT IS RESPONSIBLE FOR SECURING ALL OTHER NECESSARY PERMITS SUCH AS WATER RIGHTS, PROPERTY RIGHTS, COASTAL COMMISSION APPROVALS, USE COVENANTS, ENCROACHMENT PERMISSIONS, UTILITY LINE SETBACKS, CITY/COUNTY PUBLIC WORKS RIGHTS OF WAY, ETC.
- ALL FIELD WORK MUST BE CONDUCTED UNDER THE DIRECT SUPERVISION OF A PROFESSIONAL GEOLOGIST LICENSED IN THE STATE OF CALIFORNIA.
- THIS PERMIT IS NOT COMPLETE UNTIL ALL OF THE FOLLOWING REQUIREMENTS ARE SIGNED BY THE DEPUTY HEALTH OFFICER. WORK SHALL NOT BE INITIATED WITHOUT A WORK PLAN APPROVAL STAMPED BY THE DEPARTMENT OF PUBLIC HEALTH—DRINKING WATER PROGRAM.
- ONCE APPROVED NOTIFY INSPECTOR AT <u>ytaye@ph.lacounty.gov</u> PREFERABLY 3 BUSINESS DAYS BEFORE WORK IS SCHEDULED TO BEGIN.

TO BE COMPLETED BY DEPARTMENT OF PUBLIC HEALTH—DRINKING WATER PROGRAM:

X WORK PLAN APPROVED (35 soil borings) **ADDITIONAL APPROVAL CONDITIONS:**

- Provide the start of project date and time via my email listed above.
- Ensure to backfill with appropriate sealing material in accordance with the California Well Standards Bulletins 74-90 and 74-81 within 72 hours.
- Exploration holes must comply with all applicable requirements published in the California Well Standards (Bulletins 74-81 and 74-90).

Yonas Taye, REHS

□ ANNULAR SEAL FINAL INSPECTION REQUIRED	□ WELL COMPLETION LOG REQUIRED
DATE ACCEPTED: REHS signature	DATE ACCEPTED: REHS signature
□ WATER QUALITY—BACTERIOLOGICAL STANDARDS REQUIRED	□ WATER QUALITY—CHEMICAL STANDARDS REQUIRED
DATE ACCEPTED: REHS signature	DATE ACCEPTED: REHS signature
·	•
□ WATER SUPPLY YIELD REQUIRED	□ OTHER REQUIREMENT
DATE ACCEPTED: REHS signature	DATE ACCEPTED: REHS signature

APPENDIX C Boring Logs

SOIL GAS PROBE BORING/CONSTRUCTION LOG

PROJE	CT NU	IMBER	11	1618	8.005			BORING/WELL NUMBER LB	1			
PROJE	CT NA	ME	_POL	_A E	Berth 1	91-193		DATE DRILLED 10/11/2017				
LOCAT	TION	SE	Corne	r of	Canal	Ave. ar	nd Yac	ht St., Wilmington, CA CASING TYPE/DIAMETER N	<u>/laflow</u>	/ Tubin	g / 1/4"	
DRILLI	NG ME	THOD	Di	irec	t Push			SCREEN TYPE/SLOT Air Sto	ne			
SAMPL	ING M	ETHO	-	Sle	eve			FILTER PACK TYPE Monter	rey Sa	nd		
GROUN	ND ELE	EVATIO	ON _		ft.	above	MSL	GROUT TYPE Hydrate	ed Ber	ntonite		
TOP O	F CAS	NG EL	EV		ft.	above	MSL	DEPTH TO WATER 5.	50 ft.			
LOGGE	ED BY	_ K(CH					TOTAL DRILL DEPTH		8 ft.		
REMAF	RKS	Bori	ng com	ple	ted by	Milleniu	ım En	rironmental using direct push.				
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION		CONTACT DEPTH	WEL	L DIAGRAM
			LB1-0.5		0	ML		@Surface: Gravelly Silty Sand.@0.5': SILT (ML), olive gray, moist, soft, no staining or odor		0.3 2.5		—Bentonite
5 -			LB1-2.5		0	SM		@2.5': Silty SAND (SM), gray, moist, medium dense, fine grained sand, trace shell fragments, no staining or odor		5.0	• • • • • • • • • • • • • • • • • • •	─1/4" Nylaflow Tubing ─Poly Implant \(4') Sand
			LB1-5.0		0	SP		@5.0': Poorly Graded SAND (SP), gray, moist, medium dense, no staining or odor @5.5': Poorly Graded SAND (SP) with silt, dark gray, we medium dense, some shell fragements, no staining or odor		8.0		- Bentonite
-1015202530								Notes: Total Depth = 8 feet bgs Groundwater was encountered at 5.5 feet bgs. Groundwater was collected from this boring. Boring was backfilled with bentonite from 4.5 to 8 ft bgs t dry boring prior to soil vapor probe contruction.		0.0		

-	
	W
	7.00

SOIL GAS PROBE BORING/CONSTRUCTION LOG

						WELL DIAGRAM														
				i i	5 #	CONTACT DEPTH	0.3		5.0											
BORING/WELL NUMBER LB2	, Wilmington, CA CASING TYPE/DIAN	SCREEN TYPE/SLOT FILTER PACK TYPE		DEPTH TO WATER ft.	RCH Boring completed by Millenium Environmental using direct push.	LITHOLOGIC DESCRIPTION	@Surface: Gravelly Silty Sand. @0.5'-Sandy SILT (ML), brown, moist, very stiff, fine grained sand, no staining or odor	@2.5'-Sandy SILT (ML), brown, moist, very stiff, fine grained sand, no staining or odor	@5.0': Poorly Graded SAND (SP) with silt, brown, moist, very dense, fine grained sand, no staining or odor	Notes: Total Depth = 5 feet bgs Groundwater not encountered Boring backfilled with bentonite										
	and Yacht St.		MSL	MSL	ım Env	GRAPHIC 200														
700	4ve. ar		above MSI	ft. above MSL	Milleniu	u.s.c.s.	M	¥	SP											
1618.005	Corner of Canal Ave.	Direct Push Sleeve	₩	#	ed by I	PID (bbm)	0	0	0											
1618	ir of (Sleeve			nplet	EXTENT														
+ 5		l	Z.	运	KCH oring cor	SAMPLE ID.	LB2-0.5	LB2-2.5	LB2-5.0											
MBER	SE	THOD ETHOD	VATIC	NG EL	Bori	(inches)														
PROJECT NUMBER		DRILLING METHOD SAMPLING METHOD	GROUND ELEVATION	TOP OF CASING ELEV.	LOGGED BY REMARKS	CONUTS BLOW														
PROJE	LOCATION	SAMP	GROU	TOPO	LOGGED E	DEPTH (ff. BGL)	1 1	1	- 5		1 1	7 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2)	1 1	20-	ı ı	1 1	25-	1 1	 -30

-	
V	
	V
	7.00

PROJECT NUMBER	MBER	l	11618.005	005				BORING/WELL NUMBER LB3			
PROJECT NAME	ME	9	LA Be	LA Berth 191-193				DATE DRILLED 10/11/2017			
LOCATION SE DRILLING METHOD	의 로		Corner of Canal Ave. Direct Push	anal A		<u>ام</u> ∀a	and Yacht St., Wilmington, CA	CASING TYPE/DIAMETER SCREEN TYPE/SLOT			
SAMPLING METHOD	ETHO		Sleeve	e				FILTER PACK TYPE			
GROUND ELEVATION	EVATIC	NO.		ff. 8	above MSL	MSL		GROUT TYPE			
TOP OF CASING ELEV	NG EL	, E		£.	ft. above MSL	MSL		DEPTH TO WATER ft.			
LOGGED BY REMARKS	A Boi	KCH oring cor	nplete	d by N	filleniu	Jm En	KCH Boring completed by Millenium Environmental using direct push.	TOTAL DRILL DEPTH Jush.	2 ff.		
(ft. BGL) COUNTS COUNTS	(inches)	SAMPLE ID.	EXTENT	(mqq) QIA	J.S.O.S.U	SRAPHIC 200		LITHOLOGIC DESCRIPTION	CONTACT DEPTH	WELL DIAGRAM	5
1 1		LB3-0.5	10	0	SP			@Surface: Gravelly Silty Sand. @0.5': Poorly Graded SAND (SP) with silt, brown, moist, dense, fine to medium grained sand, no staining or odor	0.3		
1 1		LB3-2.5	10	0		1. +1. +1. <u>- 1 1</u>		@2.5: Poorly Graded SAND (SP) with silt, gray brown, moist, dense, fine to medium grained sand, no staining or odor	1		
22		LB3-5.0		0	ML		@5'-Sandy SILT (ML sand, no staining or o	@5'-Sandy SILT (ML), brown, moist, very stiff, fine grained sand, no staining or odor	. 0. 0.		
							Notes: Total Depth = 5 feet bgs Groundwater not encountered Boring backfilled with bentonite	bgs countered i bentonite			
1 1 1											
- 12											
1 1											
T T											
-20-											
1 1											
L											
ı											
T T											
30			-	-							

	A
· ()	
- X	

							WELL DIAGRAM												
					3.5 ft.		CONTACT HTGGD	-0.3	3.5										
Š	CA CASING TYPE/DIAMETER	SCREEN TYPE/SLOT	GROI IT TYPE	DEPTH TO WATER ft.	TOTAL DRILL DEPTH	lirect push.	LITHOLOGIC DESCRIPTION	@Surface: Gravelly Silty Sand. @0.5: Poorly Graded SAND (SP) with silt, dark brown, moist, dense, fine to medium grained, staining and chemical odor	c type material and Poorly Graded SAND rown, moist, dense, possible hydrocarbon	staining and odor @3.5-Refusal-two borings were attempted. Possible riprap boundary.	Notes: Total Depth = 3.5 feet bgs Groundwater not encountered Boring backfilled with bentonite								
	a3 and Yacht St., Wilmington,		IS S	ASL		Boring completed by Millenium Environmental using direct push.	LOG LOG	::::	@2.5' Asphaltic (SP) with silf. bi	staining and od @3.5'-Refusal-1 riprap boundary	Notes: Total Depth = 3 Groundwater no Boring backfille								
			ISM eyode	ft. above MSL		Milleniu	.s.c.s.	SP	•										
.005	POLA Berth 191-193 Corner of Canal Ave. ar	Push	≠	ff. 8		√ kd be	(mqq) QIA	0	0	5.									
11618.005	OLA Book	Direct Push	Sleeve			mplete	EXTENT	2	2	0									
			' 요 중	ξ ≧	, A	ing co	SAMPLE ID.	LB4-0.5	LB4-2.5	LB4-5.0									
JMBER	ME SE	THOD	"ETHO ∹VATIC	ING EL	Σ	Bor	(jucµea) KECONEKA												
PROJECT NUMBER	PROJECT NAME LOCATION	DRILLING METHOD	SAMPLING METHOD GROUND FI EVATION	TOP OF CASING ELEV	LOGGED BY	RKS	CONNTS BLOW												
PROJ	PROJECT P	DRILL	SAMP	10 P.C	P000	REMARKS	DEPTH (ff. BGL)			- 5 -			15		20-		25		-30-

PROJ	ECT NA	ME	POL	_A E	Berth 1	91-193						
LOCA												
	LING ME PLING M				t Push eve			EU TED DAOK TYPE				
			_					GROUT TYPE				
								DEPTH TO WATER				
	ED BY		CH _					TOTAL DRILL DEPTH				
REMA	RKS	Bori	ng com					vironmental using direct push.				
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT	DEPTH	WEL	L DIAGRAM
			LB5-0.5 LB5-2.5		0	SW	· · · · · · · · · · · · · · · · · · ·	@Surface: Gravelly Sand. @0.5':Gravelly SAND (SW), gray brown, moist, dense, fine to medium grained, no odor or staining @2.5': Sandy SILT (ML), dark brown, moist, stiff, fine	2.			
						ML		grained sand, no staining or odor	4.	7		
— 5 —			LB5-5.0		0	SP	•	@5.0': Poorly Graded SAND (SP), gray, moist, dense, fine grained sand, no staining or odor				
								Notes: Total Depth = 5 feet bgs				
-10-								Groundwater not encountered Boring backfilled with bentonite				
 15												
20 												
25												
 30												

PROJI LOCA DRILL SAMP GROU TOP C	ING ME LING M IND ELE DF CASI ED BY	SE ETHOD SETHOI SVATIC ING EL	POL Corner Di DN _ EV	A E	Canal Canal t Push eve ft. ft.	91-193 Ave. ar above above	MSL MSL		CASING TYPE/DIAMET SCREEN TYPE/SLOT FILTER PACK TYPE GROUT TYPE DEPTH TO WATER TOTAL DRILL DEPTH	O/12/2017 FER Nylaflov Air Stone Monterrey Sa Hydrated Ber 5.50 ft.	and ntonite		
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOI	OGIC DESCRIPTION		CONTACT DEPTH	WEL	L DIAGRAM
			LB6-2.5		0 0 0	SM SM		medium grained, no of the control of	1), gray, moist, dense, fildor or staining M), gray, moist, dense, fildor M), gray, moist, dense, fildor M), dark gray-black, welling or odor	ine grained fine grained t, dense, fine to 8 ft bgs to	8.0	1150 1550 1150 1550 1150 1550 1150 1550 1150 1550	- Bentonite - 1/4" Nylaflow Tubing - Poly Implant (4') Sand - Bentonite

4	7	R	A	7
	٦	1	V	M
		м	7	7

PROJECT NUMBER	CT	JMBEF		11618.005	3.005					BORING/WELL NUMBER LB7			
PROJECT NAME	CT N	√ME		LA E	POLA Berth 191-193	91-193				DATE DRILLED 10/12/2017			
LOCATION SE	NOI NO ME	SE CONTRI		er of	ner of Canal .	Ave. a	nd Ys	Corner of Canal Ave. and Yacht St., Wilmington, Direct Push	CA	CASING TYPE/DIAMETER SCREEN TYPE/SLOT			
SAMPLING METHOD	ING	ETH SE	I	Sleeve	eve					FILTER PACK TYPE			
GROUND ELEVATION	NO E	EVATI	NO		- H	above MSI	MSL						
TOP OF CASING ELEV	F CAS	ing E	, EV.		انه	ft. above MSI	MSL			DEPTH TO WATER	ft.		
REMARKS	KS KS		oring cor	mplet	ted by	Milleni	um E	Boring completed by Millenium Environmental using direct push.	using direct pu	JOINE DRILL DEPTH	C		
(ff. BGL)	COUNTS BLOW	KECOVERY (inches)	SAMPLE ID.	EXTENT	(mqq) QIA	n.s.c.s.	GRAPHIC LOG	007	ПТНОГ	LITHOLOGIC DESCRIPTION	CONTACT	WELL DIAGRAM	AM
			LB7-0.5	2	0			@Surfac @0.5': G staining	e: Gravel ravelly SILT (@Surface: Gravel @0.5': Gravelly SILT (ML), black, moist, soft, no odor or staining	0.3		
1 1			LB7-2.5	2	0			@2.5': Si	andy SILT (M or odor	@2.5: Sandy SILT (ML), gray brown, moist, stiff, no staining or odor	!		
ro 			LB7-5.0		0	SM		@5.0': Si	ilty SAND (SI	@5.0': Silty SAND (SM), gray brown, moist, stiff, no staining or odor	5.0		
								Notes: Total Dep Groundw Boring wa	pth = 5 feet by ater was not as backfilled v	Notes: Total Depth = 5 feet bgs Groundwater was not encountered. Boring was backfilled with bentonite.			
1 1													
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7													
!													
1 1													
-20-													
1 1													
25													
1 1													
-30													
_				- -			_	-			-	-	

	A
· ()	
- X	

							WELL DIAGRAM																
						2 H	CONTACT DEPTH	0.3		5.0													
BORING/WELL NUMBER LB8	DATE DRILLED 10/11/201	Direct Push Screen TYPE/SLOT Screen TYPE/SLOT	FILTER PACK TYPE		DEPTH TO WATER ft.	KCH Boring completed by Millenium Environmental using direct push.	LITHOLOGIC DESCRIPTION	@0.5: SILT (ML), light gray, moist, soft, no odor or staining	@2.5': Sandy SILT (ML), dark gray, moist, stiff, no staining or odor	@5.0': Sandy SILT (SM), dark gray, moist, stiff, no staining or odor	<u>Notes:</u> Total Depth = 5 feet bgs	Groundwater was not encountered. Boring was backfilled with bentonite.											
	>	nd Yac		MSL	MSL	ım En	COG COS			111													
	POLA Berth 191-193	Ave. al		above MSL	ft. above MSL	Milleni	u.s.c.s.	ML	M	ML													
1618.005	erth 19	Direct Push		<u>ن</u> ے ا	ت	ed by I	(mqq) QIA	0	0	0													
1618	LA B	er or (Sleeve			nplet	EXTENT																
		- 1		Z		KCH oring cor	SAMPLE ID.	LB8-0.5	LB8-2.5	LB8-5.0													
MBER	ME	비	ETHO	EVATIC	NG EL	Bori	(inches)																
PROJECT NUMBER	PROJECT NAME	LUCATION SE DRILLING METHOD	SAMPLING METHOD	GROUND ELEVATION	TOP OF CASING ELEV	LOGGED BY REMARKS	CONNTS BLOW																
PROJ	PROJ	DRILLING	SAMP	GROU	TOP	LOGGED E	DEPTH (ff. BGL)			- 5		-10-	1 1	1 1	-15-	1 1	ı	 	ı	ı C	- cz 		30

-	
V	
	V
	7.00

PROJECT NUMBER	ABER	_	11618.005	305				BORING/WELL NUMBER LB9			
PROJECT NAME	¥	PO	LA Be	POLA Berth 191-193	-193			DATE DRILLED 10/11/2017			
LOCATION SE	S S	Corne	ner of Canal Direct Push	Corner of Canal Ave. and Yacht St., Direct Push	ve. an	d Yac	nt St., Wilmington, CA	CASING TYPE/DIAMETER SCREEN TYPE/SLOT			
SAMPLING METHOD	H	ļ	Sleeve	(a)				FILTER PACK TYPE			
GROUND ELEVATION	VATIO			#:	above MSL	MSL		GROUT TYPE			
TOP OF CASING ELEV	iG EL	₹. 		ff. a	ft. above MSL	MSL		DEPTH TO WATER ft.			
LOGGED BY REMARKS	Boring	E COI	nplete	d by M	illeniu	m Env	KCH Boring completed by Millenium Environmental using direct push.	TOTAL DRILL DEPTH	5 ft		
COUNTS (#. BGL) DEPTH	(inches)	SAMPLE ID.	EXTENT	(mdq) GI9	U.S.C.S.	GRAPHIC LOG	ПТНО	LITHOLOGIC DESCRIPTION	CONTACT	WELL DIAGRAM	5
		LB9-0.5		0	¥		@Surface: Gravelly & @0.5':Gravelly SILT staining	@Surface: Gravelly SAND @0.5':Gravelly SILT (ML), light brown, dry, stiff, no odor or staining	0.3		
1 1		LB9-2.5		0	NS S		@2.5: Silty SAND (S medium dense, fine (@2.5': Silty SAND (SM) with gravel, dark brown, moist, medium dense, fine grained sand, no staining or odor	0 1		
ις 		LB9-5.0		0	SP		@5.0': Poorly Grader dense, no staining or	@5.0': Poorly Graded SAND (SP), gray, moist, medium dense, no staining or odor	7.0 0.0		
101							Notes: Total Depth = 5 feet bgs Groundwater was not encountered. Boring was backfilled with bentonite.	bgs t encountered. 1 with bentonite.			
- 1 57 1											
· · · · · · · · · · · · · · · · · · ·											
—25—											
1 1											
-	_		_	-	_	_			_	_	

PROJ LOCA DRILL	ECT NU ECT NA TION LING ME	ME SE ETHOD	POL Corne	A E	Berth 1	91-193 Ave. ar	nd Yac	BORING/WELL NUMBED DATE DRILLED 10 ht St., Wilmington, CA CASING TYPE/DIAMET SCREEN TYPE/SLOT FILTER PACK TYPE	0/12/2017 TER			
GROL	JND ELI	EVATIO										
TOP (OF CAS	ING EL	EV					DEPTH TO WATER				
LOGG	ED BY		CH					TOTAL DRILL DEPTH		5 ft.		
REMA	RKS	Bori	ng com	ple	ted by	Milleniu	ım En	vironmental using direct push.				
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION		CONTACT	WEL	L DIAGRAM
			LB10-0.5		0		· · · · · · · · · · · · · · · · · · ·	@Surface: Gravelly SILT @0.5':Gravelly SILT (SW), gray, moist, stiff, r staining	no odor or	0.3		
			LB10-2.5		0	SM		@2.5': Sandy SILT (SM), dark gray, moist, sti grained sand, no staining or odor	iff, fine	2.5		
5 			LB10-5.0		0	_SM_/	<u> </u>	@5.0': Sandy SILT (SM), dark gray, moist, sti grained sand, no staining or odor	iff, fine	5.0		
								Notes: Total Depth = 5 feet bgs Groundwater was not encountered. Boring was backfilled with bentonite.				
 30												

-	
	W
	7.00

							WELL DIAGRAM												
					5 ft.		CONTACT DEPTH	0.3		5.0									
Ş	. Wilmington, CA CASING TYPE/DIAMETER		FILTER PACK TYPE	GROUT TYPE DEPTH TO WATER #		Boring completed by Millenium Environmental using direct push.	LITHOLOGIC DESCRIPTION	@Surface: Gravel @0.5:Gravelly SILT (ML), brown, moist, dense, no odor or staining	@2.5: Sandy SILT (ML), gray brown, moist, stiff, fine grained sand, no staining or odor	@5.0": Sandy SILT (ML), brown, moist, stiff, fine grained sand, no staining or odor	.; ;	Total Depth = 5 feet bgs Groundwater was not encountered. Boring was backfilled with bentonite.							
	ht St.,					vironme		sta	@2 gra	sar sar	Š	Tot Grc Bor							
	nd Yac			MSL	1	um En	GRAPHIC 50J												
	91-193 Ave. ar			ft. above MSL		Milleni	u.s.c.s.	M	M	ML									
1618.005	POLA Berth 191-193 Corner of Canal Ave. and Yacht St.	Push	,	⋣	=	ed by	(mqq) OI9	0	0	0									
11618	OLA B er of (Direct Push	Sleeve			mplet	EXTENT	3.5	2	0;									
			ذ م	8 B	, AGE	ing co	SAMPLE ID.	LB11-0.5	LB11-2.5	LB11-5.0									
IMBEF	ME Se	THOD	ETHO	EVATI(j ¥	Bor	(inches)												
PROJECT NUMBER	PROJECT NAME LOCATION	DRILLING METHOD	SAMPLING METHOD	GROUND ELEVATION TOP OF CASING ELEV	LOGGED BY	RKS	CONNTS BLOW												
PROJ	PROJECT N LOCATION	DRILL	SAMP	GROU	, 1000	REMARKS	DEPTH (ff. BGL)			_ 5		10—		 1 1	20—		-25	1 1	 -30

	P.		_
v		NÔ.	١.
	V	V	И
	Х	7	7
			•

PROJE	PROJECT NUMBER	IBER		11618.005	.005				NOM			
PROJE	PROJECT NAME	ے سے		LAB.	POLA Berth 191-193	1-193		A C	DATE DRILLED 10/11/2017			
DRILLING	LOCATION SE DRILLING METHOD	비모		irect	Direct Push	we.al	nd Y ac	Corner of Canal Ave. and Tacht St., Wilmington, CA Direct Push	SCREEN TYPE/SLOT			
SAMPL	SAMPLING METHOD	물	'	Sleeve	, e				FILTER PACK TYPE			
GROUN	GROUND ELEVATION	ATIC	'		ff. a	ft. above MSL	MSL		GROUT TYPE			
TOP OF	TOP OF CASING ELEV.	GEL	.		# :	ft. above MSI	MSL		DEPTH TO WATER - ft.			
LOGGED BY REMARKS	D BY	Bori	KCH oring con	plet	ed by N	fillenit	ım En	KCH Boring completed by Millenium Environmental using direct push.	TOTAL DRILL DEPTH	5 ft.		
DEPTH (ft. BGL)	COUNTS BLOW	(jucµes) ИЕСОЛЕВЬ	SAMPLE ID.	EXTENT	(mqq) QI9	n.s.c.s.	CRAPHIC LOG	ПТНО	LITHOLOGIC DESCRIPTION	CONTACT	WELL DIAGRAM	RAM
			LB12-0.5	1.5	0	ML		@Surface: Gravelly § @0.5:SILT (ML), ligh staining	@Surface: Gravelly SILT @0.5:SILT (ML), light gray-brown, dry, stiff, no odor or staining	0.3		
ı			LB12-2.5		0	M		@2.5':SILT (ML), ligh odor or staining	@2.5:SILT (ML), light gray-brown, slightly moist, stiff, no odor or staining			
 			LB12-5.0		0	ML		@5.0': Sandy SILT (Nesand, no staining or c	@5.0': Sandy SILT (ML), brown, moist, stiff, fine grained sand, no staining or odor	2.0		
1 1 1								Notes: Total Depth = 5 feet bgs	sbq			
								Groundwater was no Boring was backfilled	of encountered. d with bentonite.			
1 1												
7 												
<u>0</u>												
1 1												
20—												
1 1												
1 1												
25-												
1 1												
1 1												
-30												

PROJ	ECT N	JMBER	1 _ 1	161	8.005			BORING/WELL NUMBER LB13		
PROJ	ECT NA					91-193		DATE DRILLED 10/11/2017		
LOCA	TION	_SE	Corne	r of	Canal	Ave. aı	nd Yac		ow Tubir	ng / 1/4"
DRILL	ING ME	ETHOD	_ <u>D</u>	irec	t Push			SCREEN TYPE/SLOT Air Stone		
	LING N				eve					
									<u>sentonite</u>	
					ft.	above	MSL	DEPTH TO WATER 5.50		
LOGG	ED BY							TOTAL DRILL DEPTH	8 ft	
REMA	RKS	Bori	ng com	ple	ted by	Milleni	um Env	ironmental using direct push.		
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT	WELL DIAGRAM
 			LB13-0.5		0	ML ML		@Surface: Gravelly SILT @0.5':SILT (ML), gray-brown, moist, stiff, no odor or staining @2.5':Sandy SILT (ML), gray, moist, stiff, no odor or staining	0.3	—Bentonite — 1/4" Nylaflow Tubing
- 5 — - 5 — 			LB13-5.0		0	SM SM		@5.0': Silty SAND (SM), gray, moist, medium dense, no staining or odor @5.5': Silty SAND (SM), gray, wet, medium dense, no staining or odor	5.0	Poly Implant (4') Sand —Bentonite
								Notes: Total Depth = 8 feet bgs Groundwater was encountered at 5.5 feet bgs. Groundwater was collected from this boring. Boring was backfilled with bentonite from 4.5 to 8 ft bgs to dry boring prior to soil vapor probe contruction.		
-30										

A	
V	
N/	*

			انو.	5 ft.	CONTACT DEPTH WELL DIAGRAM	0.3		5.0										
1 1	Direct Push Screen Type/SLOT	FILTER PACK TYPE GROUT TYPE	DEPTH TO WATER ft.	KCH Boring completed by Millenium Environmental using direct push.	LITHOLOGIC DESCRIPTION	@Surface: Gravelly SAND @0.5': Gravelly SILT (ML), gray, dry, stiff, no odor or staining	@2.5:SILT (ML), black, moist, stiff, no odor, staining possible, degraded asphaltic appearance	@5.0': SAND (SP), gray, moist, medium dense, fine grained, no staining or odor	Notes: Total Depth = 5 feet bgs Groundwater was not encountered. Boring was backfilled with bentonite.									
	nd Yach	MSL	MSL	um Envi	CRAPHIC LOG													_
91-193	Ave. a	above MSI	ft. above MSL	Milleni	n.s.c.s.	¥	¥	SP										_
1618.005 LA Berth 191-193	Direct Push	Sleeve ft.	ائے ا	ted by	(mqq) QIA	0	0	0										
11618 POLA E	Direct	Sle		omple	EXTENT	0.5	2.5	5.0										_
		o S	ĽĘ.	KCH oring co	SAMPLE ID.	LB14-0.5	LB14-2.5	LB14-5.0										_
JMBEI	시 OPTI	IETHC EVATI	ING E		KECOVERY (inches)													
CT N	NG ME	LING N	F CAS	ED BY «KS	COUNTS BLOW													_
PROJECT NUMBER PROJECT NAME	DRILLING METHOD	SAMPLING METHOD GROUND ELEVATION	TOP OF CASING ELEV	LOGGED BY REMARKS	DEPTH (ft. BGL)		1 1	- 5	1 1 1 1 1		20-	1 1	1 1	-25-	1 1	I	- 30-	

A	
75	
	W

					ft.	WELL DIAGRAM												
					5 1	CONTACT HT9	0.3	?	5.0									
BORING/WELL NUMBER LB15	WE	FILTER PACK TYPE		DEPTH TO WATER ft.	KCH Boring completed by Millenium Environmental using direct push.	LITHOLOGIC DESCRIPTION	@Surface: Gravelly SILT @0.5': Gravelly SILT (ML), gray, moist, stiff, no odor or staining	@2.5': Silty SAND (SM), gray, moist, dense, fine grained sand, no staining or odor	@5.0': Silty SAND (SM), gray, moist, dense, fine grained sand, no staining or odor		Notes: Total Depth = 5 feet bgs Groundwater was not encountered. Boring was backfilled with bentonite.							
	cht St.,				vironm		(a) (a) £				≱ ⊢©ĕ							
	nd Ya		MSL	MSL	um En	SRAPHIC 200												
103	Ave. a		above MSL	ft. above MSL	Milleni	u.s.c.s.	M	SM	SM									
11618.005 POLA Berth 191-193	er of Canal	rusii We	±.	نے	ed by l	(mqq) QIA	0	0	0									
11618.005	er of (Sleeve			nplet	EXTENT	rύ	10										
		"		三	KCH oring con	SAMPLE ID.	LB15-0.5	LB15-2.5	LB15-5.0									
MBER	N S	E E	VATIC	NG EL	Bori	(inches)												
PROJECT NUMBER	LOCATION SE	SAMPLING METHOD	GROUND ELEVATION	TOP OF CASING ELEV.	ED BY	CONUTS												
PROJE	LOCATION	SAMPI	GROU	TOPO	LOGGED BY REMARKS	DEPTH (ft. BGL)			2	1 1 1	10	_15_	1 1	20-		-25-		30

A	
V	
	V

PROJECT NUMBER	NUMBE		11618.005	005				BORING/WELL NUMBER LB16			
PROJECT NAME	NAME		LA B	POLA Berth 191-193	1-193			DATE DRILLED 10/12/2017			
LOCATION SE			Direct Push	Sanal A	ve. an	d Yac	Corner of Canal Ave. and Yacht St., Wilmington, CA Direct Push	CASING TYPE/DIAMETER			
SAMPLING METHOD	METHO		Sleeve	Ve Ve				FILTER PACK TYPE			
GROUND ELEVATION	EVAT	NO NO			ft. above MSL	MSL		GROUT TYPE			
TOP OF CASING ELEV	NG	LEV.		ff. a	above MSI	MSL		DEPTH TO WATER ft.			
LOGGED BY REMARKS		KCH oring cor	mplet	ed by M	llenin	ım En	KCH Boring completed by Millenium Environmental using direct push.	TOTAL DRILL DEPTH ush.	2 ff.		
BLOW COUNTS	SECONERY	SAMPLE ID.	EXTENT	(mqq) alq	U.S.C.S.	LOG GRAPHIC	ГІТНОІ	LITHOLOGIC DESCRIPTION	CONTACT	WELL DIAGRAM	SAM
1 1		LB16-0.5	κύ .	0	\mathbb{Z}		@Surface: Gravelly SILT @0.5': Gravelly SILT (MI staining	@Surface: Gravelly SILT @0.5: Gravelly SILT (ML), gray, moist, stiff, no odor or staining	0.3		
1		LB16-2.5	rύ	0	SM		@2.5': Silty SAND (SI fine grained sand, no	@2.5: Silty SAND (SM) with gravel, gray, moist, dense, fine grained sand, no staining or odor	۲. ۲.ک		
n L		LB16-5.0	o.	0	M		@5.0: Sandy SILT (Note to coarse grained san	@5.0': Sandy SILT (ML), gray, moist, stiff, some medium to coarse grained sand, no staining or odor	5.0		
1							Notes: Total Depth = 5 feet bgs Groundwater was not encountered. Boring was backfilled with bentonite.	ugs i encountered.			
-30-											

	A
· ()	
- X	

								•			
PROJECT NOMBER	S E	M M		Å Å	1 16 18.003 POLA Berth 191-193	91-193			DATE DRILLED 10/11/2017		
LOCATION	NO.	S		er of	Canal	Ave. a	nd Ya	Corner of Canal Ave. and Yacht St., Wilmington, CA	CASING TYPE/DIAMETER		
DRILLING METHOD	AG ME	THOL	1	Oirec 2	Direct Push				SCREEN TYPE/SLOT		
GROUND ELEVATION		ZATIC	 Z	S S S S S S S S S S S S S S S S S S S	Sieeve ff.	above MSL	MSL		GROUT TYPE		
TOP OF CASING ELEV	CASI	NG EL	₩.				MSL		DEPTH TO WATER ft.		
LOGGED BY REMARKS	D BY	Bor	KCH oring con	nple	ted by	Milleni	um En	KCH Boring completed by Millenium Environmental using direct push.	TOTAL DRILL DEPTH	5 ft.	
	LS	S)	: ID:	TI	(w	.s	OII			CT H	
DEPTI (ft. BG	CONN. Bron	GECOVE	SAMPLE	EXTEN	dd) alq	n.s.c.	HAAA9 DOJ		LITHOLOGIC DESCRIPTION	CONTA TGPT	WELL DIAGRAM
			LB17-0.5	22	0	¥		@Surface:Silty Sand.	@Surface:Silty Sand. @0.5'-SILT (ML), brown, dry, stiff, no staining or odor	0.3	
			LB17-2.5	ις.	0			@2.5'-Sandy SILT (ML) odor	@2.5'-Sandy SILT (ML), brown, moist, stiff, no staining or odor		
25			LB17-5.0	0	0	SP		@5-SAND (SP), light g	@5'-SAND (SP), light gray, moist, medium dense, medium to coarse grained sand, no staining or odor	4.7 5.0	
ı											
								Notes: Total Depth = 5 feet bgs Groundwater not encountered Boring backflled with bentonite	ls untered entonite		
10								DOING DACKINGO WILLD	ornici ile		
1 1											
-15-											
1 1											
- 00											
P I											
1											
1											
25											
-30											
_	-			_			_			_	_

-	
V	
	V
	7.00

PROJECT NUMBER	NUMBE		11618.005	300				BORING/WELL NUMBER LB18			
PROJECT NAME	NAME	PC	LA B	POLA Berth 191-193	91-193			DATE DRILLED 10/11/2017			
LOCATION SE	SE CONTRACTION		ner of Canal Direct Push	Canal	Ave. a	Corner of Canal Ave. and Yacht St.,	cht St., Wilmington, CA	CASING TYPE/DIAMETER SCREEN TYPE/SI OT			
SAMPLING METHOD	METHO	ı	Sleeve	Ne and				FILTER PACK TYPE			
GROUND ELEVATION	LEVAT	NO		انے ا	above MSI	MSL		GROUT TYPE			
TOP OF CASING ELEV	SING E	LEV.		نے	ft. above MSL	MSL		DEPTH TO WATER ft.			
LOGGED BY REMARKS		KCH oring cor	mplet	ed by	Milleni	ium En	KCH Boring completed by Millenium Environmental using direct push.	TOTAL DRILL DEPTH push.	2 ff.		
COUNTS (ff. BGL) DEPTH	(jucyes) BECONEBY	SAMPLE ID.	EXTENT	PID (ppm)	u.s.c.s.	GRAPHIC 200		LITHOLOGIC DESCRIPTION	CONTACT	WELL DIAGRAM	Σ
		LB18-0.5	rύ	0	¥		@Surface: Gravelly \$ @0.5'-SILT (ML), dan odor	@Surface: Gravelly SILT @0.5'-SILT (ML), dark brown, moist, stiff, no staining or odor	0.3		
1		LB18-2.5	rύ	0	M		@2.5'-Sandy SILT (N or odor, some shell fr	@2.5'-Sandy SILT (ML), dark gray, moist, stiff, no staining or odor, some shell fragments			
5		LB18-5.0	o	0	M		@5.0'-Sandy SILT (Mor odor	@5.0'-Sandy SILT (ML), dark gray, moist, stiff, no staining or odor	2.0		
1 1 1							Notes: Total Depth = 5 feet bgs	bgs			
-10-							Boring backfilled with	Dentonite			
1 1											
)											
-52-											
1 1											
-30-											

	A
· ()	
- X	

						WELL DIAGRAM												
				£:	9	CONTACT DEPTH	0.3		5.0									
BORING/WELL NUMBER LB19	Wilmington, CA	SUREEN ITPE/SLUI FILTER PACK TYPE		TOTAL DRILL DEPTH	Boring completed by Millenium Environmental using direct push.	LITHOLOGIC DESCRIPTION	@Surface: 2 inch thick concrete @0.5'-SILT (ML) with gravel, light gray, dry, loose, no staining or odor	@2.5'-Silty SAND (SM), gray, moist, dense, no staining or odor	@5.0'-Sitty SAND (SM), dark gray, moist, dense, no staining or odor	Notes: Total Depth = 5 feet bgs Groundwater not encountered	Boring backfilled with bentonite							
	Corner of Canal Ave. and Yacht St.		<u> </u>	SL	ı Envire	CRAPHIC LOG		 	<u> </u>									
2	ve. and		above MSI	ft. above MSI	illeniun	U.S.C.S.	<u> </u>	M S S	WS W									
11618.005	Sanal A	Sleeve	# <u></u>	e ≓	N (d be	(mqq) QIA	0	0	•									
11618.005	ir of C	Sleeve			nplete	EXTENT	10	10										
			Z i	FLEV. Koh Tom	ng con	SAMPLE ID.	LB19-0.5	LB19-2.5	LB19-5.0									
MBER		ETHO!	VATIC	NG FL	Bori	(inches)												
PROJECT NUMBER		DRILLING METHOD SAMPLING METHOD	GROUND ELEVATION	TOP OF CASING ELEV.	RKS	CONNTS BLOW												
PROJ	LOCATION	SAMP	GROU	10901	REMARKS	DEPTH (ft. BGL)			ις 			15		20		25		-30

A	
772	

							WELL DIAGRAM															
						C)	CONTACT DEPTH	0.3		5.0												
BORING/WELL NUMBER LB20	DATE DRILLED 10/11/201	Direct Push Screen TYPE/SLOT	FILTER PACK TYPE		DEPTH TO WATER ft.	Boring completed by Millenium Environmental using direct push.	LITHOLOGIC DESCRIPTION	@0.5'-SILT (ML) with gravel, light brown, moist, loose, no staining or odor	@2.5'-Sandy SILT (ML), gray, moist, stiff, fine grained sand, no staining or odor	@5.0'-Sandy SILT (ML), gray, moist, stiff, fine grained sand, no staining or odor	Notes: Total Depth = 5 feet bgs Groundwater not encountered Boring backfilled with hentonite											
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ם ב		MSL	MSL	ım En	LOG GRAPHIC															
	91-193	7 VG.		above MSL	ft. above MSI	Millenit	u.s.c.s.	ML	M	ML												
1618.005	POLA Berth 191-193	Direct Push		ا نے	انه	ed by	(mqq) QI9	0	0	0												
1618	LAB	irect	Sleeve			nplet	EXTENT	2	2													
_			ا ۵	K K	, E	oring con	SAMPLE ID.	LB20-0.5	LB20-2.5	LB20-5.0												
IMBER	ME	시 전 1::	ETHO	EVATIC	ING EL	Bori	(jucyes) KECONEKA															
PROJECT NUMBER	PROJECT NAME	DRILLING METHOD	SAMPLING METHOD	GROUND ELEVATION	TOP OF CASING ELEV	LOGGED BY REMARKS	COUNTS BLOW															
PROJ	PROJECT !	DRILL	SAMP	GROU	TOP C	REMARKS	DEPTH (ft. BGL)			- 5		2	1 1	15-	1 1	l	20-	1 1	ı	 		-30-

	₹	Á	-
M	b)
	ч	N	5
		/	y

							WELL DIAGRAM													
						2 H	CONTACT DEPTH	0.3		5.0										
BORING/WELL NUMBER LB21	POLA Berth 191-193 Conner of Canal Ave. and Yacht St., Wilmington, CA CASING TYPE/DIAMETER	1 1	FILTER PACK TYPE		DEPTH TO WATER ft.	Soring completed by Millenium Environmental using direct push.	LITHOLOGIC DESCRIPTION	@Surface: Asphalt @0.5'-SILT (ML) with gravel, gray, moist, stiff, no staining or odor	@2.5'-Sandy SILT (ML), gray, moist, stiff, fine grained sand, no staining or odor	@5.0'-Sandy SILT (ML), gray, moist, stiff, fine grained sand, no staining or odor	Notes: Total Depth = 5 feet bgs Groundwater not encountered Boring backfilled with bentonite									
	d Yact	5		MSL	MSL	ım Env	CRAPHIC LOG													
	POLA Berth 191-193 prner of Canal Ave. ar			above MSI	ft. above MSI	Millenit	u.s.c.s.	M	\mathbb{A}	ML										
1618.005	Canal	Direct Push		، نے ا	≟	ed by l	(mqq) QIQ	0	0	0										
1618	LAB er of (Direct	Sleeve			mplet	EXTENT	ιά	ιά	o										
~			ٰ :	Z i	, E	KCH oring co	SAMPLE ID.	LB21-0.5	LB21-2.5	LB21-5.0										
JMBEF	IME SE	H	ETHO!	EVATI(NG NG NG	x B	(juches) RECOVERY													
PROJECT NUMBER	PROJECT NAME	DRILLING METHOD	SAMPLING METHOD	GROUND ELEVATION	TOP OF CASING ELEV	LOGGED BY REMARKS	COUNTS BLOW													
PROJ	PROJECT I	DRILL	SAMP	GROU	TOP C	LOGGED E	DEPTH (ft. BGL)			- 5	-10		-15-	1	20-	 	- 75	3		30

-	
	W
	7.00

		ļ	•	2	L						
PROJECT NAME	T NAME	֓֞֝֟֝֓֓֓֓֓֓֓֟֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	- <u>B</u>	OLA Berth	POLA Berth 191-193	11-193			DATE DRILLED 10/12/2017		
LOCATION	NC C		Sorne	r of (Canal /	4ve. aı	nd Ya	Corner of Canal Ave. and Yacht St., Wilmington, CA	CASING TYPE/DIAMETER		
SAMPLING METHOD	G METH			Slooms	Direct Push				SCREEN TYPE/SLOT		
GROUND ELEVATION	SELEVA	ATION OF	Z	200	<u>ن</u> ے ∣	above MSI	MSL		GROUT TYPE		
TOP OF CASING ELEV	CASING	ËE	.≍			ft. above MSI	MSL		DEPTH TO WATER ft.		
LOGGED BY		KCH	H		ed by	Villeni	m En	KCH Boring completed by Millenium Environmental using direct push.	TOTAL DRILL DEPTH	5 ft.	
	۱⊦										
BFOM (#. BGL) DEPTH	COUNTS	(səqoui)	SAMPLE ID.	EXTENT	(mqq) QIA	U.S.C.S.	GRAPHIC LOG		LITHOLOGIC DESCRIPTION	CONTACT	WELL DIAGRAM
		= -	LB22-0.5	16	0	M		@Surface: Gravelly SILT @0.5'-Sandy SILT (ML) v no staining or odor	@Surface: Gravelly SILT @0.5'-Sandy SILT (ML) with gravel, dark gray, moist, stiff, no staining or odor	0.3	
			LB22-2.5		0	\exists	!	@2.5'-SILT (ML), darl no staining or odor	@2.5'-SILT (ML), dark gray, moist, stiff, fine grained sand, no staining or odor	!	
ις 			LB22-5.0		0	SM		@5.0'-Silty SAND (SA no staining or odor	@5.0'-Silty SAND (SM), dark gray, moist, medium dense, no staining or odor	5.0	
, , , , , , , , , , , , , , , , , , ,								Notes: Total Depth = 5 feet bgs Groundwater not encountered Boring backfilled with bentonite	gs ountered bentonite		
) - -											
1 1											
15											
1 1											
1 1											
20-											
1 1											
1											
25-											
I I											
1											
-30-				_							

PROJE LOCA DRILL SAMP GROU TOP O	ING ME LING N ND ELI OF CAS ED BY	SE ETHOD SETHOI SETHOI SVATIC ING EL	POL Corne Di D D D N EV	A E	Berth 1 Canal t Push eve ft. ft.	above above	MSL MSL	ht St., Wilmington, CA	CASING TYPE/DIAMET SCREEN TYPE/SLOT FILTER PACK TYPE GROUT TYPE DEPTH TO WATER TOTAL DRILL DEPTH	O/11/2017 FER Nylaflov Air Stone Monterrey Sa Hydrated Ber 5.50 ft.	and ntonite		
DEPTH (ft. BGL)	BLOW COUNTS	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOL	OGIC DESCRIPTION		CONTACT DEPTH	WEL	L DIAGRAM
			LB23-2.5		0 0	ML ML		@2.5'-Sandy SILT (M odor @5.0'-Sandy SILT (M or odor	ountered at 5.5' bgs ected from this boring	staining or , no staining	8.0		Bentonite 1/4" Nylaflow Tubing Poly Implant (4') Sand Bentonite

-
750
V

PROJECT NUMBER	BER	,	11618.005	5				BORING/WELL NUMBER LB24			
PROJECT NAME	ш	POI	POLA Berth 191-193	191-1	93			DATE DRILLED 10/11/2017			
LOCATION SE		Corne	ner of Canal Direct Push	hal Ave	and	Yacht	Corner of Canal Ave. and Yacht St., Wilmington, CA	CASING TYPE/DIAMETER			
SAMPLING METHOD	물	1	Sleeve	5				FILTER PACK TYPE			
GROUND ELEVATION	ATIOI			±.	above MSI	SL		GROUT TYPE			
TOP OF CASING ELEV	G ELE	∹		ft. above MSI	ve M	SL		DEPTH TO WATER ft.			
LOGGED BY REMARKS	KCH	H ig con	pleted	by Mille	nium	Envir	KCH Boring completed by Millenium Environmental using direct push.	TOTAL DRILL DEPTH oush.	2 ff.		
DEPTH (#. BGL) RCOUNTS RCOVERY	(səqəui)	SAMPLE ID.	EXTENT	U.S.C.S.		CRAPHIC 6RAPHIC	ПТНО	LITHOLOGIC DESCRIPTION	CONTACT DEPTH	WELL DIAGRAM	≥
1		LB24-0.5	0	M			@Surface: Asphalt @0.5'-SILT (ML) with	@Surface: Asphalt @0.5-SILT (ML) with gravel, gray, dry, no staining or odor	0.3		
		LB24-2.5	0	¥	<u> </u>		@2.5'-Sandy SILT (N sand, no staining or c	@2.5'-Sandy SILT (ML), gray, moist, stiff, fine grained sand, no staining or odor	ļ		
- 5		LB24-5.0	• ———	SM			@5.0'-Silty SAND (SI	@5.0'-Silty SAND (SM),dark gray, moist, stiff, no staining or odor	5.0		
1 1 1 1 1							Notes: Total Depth = 5 feet bgs Groundwater was not encountered Boring backfilled with bentonite	bgs t encountered i bentonite			
2											
1 1											
1 1											
-25-											
I I											
	- $ $		_	-	-	$- \mid$			_	_	

PROJ	ECT NU	JMBER						BORING/WELL NUMBER LB25			
PROJ	ECT NA					91-193		DATE DRILLED 10/11/2017			
LOCA									ow Tubir	ng / 1/4"	
	ING ME				t Push			SCREEN TYPE/SLOT Air Stone			
	LING N		_		eve						
								GROUT TYPE Hydrated B			
					tt.			DEPTH TO WATER f			
	ED BY				برجا اميد			TOTAL DRILL DEPTH rironmental using direct push.			
REMA	KNS	BOII	ng con	іріе	ted by	willenii	ım En	rironmental using direct push.			
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT	WEL	L DIAGRAM
			LB25-0.5 LB25-2.5		0	ML		@Surface: Gravelly SILT @0.5'-SILT (ML) with gravel, light brown, dry, no staining or odor @2.5': SAND (SP), gray, moist, medium dense, fine	2.5		- Bentonite
 - 5 -			LB25-5.0		0	SP SM	• • • • •	grained, some shell fragments, no staining or odor @5.0'-Silty SAND (SM),dark gray, moist, medium dense,	5.0	1111 1111 1111 1111 1111 1111 1111 1111	−1/4" Nylaflow Tubing −Poly Implant ∖(4') Sand
 								no staining or odor @5.5'-Silty SAND (SM),dark gray, wet, stiff, no staining or odor	8.0		– Bentonite
 10 								Notes: Total Depth = 8 feet bgs Groundwater was encountered at 5.5 feet bgs.			
 								Groundwater was collected from this boring. Boring was backfilled with bentonite from 4.5 to 8 ft bgs to dry boring prior to soil vapor probe contruction.			
—15— 											
-20-											
-25-											
-30-											

A	1	
M	Ŋ,	
•	Γ	4
	V	

1				Š	L						
PROJECT NAME	, K	MBER		LA E	POLA Berth 191-193	91-193	_		DATE DRILLED 10/12/2017		
LOCATION	NO G	S S		er of	Canal	Ave. a	nd Ya	Corner of Canal Ave. and Yacht St., Wilmington, CA	CASING TYPE/DIAMETER		
SAMPLING METHOD				Sirec Sign	Direct Push				SCREEN TYPE/SLOT		
GROUND ELEVATION		VATIC	Z	ם מפעע	₩	above MSI	MSL		GROUT TYPE		
TOP OF CASING ELEV	CASI	NG EL	Э			ft. above MSI	MSL		DEPTH TO WATER ft.		
LOGGED BY	D BY	BOI E	KCH oring con	nole	ted by	Milleni	m E	KCH Boring completed by Millenium Environmental using direct push.	TOTAL DRILL DEPTH	5 ft	
	`										
(ff. BGL)	COUNTS	KECONERY	SAMPLE ID.	EXTENT	PID (ppm)	n.s.c.s.	SRAPHIC DOJ		LITHOLOGIC DESCRIPTION	CONTACT	WELL DIAGRAM
			LB26-0.5	2	0	¥		@Surface: Asphalt @0.5'-Sandy SILT (ML staining or odor	@Surface: Asphalt @0.5'-Sandy SILT (ML) with gravel, gray, moist, stiff, no staining or odor	0.3	
1 1			LB26-2.5	22	0	M		@2.5'-Sandy SILT (ML	@2.5'-Sandy SILT (ML), gray, moist, stiff, no staining or odor		
. rc			LB26-5.0	0	0	ML		@5.0'-Sandy SILT (ML	@5.0'-Sandy SILT (ML), gray, moist, stiff, no staining or odor	5.0	
1 1								Notes:			
								Total Depth = 5 feet bgs Groundwater was not encountered Boring was backfilled with bentonite	gs encountered with bentonite		
1 1											
ı											
1 7											
2											
1 1											
ı											
20-											
		_									
25-											
		_									
1											
-30-											

PROJI LOCA DRILL SAMP GROU TOP C	ING ME LING M ND ELE OF CAS ED BY RKS	SE STHOD STHOD SETHOL SEVATION	POL Corne Di D D D D D D C D D D D D D D D D D D	A E	Berth 1 Canal t Push eve ft. ft.	above above	MSL MSL	ht St., Wilmington, CA SCR FIL1 GRO DEF	SING TYPE/DIAMETE REEN TYPE/SLOT FER PACK TYPE DUT TYPE PTH TO WATER FAL DRILL DEPTH	12/2017 ER Nylaflow Air Stone Monterrey Sa Hydrated Ber ft.	nd ntonite		
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGI	C DESCRIPTION		CONTACT DEPTH	WEL	L DIAGRAM
			LB27-2.5		0 0	ML SM SM		@Surface: Gravelly SILT @0.5'-Gravelly SILT (ML), staining or odor @2.5'-SILT (ML), gray-bro odor @5.0'-Silty SAND (SM), da no staining or odor @6.5'-Silty SAND (SM), gr no staining or odor Notes: Total Depth = 8 feet bgs Groundwater was encount Groundwater was collecter Boring was backfilled with dry boring prior to soil vapor	wn, moist, stiff, no si rk gray, moist, medic ray-black, wet, medic ered at 5.5 feet bgs. d from this boring. bentonite from 4.5 to	taining or um dense, um dense,	0.3 5.0 8.0		Bentonite 1/4" Nylaflow Tubing Poly Implant (4') Sand Bentonite

1	1	-
١	Λ	
	V	V
	1	

							WELL DIAGRAM												PAGE 1 OF 1
					5 ff		CONTACT DEPTH	0.3	7	2.0									
NON	Wilmington, CA	SCREEN TYPE/SLOT	GROUT TYPE	DEPTH TO WATER ft.	TOTAL DRILL DEPTH	pieted by Millenium Environmental using direct push.	LITHOLOGIC DESCRIPTION	@Surface: 3" Asphalt @0.5'-Silty SAND (ML), gray, moist, medium dense, no staining or odor	@2.5'-SILT (ML), gray, moist, stiff, no staining or odor, shell fragments	@5.0'-Silty SAND (SM), gray, moist, medium dense, no staining or odor	Notes: Total Depth = 5 feet bgs Groundwater was not encountered Boring was backfilled with bentonite								
	nd Yac		MSL	MSL	6 	IN EN	GRAPHIC 200												
	Ave. a		. above MSL			Millen	U.S.C.S.	M	M	SM									
1618.005	Canal	Direct Push	Siceve ft.	#	7	ered by	(mqq) QIA	0	0	0		 	 			 			
1161	Corner of Canal Ave. and Yacht St.,	l	 	≅	지 :	Boring comple	SAMPLE ID. EXTENT	LB28-0.5	LB28-2.5	LB28-5.0									
MBER	R	THOD	:VATIO	NG ELI	KCH	BOLL	(jucpes) KECONEKA	_											
PROJECT NUMBER	LOCATION LOCATION	DRILLING METHOD SAMPI ING METHOD	GROUND ELEVATION	TOP OF CASING ELEV	LOGGED BY	S E	COUNTS BLOW												
PROJ	LOCATION	DRILL	GROU	TOPC	PERM	KEWAKKS	DEPTH (ff. BGL)			5				- 00	2		 	-30	

	₹	Á	-
M	b)
	ч	N	5
		/	y

							WELL DIAGRAM																	
					5 ft.		CONTACT HTG3D	0.3		5.0														
BORING/WELL NUMBER LB29	er of Canal Ave. and Yacht St., Wilmington, CA CASING TYPE/DIAMETER	SCREEN TYPE/SLOT FILTER PACK TYPE	GROUT TYPE	DEPTH TO WATER ft.	TOTAL DRILL DEPTH	Boring completed by Millenium Environmental using direct push.	LITHOLOGIC DESCRIPTION	@Surface: Asphalt @0.5'-SILT (ML) with gravel, light brown, dry, no staining or odor	@2.5'-Sandy SILT (ML), gray, moist, stiff, no staining or odor	@5.0'-Sandy SILT (ML), gray, moist, stiff, no staining or odor	Notes: Total Depth = 5 feet bgs Groundwater was not encountered	oring was backfilled with bentonite												
	Yacht 8		SL	SL		Enviro	CRAPHIC																	
5	ve. and		above MSL	ft. above MSL		illeniun	U.S.C.S.	<u> </u>	<u>; ; ; ;</u> =	<u> </u>														
11618.005	anal A	Push	اپ ا	ff. a		d by M	(mqq) QIA	0	0	0														
11618.005		Direct Push Sleeve				nplete	EXTENT	10																
	S E	_	, ,	ĒV.	KCH	ng con	SAMPLE ID.	LB29-0.5	LB29-2.5	LB29-5.0										 				
JMBER		THOD ETHOD	EVATIC	ING EL	ᅐ	Bori	(juches)																	_
PROJECT NUMBER	NOIL	DRILLING METHOD SAMPLING METHOD	GROUND ELEVATION	TOP OF CASING ELEV.	LOGGED BY	RKS	CONNTS BLOW																	
PROJ	LOCATION	SAMP	GROU	TOPC	DD07	REMARKS	DEPTH (ft. BGL)			5	1 1 1	10	ı	1 1	-15-	1 1	1 1	20-	1 1	 	1 1		1	-30

	A
· ()	
- X	

					II.	WELL DIAGRAM												
				Į.	ဂ	CONTACT	0.3		2.0									
BORING/WELL NUMBER LB30	, Wilmington, CA CASING TYPE/DIAN	SCREEN 17PE/SLOI FILTER PACK TYPE		DEPTH TO WATER ft.	Boring completed by Millenium Environmental using direct push.	LITHOLOGIC DESCRIPTION	@Surface: Gravelly SILT @0.5-Sandy SILT (ML) with gravel, gray, moist, stiff, no staining or odor	@2.5'-SILT (ML), dark brown, moist, stiff, no staining or odor	@5.0'-SILT (ML), black-gray, moist, stiff, no staining or odor, some shell fragments	Notes: Total Depth = 5 feet bgs Groundwater was not encountered Boring was backfilled with bentonite								
	1 Yach		USF	UST	n Envi	GRAPHIC 200												
102	ve. an		above MSI	ft. above MSL	filleniu	U.S.C.S.	Z	⊌	M									
11618.005	Corner of Canal Ave. and Yacht St.	Direct Push Sleeve		Ħ. a	d by N	(mqq) QIA	0	0	0									
1618.005		Sleeve			plete	EXTENT												
	Corne		, Z		ng con	SAMPLE ID.	LB30-0.5	LB30-2.5	LB30-5.0									
MBER	ᄬ	OH I	VATIC	NG EL	Bori	(inches)					 							
PROJECT NUMBER	NOL	DRILLING METHOD SAMPLING METHOD	GROUND ELEVATION	TOP OF CASING ELEV.	aKS	CONUTS BLOW												
PROJE	LOCATION	SAMPL	GROUI	TOP OF CAS	REMARKS	DEPTH (ft. BGL)		ı	5 -	1 1 1 1		1 1	20-		-25-	1 1	1 1	-30-

PROJECT N PROJECT N LOCATION DRILLING N SAMPLING GROUND E TOP OF CA LOGGED B' REMARKS	IAME SE METHOD METHO LEVATION SING EL	POL Corne Di D D D D CN EV. CH	A E	Berth 1 Canal t Push eve ft. ft.	91-193 Ave. ar above above	MSL MSL	ht St., Wilmington, CA	CASING TYPE/DIAMETI SCREEN TYPE/SLOT FILTER PACK TYPE GROUT TYPE DEPTH TO WATER TOTAL DRILL DEPTH	/12/2017 ER Nylaflov Air Stone Monterrey Sa Hydrated Be ft.	v Tubing and ntonite	g / 1/4"	
(ft. BGL) BLOW COUNTS	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOL	OGIC DESCRIPTION		CONTACT	WEL	L DIAGRAM
		LB31-2.5		0 0	ML SM SM		©2.5'-Silty SAND (SM no staining or odor ©5.0'-Silty SAND (SM no staining or odor ©5.5'-Silty SAND (SM staining or odor **Motes:** Total Depth = 8 feet be Groundwater was end Groundwater was coll Boring was backfilled	gravel, dark brown, mois A), light gray, moist, med A), light gray, moist, med A), light gray, wet, mediun gs ountered at 5.5 feet bgs. ected from this boring. with bentonite from 4.5 to vapor probe contruction	lium dense, lium dense, m dense, no . o 8 ft bgs to	2.5	11 by 1 1 by	Bentonite - 1/4" Nylaflow Tubing - Poly Implant (4') Sand - Bentonite

-
750
V

				#	11.	TE WELL DIAGRAM											_
				ا <u>نا</u>		TOATNOO	0.3	7	2.0								
BORING/WELL NUMBER LB32 DATE DRILLED 10/12/2017	, Wilmington, CA CASING TYPE/DIAM	FILTER PACK TYPE		DEPTH TO WATER	Boring completed by Millenium Environmental using direct push.	LITHOLOGIC DESCRIPTION	@Surface: Gravelly SILT @0.5'-SILT (ML) with gravel, brown, moist, stiff, no staining or odor	@2.5'-Sandy SILT (ML) with gravel, brown, moist, stiff, no staining or odor	@5.0'-Silty SAND (SM), gray, moist, medium dense, fine grained sand, no staining or odor	Notes: Total Depth = 5 feet bgs Groundwater was not encountered	Boring was backfilled with bentonite						
	and Yacht St.		1SI	USF	n Envir	CRAPHIC LOG											
1-193	lve. and		above MSI	ft. above MSL	Ailleniu	U.S.C.S.	¥	₹	SM								
1618.005 A Berth 191-193	Corner of Canal Ave.	ive .	# <u></u>	;; <u></u>	ed by N	(mqq) QIA	0	0	0								
1618.005	er of (Sleeve			nplet	EXTENT	2	9									
÷ ⊡	- 1	l	Z i	ELEV. Koti	ng cor	SAMPLE ID.	LB32-0.5	LB32-2.5	LB32-5.0								
MBEF		ET FO	VATIC	NG EL	Bor	(inches)											
PROJECT NUMBER PROJECT NAME	LOCATION SE	SAMPLING METHOD	GROUND ELEVATION	TOP OF CASING ELEV.	RKS	CONUTS BLOW											
PROJE	LOCATION	SAMPI	GROU	TOP OF CAS	REMARKS	DEPTH (ft. BGL)	1 1	1 1	5		1 1 1	 1 1	20	ı	25-		-30

	A
· ()	
- X	

Color Colo	PROJECT NUMBER PROJECT NAME	UMBEI AME	۱۳	161 LA	11618.005 JLA Berth 191-193	91-193	m		BORING/WELL DATE DRILLED	BORING/WELL NUMBER LB33 DATE DRILLED 10/12/2017		
Siebre S	ATION LING M	SE ETHOL	- 1	er of Jirec	f Canal	Ave. a	and Y	acht	1 1	TYPE/DIAMETER TYPE/SLOT		
TOTAL DRILL DEPTH TOTAL DRILL DRIPH TOTAL DR	IPLING!	METHC	_ 2	Sie	eve #		Mo		FILTER P	ACK TYPE		
Points Cook Test See 1988 Banda See 1989 Ban	OF CAS	SING E	LEV.		<u> </u>		MS	اب ای	DEPTH T			
MAGES Mages Countries C	GGED BY MARKS		(CH ring cor	mple	eted by	Millen	ium	Enviro	TOTAL D nmental using direct push.	RILL DEPTH		
B33-65 0 MM ——— @Surface: Asphalt B33-65 0 MM ——— @G5-5RLT (ML) with gravel, brown, moist, stiff, no staining or odor B33-60 0 MM ——— G2-5SLT (ML) with gravel, brown, moist, stiff, no staining or odor B35-60 0 SM ——— G5-6-5RLT (ML) with gravel, brown, moist, stiff, no staining or odor G5-6-5RLT (ML) with gravel, brown, moist, stiff, no staining or odor G5-6-5RLT (ML) with gravel, brown, moist, stiff, no staining or odor G5-6-5RLT (ML) with gravel, brown, moist, stiff, no staining or odor G5-6-5RLT (ML) with gravel, brown, moist, stiff, no staining or odor G5-6-5RLT (ML) with gravel, brown, moist, stiff, no staining or odor G5-6-5RLT (ML) with gravel, brown, moist, stiff, no staining or odor G5-6-5RLT (ML) with gravel, brown, moist, stiff, no staining or odor G5-6-5RLT (ML) with gravel, brown, moist, stiff, no staining or odor G5-6-5RLT (ML) with gravel, brown, moist, stiff, no staining or odor G5-6-5RLT (ML) with gravel, brown, moist, stiff, no staining or odor G5-6-5RLT (ML) with gravel, brown, moist, stiff, no staining or odor G5-6-5RLT (ML) with gravel, brown, moist, stiff, no staining or odor G5-6-5RLT (ML) with gravel, brown, moist, stiff, no staining or odor G5-6-5RLT (ML) with gravel, brown, moist, stiff, no staining or odor G5-6-5RLT (ML) with gravel, brown, moist, stiff, no staining or odor G5-6-5RLT (ML) with gravel, brown, moist, stiff, no staining or odor G5-6-5RLT (ML) with gravel, brown, moist, stiff, no staining or odor G5-6-5RLT (ML) with gravel, brown, moist, stiff, no staining or odor G5-6-5RLT (ML) with gravel, brown, moist, stiff, no staining or odor G5-6-5RLT (ML) with gravel, brown, moist, stiff, no staining or odor G5-6-5RLT (ML) with gravel, brown, moist, stiff, no staining or odor G5-6-5RLT (ML) with gravel, brown, moist, stiff, no staining or odor G5-6-5RLT (ML) with gravel, brown, moist, stiff, no staining or odor G5-6-5RLT (ML) with gravely w	ВГОМ			EXTENT		u.s.c.s.	OIH9A99	F00	LITHOLOGIC DE	SCRIPTION	CONTACT DEPTH	WELL DIAGRAM
LB326.0 M. Staining or odor staining or odor staining or odor staining or odor Modes; Notes: Notes: Rorndwater was not encountered Borng was backfilled with bentonite Borng was backfilled with bentonite			LB33-0:	ιύ 	0	¥			@Surface: Asphalt @0.5'-SILT (ML) with gravel, brostaining or odor		0.3	
Notes: Notes: Total Depth = 5 feet bgs Groundwater was not encountered Boring was backfilled with bentonite Boring was backfilled with bentonite	1 1		LB33-2.:	ιĊ	0	ML			@2.5'-SILT (ML) with gravel, brostaining or odor	own, moist, stiff, no		
			LB33-5.1		0	SM			@5.0'-Silty SAND (SM), gray, m grained sand, no staining or odc		0.0	
	1 1 1											
	<u> </u>								Notes: Total Depth = 5 feet bgs Groundwater was not encounter Boring was backfilled with bento	red onite		
	1 1											
	Т											
	1 1											
	1 1											
	1											
	- 											
	-											
	1											
	1											

PROJI LOCA DRILL SAMP GROU TOP C	ING ME LING M ND ELI OF CAS ED BY RKS	SE SETHOD IETHOI EVATION ING EL Bori	POL Corne Di D D D N EV.	A E	Berth 19 Canal t Push eve ft. ft.	above above	MSL MSL	ht St., Wilmington, CA	CASING TYPE/DIAMET SCREEN TYPE/SLOT FILTER PACK TYPE GROUT TYPE DEPTH TO WATER TOTAL DRILL DEPTH	N/13/2017 ER Nylaflov Air Stone Monterrey Si Hydrated Be ft.	and ntonite		
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLO	OGIC DESCRIPTION		CONTACT	WEL	L DIAGRAM
			LB34-2.5		0 0	ML ML ML ML		fine grained sand, no s @2.5'-Sandy SILT (ML fine grained sand, no s), brown-gray, moist, staining or odor), brown-gray, moist, staining or odor moist, stiff, some shell), gray, wet, stiff, fine tong or odor gs buntered at 5.5 feet bgs cted from this boring. vith bentonite from 4.5 t	iff, some fragments, medium	8.0	115,0 15,0 115,0 15,0 115,0 15,0 115,0 15,0 15,0	Bentonite -1/4" Nylaflow Tubing -Poly Implant (4') Sand Bentonite

4	7	R	A	7
	٦	1	V	M
		м	7	7

				0			•			
PROJECT NOMBER	NOMBE		<u> </u>	11618.005 POLA Berth 191-193	91-193	_		BORING/WELL NUMBER LB35 DATE DRILLED 10/13/2017		
LOCATION	<u>ν</u>	- 1	er o	f Canal	Ave. a	nd Yac	Corner of Canal Ave. and Yacht St., Wilmington, CA C	CASING TYPE/DIAMETER		
DRILLING METHOD	METHO		Dire	Direct Push				SCREEN TYPE/SLOT		
GROUND ELEVATION	G METHI ELEVAT	, 2 0	<u>v</u>	Sleeve	above MSI	MSI		FILLER PACK LYPE GROUT TYPE		
TOP OF CASING ELEV	ASINGE	EEV.		##		MSL		DEPTH TO WATER ft.		
LOGGED BY		, HOX						TAL DRILL DEPTH	5 ff.	
REMARKS		oring co	Idmi	eted by	Milleni	um En	Boring completed by Millenium Environmental using direct push.	sh.	-	
BEPTH (ft. BGL)	COUNTS (inches)	SAMPLE ID.	EXTENT	(mqq) QIA	u.s.c.s.	GRAPHIC 201		LITHOLOGIC DESCRIPTION	CONTACT DEPTH	WELL DIAGRAM
		LB35-0.5	5:0	0	M		@Surface: 4" Concrete over 4" Asphalt @0.5'-SILT (ML) with gravel, gray, mois or odor	t, stiff, no staining	0.3	
		LB35-2.5	5	0	ML	;	@2.5'-SILT (ML) with g or odor	@2.5'-SILT (ML) with gravel, gray, moist, stiff, no staining or odor		
		LB35-5.0	0.7	0	ME		@5.0'-SILT (ML) with g	@5.0'-SILT (ML) with gravel, gray, moist, stiff, no staining or odor	5.0	
1 1										
							Notes: Total Depth = 5 feet bgs Groundwater was not encountered Boring was backfilled with bentonite	Is ancountered with bentonite		
ı							,			
15										
1 1										
1 1										
-20-										
1 1										
1										
- 25										
S L										
1										
I										
1										
<u>30</u>										

PROJI LOCA DRILL SAMP GROU TOP C	ING ME LING M ND ELI OF CAS ED BY RKS	SE STHOD STHOD STHOD STHOOL STATIC ST	POL Corne Di DN _ EV	A E	Canal Canal t Push eve ft. ft.	91-193 Ave. ar above above	MSL MSL		CASING TYPE/DIAMET SCREEN TYPE/SLOT FILTER PACK TYPE GROUT TYPE DEPTH TO WATER TOTAL DRILL DEPTH	2/13/2017 FER Nylaflov Air Stone Monterrey Si Hydrated Be ft.	v Tubing and ntonite	g / 1/4"	
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHO	LOGIC DESCRIPTION		CONTACT DEPTH	WEL	L DIAGRAM
						ML		staining or odor @2.5'-Silty SAND (Mistaining or odor) @5.0'-Silty SAND (Mistaining or odor) Notes: Total Depth = 9 feet be Groundwater was end Groundwater was coll Boring was backfilled	L), gray, moist, medium	dense, no ense, no to 8 ft bas to	9.0	115,0 15,0 115,0 15,0 115,0 15,0 115,0 15,0 15,0	Bentonite 1/4" Nylaflow Tubing Poly Implant (4') Sand Bentonite

DATE DRILLED 12/13/2017 LOCATION SE Corner of Canal Ave, and Yacht St., Wilmington, CA DRILLING METHOD Direct Push SamPLING METHOD Sieeve Filter Pack Type Monterrey Sand Monterrey Sa	PROJECT NUMBER 11618.005	04.402	BORING/WELL NUMBER LB38	
DRILLING METHOD SampLing METHOD Sleeve FILTER PACK TYPE Monterrey Sand GROUND ELEVATION TOP OF CASING ELEV. Top of Casing Elev. GROUND ELEVATION TOP OF CASING ELEV. Total Depth TO Water TOTAL DRILL DEPTH 9 ft. EMBARKS Boring completed by Millenium Environmental using direct push. LITHOLOGIC DESCRIPTION WELL DIAGRAM Bentonite ·			Tubing / 4/4!	
SAMPLING METHOD GROUND ELEVATION				
GROUND ELEVATION TOP OF CASING ELEV. ft. above MSL DEPTH TO WATER -ft. LOGGED BY KCH TOTAL DRILL DEPTH 9 ft. STAND GOOD DESCRIPTION WELL DIAGRAM O O O O O O O O O O O O O				
TOP OF CASING ELEV. It above MSL DEPTH TO WATER TOTAL DRILL DEPTH 9 ft. REMARKS Boring completed by Millenium Environmental using direct push. LITHOLOGIC DESCRIPTION WELL DIAGRAM Bentonite Staining or odor Tubing WELL DIAGRAM Bentonite Staining or odor Notes: Total Depth = 9 feet bgs Groundwater was encountered at 6 feet bgs. Groundwater was collected from this boring. Boring was backfilled with benointe from 4.5 to 9 ft bgs to dry boring prior to soil vapor probe contruction.				
REMARKS Boring completed by Millenium Environmental using direct push.				-
Boring completed by Millenium Environmental using direct push. Harring Repair	OGGED BY KCH	ABOVE MOL	TOTAL DRILL DEPTH	
Surface: Green waste and debris Surf	REMARKS Boring completed by N	Millenium Environmental using direct	oush.	
ML		T T		
ML ———————————————————————————————————	(ft. BGL) BLOW COUNTS RECOVERY (inches) SAMPLE ID. EXTENT PID (ppm)	U.S.C.S. GRAPHIC LOG LOG	PLOGIC DESCRIPTION	CONTACT DEPTH MENDEND
	5 —	ML @Surface: Green was was considered with the staining or odor ML @2.5'-Silty SAND (Notation in the staining or odor) ML @5.0'-Silty SAND (Notation in the staining or odor) ML @5.0'-Silty SAND (Notation in the staining or odor) Motes: Total Depth = 9 feet Groundwater was en Groundwater was considered was considered by the staining or odor	bgs countered at 6 feet bgs. llected from this boring. d with bentonite from 4.5 to 9 ft bgs to	- Bentonite - 1/4" Nylaflow Tubing Poly Implant (4') Sand - Bentonite

	ECT N				8.005			BORING/WELL NUMBER LB39		
PROJ	ECT NA					91-193		DATE DRILLED 12/13/2017		
LOCA	TION	_SE							low Tubir	ng / 1/4"
	ING ME				t Push			SCREEN TYPE/SLOT Air Stone		
SAMP	LING N	IETHO			eve					
	JND EL								Bentonite	
					ft.	above	MSL		ft.	
LOGG	ED BY							TOTAL DRILL DEPTH	8 ft	
REMA	RKS	Bori	ng con	ıple	ted by	Milleni	<u>um En</u>	vironmental using direct push.		
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION @Surface: Gravelly Silty Sand.	© CONTACT DEPTH	WELL DIAGRAM
						ML		@0.5': SILT (ML), olive gray, moist, soft, no staining or odor	2.5	— Bentonite
 5						SM		@2.5': Silty SAND (SM), gray, moist, medium dense, fine grained sand, trace shell fragments, no staining or odor	5.0	-1/4" Nylaflow Tubing Poly Implant (4')
 						SP		@5.0': Poorly Graded SAND (SP), gray, moist, medium dense, no staining or odor @5.5': Poorly Graded SAND (SP) with silt, dark gray, wet, medium dense, some shell fragements, no staining or odor Notes: Total Depth = 8 feet bgs Groundwater was encountered at 5.5 feet bgs. Groundwater was collected from this boring.	8.0	\Sand —Bentonite
 								Boring was backfilled with bentonite from 4.5 to 8 ft bgs to dry boring prior to soil vapor probe contruction.		
15 										
20 										
25										
-30-										

PROJI LOCA DRILL SAMP GROU TOP C	ING ME LING M IND ELE DF CASI ED BY	SE ETHOD SETHOD SETHOD SETHOD SEVATIO SING ELI	POL Corne Di Di Di Di Di Di Di Di Di Di Di Di Di	A E	Berth 1 Canal t Push eve ft. ft.	91-193 Ave. ar above above	MSL MSL		CASING TYPE/DIAMET SCREEN TYPE/SLOT FILTER PACK TYPE GROUT TYPE DEPTH TO WATER TOTAL DRILL DEPTH	E/13/2017 ER Nylaflov Air Stone Monterrey Sa Hydrated Be ft.	v Tubin and ntonite	g / 1/4"	
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOL	OGIC DESCRIPTION		CONTACT	WEL	L DIAGRAM
						ML ML SP		©2.5'-Sandy SILT, br sand, no staining or o ©5.0': Poorly Graded very dense, fine grain Notes: Total Depth = 9 feet b Groundwater was end Groundwater was coll Boring was backfilled	own, moist, very stiff, findor own, moist, very stiff, findor SAND (SP) with silt, broad sand, no staining or continuous continuou	be grained bwn, moist, dor	5.0		Bentonite 1/4" Nylaflow Tubing Poly Implant (4') Sand Bentonite

PROJI LOCA DRILL SAMP GROU TOP C	ECT NATION ING ME LING ME ND ELI OF CAS ED BY	SE ETHOD ETHOD EVATION ING EL	POL Corne Di DN _ EV	A E	Berth 1 Canal t Push eve ft. ft.	91-193 Ave. ar above above	MSL MSL		CASING TYPE/DIAMETER SCREEN TYPE/SLOT FILTER PACK TYPE GROUT TYPE DEPTH TO WATER TOTAL DRILL DEPTH	/13/2017 ER Nylaflov Air Stone Monterrey Si Hydrated Be ft.	w Tubing and ntonite	g / 1/4"	
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOL	OGIC DESCRIPTION		CONTACT	WEL	L DIAGRAM
						ML ML		©2.5'-Sandy SILT, br sand, no staining or o ©2.5'-Sandy SILT, br sand, no staining or o ©5.0': Poorly Graded very dense, fine grain Notes: Total Depth = 9 feet b Groundwater was end Groundwater was coll Boring was backfilled	own, moist, very stiff, findor own, moist, very stiff, findor SAND (SP) with silt, broad sand, no staining or o	e grained own, moist, dor	5.0		Bentonite -1/4" Nylaflow Tubing -Poly Implant (4') Sand -Bentonite

PROJI LOCA DRILL SAMP GROU TOP O	ING ME LING M ND ELI DF CAS ED BY	ME SE STHOD STHOOL SEVATION ING EL Borin	POL Corne Di D D D D D D D D D D D D D D D D D D	A E r of irec Sle	Berth 1 Canal t Push eve ft. ft.	91-193 Ave. ar above above	MSL MSL	ht St., Wilmington, CA	CASING TYPE/DIAMET SCREEN TYPE/SLOT FILTER PACK TYPE GROUT TYPE DEPTH TO WATER TOTAL DRILL DEPTH	E/13/2017 ER Nylaflov Air Stone Monterrey Si Hydrated Be ft.	v Tubing and ntonite	g / 1/4"	
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOL	OGIC DESCRIPTION		CONTACT	WEL	L DIAGRAM
						SP		@5.0'-SAND (SP), grastaining or odor @5.5'-SAND (SP), grastaining or odor Notes: Total Depth = 9 feet by Groundwater was colle Boring was backfilled	gs gs gury, moist, medium	n dense, no dense, no to 9 ft bas to	9.0 9.0	11 1/2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Bentonite 1/4" Nylaflow Tubing Poly Implant (4') Sand Bentonite

		JMBER	_			04.405			SORING/WELL NUMBE	-			
	ECT NA					91-193				/13/2017	-	/ 4 / 4 !!	
LOCA	_							ht St., Wilmington, CA			/ Tubin	g / 1/4"	
		ETHOD IETHOD			Push			S		Air Stone			
_		_	_			ahaya		F		Monterrey Sa Hydrated Ber			
									DEPTH TO WATER				
	ED BY					above	IVIOL	T	OTAL DRILL DEPTH	IL.	Q ff		
REMA				nle	ted hy	Millenii	ım Fn	vironmental using direct pus	sh.		J 11.		
			9 0011	p.0	iou by	1		vironinontal doing direct pac	,,,,			I	-
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLO	OGIC DESCRIPTION		CONTACT DEPTH	WEL	L DIAGRAM
						SW	0.	@Surface: Gravelly SA @0.5':Gravelly SILT (S) or staining	W), light brown, dry, sti		0.3		—Bentonite
 5						SM		@2.5': Silty SAND (SM) medium dense, fine gra) with gravel, dark brow iined sand, no staining	n, moist, or odor	5.0	→ 11.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5,	−1/4" Nylaflow Tubing −Poly Implant \(4') Sand
· - 						SP		@5.0': Poorly Graded S dense, no staining or o	SAND (SP), gray, moist dor	i, medium	9.0		—Bentonite
-10 15 15 20 25 30								Notes: Total Depth = 9 feet bgs Groundwater was encor Groundwater was collect Boring was backfilled w dry boring prior to soil v	untered at 5.5 feet bgs. cted from this boring. ith bentonite from 4.5 t	o 9 ft bgs to			

PROJ	ECT NU							BORING/WELL NUMBER LB44			
	ECT NA					91-193		DATE DRILLED 12/13/2017			
LOCA									ow Tubir	ng / 1/4"	
	ING ME				t Push			SCREEN TYPE/SLOT Air Stone			
	LING N		_		eve						
								GROUT TYPE Hydrated B			
					tt.	above	MSL	DEPTH TO WATER f	i.		
	ED BY				برجا اميد	N d: II a mil		rironmental using direct push.		-	_
REMA	KNO	DOIII	ig con	ipie	led by	viilleriit	, ,	rironmental using direct push.			-
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT	WEL	L DIAGRAM
						ML		@Surface: Gravelly SILT @0.5': Gravelly SILT (ML), gray, moist, stiff, no odor or staining @2.5': Silty SAND (SM) with gravel, gray, moist, dense,	0.3		Bentonite
 - 5 -						SM		fine grained sand, no staining or odor	5.0	• • • • • • • • • • • • • • • • • • •	─ 1/4" Nylaflow Tubing ─ Poly Implant \(4') Sand
						ML		@5.0': Sandy SILT (ML), gray, moist, stiff, some medium to coarse grained sand, no staining or odor			Bentonite
									9.0		
-10-											
								Notes: Total Depth = 9 feet bgs Groundwater was encountered at 5.5 feet bgs. Groundwater was collected from this boring.			
								Boring was backfilled with bentonite from 4.5 to 9 ft bgs to dry boring prior to soil vapor probe contruction.			
 15											
-20-											
-25-											
-30-											

-	
7	
	W

					2.7 ft.		CONTACT CONTACT WELL DIAGRAM	0.3	5.8												
BORING/WELL NUMBER LB45	CASING TYPE/DIAM	SCREEN TYPE/SLOT	GROUT TYPE	DEPTH TO WATER ft.	TAL DRILL DEPTH	r basi:	LITHOLOGIC DESCRIPTION	@Surface: Gravel @0.5: Silty SAND (ML) with gravel, gray-black, no odor, possible staining.	@2.5: Silty SAND (ML), gray, moist, medium dense, no odor, possible staining. @2.7'-Refusal-two borings were attempted. Possible hibrar boundary.		feet bgs incountered vith bentonite										
	and Yacht St., Wilmington, CA		1SL	ISL	KCH Roring completed by Millenium Environmental using direct push		TOG CBAPHIC	@Surface: Gravel	@2.5'. Silty SAND odor, possible stain @2.7'-Refusal-two ribrao boundary		Notes: Total Depth = 2.7 feet bgs Groundwater not encountered Boring backfilled with bentonite										
103	ve. and		above MSI	ft. above MSL	filleniir	5	U.S.C.S.		M												_
11618.005	Corner of Canal Ave.	Hand Auger Jars	<u>=</u> ;	ff.	N vd be		(mqq) QIA	0	0												_
11618.005	er of (dand /	5		molete		EXTENT	22	2												_
	1 8	ļ	, K	Ē.	KCH oring cor	20	SAMPLE ID.	LB45-0.5	LB45-2.5												
MBER	SE	THOD	VATIC	NG EL	Z Z	<u></u>	(iuches)														
PROJECT NUMBER	NOL	DRILLING METHOD SAMPLING METHOD	GROUND ELEVATION	TOP OF CASING ELEV	LOGGED BY	·	CONUTS BLOW														
PROJ	LOCATION	SAMP	GROU	TOPC	LOGGED B		DEPTH (ft. BGL)		1 1	5	 		 		 20-	ı		-25-	1 1		30

	A
· ()	
- X	

				0						
PROJECT NAME	NOMBE		Z P	POLA Berth 191-193	91-193			DATE DRILLED 12/13/2017		
LOCATION	SE		er o	f Canal	Ave. a	nd Ya	Corner of Canal Ave. and Yacht St., Wilmington, CA	CASING TYPE/DIAMETER		
DRILLING METHOD	METHO		Han-	Hand Auger				SCREEN TYPE/SLOT		
GROUND ELEVATION	LEVAT	, S 0	Jars	ي ا ا	above MSI	MSI		FILIER PACK IYPE GROUT TYPE		
TOP OF CASING ELEV	SINGE	LEV.		<u>'</u>		MSL		DEPTH TO WATER ft	نډ	
LOGGED BY	<u></u>	, A						TAL DRILL DEPTH	5 ft.	
REMARKS	Bo	ring col	du	eted by	Milleni	um En	Boring completed by Millenium Environmental using direct push.	nsh.	-	
DEPTH (ft. BGL)	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	u.s.c.s.	GRAPHIC LOG		LITHOLOGIC DESCRIPTION	CONTACT	WELL DIAGRAM
		LB46-0.5	τċ	0	S			@Surface: Gravelly SILT @0.5'-Silty SAND (ML) with gravel, black, moist, stiff, no odor, staining to sand, appears asphaltic	0.3	
1 1		LB46-2.5	rċ	0	S			@2.5'-Silty SAND (SM), gray-brown, moist, medium dense, fine grained sand, no staining or odor		
2		LB46-5.0	0,	0	SM			@5.0'-Silty SAND (SM), gray-brown, moist, medium dense, fine grained sand, no staining or odor	5.0	
10							Notes: Total Depth = 5 feet bgs Groundwater was not encountered Boring was backfilled with bentonite	gs encountered with bentonite		
1 1										
15										
1										
20										
1										
1										
1										
-30-										

-	
	W
	7.00

				5 ft.	CONTACT CONTACT WELL DIAGRAM	0.3		5.0											
1 1	Corner of Canal Ave. and Yacht St., Wilmington, CA. CASING IYPE/DIAMETER Hand Auger Screen TYPE/SLOT	FILTER PACK TYPE GROUT TYPE	DEPTH TO WATER ft.	KCH Boring completed by Millenium Environmental using direct push.	IC DESCRIPTION	@Surface: Green waste and debris @0.5'-Silty SAND (SM), dark brown, moist, medium dense, no staining or odor	@2.5'-Silty SAND (SM), gray, moist, medium dense, no staining or odor	@5.0'-Silty SAND (SM), gray, wet, medium dense, no staining or odor		Notes: Total Depth = 5 feet bgs Groundwater was not encountered. Boring was backfilled with bentonite									
	nd Yacı	S N	MSL	um Env	LOG GRAPHIC	1:1:1:1													
11618.005 POLA Berth 191-193	Ave. a	above MSI		Milleni	u.s.c.s.	SM	SM	SM											
1618.005 LA Berth 1	ner or Canal Hand Auger	s ±	ائے ا	ted by	(mqq) alq	0	0	0											
11618 OLA E	Hand Hand	Jars		Jmple	EXTENT	0.5	2.5	2.0											
		Q O	<u> </u>	KCH oring cc	SAMPLE ID.	LB47-0.5	LB47-2.5	LB47-5.0											
JMBEI	위 당 당	ETHC VAT	ING E	A IO	RECOVERY (inches)														
PROJECT NUMBER PROJECT NAME	LUCATION SE DRILLING METHOD	SAMPLING METHOD GROUND ELEVATION	TOP OF CASING ELEV	LOGGED BY REMARKS	COUNTS BLOW														
PROJE	DRILLING N	SAMP	TOPO	LOGGED E	DEPTH (ft. BGL)		ı	- 5 -	1 1 1		15	1 1	ı	20—		- u	C7	ı	30

PROJECT PROJECT LOCATION DRILLING SAMPLING GROUND I TOP OF CA LOGGED E REMARKS	NAME I SE METHOD METHOI ELEVATIO ASING EL BY KO	POL Corner Di D D N EV.	A E	Canal Canal Push eve ft. ft.	91-193 Ave. ar above above	MSL MSL	cht St., Wilmington, CA	CASING TYPE/DIAMETER SCREEN TYPE/SLOT FILTER PACK TYPE GROUT TYPE DEPTH TO WATER TOTAL DRILL DEPTH	3/2017 R Nylaflov Air Stone Monterrey Sa Hydrated Bet ft.	v Tubin and ntonite	g / 1/4"	
OEPTH (ft. BGL) BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOL	LOGIC DESCRIPTION		CONTACT DEPTH	WEL	L DIAGRAM
					ML SM /		@2.5': Sandy SILT (M staining or odor @5.0': Silty SAND (SI staining or odor Motes: Total Depth = 9 feet b Groundwater was enc Groundwater was coll Boring was backfilled	gs Ountered at 5.5 feet bgs. ected from this boring. with bentonite from 4.5 to syapor probe contruction.	, no	4.7 5.0 9.0		Bentonite 1/4" Nylaflow Tubing Poly Implant (4') Sand Bentonite

PROJECT LOCATIO DRILLING SAMPLIN GROUND	M SE METHOD G METHOI ELEVATIO CASING EL BY K	POL Corner Di D D L D EV.	A Bert of Ca rect Pu Sleeve	th 191-193 nal Ave. ar ush e - ft. above ft. above	MSL MSL	DATE DRILLED 12/13/2017 CASING TYPE/DIAMETER Nyl. SCREEN TYPE/SLOT Air Stone FILTER PACK TYPE Monterre GROUT TYPE Hydrated DEPTH TO WATER	DATE DRILLED 12/13/2017 CASING TYPE/DIAMETER Nylaflow Tubing / 1/4" SCREEN TYPE/SLOT Air Stone FILTER PACK TYPE Monterrey Sand GROUT TYPE Hydrated Bentonite DEPTH TO WATER ft. TOTAL DRILL DEPTH 9 ft.							
DEPTH (ft. BGL) BLOW	COUNTS RECOVERY (inches)	SAMPLE ID.	EXTENT PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT	DEPTH	WELL D	IAGRAM				
				SM SM		@Surface: Gravelly SILT @0.5':Sandy SILT (SM), gray, moist, dense, fine to medium grained, no odor or staining @2.5': Silty SAND (SM), gray, moist, dense, fine grained sand, no staining or odor @ 5.0': Silty SAND (SM), gray, moist, dense, fine grained sand, no staining or odor @ 5.5': Silty SAND (SM), dark gray-black, wet, dense, fine grained sand, no staining or odor Notes: Total Depth = 9 feet bgs Groundwater was encountered at 5.5 feet bgs. Groundwater was collected from this boring. Boring was backfilled with bentonite from 4.5 to 9 ft bgs to dry boring prior to soil vapor probe contruction.	9.0		-1/ -1/	entonite 4" Nylaflow ubing obly Implant ') and entonite				

APPENDIX D

Laboratory Reports and Chain-of-Custody Documents

October 19, 2017

Brynn McCulloch Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Tel: (949) 394-2306 Fax:(949) 250-1114 CSDLAC No.: 10196 ORELAP No.: CA300003

ELAP No.: 1838

Re: ATL Work Order Number: 1703640

Client Reference: POLA Berth 191-193, 11618-005

Enclosed are the results for sample(s) received on October 11, 2017 by Advanced Technology Laboratories. The sample(s) are tested for the parameters as indicated on the enclosed chain of custody in accordance with applicable laboratory certifications. The laboratory results contained in this report specifically pertains to the sample(s) submitted.

Thank you for the opportunity to serve the needs of your company. If you have any questions, please feel free to contact me or your Project Manager.

Sincerely,

Eddie Rodriguez

Laboratory Director

The cover letter and the case narrative are an integral part of this analytical report and its absence renders the report invalid. Test results contained within this data package meet the requirements of applicable state-specific certification programs. The report cannot be reproduced without written permission from the client and Advanced Technology Laboratories.

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

17781 Cowan Street Report To: Brynn McCulloch

Irvine, CA 92614 Reported: 10/19/2017

SUMMARY OF SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LB1-GW	1703640-01	Groundwater	10/11/17 9:30	10/11/17 16:18
LB25-GW	1703640-02	Groundwater	10/11/17 11:50	10/11/17 16:18
LB13-GW	1703640-03	Groundwater	10/11/17 13:45	10/11/17 16:18
LB23-GW	1703640-04	Groundwater	10/11/17 15:22	10/11/17 16:18

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

17781 Cowan Street Report To: Brynn McCulloch

Irvine , CA 92614 Reported: 10/19/2017

Client Sample ID LB1-GW Lab ID: 1703640-01

Title 22 Metals by ICP-AES EPA 6010B

Analyst: GO

Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Antimony	ND	0.010	1	B7J0455	10/17/2017	10/17/17 17:21	
Arsenic	ND	0.010	1	B7J0455	10/17/2017	10/17/17 17:21	
Barium	0.11	0.0030	1	B7J0455	10/17/2017	10/17/17 17:21	
Beryllium	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:21	
Cadmium	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:21	
Chromium	0.015	0.0030	1	B7J0455	10/17/2017	10/17/17 17:21	
Cobalt	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:21	
Copper	0.011	0.0090	1	B7J0455	10/17/2017	10/17/17 17:21	
Lead	ND	0.0050	1	B7J0455	10/17/2017	10/17/17 17:21	
Molybdenum	0.027	0.0050	1	B7J0455	10/17/2017	10/17/17 17:21	
Nickel	0.011	0.0050	1	B7J0455	10/17/2017	10/17/17 17:21	
Selenium	ND	0.010	1	B7J0455	10/17/2017	10/17/17 17:21	
Silver	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:21	
Thallium	ND	0.015	1	B7J0455	10/17/2017	10/17/17 17:21	
Vanadium	0.011	0.0030	1	B7J0455	10/17/2017	10/17/17 17:21	
Zinc	ND	0.025	1	B7J0455	10/17/2017	10/17/17 17:21	

Mercury by AA (Cold Vapor) EPA 7470A

Analyst: KEK

Analyte	Result (ug/L)	PQL (ug/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	ND	0.20	1	B7J0458	10/17/2017	10/18/17 16:59	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	9.9	0.05	1	B7J0254	10/13/2017	10/13/17 12:36	
Surrogate: 4-Bromofluorobenzene	125 %	70 - 130		B7J0254	10/13/2017	10/13/17 12:36	

Diesel Range Organics by EPA 8015B

Analyst: TKT

Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	0.93	0.05	1	B7J0338	10/13/2017	10/14/17 10:03	
ORO	0.38	0.05	1	B7J0338	10/13/2017	10/14/17 10:03	

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

17781 Cowan Street Report To: Brynn McCulloch

Irvine, CA 92614 Reported: 10/19/2017

Client Sample ID LB1-GW Lab ID: 1703640-01

Diesel Range Organics by EPA 8015B

Result PQL Date/Time

Analyte (mg/L) (mg/L) Dilution Batch Prepared Analyzed Notes

Surrogate: p-Terphenyl 126 % 20 - 150 B7J0338 10/13/2017 10/14/17 10:03

Volatile Organic Compounds by EPA 8260B

	Result	PQL				Date/Time	
Analyte	(ug/L)	(ug/L)	Dilution	Batch	Prepared	Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
1,1,1-Trichloroethane	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
1,1,2,2-Tetrachloroethane	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
1,1,2-Trichloroethane	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
1,1-Dichloroethane	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
1,1-Dichloroethene	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
1,1-Dichloropropene	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
1,2,3-Trichloropropane	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
1,2,3-Trichlorobenzene	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
1,2,4-Trichlorobenzene	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
1,2,4-Trimethylbenzene	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
1,2-Dibromo-3-chloropropane	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
1,2-Dibromoethane	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
1,2-Dichlorobenzene	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
1,2-Dichloroethane	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
1,2-Dichloropropane	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
1,3,5-Trimethylbenzene	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
1,3-Dichlorobenzene	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
1,3-Dichloropropane	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
1,4-Dichlorobenzene	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
2,2-Dichloropropane	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
2-Chlorotoluene	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
4-Chlorotoluene	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
4-Isopropyltoluene	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
Benzene	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
Bromobenzene	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
Bromochloromethane	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
Bromodichloromethane	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
Bromoform	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
Bromomethane	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	

Analyst: TKT

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

17781 Cowan Street Report To: Brynn McCulloch

Irvine, CA 92614 Reported: 10/19/2017

Client Sample ID LB1-GW Lab ID: 1703640-01

Volatile Organic Compounds by EPA 8260B

	Result	PQL				Date/Time	
Analyte	(ug/L)	(ug/L)	Dilution	Batch	Prepared	Analyzed	Notes
Carbon disulfide	ND	50	50	B7J0394	10/16/2017	10/16/17 16:01	
Carbon tetrachloride	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
Chlorobenzene	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
Chloroethane	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
Chloroform	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
Chloromethane	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
cis-1,2-Dichloroethene	3300	25	50	B7J0394	10/16/2017	10/16/17 16:01	
cis-1,3-Dichloropropene	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
Di-isopropyl ether	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
Dibromochloromethane	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
Dibromomethane	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
Dichlorodifluoromethane	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
Ethyl Acetate	ND	500	50	B7J0394	10/16/2017	10/16/17 16:01	
Ethyl Ether	ND	500	50	B7J0394	10/16/2017	10/16/17 16:01	
Ethyl tert-butyl ether	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
Ethylbenzene	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
Freon-113	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
Hexachlorobutadiene	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
Isopropylbenzene	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
m,p-Xylene	ND	50	50	B7J0394	10/16/2017	10/16/17 16:01	
Methylene chloride	ND	50	50	B7J0394	10/16/2017	10/16/17 16:01	
MTBE	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
n-Butylbenzene	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
n-Propylbenzene	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
Naphthalene	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
o-Xylene	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
sec-Butylbenzene	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
Styrene	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
tert-Amyl methyl ether	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
tert-Butanol	ND	500	50	B7J0394	10/16/2017	10/16/17 16:01	
tert-Butylbenzene	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
Tetrachloroethene	19000	250	500	B7J0394	10/16/2017	10/16/17 16:25	
Toluene	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
trans-1,2-Dichloroethene	210	25	50	B7J0394	10/16/2017	10/16/17 16:01	
trans-1,3-Dichloropropene	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
Trichloroethene	7900	250	500	B7J0394	10/16/2017	10/16/17 16:25	

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

17781 Cowan Street Report To: Brynn McCulloch

Irvine , CA 92614 Reported: 10/19/2017

Client Sample ID LB1-GW Lab ID: 1703640-01

Volatile Organic Compounds by EPA 8260B

Analyst: QP

	Result	PQL				Date/Time	
Analyte	(ug/L)	(ug/L)	Dilution	Batch	Prepared	Analyzed	Notes
Trichlorofluoromethane	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
Vinyl acetate	ND	500	50	B7J0394	10/16/2017	10/16/17 16:01	
Vinyl chloride	ND	25	50	B7J0394	10/16/2017	10/16/17 16:01	
Surrogate: 1,2-Dichloroethane-d4	96.4 %	70 - 166		B7J0394	10/16/2017	10/16/17 16:25	
Surrogate: 1,2-Dichloroethane-d4	98.9 %	70 - 166		B7J0394	10/16/2017	10/16/17 16:01	
Surrogate: 4-Bromofluorobenzene	92.7 %	88 - 120		B7J0394	10/16/2017	10/16/17 16:25	
Surrogate: 4-Bromofluorobenzene	93.2 %	88 - 120		B7J0394	10/16/2017	10/16/17 16:01	
Surrogate: Dibromofluoromethane	104 %	80 - 150		B7J0394	10/16/2017	10/16/17 16:01	
Surrogate: Dibromofluoromethane	102 %	80 - 150		B7J0394	10/16/2017	10/16/17 16:25	
Surrogate: Toluene-d8	100 %	87 - 121		B7J0394	10/16/2017	10/16/17 16:01	
Surrogate: Toluene-d8	98.7 %	87 - 121		B7J0394	10/16/2017	10/16/17 16:25	

Semivolatile Organic Compounds by EPA 8270/SIM

<u> </u>							1111417500 81
Analyte	Result (ug/L)	PQL (ug/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
2-Methylnaphthalene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 13:36	
Acenaphthene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 13:36	
Acenaphthylene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 13:36	
Anthracene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 13:36	
Benzo(a)anthracene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 13:36	
Benzo(a)pyrene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 13:36	
Benzo(b)fluoranthene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 13:36	
Benzo(g,h,i)perylene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 13:36	
Benzo(k)fluoranthene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 13:36	
Chrysene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 13:36	
Dibenz(a,h)anthracene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 13:36	
Fluoranthene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 13:36	
Fluorene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 13:36	
Indeno(1,2,3-cd)pyrene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 13:36	
Naphthalene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 13:36	
Phenanthrene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 13:36	
Pyrene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 13:36	
Surrogate: 1,2-Dichlorobenzene-d4	71.2 %	32 - 99		B7J0413	10/16/2017	10/16/17 13:36	_
Surrogate: 2-Fluorobiphenyl	80.5 %	29 - 105		B7J0413	10/16/2017	10/16/17 13:36	
Surrogate: Nitrobenzene-d5	91.6 %	17 - 123		B7J0413	10/16/2017	10/16/17 13:36	

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

17781 Cowan Street Report To: Brynn McCulloch

Irvine, CA 92614 Reported: 10/19/2017

Client Sample ID LB1-GW Lab ID: 1703640-01

Semivolatile Organic Compounds by EPA 8270/SIM

	Result	PQL				Date/Time	
Analyte	(ug/L)	(ug/L)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: 4-Terphenyl-d14	94.8 %	32 - 119		B7J0413	10/16/2017	10/16/17 13:36	

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

17781 Cowan Street Report To: Brynn McCulloch

Irvine , CA 92614 Reported: 10/19/2017

Client Sample ID LB25-GW Lab ID: 1703640-02

Title 22 Metals by ICP-AES EPA 6010B

Analyst: GO

Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Antimony	0.013	0.010	1	B7J0455	10/17/2017	10/17/17 17:25	
Arsenic	ND	0.010	1	B7J0455	10/17/2017	10/17/17 17:25	
Barium	0.062	0.0030	1	B7J0455	10/17/2017	10/17/17 17:25	
Beryllium	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:25	
Cadmium	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:25	
Chromium	0.012	0.0030	1	B7J0455	10/17/2017	10/17/17 17:25	
Cobalt	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:25	
Copper	ND	0.0090	1	B7J0455	10/17/2017	10/17/17 17:25	
Lead	ND	0.0050	1	B7J0455	10/17/2017	10/17/17 17:25	
Molybdenum	0.021	0.0050	1	B7J0455	10/17/2017	10/17/17 17:25	
Nickel	0.0083	0.0050	1	B7J0455	10/17/2017	10/17/17 17:25	
Selenium	ND	0.010	1	B7J0455	10/17/2017	10/17/17 17:25	
Silver	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:25	
Thallium	ND	0.015	1	B7J0455	10/17/2017	10/17/17 17:25	
Vanadium	0.0043	0.0030	1	B7J0455	10/17/2017	10/17/17 17:25	
Zinc	ND	0.025	1	B7J0455	10/17/2017	10/17/17 17:25	

Mercury by AA (Cold Vapor) EPA 7470A

Analyst: KEK

Analyte	Result (ug/L)	PQL (ug/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	ND	0.20	1	B7J0458	10/17/2017	10/18/17 17:14	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	0.08	0.05	1	B7J0254	10/13/2017	10/13/17 12:57	
Surrogate: 4-Bromofluorobenzene	115 %	70 - 130		B7J0254	10/13/2017	10/13/17 12:57	

Diesel Range Organics by EPA 8015B

Analyst: TKT

Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	0.23	0.05	1	B7J0338	10/13/2017	10/14/17 10:19	
ORO	0.16	0.05	1	B7J0338	10/13/2017	10/14/17 10:19	

Project Number: POLA Berth 191-193, 11618-005 Leighton Consulting, Inc.

17781 Cowan Street Report To: Brynn McCulloch

Irvine, CA 92614 Reported: 10/19/2017

Client Sample ID LB25-GW Lab ID: 1703640-02

Diesel Range Organics by EPA 8015B

Analyst: TKT Result **PQL** Date/Time Analyte (mg/L) (mg/L) Dilution Batch Prepared Analyzed Notes 118 % Surrogate: p-Terphenyl 20 - 150 B7J0338 10/13/2017 10/14/17 10:19

Volatile Organic Compounds by EPA 8260B

	Result	PQL				Date/Time	
Analyte	(ug/L)	(ug/L)	Dilution	Batch	Prepared	Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
1,1,1-Trichloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
1,1,2,2-Tetrachloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
1,1,2-Trichloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
1,1-Dichloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
1,1-Dichloroethene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
1,1-Dichloropropene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
1,2,3-Trichloropropane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
1,2,3-Trichlorobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
1,2,4-Trichlorobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
1,2,4-Trimethylbenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
1,2-Dibromo-3-chloropropane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
1,2-Dibromoethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
1,2-Dichlorobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
1,2-Dichloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
1,2-Dichloropropane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
1,3,5-Trimethylbenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
1,3-Dichlorobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
1,3-Dichloropropane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
1,4-Dichlorobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
2,2-Dichloropropane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
2-Chlorotoluene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
4-Chlorotoluene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
4-Isopropyltoluene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
Benzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
Bromobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
Bromochloromethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
Bromodichloromethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
Bromoform	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
Bromomethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

17781 Cowan Street Report To: Brynn McCulloch

Irvine, CA 92614 Reported: 10/19/2017

Client Sample ID LB25-GW Lab ID: 1703640-02

Volatile Organic Compounds by EPA 8260B

Analyte	Result (ug/L)	PQL (ug/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Carbon disulfide	ND	1.0	1	B7J0319	10/13/2017	10/13/17 16:31	
Carbon tetrachloride	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
Chlorobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
Chloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
Chloroform	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
Chloromethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
cis-1,2-Dichloroethene	1.5	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
cis-1,3-Dichloropropene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
Di-isopropyl ether	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
Dibromochloromethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
Dibromomethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
Dichlorodifluoromethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
Ethyl Acetate	ND	10	1	B7J0319	10/13/2017	10/13/17 16:31	
Ethyl Ether	ND	10	1	B7J0319	10/13/2017	10/13/17 16:31	
Ethyl tert-butyl ether	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
Ethylbenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
Freon-113	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
Hexachlorobutadiene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
Isopropylbenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
m,p-Xylene	ND	1.0	1	B7J0319	10/13/2017	10/13/17 16:31	
Methylene chloride	ND	1.0	1	B7J0319	10/13/2017	10/13/17 16:31	
MTBE	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
n-Butylbenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
n-Propylbenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
Naphthalene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
o-Xylene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
sec-Butylbenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
Styrene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
tert-Amyl methyl ether	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
tert-Butanol	ND	10	1	B7J0319	10/13/2017	10/13/17 16:31	
tert-Butylbenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
Tetrachloroethene	6.2	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
Toluene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
trans-1,2-Dichloroethene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
trans-1,3-Dichloropropene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
Trichloroethene	3.5	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

17781 Cowan Street Report To: Brynn McCulloch

Irvine, CA 92614 Reported: 10/19/2017

Client Sample ID LB25-GW Lab ID: 1703640-02

Volatile Organic Compounds by EPA 8260B

Analyst: QP

Analyte	Result (ug/L)	PQL (ug/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Trichlorofluoromethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
Vinyl acetate	ND	10	1	B7J0319	10/13/2017	10/13/17 16:31	
Vinyl chloride	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:31	
Surrogate: 1,2-Dichloroethane-d4	100 %	70 - 166		B7J0319	10/13/2017	10/13/17 16:31	
Surrogate: 4-Bromofluorobenzene	90.9 %	88 - 120		B7J0319	10/13/2017	10/13/17 16:31	
Surrogate: Dibromofluoromethane	106 %	80 - 150		B7J0319	10/13/2017	10/13/17 16:31	
Surrogate: Toluene-d8	101 %	87 - 121		B7J0319	10/13/2017	10/13/17 16:31	

Semivolatile Organic Compounds by EPA 8270/SIM

Analyte	Result (ug/L)	PQL (ug/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
2-Methylnaphthalene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:04	
Acenaphthene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:04	
Acenaphthylene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:04	
Anthracene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:04	
Benzo(a)anthracene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:04	
Benzo(a)pyrene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:04	
Benzo(b)fluoranthene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:04	
Benzo(g,h,i)perylene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:04	
Benzo(k)fluoranthene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:04	
Chrysene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:04	
Dibenz(a,h)anthracene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:04	
Fluoranthene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:04	
Fluorene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:04	
Indeno(1,2,3-cd)pyrene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:04	
Naphthalene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:04	
Phenanthrene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:04	
Pyrene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:04	
Surrogate: 1,2-Dichlorobenzene-d4	73.6 %	32 - 99		B7J0413	10/16/2017	10/16/17 14:04	
Surrogate: 2-Fluorobiphenyl	76.9 %	29 - 105		B7J0413	10/16/2017	10/16/17 14:04	
Surrogate: Nitrobenzene-d5	93.1 %	17 - 123		B7J0413	10/16/2017	10/16/17 14:04	
Surrogate: 4-Terphenyl-d14	94.7 %	32 - 119		B7J0413	10/16/2017	10/16/17 14:04	

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

17781 Cowan Street Report To: Brynn McCulloch

Irvine, CA 92614 Reported: 10/19/2017

Client Sample ID LB13-GW Lab ID: 1703640-03

Title 22 Metals by ICP-AES EPA 6010B

Analyst: GO

Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Antimony	ND	0.010	1	B7J0455	10/17/2017	10/17/17 17:26	
Arsenic	ND	0.010	1	B7J0455	10/17/2017	10/17/17 17:26	
Barium	0.12	0.0030	1	B7J0455	10/17/2017	10/17/17 17:26	
Beryllium	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:26	
Cadmium	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:26	
Chromium	0.0094	0.0030	1	B7J0455	10/17/2017	10/17/17 17:26	
Cobalt	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:26	
Copper	ND	0.0090	1	B7J0455	10/17/2017	10/17/17 17:26	
Lead	ND	0.0050	1	B7J0455	10/17/2017	10/17/17 17:26	
Molybdenum	0.0093	0.0050	1	B7J0455	10/17/2017	10/17/17 17:26	
Nickel	0.0060	0.0050	1	B7J0455	10/17/2017	10/17/17 17:26	
Selenium	ND	0.010	1	B7J0455	10/17/2017	10/17/17 17:26	
Silver	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:26	
Thallium	ND	0.015	1	B7J0455	10/17/2017	10/17/17 17:26	
Vanadium	0.013	0.0030	1	B7J0455	10/17/2017	10/17/17 17:26	
Zinc	ND	0.025	1	B7J0455	10/17/2017	10/17/17 17:26	

Mercury by AA (Cold Vapor) EPA 7470A

Analyst: KEK

Analyte	Result (ug/L)	PQL (ug/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	ND	0.20	1	B7J0458	10/17/2017	10/18/17 17:16	

Gasoline Range Organics by EPA 8015B (Modified)

Anaiyst:	V	W	
			٦

Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	0.05	1	B7J0254	10/13/2017	10/13/17 13:17	
Surrogate: 4-Bromofluorobenzene	112 %	70 - 130		B7J0254	10/13/2017	10/13/17 13:17	

Diesel Range Organics by EPA 8015B

Analyst: TKT

Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	0.47	0.05	1	B7J0338	10/13/2017	10/14/17 10:36	
ORO	0.42	0.05	1	B7J0338	10/13/2017	10/14/17 10:36	

Project Number: POLA Berth 191-193, 11618-005 Leighton Consulting, Inc.

17781 Cowan Street Report To: Brynn McCulloch

Irvine, CA 92614 Reported: 10/19/2017

Client Sample ID LB13-GW Lab ID: 1703640-03

Diesel Range Organics by EPA 8015B

Analyst: TKT PQL Date/Time Result Analyte (mg/L) (mg/L) Dilution Batch Prepared Analyzed Notes 130 % Surrogate: p-Terphenyl 20 - 150 B7J0338 10/13/2017 10/14/17 10:36

Volatile Organic Compounds by EPA 8260B

voiathe Organic Compounds by	L1 /1 0200D						Allalyst. Qi
Analyte	Result (ug/L)	PQL (ug/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
1,1,1-Trichloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
1,1,2,2-Tetrachloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
1,1,2-Trichloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
1,1-Dichloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
1,1-Dichloroethene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
1,1-Dichloropropene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
1,2,3-Trichloropropane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
1,2,3-Trichlorobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
1,2,4-Trichlorobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
1,2,4-Trimethylbenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
1,2-Dibromo-3-chloropropane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
1,2-Dibromoethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
1,2-Dichlorobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
1,2-Dichloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
1,2-Dichloropropane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
1,3,5-Trimethylbenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
1,3-Dichlorobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
1,3-Dichloropropane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
1,4-Dichlorobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
2,2-Dichloropropane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
2-Chlorotoluene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
4-Chlorotoluene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
4-Isopropyltoluene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
Benzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
Bromobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
Bromochloromethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
Bromodichloromethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
Bromoform	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
Bromomethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

17781 Cowan Street Report To: Brynn McCulloch

Irvine, CA 92614 Reported: 10/19/2017

Client Sample ID LB13-GW Lab ID: 1703640-03

Volatile Organic Compounds by EPA 8260B

Analyte	Result (ug/L)	PQL (ug/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Carbon disulfide	ND	1.0	1	B7J0319	10/13/2017	10/13/17 16:55	
Carbon tetrachloride	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
Chlorobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
Chloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
Chloroform	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
Chloromethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
cis-1,2-Dichloroethene	0.61	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
cis-1,3-Dichloropropene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
Di-isopropyl ether	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
Dibromochloromethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
Dibromomethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
Dichlorodifluoromethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
Ethyl Acetate	ND	10	1	B7J0319	10/13/2017	10/13/17 16:55	
Ethyl Ether	ND	10	1	B7J0319	10/13/2017	10/13/17 16:55	
Ethyl tert-butyl ether	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
Ethylbenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
Freon-113	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
Hexachlorobutadiene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
Isopropylbenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
m,p-Xylene	ND	1.0	1	B7J0319	10/13/2017	10/13/17 16:55	
Methylene chloride	ND	1.0	1	B7J0319	10/13/2017	10/13/17 16:55	
MTBE	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
n-Butylbenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
n-Propylbenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
Naphthalene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
o-Xylene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
sec-Butylbenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
Styrene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
tert-Amyl methyl ether	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
tert-Butanol	ND	10	1	B7J0319	10/13/2017	10/13/17 16:55	
tert-Butylbenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
Tetrachloroethene	2.0	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
Toluene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
trans-1,2-Dichloroethene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
trans-1,3-Dichloropropene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
Trichloroethene	1.6	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

17781 Cowan Street Report To: Brynn McCulloch

Irvine , CA 92614 Reported: 10/19/2017

Client Sample ID LB13-GW Lab ID: 1703640-03

Volatile Organic Compounds by EPA 8260B

Analyst: QP

Analyte	Result (ug/L)	PQL (ug/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Trichlorofluoromethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
Vinyl acetate	ND	10	1	B7J0319	10/13/2017	10/13/17 16:55	
Vinyl chloride	ND	0.50	1	B7J0319	10/13/2017	10/13/17 16:55	
Surrogate: 1,2-Dichloroethane-d4	99.3 %	70 - 166		B7J0319	10/13/2017	10/13/17 16:55	
Surrogate: 4-Bromofluorobenzene	92.1 %	88 - 120		B7J0319	10/13/2017	10/13/17 16:55	
Surrogate: Dibromofluoromethane	104 %	80 - 150		B7J0319	10/13/2017	10/13/17 16:55	
Surrogate: Toluene-d8	101 %	87 - 121		B7J0319	10/13/2017	10/13/17 16:55	

Semivolatile Organic Compounds by EPA 8270/SIM

Analyte	Result (ug/L)	PQL (ug/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
,	("8/2)	(~5/-)		2000	*	1 11111 / 204	000
2-Methylnaphthalene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:33	
Acenaphthene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:33	
Acenaphthylene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:33	
Anthracene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:33	
Benzo(a)anthracene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:33	
Benzo(a)pyrene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:33	
Benzo(b)fluoranthene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:33	
Benzo(g,h,i)perylene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:33	
Benzo(k)fluoranthene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:33	
Chrysene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:33	
Dibenz(a,h)anthracene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:33	
Fluoranthene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:33	
Fluorene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:33	
Indeno(1,2,3-cd)pyrene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:33	
Naphthalene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:33	
Phenanthrene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:33	
Pyrene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 14:33	
Surrogate: 1,2-Dichlorobenzene-d4	65.8 %	32 - 99		B7J0413	10/16/2017	10/16/17 14:33	
Surrogate: 2-Fluorobiphenyl	72.4 %	29 - 105		B7J0413	10/16/2017	10/16/17 14:33	
Surrogate: Nitrobenzene-d5	84.4 %	17 - 123		B7J0413	10/16/2017	10/16/17 14:33	
Surrogate: 4-Terphenyl-d14	82.8 %	32 - 119		B7J0413	10/16/2017	10/16/17 14:33	

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

17781 Cowan Street Report To: Brynn McCulloch

Irvine , CA 92614 Reported: 10/19/2017

Client Sample ID LB23-GW Lab ID: 1703640-04

Title 22 Metals by ICP-AES EPA 6010B

Analyst: GO

							•
Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Antimony	ND	0.010	1	B7J0455	10/17/2017	10/17/17 17:27	
Arsenic	ND	0.010	1	B7J0455	10/17/2017	10/17/17 17:27	
Barium	0.089	0.0030	1	B7J0455	10/17/2017	10/17/17 17:27	
Beryllium	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:27	
Cadmium	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:27	
Chromium	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:27	
Cobalt	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:27	
Copper	ND	0.0090	1	B7J0455	10/17/2017	10/17/17 17:27	
Lead	ND	0.0050	1	B7J0455	10/17/2017	10/17/17 17:27	
Molybdenum	0.0087	0.0050	1	B7J0455	10/17/2017	10/17/17 17:27	
Nickel	ND	0.0050	1	B7J0455	10/17/2017	10/17/17 17:27	
Selenium	ND	0.010	1	B7J0455	10/17/2017	10/17/17 17:27	
Silver	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:27	
Thallium	ND	0.015	1	B7J0455	10/17/2017	10/17/17 17:27	
Vanadium	0.0036	0.0030	1	B7J0455	10/17/2017	10/17/17 17:27	
Zinc	ND	0.025	1	B7J0455	10/17/2017	10/17/17 17:27	

Mercury by AA (Cold Vapor) EPA 7470A

Analyst: KEK

Analyst: VW

	Result	PQL				Date/Time	
Analyte	(ug/L)	(ug/L)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.20	1	B7J0458	10/17/2017	10/18/17 17:18	

Gasoline Range Organics by EPA 8015B (Modified)

	Result	PQL				Date/Time	
Analyte	(mg/L)	(mg/L)	Dilution	Batch	Prepared	Analyzed	Notes

B7J0254

10/13/2017

10/13/17 13:37

Surrogate: 4-Bromofluorobenzene 113 % 70 - 130 B7J0254 10/13/2017 10/13/17 13:37

0.05

ND

Diesel Range Organics by EPA 8015B

Gasoline Range Organics

Analyst: TKT

Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	0.33	0.05	1	B7J0338	10/13/2017	10/14/17 10:53	
ORO	0.38	0.05	1	B7J0338	10/13/2017	10/14/17 10:53	

Project Number: POLA Berth 191-193, 11618-005 Leighton Consulting, Inc.

17781 Cowan Street Report To: Brynn McCulloch

Irvine, CA 92614 Reported: 10/19/2017

Client Sample ID LB23-GW Lab ID: 1703640-04

Diesel Range Organics by EPA 8015B

Analyst: TKT PQL Date/Time Result Analyte (mg/L)(mg/L) Dilution Batch Prepared Analyzed Notes 110 % Surrogate: p-Terphenyl 20 - 150 B7J0338 10/13/2017 10/14/17 10:53

Volatile Organic Compounds by EPA 8260B

	Result	PQL				Date/Time	
Analyte	(ug/L)	(ug/L)	Dilution	Batch	Prepared	Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
1,1,1-Trichloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
1,1,2,2-Tetrachloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
1,1,2-Trichloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
1,1-Dichloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
1,1-Dichloroethene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
1,1-Dichloropropene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
1,2,3-Trichloropropane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
1,2,3-Trichlorobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
1,2,4-Trichlorobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
1,2,4-Trimethylbenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
1,2-Dibromo-3-chloropropane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
1,2-Dibromoethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
1,2-Dichlorobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
1,2-Dichloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
1,2-Dichloropropane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
1,3,5-Trimethylbenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
1,3-Dichlorobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
1,3-Dichloropropane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
1,4-Dichlorobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
2,2-Dichloropropane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
2-Chlorotoluene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
4-Chlorotoluene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
4-Isopropyltoluene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
Benzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
Bromobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
Bromochloromethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
Bromodichloromethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
Bromoform	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
Bromomethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

17781 Cowan Street Report To: Brynn McCulloch

Irvine, CA 92614 Reported: 10/19/2017

Client Sample ID LB23-GW Lab ID: 1703640-04

Volatile Organic Compounds by EPA 8260B

Analyte	Result (ug/L)	PQL (ug/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Carbon disulfide	ND	1.0	1	B7J0319	10/13/2017	10/13/17 17:20	
Carbon tetrachloride	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
Chlorobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
Chloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
Chloroform	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
Chloromethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
cis-1,2-Dichloroethene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
cis-1,3-Dichloropropene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
Di-isopropyl ether	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
Dibromochloromethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
Dibromomethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
Dichlorodifluoromethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
Ethyl Acetate	ND	10	1	B7J0319	10/13/2017	10/13/17 17:20	
Ethyl Ether	ND	10	1	B7J0319	10/13/2017	10/13/17 17:20	
Ethyl tert-butyl ether	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
Ethylbenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
Freon-113	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
Hexachlorobutadiene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
Isopropylbenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
m,p-Xylene	ND	1.0	1	B7J0319	10/13/2017	10/13/17 17:20	
Methylene chloride	ND	1.0	1	B7J0319	10/13/2017	10/13/17 17:20	
MTBE	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
n-Butylbenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
n-Propylbenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
Naphthalene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
o-Xylene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
sec-Butylbenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
Styrene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
tert-Amyl methyl ether	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
tert-Butanol	ND	10	1	B7J0319	10/13/2017	10/13/17 17:20	
tert-Butylbenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
Tetrachloroethene	1.3	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
Toluene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
trans-1,2-Dichloroethene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
trans-1,3-Dichloropropene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
Trichloroethene	0.78	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

17781 Cowan Street Report To: Brynn McCulloch

Irvine , CA 92614 Reported: 10/19/2017

Client Sample ID LB23-GW Lab ID: 1703640-04

Volatile Organic Compounds by EPA 8260B

Analyst: QP

Analyte	Result (ug/L)	PQL (ug/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Trichlorofluoromethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	_
Vinyl acetate	ND	10	1	B7J0319	10/13/2017	10/13/17 17:20	
Vinyl chloride	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:20	
Surrogate: 1,2-Dichloroethane-d4	101 %	70 - 166		B7J0319	10/13/2017	10/13/17 17:20	
Surrogate: 4-Bromofluorobenzene	93.3 %	88 - 120		B7J0319	10/13/2017	10/13/17 17:20	
Surrogate: Dibromofluoromethane	105 %	80 - 150		B7J0319	10/13/2017	10/13/17 17:20	
Surrogate: Toluene-d8	100 %	87 - 121		B7J0319	10/13/2017	10/13/17 17:20	

Semivolatile Organic Compounds by EPA 8270/SIM

	Result	PQL				Date/Time	
Analyte	(ug/L)	(ug/L)	Dilution	Batch	Prepared	Analyzed	Notes
2-Methylnaphthalene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 15:02	
Acenaphthene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 15:02	
Acenaphthylene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 15:02	
Anthracene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 15:02	
Benzo(a)anthracene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 15:02	
Benzo(a)pyrene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 15:02	
Benzo(b)fluoranthene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 15:02	
Benzo(g,h,i)perylene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 15:02	
Benzo(k)fluoranthene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 15:02	
Chrysene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 15:02	
Dibenz(a,h)anthracene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 15:02	
Fluoranthene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 15:02	
Fluorene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 15:02	
Indeno(1,2,3-cd)pyrene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 15:02	
Naphthalene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 15:02	
Phenanthrene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 15:02	
Pyrene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 15:02	
Surrogate: 1,2-Dichlorobenzene-d4	65.3 %	32 - 99		B7J0413	10/16/2017	10/16/17 15:02	
Surrogate: 2-Fluorobiphenyl	71.2 %	29 - 105		B7J0413	10/16/2017	10/16/17 15:02	
Surrogate: Nitrobenzene-d5	82.9 %	17 - 123		B7J0413	10/16/2017	10/16/17 15:02	
Surrogate: 4-Terphenyl-d14	82.1 %	32 - 119		B7J0413	10/16/2017	10/16/17 15:02	

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

MDL

17781 Cowan Street Report To: Brynn McCulloch

PQL

Irvine, CA 92614 Reported: 10/19/2017

Result

QUALITY CONTROL SECTION

Title 22 Metals by ICP-AES EPA 6010B - Quality Control

Spike

Source

% Rec

RPD

	Result	PQL	MDL	Spike	Source		% Rec		KPD	
Analyte	(mg/L)	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0455 - EPA 3010A_V	V									
Blank (B7J0455-BLK1)					Prepared	d: 10/17/2017	Analyzed: 10/1	17/2017		
Antimony	ND	0.010	0.0088							
Arsenic	ND	0.010	0.0078							
Barium	ND	0.0030	0.0026							
Beryllium	ND	0.0030	0.0016							
Cadmium	ND	0.0030	0.0024							
Chromium	ND	0.0030	0.0020							
Cobalt	ND	0.0030	0.0016							
Copper	ND	0.0090	0.0038							
Lead	ND	0.0050	0.0047							
Molybdenum	ND	0.0050	0.0030							
Nickel	ND	0.0050	0.0046							
Selenium	ND	0.010	0.0093							
Silver	ND	0.0030	0.0024							
Thallium	ND	0.015	0.0085							
Vanadium	ND	0.0030	0.0022							
Zinc	ND	0.025	0.0057							
LCS (B7J0455-BS1)					Prepared	d: 10/17/2017	Analyzed: 10/1	17/2017		
Antimony	0.929102	0.010	0.0088	1.00000		92.9	80 - 120			
Arsenic	0.941062	0.010	0.0078	1.00000		94.1	80 - 120			
Barium	0.969431	0.0030	0.0026	1.00000		96.9	80 - 120			
Beryllium	0.952237	0.0030	0.0016	1.00000		95.2	80 - 120			
Cadmium	0.923200	0.0030	0.0024	1.00000		92.3	80 - 120			
Chromium	0.964497	0.0030	0.0020	1.00000		96.4	80 - 120			
Cobalt	0.960800	0.0030	0.0016	1.00000		96.1	80 - 120			
Copper	0.947343	0.0090	0.0038	1.00000		94.7	80 - 120			
Lead	0.953769	0.0050	0.0047	1.00000		95.4	80 - 120			
Molybdenum	0.936200	0.0050	0.0030	1.00000		93.6	80 - 120			
Nickel	0.929993	0.0050	0.0046	1.00000		93.0	80 - 120			
Selenium	0.907008	0.010	0.0093	1.00000		90.7	80 - 120			
Silver	1.18499	0.0030	0.0024	1.00000		118	80 - 120			
Thallium	0.946903	0.015	0.0085	1.00000		94.7	80 - 120			
Vanadium	0.953132	0.0030	0.0022	1.00000		95.3	80 - 120			
Zinc	0.930909	0.025	0.0057	1.00000		93.1	80 - 120			
Matrix Spike (B7J0455-MS1)		S	ource: 17036	540-01	Prepared	d: 10/17/2017	Analyzed: 10/1	17/2017		
Antimony	2.45296	0.010	0.0088	2.50000	ND	98.1	60 - 130			
Arsenic	2.51904	0.010	0.0078	2.50000	ND	101	69 - 123			
			2.3070		- 1.2					

Project Number: POLA Berth 191-193, 11618-005 Leighton Consulting, Inc.

17781 Cowan Street Report To: Brynn McCulloch

Irvine, CA 92614 Reported: 10/19/2017

Title 22 Metals by ICP-AES EPA 6010B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/L)	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0455 - EPA 3010A_W (continued)

Matrix Spike (B7J0455-MS1) - Continued		Se	ource: 17036	640-01	Prepared: 10/17/2017 Analyzed: 10/17/2017				
Barium	2.59554	0.0030	0.0026	2.50000	0.106382	99.6	67 - 129		
Beryllium	2.52702	0.0030	0.0016	2.50000	ND	101	74 - 120		
Cadmium	2.37069	0.0030	0.0024	2.50000	ND	94.8	69 - 116		
Chromium	2.49293	0.0030	0.0020	2.50000	0.014934	99.1	74 - 120		
Cobalt	2.43594	0.0030	0.0016	2.50000	0.002840	97.3	70 - 116		
Copper	2.53772	0.0090	0.0038	2.50000	0.01129	101	76 - 123		
Lead	2.42425	0.0050	0.0047	2.50000	ND	97.0	69 - 117		
Molybdenum	2.53677	0.0050	0.0030	2.50000	0.026825	100	68 - 120		
Nickel	2.38734	0.0050	0.0046	2.50000	0.011243	95.0	70 - 115		
Selenium	2.39006	0.010	0.0093	2.50000	ND	95.6	66 - 120		
Silver	2.66866	0.0030	0.0024	2.50000	ND	107	73 - 123		
Thallium	2.34797	0.015	0.0085	2.50000	ND	93.9	57 - 124		
Vanadium	2.52252	0.0030	0.0022	2.50000	0.010942	100	72 - 123		
Zinc	2.38635	0.025	0.0057	2.50000	0.023691	94.5	73 - 111		
Matrix Spike Dup (B7J0455-MSD1)		Source: 1703640-01		Prepared: 10/17/2017 Analyzed: 10/17/2017					
Antimony	2.42439	0.010	0.0088	2.50000	ND	97.0	60 - 130	1.17	20
Arsenic	2.47205	0.010	0.0078	2.50000	ND	98.9	69 - 123	1.88	20
Barium	2.56504	0.0030	0.0026	2.50000	0.106382	98.3	67 - 129	1.18	20
Beryllium	2.49000	0.0030	0.0016	2.50000	ND	99.6	74 - 120	1.48	20
Cadmium	2.33304	0.0030	0.0024	2.50000	ND	93.3	69 - 116	1.60	20
Chromium	2.44862	0.0030	0.0020	2.50000	0.014934	97.3	74 - 120	1.79	20
Cobalt	2.39427	0.0030	0.0016	2.50000	0.002840	95.7	70 - 116	1.73	20
Copper	2.50095	0.0090	0.0038	2.50000	0.01129	99.6	76 - 123	1.46	20
Lead	2.39216	0.0050	0.0047	2.50000	ND	95.7	69 - 117	1.33	20
Molybdenum	2.50298	0.0050	0.0030	2.50000	0.026825	99.0	68 - 120	1.34	20
Nickel	2.35861	0.0050	0.0046	2.50000	0.011243	93.9	70 - 115	1.21	20
Selenium	2.34170	0.010	0.0093	2.50000	ND	93.7	66 - 120	2.04	20
Silver	2.62202	0.0030	0.0024	2.50000	ND	105	73 - 123	1.76	20
Thallium	2.34150	0.015	0.0085	2.50000	ND	93.7	57 - 124	0.276	20
Vanadium	2.48646	0.0030	0.0022	2.50000	0.010942	99.0	72 - 123	1.44	20
Zinc	2.35433	0.025	0.0057	2.50000	0.023691	93.2	73 - 111	1.35	20

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

17781 Cowan Street Report To: Brynn McCulloch

Irvine , CA 92614 Reported: 10/19/2017

Mercury by AA (Cold Vapor) EPA 7470A - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0458 - EPA 245.1/74	170_W									
Blank (B7J0458-BLK1)					Prepared	: 10/17/2017	Analyzed: 10/	18/2017		
Mercury	ND	0.20	0.05							
LCS (B7J0458-BS1)					Prepared	: 10/17/2017	Analyzed: 10/	18/2017		
Mercury	9.54958	0.20	0.05	10.0000		95.5	80 - 120			
Matrix Spike (B7J0458-MS1)		So	ource: 1703	640-01	Prepared: 10/17/2017 Analyzed: 10/18/2017			18/2017		
Mercury	9.82494	0.20	0.05	10.0000	0.066603	97.6	70 - 130			
Matrix Spike Dup (B7J0458-MSI	Matrix Spike Dup (B7J0458-MSD1)		Source: 1703640-01		Prepared: 10/17/2017 Analyzed: 10/18/2017			18/2017		
Mercury	10.2498	0.20	0.05	10.0000	0.066603	102	70 - 130	4.23	20	
Post Spike (B7J0458-PS1)		Se	ource: 1703	640-01	Prepared	: 10/17/2017	Analyzed: 10/	18/2017		
Mercury	4.94797			5.00000	0.066603	97.6	85 - 115			

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

17781 Cowan Street Report To: Brynn McCulloch

Irvine , CA 92614 Reported: 10/19/2017

Gasoline Range Organics by EPA 8015B (Modified) - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/L)	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0254 - GCVOA_W										
Blank (B7J0254-BLK1)					Prepare	d: 10/13/2017	Analyzed: 10/	13/2017		
Gasoline Range Organics	ND	0.05	0.05							
Surrogate: 4-Bromofluorobenzen	0.1180			0.100000		118	70 - 130			
LCS (B7J0254-BS1)					Prepare	d: 10/13/2017	Analyzed: 10/	13/2017		
Gasoline Range Organics	0.916000	0.05	0.05	1.00000		91.6	70 - 130			
Surrogate: 4-Bromofluorobenzen	0.1125			0.100000		113	70 - 130			
LCS Dup (B7J0254-BSD1)					Prepare	d: 10/13/2017	Analyzed: 10/	13/2017		
Gasoline Range Organics	0.821000	0.05	0.05	1.00000		82.1	70 - 130	10.9	20	
Surrogate: 4-Bromofluorobenzen	0.1179			0.100000		118	70 - 130			

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

17781 Cowan Street Report To: Brynn McCulloch Irvine, CA 92614 Reported: 10/19/2017

Diesel Range Organics by EPA 8015B - Quality Control

Analyte	Result (mg/L)	PQL (mg/L)	MDL (mg/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Batch B7J0338 - GCSEMI_D	RO_W									
Blank (B7J0338-BLK1)					Prepare	d: 10/13/2017	Analyzed: 10/	14/2017		
DRO	ND	0.05	0.05							
ORO	ND	0.05	0.05							
Surrogate: p-Terphenyl	0.1079			8.00000E-2		135	20 - 150			
LCS (B7J0338-BS1)					Prepare	d: 10/13/2017	Analyzed: 10/1	14/2017		
DRO	0.547070	0.05	0.05	1.00000		54.7	42 - 142			
Surrogate: p-Terphenyl	0.1020			8.00000E-2		128	20 - 150			
LCS Dup (B7J0338-BSD1)					Prepare	d: 10/13/2017	Analyzed: 10/1	14/2017		
DRO	0.504190	0.05	0.05	1.00000		50.4	42 - 142	8.16	20	
Surrogate: p-Terphenyl	0.1056			8.00000E-2		132	20 - 150			

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

17781 Cowan Street Report To: Brynn McCulloch

Irvine , CA 92614 Reported: 10/19/2017

Volatile Organic Compounds by EPA 8260B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0319 - $MSVOA_LL_W$

Di-isopropyl ether

Dibromochloromethane

Datell D700317 - MIS VOA_LL_VV				
Blank (B7J0319-BLK1)				Prepared: 10/13/2017 Analyzed: 10/13/2017
1,1,1,2-Tetrachloroethane	ND	0.50	0.13	
1,1,1-Trichloroethane	ND	0.50	0.38	
1,1,2,2-Tetrachloroethane	ND	0.50	0.20	
1,1,2-Trichloroethane	ND	0.50	0.19	
1,1-Dichloroethane	ND	0.50	0.20	
1,1-Dichloroethene	ND	0.50	0.28	
1,1-Dichloropropene	ND	0.50	0.36	
1,2,3-Trichloropropane	ND	0.50	0.16	
1,2,3-Trichlorobenzene	ND	0.50	0.06	
1,2,4-Trichlorobenzene	ND	0.50	0.07	
1,2,4-Trimethylbenzene	ND	0.50	0.09	
1,2-Dibromo-3-chloropropane	ND	0.50	0.20	
1,2-Dibromoethane	ND	0.50	0.13	
1,2-Dichlorobenzene	ND	0.50	0.12	
1,2-Dichloroethane	ND	0.50	0.39	
1,2-Dichloropropane	ND	0.50	0.47	
1,3,5-Trimethylbenzene	ND	0.50	0.08	
1,3-Dichlorobenzene	ND	0.50	0.13	
1,3-Dichloropropane	ND	0.50	0.08	
1,4-Dichlorobenzene	ND	0.50	0.18	
2,2-Dichloropropane	ND	0.50	0.23	
2-Chlorotoluene	ND	0.50	0.12	
4-Chlorotoluene	ND	0.50	0.11	
4-Isopropyltoluene	ND	0.50	0.12	
Benzene	ND	0.50	0.21	
Bromobenzene	ND	0.50	0.12	
Bromochloromethane	ND	0.50	0.10	
Bromodichloromethane	ND	0.50	0.32	
Bromoform	ND	0.50	0.14	
Bromomethane	ND	0.50	0.22	
Carbon disulfide	ND	1.0	0.21	
Carbon tetrachloride	ND	0.50	0.31	
Chlorobenzene	ND	0.50	0.16	
Chloroethane	ND	0.50	0.29	
Chloroform	ND	0.50	0.16	
Chloromethane	ND	0.50	0.19	
cis-1,2-Dichloroethene	ND	0.50	0.39	
cis-1,3-Dichloropropene	ND	0.50	0.08	
,				

0.14

0.11

0.50

0.50

ND

ND

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

MDL

17781 Cowan Street Report To: Brynn McCulloch

Irvine, CA 92614 Reported: 10/19/2017

PQL

Result

Volatile Organic Compounds by EPA 8260B - Quality Control (cont'd)

Spike

Source

1	1105411	- 4-		~ P			, , , , , , ,			
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0319 - MSVOA_LL_V	W (continued)									
Blank (B7J0319-BLK1) - Continued					Prepared	d· 10/13/2017	Analyzed: 10/	13/2017		
· · ·		0.50	0.00		Теригес	u. 10/13/2017	rinaryzea. 10/	13/2017		
Dibromomethane	ND	0.50	0.09							
Dichlorodifluoromethane	ND	0.50	0.31							
Ethyl Acetate	ND	10	1.1							
Ethyl Ether	ND	10	1.4							
Ethyl tert-butyl ether	ND	0.50	0.08							
Ethylbenzene	ND	0.50	0.08							
Freon-113	ND	0.50	0.34							
Hexachlorobutadiene	ND	0.50	0.22							
sopropylbenzene	ND	0.50	0.10							
n,p-Xylene	ND	1.0	0.18							
Methylene chloride	ND	1.0	0.26							
MTBE	ND	0.50	0.09							
n-Butylbenzene	ND	0.50	0.15							
n-Propylbenzene	ND	0.50	0.14							
Naphthalene	ND	0.50	0.09							
o-Xylene	ND	0.50	0.04							
ec-Butylbenzene	ND	0.50	0.15							
Styrene	ND	0.50	0.05							
ert-Amyl methyl ether	ND	0.50	0.10							
ert-Butanol	ND	10	3.0							
ert-Butylbenzene	ND	0.50	0.11							
Tetrachloroethene	ND	0.50	0.18							
Foluene	ND	0.50	0.14							
rans-1,2-Dichloroethene	ND	0.50	0.15							
rans-1,3-Dichloropropene	ND	0.50	0.09							
Frichloroethene	ND ND	0.50	0.15							
Frichlorofluoromethane	ND ND	0.50	0.33							
Vinyl acetate	ND ND	10	1.9 0.25							
Vinyl chloride		0.50	0.23	25.0000		00.7	70 166			
Surrogate: 1,2-Dichloroethane-d	24.67			25.0000		98.7	70 - 166			
Surrogate: 4-Bromofluorobenzen	23.05			25.0000		92.2	88 - 120			
Surrogate: Dibromofluoromethan	25.32			25.0000		101	80 - 150			
Surrogate: Toluene-d8	25.18			25.0000		101	87 - 121			
LCS (B7J0319-BS1)					Prepared	d: 10/13/2017	Analyzed: 10/	13/2017		
1,1,1,2-Tetrachloroethane	7.43000	0.50	0.13	10.0000		74.3	73 - 136			
,1,1-Trichloroethane	9.16000	0.50	0.38	10.0000		91.6	73 - 143			
1,1,2,2-Tetrachloroethane	9.50000	0.50	0.20	10.0000		95.0	62 - 127			
,1,2-Trichloroethane	10.3500	0.50	0.19	10.0000		104	72 - 122			
1,1-Dichloroethane	10.0700	0.50	0.20	10.0000		101	73 - 138			

RPD

% Rec

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

17781 Cowan Street Report To: Brynn McCulloch

Irvine, CA 92614 Reported: 10/19/2017

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0319 - MSVOA_LL_W	(continued)									
LCS (B7J0319-BS1) - Continued					Prepared	d: 10/13/2017	Analyzed: 10/1	13/2017		
1,1-Dichloroethene	9.99000	0.50	0.28	10.0000		99.9	74 - 132			
1,1-Dichloropropene	13.1800	0.50	0.36	10.0000		132	70 - 143			
1,2,3-Trichloropropane	10.3200	0.50	0.16	10.0000		103	66 - 119			
1,2,3-Trichlorobenzene	10.1600	0.50	0.06	10.0000		102	70 - 131			
1,2,4-Trichlorobenzene	10.1400	0.50	0.07	10.0000		101	70 - 128			
1,2,4-Trimethylbenzene	10.2400	0.50	0.09	10.0000		102	74 - 142			
1,2-Dibromo-3-chloropropane	6.24000	0.50	0.20	10.0000		62.4	56 - 118			
1,2-Dibromoethane	10.4100	0.50	0.13	10.0000		104	73 - 122			
1,2-Dichlorobenzene	10.4900	0.50	0.12	10.0000		105	75 - 128			
1,2-Dichloroethane	13.3700	0.50	0.39	10.0000		134	70 - 131			L4
1,2-Dichloropropane	10.6900	0.50	0.47	10.0000		107	69 - 124			
1,3,5-Trimethylbenzene	10.3000	0.50	0.08	10.0000		103	73 - 144			
1,3-Dichlorobenzene	10.5500	0.50	0.13	10.0000		106	75 - 131			
1,3-Dichloropropane	10.5900	0.50	0.08	10.0000		106	70 - 122			
1,4-Dichlorobenzene	10.5200	0.50	0.18	10.0000		105	75 - 127			
2,2-Dichloropropane	8.20000	0.50	0.23	10.0000		82.0	68 - 151			
2-Chlorotoluene	10.2100	0.50	0.12	10.0000		102	72 - 138			
4-Chlorotoluene	10.0800	0.50	0.11	10.0000		101	72 - 140			
4-Isopropyltoluene	10.4200	0.50	0.12	10.0000		104	74 - 149			
Benzene	27.1300	0.50	0.21	20.0000		136	67 - 138			
Bromobenzene	10.4900	0.50	0.12	10.0000		105	73 - 127			
Bromochloromethane	10.0900	0.50	0.10	10.0000		101	74 - 123			
Bromodichloromethane	8.40000	0.50	0.32	10.0000		84.0	74 - 129			
Bromoform	6.12000	0.50	0.14	10.0000		61.2	63 - 131			L4
Bromomethane	16.3300	0.50	0.22	10.0000		163	57 - 216			
Carbon disulfide	10.2300	1.0	0.21	10.0000		102	81 - 147			
Carbon tetrachloride	9.47000	0.50	0.31	10.0000		94.7	77 - 151			
Chlorobenzene	10.1800	0.50	0.16	10.0000		102	73 - 125			
Chloroethane	11.2000	0.50	0.29	10.0000		112	54 - 154			
Chloroform	10.3200	0.50	0.16	10.0000		103	77 - 132			
Chloromethane	5.64000	0.50	0.19	10.0000		56.4	57 - 142			L4
cis-1,2-Dichloroethene	9.86000	0.50	0.39	10.0000		98.6	73 - 126			
cis-1,3-Dichloropropene	8.28000	0.50	0.08	10.0000		82.8	76 - 120			
Di-isopropyl ether	9.00000	0.50	0.14	10.0000		90.0	54 - 147			
Dibromochloromethane	7.27000	0.50	0.11	10.0000		72.7	71 - 126			
Dibromomethane	10.0000	0.50	0.09	10.0000		100	73 - 121			
Dichlorodifluoromethane	8.66000	0.50	0.31	10.0000		86.6	48 - 152			
Ethyl Acetate	95.8800	10	1.1	100.000		95.9	50 - 144			
Ethyl Ether	94.3500	10	1.4	100.000		94.4	67 - 140			
Ethyl tert-butyl ether	8.68000	0.50	0.08	10.0000		86.8	58 - 137			

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

17781 Cowan Street Report To: Brynn McCulloch

Irvine, CA 92614 Reported: 10/19/2017

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
	·									
Batch B7J0319 - MSVOA_LL_V	W (continued)									
LCS (B7J0319-BS1) - Continued					Prepared	d: 10/13/2017	Analyzed: 10/1	13/2017		
Ethylbenzene	20.9500	0.50	0.08	20.0000		105	72 - 134			
Freon-113	11.3900	0.50	0.34	10.0000		114	75 - 157			
Hexachlorobutadiene	10.1900	0.50	0.22	10.0000		102	72 - 139			
Isopropylbenzene	10.4400	0.50	0.10	10.0000		104	73 - 146			
m,p-Xylene	20.3800	1.0	0.18	20.0000		102	75 - 138			
Methylene chloride	9.38000	1.0	0.26	10.0000		93.8	52 - 154			
MTBE	8.97000	0.50	0.09	10.0000		89.7	62 - 129			
n-Butylbenzene	10.7000	0.50	0.15	10.0000		107	72 - 151			
n-Propylbenzene	10.7300	0.50	0.14	10.0000		107	69 - 149			
Naphthalene	10.2600	0.50	0.09	10.0000		103	61 - 122			
o-Xylene	20.4900	0.50	0.04	20.0000		102	66 - 147			
sec-Butylbenzene	10.6400	0.50	0.15	10.0000		106	72 - 148			
Styrene	9.95000	0.50	0.05	10.0000		99.5	72 - 138			
tert-Amyl methyl ether	8.61000	0.50	0.10	10.0000		86.1	53 - 122			
tert-Butanol	35.6900	10	3.0	50.0000		71.4	21 - 149			
tert-Butylbenzene	10.3600	0.50	0.11	10.0000		104	70 - 145			
Tetrachloroethene	10.4100	0.50	0.18	10.0000		104	61 - 145			
Toluene	21.3400	0.50	0.14	20.0000		107	70 - 140			
trans-1,2-Dichloroethene	10.1800	0.50	0.15	10.0000		102	73 - 130			
trans-1,3-Dichloropropene	7.14000	0.50	0.09	10.0000		71.4	72 - 129			L4
Trichloroethene	10.5000	0.50	0.15	10.0000		105	69 - 126			
Trichlorofluoromethane	11.2000	0.50	0.33	10.0000		112	70 - 159			
Vinyl acetate	80.0100	10	1.9	100.000		80.0	69 - 170			
Vinyl chloride	9.61000	0.50	0.25	10.0000		96.1	56 - 151			
Surrogate: 1,2-Dichloroethane-d	24.98			25.0000		99.9	70 - 166			
Surrogate: 4-Bromofluorobenzen	24.03			25.0000		96.1	88 - 120			
Surrogate: Dibromofluoromethan	25.30			25.0000		101	80 - 150			
Surrogate: Toluene-d8	24.91			25.0000		99.6	87 - 121			
LCS Dup (B7J0319-BSD1)					Prepared	d: 10/13/2017	Analyzed: 10/1	13/2017		
1,1,1,2-Tetrachloroethane	7.41000	0.50	0.13	10.0000		74.1	73 - 136	0.270	20	
1,1,1-Trichloroethane	9.63000	0.50	0.38	10.0000		96.3	73 - 143	5.00	20	
1,1,2,2-Tetrachloroethane	9.37000	0.50	0.20	10.0000		93.7	62 - 127	1.38	20	
1,1,2-Trichloroethane	10.4100	0.50	0.19	10.0000		104	72 - 122	0.578	20	
1,1-Dichloroethane	10.3600	0.50	0.20	10.0000		104	73 - 138	2.84	20	
1,1-Dichloroethene	10.3300	0.50	0.28	10.0000		103	74 - 132	3.35	20	
1,1-Dichloropropene	13.5800	0.50	0.36	10.0000		136	70 - 143	2.99	20	
1,2,3-Trichloropropane	10.1300	0.50	0.16	10.0000		101	66 - 119	1.86	20	
1,2,3-Trichlorobenzene	10.1500	0.50	0.06	10.0000		102	70 - 131	0.0985	20	
1,2,4-Trichlorobenzene	9.99000	0.50	0.07	10.0000		99.9	70 - 128	1.49	20	

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

17781 Cowan Street Report To: Brynn McCulloch

Irvine , CA 92614 Reported: 10/19/2017

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
D . I DETOCAL 350000	****									
Batch B7J0319 - MSVOA_LL	_W (continued))								
LCS Dup (B7J0319-BSD1) - Cont	inued				Prepare	d: 10/13/2017	Analyzed: 10/	13/2017		
1,2,4-Trimethylbenzene	10.2100	0.50	0.09	10.0000		102	74 - 142	0.293	20	
1,2-Dibromo-3-chloropropane	6.13000	0.50	0.20	10.0000		61.3	56 - 118	1.78	20	
1,2-Dibromoethane	10.2900	0.50	0.13	10.0000		103	73 - 122	1.16	20	
1,2-Dichlorobenzene	10.5000	0.50	0.12	10.0000		105	75 - 128	0.0953	20	
1,2-Dichloroethane	12.8400	0.50	0.39	10.0000		128	70 - 131	4.04	20	
1,2-Dichloropropane	10.7400	0.50	0.47	10.0000		107	69 - 124	0.467	20	
1,3,5-Trimethylbenzene	10.2400	0.50	0.08	10.0000		102	73 - 144	0.584	20	
1,3-Dichlorobenzene	10.5500	0.50	0.13	10.0000		106	75 - 131	0.00	20	
1,3-Dichloropropane	10.5400	0.50	0.08	10.0000		105	70 - 122	0.473	20	
1,4-Dichlorobenzene	10.4100	0.50	0.18	10.0000		104	75 - 127	1.05	20	
2,2-Dichloropropane	8.14000	0.50	0.23	10.0000		81.4	68 - 151	0.734	20	
2-Chlorotoluene	10.1800	0.50	0.12	10.0000		102	72 - 138	0.294	20	
4-Chlorotoluene	10.1200	0.50	0.11	10.0000		101	72 - 140	0.396	20	
4-Isopropyltoluene	10.3200	0.50	0.12	10.0000		103	74 - 149	0.964	20	
Benzene	28.3500	0.50	0.21	20.0000		142	67 - 138	4.40	20	L4
Bromobenzene	10.4600	0.50	0.12	10.0000		105	73 - 127	0.286	20	
Bromochloromethane	10.1700	0.50	0.10	10.0000		102	74 - 123	0.790	20	
Bromodichloromethane	8.68000	0.50	0.32	10.0000		86.8	74 - 129	3.28	20	
Bromoform	6.11000	0.50	0.14	10.0000		61.1	63 - 131	0.164	20	L4
Bromomethane	16.9000	0.50	0.22	10.0000		169	57 - 216	3.43	20	
Carbon disulfide	10.6700	1.0	0.21	10.0000		107	81 - 147	4.21	20	
Carbon tetrachloride	9.68000	0.50	0.31	10.0000		96.8	77 - 151	2.19	20	
Chlorobenzene	10.2200	0.50	0.16	10.0000		102	73 - 125	0.392	20	
Chloroethane	11.5100	0.50	0.29	10.0000		115	54 - 154	2.73	20	
Chloroform	10.6300	0.50	0.16	10.0000		106	77 - 132	2.96	20	
Chloromethane	5.59000	0.50	0.19	10.0000		55.9	57 - 142	0.890	20	L4
cis-1,2-Dichloroethene	10.1300	0.50	0.39	10.0000		101	73 - 126	2.70	20	
cis-1,3-Dichloropropene	8.26000	0.50	0.08	10.0000		82.6	76 - 120	0.242	20	
Di-isopropyl ether	9.44000	0.50	0.14	10.0000		94.4	54 - 147	4.77	20	
Dibromochloromethane	7.14000	0.50	0.11	10.0000		71.4	71 - 126	1.80	20	
Dibromomethane	10.3200	0.50	0.09	10.0000		103	73 - 121	3.15	20	
Dichlorodifluoromethane	8.66000	0.50	0.31	10.0000		86.6	48 - 152	0.00	20	
Ethyl Acetate	97.6000	10	1.1	100.000		97.6	50 - 144	1.78	20	
Ethyl Ether	96.4500	10	1.4	100.000		96.4	67 - 140	2.20	20	
Ethyl tert-butyl ether	8.98000	0.50	0.08	10.0000		89.8	58 - 137	3.40	20	
Ethylbenzene	21.1400	0.50	0.08	20.0000		106	72 - 134	0.903	20	
Freon-113	11.5900	0.50	0.34	10.0000		116	75 - 157	1.74	20	
Hexachlorobutadiene	10.1700	0.50	0.22	10.0000		102	72 - 139	0.196	20	
Isopropylbenzene	10.3400	0.50	0.10	10.0000		103	73 - 146	0.962	20	
m,p-Xylene	20.4300	1.0	0.18	20.0000		102	75 - 138	0.245	20	
111,p 21,910110	20.7300	1.0	0.10	20.0000		102	15 150	0.473	20	

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

17781 Cowan Street Report To: Brynn McCulloch

Irvine , CA 92614 Reported: 10/19/2017

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0319 - MSVOA_LL_V	W (continued)									
Batch B/30319 - MSVOA_LL_V	w (continueu)									
LCS Dup (B7J0319-BSD1) - Contin	ued				Prepare	d: 10/13/2017	Analyzed: 10/	13/2017		
Methylene chloride	9.82000	1.0	0.26	10.0000		98.2	52 - 154	4.58	20	
MTBE	9.11000	0.50	0.09	10.0000		91.1	62 - 129	1.55	20	
n-Butylbenzene	10.6000	0.50	0.15	10.0000		106	72 - 151	0.939	20	
n-Propylbenzene	10.6800	0.50	0.14	10.0000		107	69 - 149	0.467	20	
Naphthalene	9.85000	0.50	0.09	10.0000		98.5	61 - 122	4.08	20	
o-Xylene	20.2200	0.50	0.04	20.0000		101	66 - 147	1.33	20	
sec-Butylbenzene	10.6700	0.50	0.15	10.0000		107	72 - 148	0.282	20	
Styrene	9.96000	0.50	0.05	10.0000		99.6	72 - 138	0.100	20	
tert-Amyl methyl ether	8.70000	0.50	0.10	10.0000		87.0	53 - 122	1.04	20	
tert-Butanol	36.6800	10	3.0	50.0000		73.4	21 - 149	2.74	20	
tert-Butylbenzene	10.4400	0.50	0.11	10.0000		104	70 - 145	0.769	20	
Tetrachloroethene	10.4900	0.50	0.18	10.0000		105	61 - 145	0.766	20	
Toluene	21.5800	0.50	0.14	20.0000		108	70 - 140	1.12	20	
trans-1,2-Dichloroethene	10.3700	0.50	0.15	10.0000		104	73 - 130	1.85	20	
trans-1,3-Dichloropropene	7.17000	0.50	0.09	10.0000		71.7	72 - 129	0.419	20	L4
Trichloroethene	10.7200	0.50	0.15	10.0000		107	69 - 126	2.07	20	
Trichlorofluoromethane	11.4800	0.50	0.33	10.0000		115	70 - 159	2.47	20	
Vinyl acetate	77.8800	10	1.9	100.000		77.9	69 - 170	2.70	20	
Vinyl chloride	9.76000	0.50	0.25	10.0000		97.6	56 - 151	1.55	20	
Surrogate: 1,2-Dichloroethane-d	25.28			25.0000		101	70 - 166			
Surrogate: 4-Bromofluorobenzen	24.08			25.0000		96.3	88 - 120			
Surrogate: Dibromofluoromethan	25.78			25.0000		103	80 - 150			
Surrogate: Toluene-d8	24.72			25.0000		98.9	87 - 121			

Dibromochloromethane

Certificate of Analysis

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

17781 Cowan Street Report To: Brynn McCulloch Irvine, CA 92614 Reported: 10/19/2017

Volatile Organic Compounds by EPA 8260B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0394 - MSVOA_W										
Blank (B7J0394-BLK1)					Prepared	1: 10/16/2017	Analyzed: 10/	16/2017		
1,1,1,2-Tetrachloroethane	ND	0.50	0.13							
1,1,1-Trichloroethane	ND	0.50	0.38							
1,1,2,2-Tetrachloroethane	ND	0.50	0.20							
1,1,2-Trichloroethane	ND	0.50	0.19							
1,1-Dichloroethane	ND	0.50	0.20							
1,1-Dichloroethene	ND	0.50	0.28							
1,1-Dichloropropene	ND	0.50	0.36							
1,2,3-Trichloropropane	ND	0.50	0.16							
1,2,3-Trichlorobenzene	ND	0.50	0.06							
1,2,4-Trichlorobenzene	ND	0.50	0.07							
1,2,4-Trimethylbenzene	ND	0.50	0.09							
1,2-Dibromo-3-chloropropane	ND	0.50	0.20							
1,2-Dibromoethane	ND	0.50	0.13							
1,2-Dichlorobenzene	ND	0.50	0.12							
1,2-Dichloroethane	ND	0.50	0.39							
1,2-Dichloropropane	ND	0.50	0.47							
1,3,5-Trimethylbenzene	ND	0.50	0.08							
1,3-Dichlorobenzene	ND	0.50	0.13							
1,3-Dichloropropane	ND	0.50	0.08							
1,4-Dichlorobenzene	ND	0.50	0.18							
2,2-Dichloropropane	ND	0.50	0.23							
2-Chlorotoluene	ND	0.50	0.12							
4-Chlorotoluene	ND	0.50	0.11							
4-Isopropyltoluene	ND	0.50	0.12							
Benzene	ND	0.50	0.21							
Bromobenzene	ND	0.50	0.12							
Bromochloromethane	ND	0.50	0.10							
Bromodichloromethane	ND	0.50	0.32							
Bromoform	ND	0.50	0.14							
Bromomethane	ND	0.50	0.22							
Carbon disulfide	ND	1.0	0.21							
Carbon tetrachloride	ND	0.50	0.31							
Chlorobenzene	ND	0.50	0.16							
Chloroethane	ND	0.50	0.29							
Chloroform	ND	0.50	0.16							
Chloromethane	ND	0.50	0.19							
eis-1,2-Dichloroethene	ND	0.50	0.39							
is-1,3-Dichloropropene	ND	0.50	0.08							
Di-isopropyl ether	ND ND	0.50	0.08							
Dibrama ablaramathana	ND	0.50	0.14							

0.11

0.50

ND

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

MDL

17781 Cowan Street Report To: Brynn McCulloch

PQL

Irvine, CA 92614 Reported: 10/19/2017

Result

Volatile Organic Compounds by EPA 8260B - Quality Control (cont'd)

Spike

Source

				•						
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0394 - MSVOA_W (co	ontinued)									
Blank (B7J0394-BLK1) - Continued	•				Prepare	d: 10/16/2017	Analyzed: 10/	16/2017		
· · · · · · · · · · · · · · · · · · ·		0.50	0.00		Ттерагес	1. 10/10/2017	Anaryzed. 10/	10/2017		
Dibromomethane	ND	0.50	0.09							
Dichlorodifluoromethane	ND	0.50	0.31							
Ethyl Acetate	ND	10	1.1							
Ethyl Ether	ND	10	1.4							
Ethyl tert-butyl ether	ND	0.50	0.08							
Ethylbenzene	ND	0.50	0.08							
reon-113	ND	0.50	0.34							
Iexachlorobutadiene	ND	0.50	0.22							
sopropylbenzene	ND	0.50	0.10							
n,p-Xylene	ND	1.0	0.18							
Methylene chloride	ND	1.0	0.26							
MTBE	ND	0.50	0.09							
-Butylbenzene	ND	0.50	0.15							
-Propylbenzene	ND	0.50	0.14							
Naphthalene	ND	0.50	0.09							
-Xylene	ND	0.50	0.04							
ec-Butylbenzene	ND	0.50	0.15							
tyrene	ND	0.50	0.05							
ert-Amyl methyl ether	ND	0.50	0.10							
ert-Butanol	ND	10	3.0							
ert-Butylbenzene	ND	0.50	0.11							
etrachloroethene	ND	0.50	0.18							
oluene	ND	0.50	0.14							
rans-1,2-Dichloroethene	ND	0.50	0.15							
rans-1,3-Dichloropropene	ND	0.50	0.09							
richloroethene	ND	0.50	0.15							
richlorofluoromethane	ND	0.50	0.33							
inyl acetate	ND	10	1.9							
inyl chloride	ND	0.50	0.25							
Surrogate: 1,2-Dichloroethane-d	23.56			25.0000		94.2	70 - 166			•
Surrogate: 4-Bromofluorobenzen	25.12			25.0000		100	88 - 120			
Surrogate: Dibromofluoromethan	23.63			25.0000		94.5	80 - 150			
Surrogate: Toluene-d8	24.39			25.0000		97.6	87 - 121			
LCS (B7J0394-BS1)					Prepared	d: 10/16/2017	Analyzed: 10/	16/2017		
,1,1,2-Tetrachloroethane	8.14000	0.50	0.13	10.0000		81.4	73 - 136			
,1,1-Trichloroethane	9.56000	0.50	0.38	10.0000		95.6	73 - 143			
,1,2,2-Tetrachloroethane	8.93000	0.50	0.20	10.0000		89.3	62 - 127			
,1,2-Trichloroethane	9.63000	0.50	0.19	10.0000		96.3	72 - 122			
, ,		0.50	0.20			102				

RPD

% Rec

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

17781 Cowan Street Report To: Brynn McCulloch

Irvine, CA 92614 Reported: 10/19/2017

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
D. I. DEVOCA A MONIO : TOTAL										
Batch B7J0394 - MSVOA_W (co	ntinued)									
LCS (B7J0394-BS1) - Continued					Prepared	d: 10/16/2017	Analyzed: 10/	16/2017		
1,1-Dichloroethene	10.3300	0.50	0.28	10.0000		103	74 - 132			
1,1-Dichloropropene	13.1400	0.50	0.36	10.0000		131	70 - 143			
1,2,3-Trichloropropane	9.58000	0.50	0.16	10.0000		95.8	66 - 119			
1,2,3-Trichlorobenzene	9.99000	0.50	0.06	10.0000		99.9	70 - 131			
1,2,4-Trichlorobenzene	10.0200	0.50	0.07	10.0000		100	70 - 128			
1,2,4-Trimethylbenzene	10.1400	0.50	0.09	10.0000		101	74 - 142			
1,2-Dibromo-3-chloropropane	6.02000	0.50	0.20	10.0000		60.2	56 - 118			
1,2-Dibromoethane	9.69000	0.50	0.13	10.0000		96.9	73 - 122			
1,2-Dichlorobenzene	10.3600	0.50	0.12	10.0000		104	75 - 128			
1,2-Dichloroethane	11.7800	0.50	0.39	10.0000		118	70 - 131			
1,2-Dichloropropane	10.8000	0.50	0.47	10.0000		108	69 - 124			
1,3,5-Trimethylbenzene	10.3200	0.50	0.08	10.0000		103	73 - 144			
1,3-Dichlorobenzene	10.5800	0.50	0.13	10.0000		106	75 - 131			
1,3-Dichloropropane	9.97000	0.50	0.08	10.0000		99.7	70 - 122			
1,4-Dichlorobenzene	10.4300	0.50	0.18	10.0000		104	75 - 127			
2,2-Dichloropropane	8.73000	0.50	0.23	10.0000		87.3	68 - 151			
2-Chlorotoluene	10.2400	0.50	0.12	10.0000		102	72 - 138			
4-Chlorotoluene	10.0100	0.50	0.11	10.0000		100	72 - 140			
4-Isopropyltoluene	10.4800	0.50	0.12	10.0000		105	74 - 149			
Benzene	26.9200	0.50	0.21	20.0000		135	67 - 138			
Bromobenzene	10.5500	0.50	0.12	10.0000		106	73 - 127			
Bromochloromethane	9.86000	0.50	0.10	10.0000		98.6	74 - 123			
Bromodichloromethane	8.76000	0.50	0.32	10.0000		87.6	74 - 129			
Bromoform	6.38000	0.50	0.14	10.0000		63.8	63 - 131			
Bromomethane	14.4800	0.50	0.22	10.0000		145	57 - 216			
Carbon disulfide	10.6600	1.0	0.21	10.0000		107	81 - 147			
Carbon tetrachloride	10.4800	0.50	0.31	10.0000		105	77 - 151			
Chlorobenzene	10.3300	0.50	0.16	10.0000		103	73 - 125			
Chloroethane	12.5400	0.50	0.29	10.0000		125	54 - 154			
Chloroform	10.3200	0.50	0.16	10.0000		103	77 - 132			
Chloromethane	5.55000	0.50	0.19	10.0000		55.5	57 - 142			L4
cis-1,2-Dichloroethene	10.0200	0.50	0.39	10.0000		100	73 - 126			
cis-1,3-Dichloropropene	8.66000	0.50	0.08	10.0000		86.6	76 - 120			
Di-isopropyl ether	9.21000	0.50	0.14	10.0000		92.1	54 - 147			
Dibromochloromethane	7.46000	0.50	0.11	10.0000		74.6	71 - 126			
Dibromomethane	9.77000	0.50	0.09	10.0000		97.7	73 - 121			
Dichlorodifluoromethane	9.01000	0.50	0.31	10.0000		90.1	48 - 152			
Ethyl Acetate	84.8300	10	1.1	100.000		84.8	50 - 144			
Ethyl Ether	90.6800	10	1.4	100.000		90.7	67 - 140			
Ethyl tert-butyl ether	8.37000	0.50	0.08	10.0000		83.7	58 - 137			

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

17781 Cowan Street Report To: Brynn McCulloch

Irvine, CA 92614 Reported: 10/19/2017

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0394 - MSVOA_W (co	ontinued)									
LCS (B7J0394-BS1) - Continued					Prepared	d: 10/16/2017	Analyzed: 10/1	16/2017		
Ethylbenzene	21.2500	0.50	0.08	20.0000		106	72 - 134			
Freon-113	11.7900	0.50	0.34	10.0000		118	75 - 157			
Hexachlorobutadiene	10.4600	0.50	0.22	10.0000		105	72 - 139			
Isopropylbenzene	10.4300	0.50	0.10	10.0000		104	73 - 146			
m,p-Xylene	20.4900	1.0	0.18	20.0000		102	75 - 138			
Methylene chloride	11.9600	1.0	0.26	10.0000		120	52 - 154			
MTBE	8.47000	0.50	0.09	10.0000		84.7	62 - 129			
n-Butylbenzene	10.7500	0.50	0.15	10.0000		108	72 - 151			
n-Propylbenzene	10.7500	0.50	0.14	10.0000		108	69 - 149			
Naphthalene	9.19000	0.50	0.09	10.0000		91.9	61 - 122			
o-Xylene	20.5200	0.50	0.04	20.0000		103	66 - 147			
sec-Butylbenzene	10.7300	0.50	0.15	10.0000		107	72 - 148			
Styrene	9.91000	0.50	0.05	10.0000		99.1	72 - 138			
tert-Amyl methyl ether	8.07000	0.50	0.10	10.0000		80.7	53 - 122			
tert-Butanol	30.9400	10	3.0	50.0000		61.9	21 - 149			
tert-Butylbenzene	10.3600	0.50	0.11	10.0000		104	70 - 145			
Tetrachloroethene	11.1500	0.50	0.18	10.0000		112	61 - 145			
Toluene	21.2400	0.50	0.14	20.0000		106	70 - 140			
trans-1,2-Dichloroethene	10.2000	0.50	0.15	10.0000		102	73 - 130			
trans-1,3-Dichloropropene	7.62000	0.50	0.09	10.0000		76.2	72 - 129			
Trichloroethene	10.7900	0.50	0.15	10.0000		108	69 - 126			
Trichlorofluoromethane	11.2700	0.50	0.33	10.0000		113	70 - 159			
Vinyl acetate	78.3700	10	1.9	100.000		78.4	69 - 170			
Vinyl chloride	9.50000	0.50	0.25	10.0000		95.0	56 - 151			
Surrogate: 1,2-Dichloroethane-d	23.26			25.0000		93.0	70 - 166			
Surrogate: 4-Bromofluorobenzen	23.90			25.0000		95.6	88 - 120			
Surrogate: Dibromofluoromethan	24.79			25.0000		99.2	80 - 150			
Surrogate: Toluene-d8	24.34			25.0000		97.4	87 - 121			
LCS Dup (B7J0394-BSD1)					Prepared	d: 10/16/2017	Analyzed: 10/1	16/2017		
1,1,1,2-Tetrachloroethane	8.07000	0.50	0.13	10.0000		80.7	73 - 136	0.864	20	
1,1,1-Trichloroethane	9.72000	0.50	0.38	10.0000		97.2	73 - 143	1.66	20	
1,1,2,2-Tetrachloroethane	9.30000	0.50	0.20	10.0000		93.0	62 - 127	4.06	20	
1,1,2-Trichloroethane	10.1500	0.50	0.19	10.0000		102	72 - 122	5.26	20	
1,1-Dichloroethane	10.0900	0.50	0.20	10.0000		101	73 - 138	1.38	20	
1,1-Dichloroethene	10.3400	0.50	0.28	10.0000		103	74 - 132	0.0968	20	
1,1-Dichloropropene	13.4800	0.50	0.36	10.0000		135	70 - 143	2.55	20	
1,2,3-Trichloropropane	9.54000	0.50	0.16	10.0000		95.4	66 - 119	0.418	20	
1,2,3-Trichlorobenzene	10.1600	0.50	0.06	10.0000		102	70 - 131	1.69	20	
1,2,4-Trichlorobenzene	10.3200	0.50	0.07	10.0000		103	70 - 128	2.95	20	

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

17781 Cowan Street Report To: Brynn McCulloch

Irvine, CA 92614 Reported: 10/19/2017

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0394 - MSVOA_W	(continued)									
LCS Dup (B7J0394-BSD1) - Cont	tinued				Prepared	d: 10/16/2017	Analyzed: 10/	16/2017		
1,2,4-Trimethylbenzene	10.3500	0.50	0.09	10.0000		104	74 - 142	2.05	20	
1,2-Dibromo-3-chloropropane	6.18000	0.50	0.20	10.0000		61.8	56 - 118	2.62	20	
1,2-Dibromoethane	9.96000	0.50	0.13	10.0000		99.6	73 - 122	2.75	20	
1,2-Dichlorobenzene	10.6000	0.50	0.12	10.0000		106	75 - 128	2.29	20	
1,2-Dichloroethane	12.9500	0.50	0.39	10.0000		130	70 - 131	9.46	20	
1,2-Dichloropropane	11.0800	0.50	0.47	10.0000		111	69 - 124	2.56	20	
1,3,5-Trimethylbenzene	10.3800	0.50	0.08	10.0000		104	73 - 144	0.580	20	
1,3-Dichlorobenzene	10.7400	0.50	0.13	10.0000		107	75 - 131	1.50	20	
1,3-Dichloropropane	10.3700	0.50	0.08	10.0000		104	70 - 122	3.93	20	
1,4-Dichlorobenzene	10.6000	0.50	0.18	10.0000		106	75 - 127	1.62	20	
2,2-Dichloropropane	9.24000	0.50	0.23	10.0000		92.4	68 - 151	5.68	20	
2-Chlorotoluene	10.2100	0.50	0.12	10.0000		102	72 - 138	0.293	20	
4-Chlorotoluene	10.1000	0.50	0.11	10.0000		101	72 - 140	0.895	20	
4-Isopropyltoluene	10.6000	0.50	0.12	10.0000		106	74 - 149	1.14	20	
Benzene	26.6100	0.50	0.21	20.0000		133	67 - 138	1.16	20	
Bromobenzene	10.6800	0.50	0.12	10.0000		107	73 - 127	1.22	20	
Bromochloromethane	10.1300	0.50	0.10	10.0000		101	74 - 123	2.70	20	
Bromodichloromethane	8.87000	0.50	0.32	10.0000		88.7	74 - 129	1.25	20	
Bromoform	6.47000	0.50	0.14	10.0000		64.7	63 - 131	1.40	20	
Bromomethane	15.8500	0.50	0.22	10.0000		158	57 - 216	9.03	20	
Carbon disulfide	10.4800	1.0	0.21	10.0000		105	81 - 147	1.70	20	
Carbon tetrachloride	10.2200	0.50	0.31	10.0000		102	77 - 151	2.51	20	
Chlorobenzene	10.4500	0.50	0.16	10.0000		104	73 - 125	1.15	20	
Chloroethane	13.3100	0.50	0.29	10.0000		133	54 - 154	5.96	20	
Chloroform	10.5800	0.50	0.16	10.0000		106	77 - 132	2.49	20	
Chloromethane	4.93000	0.50	0.19	10.0000		49.3	57 - 142	11.8	20	L4
cis-1,2-Dichloroethene	10.1100	0.50	0.39	10.0000		101	73 - 126	0.894	20	
cis-1,3-Dichloropropene	8.82000	0.50	0.08	10.0000		88.2	76 - 120	1.83	20	
Di-isopropyl ether	8.99000	0.50	0.14	10.0000		89.9	54 - 147	2.42	20	
Dibromochloromethane	7.99000	0.50	0.11	10.0000		79.9	71 - 126	6.86	20	
Dibromomethane	9.93000	0.50	0.09	10.0000		99.3	73 - 121	1.62	20	
Dichlorodifluoromethane	8.98000	0.50	0.31	10.0000		89.8	48 - 152	0.334	20	
Ethyl Acetate	84.7200	10	1.1	100.000		84.7	50 - 144	0.130	20	
Ethyl Ether	90.1800	10	1.4	100.000		90.2	67 - 140	0.553	20	
Ethyl tert-butyl ether	8.42000	0.50	0.08	10.0000		84.2	58 - 137	0.596	20	
Ethylbenzene	21.3500	0.50	0.08	20.0000		107	72 - 134	0.469	20	
Freon-113	11.9500	0.50	0.34	10.0000		120	75 - 157	1.35	20	
Hexachlorobutadiene	10.8200	0.50	0.22	10.0000		108	72 - 139	3.38	20	
Isopropylbenzene	10.6200	0.50	0.10	10.0000		106	73 - 146	1.62	20	
m,p-Xylene	20.5800	1.0	0.10	20.0000		103	75 - 140 75 - 138	0.438	20	
m,p-zeyione	20.3600	1.0	0.10	20.0000		103	15 - 150	0.430	20	

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

17781 Cowan Street Report To: Brynn McCulloch

Irvine , CA 92614 Reported: 10/19/2017

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
D / I DEI0304 MCWO L W/	. B									
Batch B7J0394 - MSVOA_W (co	ontinued)									
LCS Dup (B7J0394-BSD1) - Contin	nued				Prepared	d: 10/16/2017	Analyzed: 10/1	16/2017		
Methylene chloride	9.74000	1.0	0.26	10.0000		97.4	52 - 154	20.5	20	R
MTBE	8.52000	0.50	0.09	10.0000		85.2	62 - 129	0.589	20	
n-Butylbenzene	10.9300	0.50	0.15	10.0000		109	72 - 151	1.66	20	
n-Propylbenzene	10.8700	0.50	0.14	10.0000		109	69 - 149	1.11	20	
Naphthalene	9.61000	0.50	0.09	10.0000		96.1	61 - 122	4.47	20	
o-Xylene	20.3700	0.50	0.04	20.0000		102	66 - 147	0.734	20	
sec-Butylbenzene	10.8600	0.50	0.15	10.0000		109	72 - 148	1.20	20	
Styrene	10.1100	0.50	0.05	10.0000		101	72 - 138	2.00	20	
tert-Amyl methyl ether	8.21000	0.50	0.10	10.0000		82.1	53 - 122	1.72	20	
tert-Butanol	31.1000	10	3.0	50.0000		62.2	21 - 149	0.516	20	
tert-Butylbenzene	10.4500	0.50	0.11	10.0000		104	70 - 145	0.865	20	
Tetrachloroethene	11.2400	0.50	0.18	10.0000		112	61 - 145	0.804	20	
Toluene	21.4700	0.50	0.14	20.0000		107	70 - 140	1.08	20	
trans-1,2-Dichloroethene	10.4300	0.50	0.15	10.0000		104	73 - 130	2.23	20	
trans-1,3-Dichloropropene	7.89000	0.50	0.09	10.0000		78.9	72 - 129	3.48	20	
Trichloroethene	10.7400	0.50	0.15	10.0000		107	69 - 126	0.464	20	
Trichlorofluoromethane	11.6700	0.50	0.33	10.0000		117	70 - 159	3.49	20	
Vinyl acetate	87.0500	10	1.9	100.000		87.0	69 - 170	10.5	20	
Vinyl chloride	9.46000	0.50	0.25	10.0000		94.6	56 - 151	0.422	20	
Surrogate: 1,2-Dichloroethane-d	23.46			25.0000		93.8	70 - 166	_		
Surrogate: 4-Bromofluorobenzen	23.75			25.0000		95.0	88 - 120			
Surrogate: Dibromofluoromethan	25.08			25.0000		100	80 - 150			
Surrogate: Toluene-d8	24.58			25.0000		98.3	87 - 121			

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

17781 Cowan Street Report To: Brynn McCulloch Irvine, CA 92614 Reported: 10/19/2017

Semivolatile Organic Compounds by EPA 8270/SIM - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0413 - MSSEMI_W										
Blank (B7J0413-BLK1)					Prepared	d: 10/16/2017	Analyzed: 10/	16/2017		
2-Methylnaphthalene	ND	0.20	0.02							
Acenaphthene	ND	0.20	0.02							
Acenaphthylene	ND	0.20	0.02							
Anthracene	ND	0.20	0.01							
Benzo(a)anthracene	ND	0.20	0.01							
Benzo(a)pyrene	ND	0.20	0.01							
Benzo(b)fluoranthene	ND	0.20	0.06							
Benzo(g,h,i)perylene	ND	0.20	0.02							
Benzo(k)fluoranthene	ND	0.20	0.02							
Chrysene	ND	0.20	0.02							
Dibenz(a,h)anthracene	ND	0.20	0.02							
Fluoranthene	ND	0.20	0.02							
Fluorene	ND	0.20	0.02							
Indeno(1,2,3-cd)pyrene	ND	0.20	0.02							
Naphthalene	ND	0.20	0.02							
Phenanthrene	ND	0.20	0.02							
Pyrene	ND	0.20	0.02							
Surrogate: 1,2-Dichlorobenzene-	0.7723			1.00000		77.2	32 - 99			
Surrogate: 2-Fluorobiphenyl	0.8111			1.00000		81.1	29 - 105			
Surrogate: Nitrobenzene-d5	0.9341			1.00000		93.4	17 - 123			
Surrogate: 4-Terphenyl-d14	1.165			1.00000		117	32 - 119			
LCS (B7J0413-BS1)					Prepared	d: 10/16/2017	Analyzed: 10/	16/2017		
2-Methylnaphthalene	0.594950	0.20	0.02	1.00000		59.5	38 - 137			
Acenaphthene	0.670340	0.20	0.02	1.00000		67.0	38 - 103			
Acenaphthylene	0.682710	0.20	0.02	1.00000		68.3	41 - 102			
Anthracene	0.707100	0.20	0.01	1.00000		70.7	37 - 118			
Benzo(a)anthracene	0.778780	0.20	0.01	1.00000		77.9	42 - 118			
Benzo(a)pyrene	0.712580	0.20	0.01	1.00000		71.3	17 - 148			
Benzo(b)fluoranthene	0.800210	0.20	0.06	1.00000		80.0	33 - 126			
Benzo(g,h,i)perylene	0.716580	0.20	0.02	1.00000		71.7	33 - 123			
Benzo(k)fluoranthene	0.803040	0.20	0.02	1.00000		80.3	20 - 131			
Chrysene	0.747150	0.20	0.02	1.00000		74.7	44 - 127			
Dibenz(a,h)anthracene	0.796090	0.20	0.02	1.00000		79.6	31 - 122			
Fluoranthene	0.761460	0.20	0.02	1.00000		76.1	48 - 113			
Fluorene	0.740860	0.20	0.02	1.00000		74.1	46 - 100			
Indeno(1,2,3-cd)pyrene	0.750140	0.20	0.02	1.00000		75.0	35 - 123			
Naphthalene	0.706850	0.20	0.02	1.00000		70.7	35 - 115			
Phenanthrene	0.708600	0.20	0.02	1.00000		70.9	43 - 112			
Pyrene	0.762180	0.20	0.02	1.00000		76.2	47 - 116			

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

17781 Cowan Street Report To: Brynn McCulloch Irvine, CA 92614 Reported: 10/19/2017

	Result	PQL		Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)		Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0413 - MSSEMI_W (d	continued)									
LCS (B7J0413-BS1) - Continued					Prepared	d: 10/16/2017	Analyzed: 10/	16/2017		
Surrogate: 1,2-Dichlorobenzene-	0.7505			1.00000		75.1	32 - 99			
Surrogate: 2-Fluorobiphenyl	0.8615			1.00000		86.2	29 - 105			
Surrogate: Nitrobenzene-d5	0.8931			1.00000		89.3	17 - 123			
Surrogate: 4-Terphenyl-d14	0.9966			1.00000		99.7	32 - 119			
LCS Dup (B7J0413-BSD1)					Prepared	d: 10/16/2017	Analyzed: 10/	16/2017		
2-Methylnaphthalene	0.588280	0.20	0.02	1.00000		58.8	38 - 137	1.13	20	
Acenaphthene	0.688400	0.20	0.02	1.00000		68.8	38 - 103	2.66	20	
Acenaphthylene	0.696510	0.20	0.02	1.00000		69.7	41 - 102	2.00	20	
Anthracene	0.698560	0.20	0.01	1.00000		69.9	37 - 118	1.22	20	
Benzo(a)anthracene	0.791900	0.20	0.01	1.00000		79.2	42 - 118	1.67	20	
Benzo(a)pyrene	0.696140	0.20	0.01	1.00000		69.6	17 - 148	2.33	20	
Benzo(b)fluoranthene	0.811500	0.20	0.06	1.00000		81.2	33 - 126	1.40	20	
Benzo(g,h,i)perylene	0.721590	0.20	0.02	1.00000		72.2	33 - 123	0.697	20	
Benzo(k)fluoranthene	0.794240	0.20	0.02	1.00000		79.4	20 - 131	1.10	20	
Chrysene	0.745200	0.20	0.02	1.00000		74.5	44 - 127	0.261	20	
Dibenz(a,h)anthracene	0.792430	0.20	0.02	1.00000		79.2	31 - 122	0.461	20	
Fluoranthene	0.772070	0.20	0.02	1.00000		77.2	48 - 113	1.38	20	
Fluorene	0.737630	0.20	0.02	1.00000		73.8	46 - 100	0.437	20	
ndeno(1,2,3-cd)pyrene	0.762320	0.20	0.02	1.00000		76.2	35 - 123	1.61	20	
Naphthalene	0.704320	0.20	0.02	1.00000		70.4	35 - 115	0.359	20	
Phenanthrene	0.702930	0.20	0.02	1.00000		70.3	43 - 112	0.803	20	
Pyrene	0.772110	0.20	0.02	1.00000		77.2	47 - 116	1.29	20	
Surrogate: 1,2-Dichlorobenzene-	0.7333			1.00000		73.3	32 - 99			
Surrogate: 2-Fluorobiphenyl	0.8521			1.00000		85.2	29 - 105			
Surrogate: Nitrobenzene-d5	0.8699			1.00000		87.0	17 - 123			
Surrogate: 4-Terphenyl-d14	0.9920			1.00000		99.2	32 - 119			

Leighton Consulting, Inc. Project Number: POLA Berth 191-193, 11618-005

17781 Cowan Street Report To: Brynn McCulloch

Irvine, CA 92614 Reported: 10/19/2017

Notes and Definitions

R RPD value outside acceptance criteria. Calculation is based on raw values.

L4 Laboratory Control Sample outside of control limit but within Marginal Exceedance (ME) limit.

ND Analyte is not detected at or above the Practical Quantitation Limit (PQL). When client requests quantitation against MDL,

analyte is not detected at or above the Method Detection Limit (MDL)

PQL Practical Quantitation Limit

MDL Method Detection Limit

NR Not Reported

RPD Relative Percent Difference

CA2 CA-ELAP (CDPH)

OR1 OR-NELAP (OSPHL)

Notes:

- (1) The reported MDL and PQL are based on prep ratio variation and analytical dilution.
- (2) The suffix [2C] of specific analytes signifies that the reported result is taken from the instrument's second column.
- (3) Results are wet unless otherwise specified.

CHAIN OF CUSTODY RECORD

Page _		of	
--------	--	----	--

For Laboratory Use Only ATLCOC Ver: 20130715 Sample Conditions Upon Receipt Method of Transport Condition Condition 5. # OF SAMPLES MATCH COC DATE 1. CHILLED ☐ Client ☐ ☐ 6. PRESERVED 88 ☐ FedEx ☐ OnTrac 2. HEADSPACE (VOA) □ GSO 7. COOLER TEMP, deg C: 3. CONTAINER INTACT Other: 4. SEALED 00 2.6 Bhe in

3275 Walnut Ave., Signal Hill, CA 90755 Tel: (562) 989-4045 • Fax: (562) 989-4040

<u>Instruction</u>: Complete all shaded areas.

		oany:			Address:	17781	Cowkin		Tel:	149-253-9836	
		Leighton C	SUlting INC. SEND REPORT TO: E Cullach E Micro		City:	lrvire		A CONTRACTOR OF THE PROPERTY O	Zip: 97614 Fax:	949-250-1114	
E R	Δttn:		SEND REPORT TO:	mail:	A	ttn:		SEND INVOICE	TO: [I same as SEND REPORT'TO	.
CUSTOMER		Bryan Mc	Cullach Brice	Noch Dleighton gr	JAM COM		Arct Pay	able			
ST	Comp	any: I also he ad				ompany:	CIAIA				
	Addre	ess: J	SAme		A	ddress:	SAW	2			8
	City:		->1+19/V	State: Zip:	Ci	ity:			State:	Zip:	
	1.50	ect Name:	기미를 가장 중에 그리지만 말을 가운데 되었다.	Special Instructions/Comm	ients:		Encircle or Write Requested A	nalysis	Encircle Sample Matrix	Samura and a second	/QC
	Prois	la Berth 191	-193			The state of the s	(S) (S) (S)				utine Itran
			PO #:				Metz		OUN OUN	E E E E E E	gal VQCI
	Samp	6 (8 - 00 5 oler:				Prolami	1e 22		/ SLUC LTER G / GR WAST	TAT # 1 2 21 2 21 2 21 2 21	vel IV
		KCH			5	# F 7 19 1	Organocinomie resocious PCBs) / 7000(Title 22 Metals) 5 FM C 827551M		DIMENT / SLUI WIPE/ FILTER DRINKING / Q STORM / WAS S / LAYERED - (37; 7=4 37; 7=4 36; 7=4 6:13=H	
1	5		Sample	Description		8015(enc) 7 PH9 TPH9 8015(enc) 7 PH9 8015(enc) 7 PH9 8270(Semi-volatiles)	2021(Organicationine resolution 8082(PCBs) 6010 / 7000(Title 22 Metals) 70-15 PAHC 82755/10			1=Tube 6=Tedi f=Tial: 1= rial: 1= rvativ Ac)2; 6	REMARKS
PLES	ITEM	Lab No.	Sample ID / Location	Date	Time 5	8015(8015) 8270(8082 6010 70-1		SOIL / SE SOLIDS , WATER - WATER -	# Type: 1=Tu 5=Jar; 6=Te Material: Preservati 5=Zn ((Ac)2;	RE⊠
N N	1	1703640 -01	LBI-GW	10-11-17	930					5 9 X	ALLOW-OVER 1999
SAM	2	- 4 %	LB25 -GW		1150	1 12 12 1					
ECT	3	U }	LB 13 -GW	popularione de la companya del companya de la companya del companya de la companya del la companya de la compan	1345						-
ROJ	4	- 45 (-)	LB 13 - GW LB 23 - GW		1522						sjagonomierovene
٩	5	etrapoletura etrapoleti etrapolati etrepulari etrapolatikus, etrapolatika etrapolatika alektrologia etrapolati									
	6	en kan kan kan kan kan kan kan kan kan ka	ALLE CONTROL OF THE STATE OF TH	near a season ann an am an an ann an							-
	7	MODESSES SOCIALISTS CONTROL TO THE									***************************************
	8	abasa kasa ilika Casa Casa Casa Casa Casa Casa Casa Ca									***************************************
	9	MAZZIATOECO190033009 4703 POLO BOJOSO		COCCUMPATION OF THE PARTY AND ADMINISTRATION OF THE PARTY AND							
	10										***************************************
	1. Samo	ple receiving hours: 7:30 AM to 7:30	PM Monday - Friday; Saturday 8:00 AM to 12:00 PM.	samples will be disposed of after 14 calend	ar days after receipt of	samples.				mpany above, I hereby	***************************************
	2. Sami	ples Submitted AFTER 3:00 PM, are co following turnaround time conditions TAT = 0:300% Surcharge SAMEBU	onsidered received the following Business day at 8:00 AM. apply:	7. Electronic records maintained for fi ve (5) y 8. Hard copy reports will be disposed of after 9. Storage and Report Fees:	ears from report date.					npany above, i nereby i ATL as shown above an	d
S		TAT = 1: 100% Surcharge NEXT BUS TAT = 2: 50% Surcharge 2ND BUSIN TAT = 3: 30% Surcharge 3RD BUSIN	INESS DAY (COB 5:00 PM) IESS DAY (COB 5:00 PM)	 Liquid & solid samples: Complimentary ste extended storage or hold is requested. 				hereby guarar	ntee payment as qu	oted.	ſ
	A Week	TAT = 4 : 20% Surcharge 4TH BUSIN TAT = 5 : NO SURCHARGE 5th BUSII kend, holiday, after-hours work - ask	ESS DAY (COB 5:00 PM) NESS DAY (COB 5:00 PM)	 Air samples: Complimentary storage for to requested. Hard copy and regenerated reports/EDDs 				Kevin	4.11	Main C. A.M.	Y
	5. Subc	contract TAT is 10 - 15 business days. ective to the subcontract lab ask fo	Projects requiring shorter TATs will incur a surcharge	\$35 per reprocessed EDD. 10. Rush TCLP/STLC samples: add 2 days to ar 11. Unanalyzed samples will incur a disposal f	nalysis TAT for extraction		,		Print Name	Signature	<i></i>
ξĦ	·	uished by: (Signatur and Pri	ated Hame)	Date:	Time:	Received by: (5	Signature and Printed Name)		Di	te: /1/17 Time: (G	10
	Reling	uished by: (Signature and Prin	nted Name)	Date: / /	Time:		ignature and Printed Name)	1110	Di	te;O (()) Time:	$\frac{1}{2}$
2	Relinq	uished by: (Signature and Pri	nted Name)	[ο /ιι //7] Date:	1704 Time:		Signature and Printed Name)	INUL		te: Time:	4

October 19, 2017

Brynn McCulloch Leighton Consulting, Inc. 17781 Cowan Street

Irvine, CA 92614 Tel: (949) 394-2306 Fax:(949) 250-1114 ELAP No.: 1838 CSDLAC No.: 10196 ORELAP No.: CA300003

Re: ATL Work Order Number: 1703641

Client Reference: POLA Berth 191-193, 11618.005

Enclosed are the results for sample(s) received on October 11, 2017 by Advanced Technology Laboratories. The sample(s) are tested for the parameters as indicated on the enclosed chain of custody in accordance with applicable laboratory certifications. The laboratory results contained in this report specifically pertains to the sample(s) submitted.

Thank you for the opportunity to serve the needs of your company. If you have any questions, please feel free to contact me or your Project Manager.

Sincerely,

Eddie Rodriguez

Laboratory Director

The cover letter and the case narrative are an integral part of this analytical report and its absence renders the report invalid. Test results contained within this data package meet the requirements of applicable state-specific certification programs. The report cannot be reproduced without written permission from the client and Advanced Technology Laboratories.

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

SUMMARY OF SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LB5-0.5	1703641-01	Soil	10/11/17 10:10	10/11/17 16:18
LB5-2.5	1703641-02	Soil	10/11/17 10:12	10/11/17 16:18
LB5-5.0	1703641-03	Soil	10/11/17 10:14	10/11/17 16:18
LB9-0.5	1703641-04	Soil	10/11/17 10:24	10/11/17 16:18
LB9-2.5	1703641-05	Soil	10/11/17 10:26	10/11/17 16:18
LB9-5.0	1703641-06	Soil	10/11/17 10:28	10/11/17 16:18
LB14-0.5	1703641-07	Soil	10/11/17 10:44	10/11/17 16:18
LB14-2.5	1703641-08	Soil	10/11/17 10:46	10/11/17 16:18
LB14-5.0	1703641-09	Soil	10/11/17 10:48	10/11/17 16:18
LB20-0.5	1703641-10	Soil	10/11/17 11:12	10/11/17 16:18
LB3-0.5	1703641-11	Soil	10/11/17 7:54	10/11/17 16:18
LB3-2.5	1703641-12	Soil	10/11/17 7:56	10/11/17 16:18
LB3-5.0	1703641-13	Soil	10/11/17 7:58	10/11/17 16:18
LB4-0.5	1703641-14	Soil	10/11/17 8:34	10/11/17 16:18
LB4-2.5	1703641-15	Soil	10/11/17 8:36	10/11/17 16:18
LB4-3.5	1703641-16	Soil	10/11/17 8:38	10/11/17 16:18
LB1-0.5	1703641-17	Soil	10/11/17 9:22	10/11/17 16:18
LB1-2.5	1703641-18	Soil	10/11/17 9:24	10/11/17 16:18
LB1-5.0	1703641-19	Soil	10/11/17 9:26	10/11/17 16:18
LB2-0.5	1703641-20	Soil	10/11/17 9:59	10/11/17 16:18
LB20-2.5	1703641-21	Soil	10/11/17 11:15	10/11/17 16:18
LB20-5.0	1703641-22	Soil	10/11/17 11:18	10/11/17 16:18
LB25-0.5	1703641-23	Soil	10/11/17 11:42	10/11/17 16:18
LB25-2.5	1703641-24	Soil	10/11/17 11:45	10/11/17 16:18
LB25-5.0	1703641-25	Soil	10/11/17 11:47	10/11/17 16:18
LB24-0.5	1703641-26	Soil	10/11/17 12:52	10/11/17 16:18
LB24-2.5	1703641-27	Soil	10/11/17 12:54	10/11/17 16:18
LB24-5.0	1703641-28	Soil	10/11/17 12:56	10/11/17 16:18
LB19-0.5	1703641-29	Soil	10/11/17 13:05	10/11/17 16:18
LB19-2.5	1703641-30	Soil	10/11/17 13:07	10/11/17 16:18
LB19-5.0	1703641-31	Soil	10/11/17 13:09	10/11/17 16:18
LB13-0.5	1703641-32	Soil	10/11/17 13:40	10/11/17 16:18
LB13-2.5	1703641-33	Soil	10/11/17 13:42	10/11/17 16:18
LB13-5.0	1703641-34	Soil	10/11/17 13:44	10/11/17 16:18
LB8-0.5	1703641-35	Soil	10/11/17 14:02	10/11/17 16:18
LB8-2.5	1703641-36	Soil	10/11/17 14:04	10/11/17 16:18
LB8-5.0	1703641-37	Soil	10/11/17 14:06	10/11/17 16:18

Page 2 of 140

LB12-0.5	1703641-38	Soil	10/11/17 14:23	10/11/17 16:18
LB12-2.5	1703641-39	Soil	10/11/17 14:25	10/11/17 16:18
LB12-5.0	1703641-40	Soil	10/11/17 14:27	10/11/17 16:18
LB17-0.5	1703641-41	Soil	10/11/17 14:38	10/11/17 16:18
LB17-2.5	1703641-42	Soil	10/11/17 14:40	10/11/17 16:18
LB17-5.0	1703641-43	Soil	10/11/17 14:42	10/11/17 16:18
LB18-0.5	1703641-44	Soil	10/11/17 14:53	10/11/17 16:18
LB18-2.5	1703641-45	Soil	10/11/17 14:55	10/11/17 16:18
LB18-5.0	1703641-46	Soil	10/11/17 14:57	10/11/17 16:18
LB23-0.5	1703641-47	Soil	10/11/17 15:15	10/11/17 16:18
LB23-2.5	1703641-48	Soil	10/11/17 15:18	10/11/17 16:18
LB23-5.0	1703641-49	Soil	10/11/17 15:20	10/11/17 16:18
LB2-2.5	1703641-50	Soil	10/11/17 9:57	10/11/17 16:18
LB2-5.0	1703641-51	Soil	10/11/17 9:55	10/11/17 16:18

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB5-0.5 Lab ID: 1703641-01

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0379	10/16/2017	10/17/17 12:14	
Arsenic	2.8	1.0	-	B7J0379	10/16/2017	10/17/17 12:14	
Barium	73	1.0	-	B7J0379	10/16/2017	10/17/17 12:14	
Beryllium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:14	
Cadmium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:14	
Chromium	13	1.0	1	B7J0379	10/16/2017	10/17/17 12:14	
Cobalt	5.7	1.0	1	B7J0379	10/16/2017	10/17/17 12:14	
Copper	22	2.0	1	B7J0379	10/16/2017	10/17/17 12:14	
Lead	14	1.0	1	B7J0379	10/16/2017	10/17/17 12:14	
Molybdenum	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:14	
Nickel	12	1.0	1	B7J0379	10/16/2017	10/17/17 12:14	
Selenium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:14	
Silver	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:14	
Thallium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:14	
Vanadium	23	1.0	1	B7J0379	10/16/2017	10/17/17 12:14	
Zinc	51	1.0	-	B7J0379	10/16/2017	10/17/17 12:14	

√ !	
1471A	
EPA	
Vapor)	
Cold V	
<u> </u>	
ry by A	
1ercury	
2	L

Mercury by AA (Cold Vapor) EPA 7471A	1						Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0397	10/17/2017	10/17/17 15:29	

Gasoline Range Organics by EPA 8015B (Modified) (5035)

Gasoline Range Organics by EPA	EPA 8015B (Modified) (5035)	(5035)					Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.1	1	B7J0257	10/12/2017	B7J0257 10/12/2017 10/12/17 13:06	
Surrogate: 4-Bromofluorobenzene	87.2 %	50 - 138		B7J0257	B7J0257 10/12/2017	10/12/17 13:06	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						<i>f</i>	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	470	100	50	B7J0415	10/16/2017	10/17/17 14:47	
ORO	1500	100	50	B7J0415	10/16/2017	10/17/17 14:47	

Page 4 of 140

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB5-0.5

Lab ID: 1703641-01

Diesel Range Organics by EPA 8015B

Analyst: TKT

	Kesult	PQL				Date/11me	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: p-Terphenyl	%	38 - 145		B7J0415	10/16/2017	10/17/17 14:47	S4

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB5-2.5 Lab ID: 1703641-02

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	2.5	2.0	1	B7J0379	10/16/2017	10/17/17 12:18	
Arsenic	5.5	1.0	1	B7J0379	10/16/2017	10/17/17 12:18	
Barium	68	1.0	1	B7J0379	10/16/2017	10/17/17 12:18	
Beryllium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:18	
Cadmium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:18	
Chromium	12	1.0	1	B7J0379	10/16/2017	10/17/17 12:18	
Cobalt	5.1	1.0	1	B7J0379	10/16/2017	10/17/17 12:18	
Copper	51	2.0	1	B7J0379	10/16/2017	10/17/17 12:18	
Lead	66	1.0	1	B7J0379	10/16/2017	10/17/17 12:18	
Molybdenum	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:18	
Nickel	12	1.0	-	B7J0379	10/16/2017	10/17/17 12:18	
Selenium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:18	
Silver	ND	1.0	_	B7J0379	10/16/2017	10/17/17 12:18	
Thallium	ND	1.0	-	B7J0379	10/16/2017	10/17/17 12:18	
Vanadium	23	1.0	_	B7J0379	10/16/2017	10/17/17 12:18	
Zinc	160	1.0	1	B7J0379	10/16/2017	10/17/17 12:18	

Mercury by AA (Cold Vapor) EPA 7471A	1					A	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	1.4	0.10	1	B7J0397	10/17/2017	10/17/17 15:36	

	Incon	זענ				Carc, Time		
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes	
Mercury	1.4	0.10	1	B7J0397	B7J0397 10/17/2017	10/17/17 15:36		
Gasoline Range Organics by EPA 8015	EPA 8015B (Modified) (5035)	(5035)					Analyst: VW	
	Result	PQL				Date/Time		
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes	
Gasoline Range Organics	ND	0.92	1	B7J0257	B7J0257 10/12/2017	10/12/17 13:24		
Surrogate: 4-Bromofluorobenzene 100	% 001	50 - 138		B7J0257	B7J0257 10/12/2017	10/12/17 13:24		

Diesel Range Organics by EPA 8015B						,	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	20	1.0	1	B7J0415	B7J0415 10/16/2017	10/17/17 16:47	
ORO	46	1.0	1	B7J0415	B7J0415 10/16/2017	10/17/17 16:47	

Page 6 of 140

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB5-2.5

Lab ID: 1703641-02

Diesel Range Organics by EPA 8015B

Notes 10/17/17 16:47 Date/Time Analyzed 10/16/2017 Prepared B7J0415 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result % 6.92 Surrogate: p-Terphenyl Analyte

Analyst: TKT

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB5-5.0 Lab ID: 1703641-03

Fitle 22 Metals by ICP-AES EPA 6010B

Analyst: GO

Notes 10/17/17 12:19 10/17/17 12:19 10/17/17 12:19 10/17/17 12:19 10/17/17 12:19 10/17/17 12:19 10/17/17 12:19 10/17/17 12:19 10/17/17 12:19 10/17/17 12:19 10/17/17 12:19 10/17/17 12:19 10/17/17 12:19 10/17/17 12:19 Date/Time Analyzed 10/16/2017 10/16/2017 10/16/2017 10/16/2017 10/16/2017 10/16/2017 10/16/2017 10/16/2017 10/16/2017 10/16/2017 10/16/2017 10/16/2017 10/16/2017 10/16/2017 10/16/2017 Prepared B7J0379 Batch Dilution (mg/kg) PQL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 0.1 1.0 1.0 (mg/kg) Result 9 8 \exists 8 7.2 8 9 8 1.6 9.5 5.3 6.3 4 17 25 Molybdenum Chromium Beryllium Vanadium Antimony Selenium Cadmium Thallium Arsenic Barium Copper Analyte Cobalt Nickel Silver Lead

Mercury by AA (Cold Vapor) EPA 7471A

Zinc

	Result	ЪÓГ				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.18	0.10	1	B7J0397	10/17/2017	10/17/17 15:38	

Gasoline Range Organics by EPA 8015B (Modified) (5035)

Analyst: VW

Analyst: KEK

10/17/17 12:19

10/16/2017

B7J0379

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
	(0-0)	(6-6-)			J		
Gasoline Range Organics	ND	1.1	1	B7J0257	B7J0257 10/12/2017	10/12/17 13:43	
Surrogate: 4-Bromofluorobenzene 104	04 %	50 - 138		B7J0257	10/12/2017	10/12/17 13:43	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						†	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	19	1.0	1	B7J0415	10/16/2017	10/17/17 12:29	
ORO	15	1.0	1	B7J0415	10/16/2017	10/17/17 12:29	

Page 8 of 140

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB5-5.0

Lab ID: 1703641-03

by EPA 8015B
√ 80
\mathbf{EP}_{2}
Organics
Range (
Diesel

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: p-Terphenyl	% III	38 - 145		B7J0415	10/16/2017	10/17/17 12:29	

Analyst: TKT

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB9-0.5 Lab ID: 1703641-04

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0379	10/16/2017	10/17/17 12:20	
Arsenic	2.7	1.0	1	B7J0379	10/16/2017	10/17/17 12:20	
Barium	06	1.0	1	B7J0379	10/16/2017	10/17/17 12:20	
Beryllium	N	1.0	1	B7J0379	10/16/2017	10/17/17 12:20	
Cadmium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:20	
Chromium	13	1.0	1	B7J0379	10/16/2017	10/17/17 12:20	
Cobalt	6.2	1.0	1	B7J0379	10/16/2017	10/17/17 12:20	
Copper	19	2.0	1	B7J0379	10/16/2017	10/17/17 12:20	
Lead	13	1.0	1	B7J0379	10/16/2017	10/17/17 12:20	
Molybdenum	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:20	
Nickel	12	1.0	1	B7J0379	10/16/2017	10/17/17 12:20	
Selenium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:20	
Silver	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:20	
Thallium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:20	
Vanadium	27	1.0	1	B7J0379	10/16/2017	10/17/17 12:20	
Zinc	4	1.0	1	B7J0379	10/16/2017	10/17/17 12:20	

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A						A	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.12	0.10	1	B7J0397	10/17/2017	10/17/17 15:40	

Gasoline Range Organics by EPA 8015B (Modified) (5035)

Analyst: VW

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.1	1	B7J0257	10/12/2017	10/12/17 14:01	
Surrogate: 4-Bromofluorobenzene	95.2%	50 - 138		B7J0257	10/12/2017	10/12/17 14:01	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						f	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	069	100	50	B7J0415	10/16/2017	10/17/17 16:30	
ORO	2500	100	50	B7J0415	10/16/2017	10/17/17 16:30	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB9-0.5

Lab ID: 1703641-04

Diesel Range Organics by EPA 8015B

	S4	10/17/17 16:30	10/16/2017	B7J0415		38 - 145	9	wrrogate: p-Terphenyl 0%
S	Notes	Analyzed	Prepared	Batch	Dilution	(mg/kg)	(mg/kg)	nalyte state
		Date/Time				PQL	Result	

Analyst: TKT

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB9-2.5 Lab ID: 1703641-05

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0379	10/16/2017	10/17/17 12:21	
Arsenic	3.2	1.0	1	B7J0379	10/16/2017	10/17/17 12:21	
Barium	55	1.0	1	B7J0379	10/16/2017	10/17/17 12:21	
Beryllium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:21	
Cadmium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:21	
Chromium	11	1.0	-	B7J0379	10/16/2017	10/17/17 12:21	
Cobalt	5.9	1.0	-	B7J0379	10/16/2017	10/17/17 12:21	
Copper	14	2.0	-	B7J0379	10/16/2017	10/17/17 12:21	
Lead	13	1.0	-	B7J0379	10/16/2017	10/17/17 12:21	
Molybdenum	ND	1.0	-	B7J0379	10/16/2017	10/17/17 12:21	
Nickel	7.6	1.0	-	B7J0379	10/16/2017	10/17/17 12:21	
Selenium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:21	
Silver	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:21	
Thallium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:21	
Vanadium	22	1.0	1	B7J0379	10/16/2017	10/17/17 12:21	
Zinc	46	1.0	-	B7J0379	10/16/2017	10/17/17 12:21	

Mercury by AA (Cold Vapor) EPA 7471A

			,	Analyst: KEK
ЪОТ			Date/Time	
(mg/kg) Dilution	Batch	Prepared	Analyzed	Notes
0.10	B7J0397	10/17/2017	10/17/17 15:42	
	lution 1		Batch B7J0397	Batch Prepared B7J0397 10/17/2017 1

Gasoline Range Organics by EPA 8015B (Modified) (5035)

	ELTA COLLAD (MOUNTED) (SOSS)					zamary see v vv
Result	PQL				Date/Time	
Analyte (mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics ND	ND 0.94	1	B7J0257	B7J0257 10/12/2017	10/12/17 14:20	
Surrogate: 4-Bromofluorobenzene 103 %	50 - 138		B7J0257	10/12/2017	10/12/17 14:20	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	75	20	20	B7J0415	10/16/2017	10/17/17 13:21	
ORO	160	20	20	B7J0415	10/16/2017	10/17/17 13:21	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB9-2.5

Lab ID: 1703641-05

Diesel Range Organics by EPA 8015B

Notes **S**4 10/17/17 13:21 Analyzed Date/Time 10/16/2017 Prepared B7J0415 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result %0 Surrogate: p-Terphenyl Analyte

Analyst: TKT

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB9-5.0 Lab ID: 1703641-06

Title 22 Metals by ICP-AES EPA 6010B

Analyst: GO

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0379	10/16/2017	10/17/17 12:22	
Arsenic	2.0	1.0	-	B7J0379	10/16/2017	10/17/17 12:22	
Barium	21	1.0	-	B7J0379	10/16/2017	10/17/17 12:22	
Beryllium	ND	1.0	-	B7J0379	10/16/2017	10/17/17 12:22	
Cadmium	ND	1.0	_	B7J0379	10/16/2017	10/17/17 12:22	
Chromium	2.8	1.0	-	B7J0379	10/16/2017	10/17/17 12:22	
Cobalt	3.1	1.0	1	B7J0379	10/16/2017	10/17/17 12:22	
Copper	5.6	2.0	1	B7J0379	10/16/2017	10/17/17 12:22	
Lead	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:22	
Molybdenum	ND	1.0	-	B7J0379	10/16/2017	10/17/17 12:22	
Nickel	3.8	1.0	-	B7J0379	10/16/2017	10/17/17 12:22	
Selenium	ND	1.0	-	B7J0379	10/16/2017	10/17/17 12:22	
Silver	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:22	
Thallium	ND	1.0	-	B7J0379	10/16/2017	10/17/17 12:22	
Vanadium	13	1.0	1	B7J0379	10/16/2017	10/17/17 12:22	
Zinc	14	1.0	1	B7J0379	10/16/2017	10/17/17 12:22	

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A						7	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.12	0.10	1	B7J0397	10/17/2017	10/17/17 15:48	

Gasoline Range Organics by EPA 8015B (Modified) (5035)

Analyst: VW

γιευν	Result (mo/ka)	PQL	Dilution	Ratch	Drenared	Date/Time	Notes
or canaly co	(9x 8)	(9 v 8 m)	Dinanci	Tana	robaro	z anar y zoa	53101
Gasoline Range Organics	ND	98.0	1	B7J0257	B7J0257 10/12/2017	10/12/17 14:38	
Surrogate: 4-Bromofluorobenzene	93.3%	50 - 138		B7J0257	10/12/2017	10/12/17 14:38	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	8.9	1.0	1	B7J0415	10/16/2017	10/17/17 11:02	
ORO	5.7	1.0	1	B7J0415	10/16/2017	10/17/17 11:02	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB9-5.0

Lab ID: 1703641-06

Diesel Range Organics by EPA 8015B

Notes 10/17/17 11:02 Date/Time Analyzed 10/16/2017 Prepared B7J0415 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result 125 % Surrogate: p-Terphenyl Analyte

Analyst: TKT

Page 15 of 140

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB14-0.5 Lab ID: 1703641-07

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0379	10/16/2017	10/17/17 12:26	
Arsenic	3.6	1.0	1	B7J0379	10/16/2017	10/17/17 12:26	
Barium	8	1.0	1	B7J0379	10/16/2017	10/17/17 12:26	
Beryllium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:26	
Cadmium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:26	
Chromium	24	1.0	1	B7J0379	10/16/2017	10/17/17 12:26	
Cobalt	6.7	1.0	1	B7J0379	10/16/2017	10/17/17 12:26	
Copper	33	2.0	1	B7J0379	10/16/2017	10/17/17 12:26	
Lead	28	1.0	1	B7J0379	10/16/2017	10/17/17 12:26	
Molybdenum	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:26	
Nickel	16	1.0	1	B7J0379	10/16/2017	10/17/17 12:26	
Selenium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:26	
Silver	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:26	
Thallium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:26	
Vanadium	27	1.0	1	B7J0379	10/16/2017	10/17/17 12:26	
Zine	98	1.0	-	B7J0379	10/16/2017	10/17/17 12:26	

_
7
747
7
⋖
EPA
ī
lpor
्द्र
크
3
$\overline{}$
A
ģ
>
=
5
_
ب

Mercury by AA (Cold Vapor) EPA 7471A						7	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.28	0.10	1	B7J0397	10/17/2017	10/17/17 15:49	

Gasoline Range Organics by EPA 8015B (Modified) (5035)

Gasoline Range Organics by EPA 8015	EPA 8015B (Modified) (5035)	(5035)					Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0257	B7J0257 10/12/2017	10/12/17 14:56	
Surrogate: 4-Bromoftuorobenzene 94.	94.3 %	50 - 138		B7J0257	10/12/2017	10/12/17 14:56	

Diesel Range Organics by EPA 8015B

Diesel Mange Ofgames by El A 0015B						Į.	Analyst: IKI
	Result	PQL				Date/Time	
Analyte (1	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	160	50	50	B7J0415	10/16/2017	10/17/17 13:04	
ORO	440	50	50	B7J0415	10/16/2017	10/17/17 13:04	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB14-0.5

Lab ID: 1703641-07

Diesel Range Organics by EPA 8015B

Date/Time Analyzed Batch Dilution (mg/kg) PQL (mg/kg) Result

Analyst: TKT

Notes **S**4 10/17/17 13:04 10/16/2017 Prepared B7J0415 38 - 145 %0 Surrogate: p-Terphenyl Analyte

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB14-2.5 Lab ID: 1703641-08

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0379	10/16/2017	10/17/17 12:27	
Arsenic	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:27	
Barium	76	1.0	1	B7J0379	10/16/2017	10/17/17 12:27	
Beryllium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:27	
Cadmium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:27	
Chromium	8.5	1.0	1	B7J0379	10/16/2017	10/17/17 12:27	
Cobalt	4.2	1.0	1	B7J0379	10/16/2017	10/17/17 12:27	
Copper	9.3	2.0	1	B7J0379	10/16/2017	10/17/17 12:27	
Lead	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:27	
Molybdenum	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:27	
Nickel	9.9	1.0	1	B7J0379	10/16/2017	10/17/17 12:27	
Selenium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:27	
Silver	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:27	
Thallium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:27	
Vanadium	18	1.0	1	B7J0379	10/16/2017	10/17/17 12:27	
Zinc	26	1.0	1	B7J0379	10/16/2017	10/17/17 12:27	

Mercury by AA (Cold Vapor) EPA 7471A

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.15	0.10	1	B7J0397	10/17/2017	10/17/17 15:51	

Analyst: KEK

Analyst: VW

Gasoline Range Organics by EPA 8015B (Modified) (5035)

Analida	Result	JÒd (wallea)	Dilution	Dotoh	Draworad	Date/Time	Notes
Analyte	(Syles)	(SV/SIII)	Dilation	Dateil	richared	Allaryzeu	INOTES
Gasoline Range Organics	ND	1.2	1	B7J0257	B7J0257 10/12/2017	10/12/17 15:15	
Surrogate: 4-Bromofluorobenzene	55.1%	50 - 138		B7J0257	10/12/2017	10/12/17 15:15	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						†	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	9.2	1.0	1	B7J0415	10/16/2017	10/17/17 12:46	
ORO	15	1.0	1	B7J0415	10/16/2017	10/17/17 12:46	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB14-2.5

Lab ID: 1703641-08

Diesel Range Organics by EPA 8015B

Analyst: TKT

	Kesuit	PQL				Date/11me	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: p-Terphenyl	140 %	38 - 145		B7J0415	10/16/2017	10/17/17 12:46	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB14-5.0 Lab ID: 1703641-09

Motols by ICD A FC FDA 6010B	victais by ici -raes ei ra outob
T:41, 22	T 77 2111

Analyst: GO

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0379	10/16/2017	10/17/17 12:28	
Arsenic	1.5	1.0		B7J0379	10/16/2017	10/17/17 12:28	
Barium	57	1.0	1	B7J0379	10/16/2017	10/17/17 12:28	
Beryllium	ND	1.0		B7J0379	10/16/2017	10/17/17 12:28	
Cadmium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:28	
Chromium	11	1.0	1	B7J0379	10/16/2017	10/17/17 12:28	
Cobalt	6.2	1.0	1	B7J0379	10/16/2017	10/17/17 12:28	
Copper	7.8	2.0	1	B7J0379	10/16/2017	10/17/17 12:28	
Lead	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:28	
Molybdenum	ND	1.0	-	B7J0379	10/16/2017	10/17/17 12:28	
Nickel	8.3	1.0	1	B7J0379	10/16/2017	10/17/17 12:28	
Selenium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:28	
Silver	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:28	
Thallium	ND	1.0		B7J0379	10/16/2017	10/17/17 12:28	
Vanadium	21	1.0	1	B7J0379	10/16/2017	10/17/17 12:28	
Zinc	30	1.0	1	B7J0379	10/16/2017	10/17/17 12:28	

<<
71
\overline{c}
7
`_
~
풉
-
T
5
apor
್ಡ
_
7
/ 맏
_old \
(Cold V
√ (Cold √
VA (Cold V
AA (
AA (
by AA (Cold V
y by AA (
y by AA (
y by AA (
cury by AA (
y by AA (

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.21	0.10	1	B7J0397	10/17/2017	10/17/17 15:53	

Analyst: KEK

Analyst: VW

Gasoline Range Organics by EPA 8015B (Modified)

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0257	B7J0257 10/12/2017	10/12/17 15:33	
Surrogate: 4-Bromofluorobenzene	102 %	50 - 138		B7J0257	10/12/2017	10/12/17 15:33	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						†	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	3.6	1.0	1	B7J0415	10/16/2017	10/17/17 10:45	
ORO	3.1	1.0	1	B7J0415	10/16/2017	10/17/17 10:45	

Page 20 of 140

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB14-5.0

Lab ID: 1703641-09

Diesel Range Organics by EPA 8015B

Notes 10/17/17 10:45 Date/Time Analyzed 10/16/2017 Prepared B7J0415 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result 77.7% Surrogate: p-Terphenyl Analyte

Analyst: TKT

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB20-0.5 Lab ID: 1703641-10

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0379	10/16/2017	10/17/17 12:29	
Arsenic	3.7	1.0	1	B7J0379	10/16/2017	10/17/17 12:29	
Barium	22	1.0	1	B7J0379	10/16/2017	10/17/17 12:29	
Beryllium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:29	
Cadmium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:29	
Chromium	15	1.0	1	B7J0379	10/16/2017	10/17/17 12:29	
Cobalt	6.1	1.0	1	B7J0379	10/16/2017	10/17/17 12:29	
Copper	39	2.0	1	B7J0379	10/16/2017	10/17/17 12:29	
Lead	35	1.0	1	B7J0379	10/16/2017	10/17/17 12:29	
Molybdenum	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:29	
Nickel	21	1.0	1	B7J0379	10/16/2017	10/17/17 12:29	
Selenium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:29	
Silver	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:29	
Thallium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:29	
Vanadium	32	1.0	1	B7J0379	10/16/2017	10/17/17 12:29	
Zinc	110	1.0	-	B7J0379	10/16/2017	10/17/17 12:29	

_
717
4
EPA
\equiv
apor
P
S
∀
by A
Ę
ercu
ĭ

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.22	0.10	1	B7J0397	10/17/2017	10/17/17 15:55	

Analyst: KEK

Gasoline Range Organics by EPA 8015B (Modified)

Gasoline Range Organics by EPA 801:	EPA 8015B (Modified)						Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0257	10/12/2017	B7J0257 10/12/2017 10/12/17 15:52	
Surrogate: 4-Bromofluorobenzene	% 901	50 - 138		B7J0257	10/12/2017	10/12/17 15:52	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						f F	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	14	1.0	1	B7J0415	10/16/2017	10/17/17 14:12	
ORO	56	1.0	1	B7J0415	10/16/2017	10/17/17 14:12	

Page 22 of 140

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB20-0.5

Lab ID: 1703641-10

	1
hv F.PA	
ganics	
Sange Or	
Diesel R	

	Result	PQL				Date/Time		
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes	
Surrogate: p-Terphenyl	132 %	38 - 145		B7J0415	10/16/2017	10/17/17 14:12		

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB3-0.5 Lab ID: 1703641-11

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Antimony	ND	2.0		B7J0379	10/16/2017	10/17/17 12:30	
Arsenic	2.2	1.0	1	B7J0379	10/16/2017	10/17/17 12:30	
Barium	53	1.0	1	B7J0379	10/16/2017	10/17/17 12:30	
Beryllium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:30	
Cadmium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:30	
Chromium	10	1.0	1	B7J0379	10/16/2017	10/17/17 12:30	
Cobalt	4.0	1.0	1	B7J0379	10/16/2017	10/17/17 12:30	
Copper	8.8	2.0	1	B7J0379	10/16/2017	10/17/17 12:30	
Lead	29	1.0	1	B7J0379	10/16/2017	10/17/17 12:30	
Molybdenum	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:30	
Nickel	7.9	1.0	1	B7J0379	10/16/2017	10/17/17 12:30	
Selenium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:30	
Silver	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:30	
Thallium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:30	
Vanadium	20	1.0	1	B7J0379	10/16/2017	10/17/17 12:30	
Zinc	65	1.0	1	B7J0379	10/16/2017	10/17/17 12:30	

Mercury by AA (Cold Vapor) EPA 7471A						ł	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.25	0.10	1	B7J0397	10/17/2017	10/17/17 15:57	

	}	2	•		1		
Gasoline Range Organics by EPA 8015	EPA 8015B (Modified)						Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0270	10/12/2017	B710270 10/12/2017 10/12/17 21:24	
Surrogate: 4-Bromofluorobenzene	NO 2 %	50 - 138		B7J0270	B7J0270 10/12/2017	10/12/17 21:24	

Diesel Range Organics by EPA 8015B						1	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	20	1.0	1	B7J0415	10/16/2017	10/17/17 15:55	
ORO	41	1.0	1	B7J0415	B7J0415 10/16/2017	10/17/17 15:55	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB3-0.5

Lab ID: 1703641-11

Diesel Range Organics by EPA 8015B

Notes 10/17/17 15:55 Date/Time Analyzed 10/16/2017 Prepared B7J0415 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result 145 % Surrogate: p-Terphenyl Analyte

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB3-2.5

Lab ID: 1703641-12

	-	104				į	•
Analyte	Kesult (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/11me Analyzed	Notes
Antimony	ND	2.0	1	B7J0379	10/16/2017	10/17/17 12:32	
Arsenic	2.0	1.0	1	B7J0379	10/16/2017	10/17/17 12:32	
Barium	29	1.0	1	B7J0379	10/16/2017	10/17/17 12:32	
Beryllium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:32	
Cadmium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:32	
Chromium	6.1	1.0	1	B7J0379	10/16/2017	10/17/17 12:32	
Cobalt	3.6	1.0	1	B7J0379	10/16/2017	10/17/17 12:32	
Copper	3.5	2.0	1	B7J0379	10/16/2017	10/17/17 12:32	
Lead	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:32	
Molybdenum	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:32	
Nickel	4.6	1.0	1	B7J0379	10/16/2017	10/17/17 12:32	
Selenium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:32	
Silver	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:32	
Thallium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:32	
Vanadium	12	1.0	1	B7J0379	10/16/2017	10/17/17 12:32	
Zinc	18	1.0	1	B7J0379	10/16/2017	10/17/17 12:32	
Mercury by AA (Cold Vapor) EPA 7471A	A 7471A					,	Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.15	0.10	1	B7J0397	10/17/2017	10/17/17 15:59	
Gasoline Range Organics by EPA 8015B (Modified)	8015B (Modified)						Analyst: VW
Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0270	10/12/2017	10/12/17 21:43	
Surrogate: 4-Bromofluorobenzene	103 %	50 - 138		B7J0270	10/12/2017	10/12/17 21:43	
Diesel Range Organics by EPA 8015B)15B						Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	6.1	1.0	1	B7J0415	10/16/2017	10/17/17 11:54	
ORO	5.4	1.0	1	B7J0415	10/16/2017	10/17/17 11:54	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB3-2.5

Lab ID: 1703641-12

Diesel Range Organics by EPA 8015B

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: n-Terphenyl	143 %	38 - 145		B7J0415	10/16/2017	10/17/17 11:54	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB3-5.0 Lab ID: 1703641-13

Title 22 Metals by ICP-AFS FDA 6010B	

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0379	10/16/2017	10/17/17 12:33	
Arsenic	1.4	1.0	1	B7J0379	10/16/2017	10/17/17 12:33	
Barium	33	1.0	1	B7J0379	10/16/2017	10/17/17 12:33	
Beryllium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:33	
Cadmium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:33	
Chromium	9.9	1.0	1	B7J0379	10/16/2017	10/17/17 12:33	
Cobalt	3.6	1.0	1	B7J0379	10/16/2017	10/17/17 12:33	
Copper	3.1	2.0	1	B7J0379	10/16/2017	10/17/17 12:33	
Lead	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:33	
Molybdenum	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:33	
Nickel	8.4	1.0	1	B7J0379	10/16/2017	10/17/17 12:33	
Selenium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:33	
Silver	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:33	
Thallium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:33	
Vanadium	12	1.0	1	B7J0379	10/16/2017	10/17/17 12:33	
Zinc	18	1.0	1	B7J0379	10/16/2017	10/17/17 12:33	

14
747
EPA 7471A
_
/apor
y AA (Cold Va
ಲ್ರ
AA
þ
Mercury by A
Mer

Mercury by AA (Cold Vapor) EPA 7471A	_						Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.12	0.10	1	B7J0397	10/17/2017	10/17/17 16:01	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0270	B7J0270 10/12/2017	10/12/17 22:01	
Surrogate: 4-Bromofluorobenzene	96 201	50 - 138		B7J0270	10/12/2017	10/12/17 22:01	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						,	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	10	1.0	1	B7J0415	10/16/2017	10/17/17 12:11	
ORO	9.1	1.0	1	B7J0415	10/16/2017	10/17/17 12:11	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB3-5.0

Lab ID: 1703641-13

015B
y EPA 8015B
Organics by
_
iesel Range
$\overline{}$

Notes 10/17/17 12:11 Analyzed Date/Time 10/16/2017 Prepared B7J0415 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result 99.2 % Surrogate: p-Terphenyl Analyte

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB4-0.5

Lab ID: 1703641-14

Analyst: GO

Notes

Analyte Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc Analyte	(mg/kg) 5.1 5.1 2.3 96 ND ND 16 3.9 58 130 ND	(mg/kg) 2.0 1.0 1.0 1.0 1.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0	Dilution	Batch B710379 B710379 B710379 B710379 B710379 B710379 B710379 B710379	Prepared 10/16/2017	Analyzed
Antimony Arsenic Barium Beryllium Cadmium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc Analyte	5.1 2.3 96 ND ND 16 3.9 58 ND ND	2.0 1.0 1.0 1.0 1.0 2.0 2.0 1.0 1.0		B710379 B710379 B710379 B710379 B710379 B710379 B710379 B710379	10/16/2017	
Arsenic Barium Beryllium Cadmium Chromium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc Mercury by AA (Cold Vapor) EPA	2.3 96 ND ND 16 3.9 58 ND ND	1.0 1.0 1.0 1.0 2.0 2.0 1.0 1.0 1.0		B710379 B710379 B710379 B710379 B710379 B710379 B710379		10/17/17 12:34
Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc Mercury by AA (Cold Vapor) EPA	96 C C C C C C C C C C C C C C C C C C C	1.0 1.0 1.0 1.0 2.0 2.0 1.0 1.0 1.0		B710379 B710379 B710379 B710379 B710379 B710379	10/16/2017	10/17/17 12:34
Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc Mercury by AA (Cold Vapor) EPA	ND ND 16 3.9 88 88 ND	1.0 1.0 1.0 2.0 2.0 1.0 1.0 1.0		B710379 B710379 B710379 B710379 B710379	10/16/2017	10/17/17 12:34
Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc Analyte	ND 16 3.9 58 130 ND	1.0 1.0 2.0 2.0 1.0 1.0 1.0		B710379 B710379 B710379 B710379 B710379	10/16/2017	10/17/17 12:34
Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc Mercury by AA (Cold Vapor) EPA	16 3.9 58 130 ND	1.0 2.0 2.0 1.0 1.0 1.0		B710379 B710379 B710379 B710379	10/16/2017	10/17/17 12:34
Copper Lead Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc Mercury by AA (Cold Vapor) EPA	3.9 58 130 ND	1.0 2.0 1.0 1.0 1.0 1.0		B7J0379 B7J0379 B7J0379 R7I0379	10/16/2017	10/17/17 12:34
Copper Lead Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc Mercury by AA (Cold Vapor) EPA	58 130 ND	2.0 1.0 1.0 1.0 1.0		B7J0379 B7J0379 R7I0379	10/16/2017	10/17/17 12:34
Lead Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc Analyte	130 ND 11	1.0 1.0 1.0 1.0		B7J0379 R7I0379	10/16/2017	10/17/17 12:34
Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc Mercury by AA (Cold Vapor) EPA Z	8 =	1.0 1.0 1.0 1.0		R710379	10/16/2017	10/17/17 12:34
Nickel Selenium Silver Thallium Vanadium Zinc Mercury by AA (Cold Vapor) EPA	11	1.0 1.0 1.0 1.0		;	10/16/2017	10/17/17 12:34
Selenium Silver Thallium Vanadium Zinc Mercury by AA (Cold Vapor) EPA '		1.0		B7J0379	10/16/2017	10/17/17 12:34
Silver Thallium Vanadium Zinc Mercury by AA (Cold Vapor) EPA '	ND	1.0		B7J0379	10/16/2017	10/17/17 12:34
Thallium Vanadium Zinc Mercury by AA (Cold Vapor) EPA	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:34
Vanadium Zinc Mercury by AA (Cold Vapor) EPA ' Analyte	ND			B7J0379	10/16/2017	10/17/17 12:34
Zinc Mercury by AA (Cold Vapor) EPA ' Analyte	18	1.0	1	B7J0379	10/16/2017	10/17/17 12:34
Mercury by AA (Cold Vapor) EPA '	160	1.0	1	B7J0379	10/16/2017	10/17/17 12:34
Analyte	7471A					
Analyte	Result	JOA				Date/Time
	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed
Mercury	0.72	0.10	1	B7J0397	10/17/2017	10/17/17 16:03
Gasoline Range Organics by EPA 8015B (Modified)	015B (Modified)					
	Result	PQL				Date/Time
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed
Gasoline Range Organics	ND	1.0	1	B7J0270	10/12/2017	10/12/17 22:20
Surrogate: 4-Bromofluorobenzene	103 %	50 - 138		B7J0270	10/12/2017	10/12/17 22:20
Diesel Range Organics by EPA 8015B	5B					
	Result	PQL				Date/Time
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed
DRO	640	50	50	B7J0415	10/16/2017	10/17/17 16:12
ORO	1900	50	50	B7J0415	10/16/2017	10/17/17 16:12

Analyst: KEK

Notes

Analyst: VW

Notes

Analyst: TKT

Notes

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB4-0.5

Lab ID: 1703641-14

Diesel Range Organics by EPA 8015B

Notes **S**4 10/17/17 16:12 Date/Time Analyzed 10/16/2017 Prepared B7J0415 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result %0 Surrogate: p-Terphenyl Analyte

Analyst: TKT

Page 31 of 140

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB4-2.5 Lab ID: 1703641-15

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0379	10/16/2017	10/17/17 12:35	
Arsenic	2.3	1.0	1	B7J0379	10/16/2017	10/17/17 12:35	
Barium	51	1.0	1	B7J0379	10/16/2017	10/17/17 12:35	
Beryllium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:35	
Cadmium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:35	
Chromium	7.4	1.0	1	B7J0379	10/16/2017	10/17/17 12:35	
Cobalt	3.0	1.0	1	B7J0379	10/16/2017	10/17/17 12:35	
Copper	=======================================	2.0	1	B7J0379	10/16/2017	10/17/17 12:35	
Lead	20	1.0	1	B7J0379	10/16/2017	10/17/17 12:35	
Molybdenum	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:35	
Nickel	6.2	1.0	1	B7J0379	10/16/2017	10/17/17 12:35	
Selenium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:35	
Silver	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:35	
Thallium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:35	
Vanadium	13	1.0	1	B7J0379	10/16/2017	10/17/17 12:35	
Zinc	43	1.0	1	B7J0379	10/16/2017	10/17/17 12:35	

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A						+	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.34	0.10	1	B7J0397	10/17/2017	10/17/17 16:04	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

	Result	ЪОГ				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0270	B7J0270 10/12/2017	10/12/17 22:38	
Surrogate: 4-Bromofluorobenzene	113 %	50 - 138		B7J0270	10/12/2017	10/12/17 22:38	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	22	5.0	5	B7J0415	10/16/2017	10/17/17 14:30	
ORO	25	5.0	5	B7J0415	10/16/2017	10/17/17 14:30	

Page 32 of 140

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB4-2.5

Lab ID: 1703641-15

Diesel Range Organics by EPA 8015B

Notes 10/17/17 14:30 Date/Time Analyzed 10/16/2017 Prepared B7J0415 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result 87.1 % Surrogate: p-Terphenyl Analyte

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB4-3.5

Lab ID: 1703641-16

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0379	10/16/2017	10/17/17 12:36	
Arsenic	8.0	1.0	1	B7J0379	10/16/2017	10/17/17 12:36	
Barium	94	1.0	1	B7J0379	10/16/2017	10/17/17 12:36	
Beryllium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:36	
Cadmium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:36	
Chromium	8.5	1.0	1	B7J0379	10/16/2017	10/17/17 12:36	
Cobalt	4.5	1.0	1	B7J0379	10/16/2017	10/17/17 12:36	
Copper	290	2.0	1	B7J0379	10/16/2017	10/17/17 12:36	
Lead	5.0	1.0	1	B7J0379	10/16/2017	10/17/17 12:36	
Molybdenum	ND	1.0	-	B7J0379	10/16/2017	10/17/17 12:36	
Nickel	8.0	1.0	1	B7J0379	10/16/2017	10/17/17 12:36	
Selenium	N	1.0	1	B7J0379	10/16/2017	10/17/17 12:36	
Silver	N	1.0	1	B7J0379	10/16/2017	10/17/17 12:36	
Thallium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:36	
Vanadium	23	1.0	1	B7J0379	10/16/2017	10/17/17 12:36	
Zinc	43	1.0	-	B7J0379	10/16/2017	10/17/17 12:36	
Mercury by AA (Cold Vapor) EPA 7471A	Ą					7	Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.13	0.10		B7J0397	10/17/2017	10/17/17 16:10	
Gasoline Range Organics by EPA 8015B (Modified)	3 (Modified)						Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0280	10/13/2017	10/13/17 10:44	
Surrogate: 4-Bromoftuorobenzene 112 %	%	50 - 138		B7J0280	10/13/2017	10/13/17 10:44	
Diesel Range Organics by EPA 8015B						·	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	70	20	20	B7J0415	10/16/2017	10/17/17 13:38	
ORO	140	20	20	B7J0415	10/16/2017	10/17/17 13:38	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB4-3.5

Lab ID: 1703641-16

Diesel Range Organics by EPA 8015B

Notes **S**4 10/17/17 13:38 Date/Time Analyzed 10/16/2017 Prepared B7J0415 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result %0 Surrogate: p-Terphenyl Analyte

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB1-0.5

Lab ID: 1703641-17

Analyst: GO

Notes

	Result	PQL				Date/Time
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed
Antimony	ND	2.0	1	B7J0379	10/16/2017	10/17/17 12:40
Arsenic	2.6	1.0	1	B7J0379	10/16/2017	10/17/17 12:40
Barium	50	1.0	1	B7J0379	10/16/2017	10/17/17 12:40
Beryllium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:40
Cadmium	N	1.0	1	B7J0379	10/16/2017	10/17/17 12:40
Chromium	9.2	1.0	1	B7J0379	10/16/2017	10/17/17 12:40
Cobalt	5.1	1.0	1	B7J0379	10/16/2017	10/17/17 12:40
Copper	29	2.0	1	B7J0379	10/16/2017	10/17/17 12:40
Lead	22	1.0	1	B7J0379	10/16/2017	10/17/17 12:40
Molybdenum	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:40
Nickel	11	1.0	1	B7J0379	10/16/2017	10/17/17 12:40
Selenium	N	1.0	1	B7J0379	10/16/2017	10/17/17 12:40
Silver	N	1.0	1	B7J0379	10/16/2017	10/17/17 12:40
Thallium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:40
Vanadium	23	1.0	1	B7J0379	10/16/2017	10/17/17 12:40
Zinc	40	1.0	-	B7J0379	10/16/2017	10/17/17 12:40
Mercury by AA (Cold Vapor) EPA 7471A	7471A					
Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed
Mercury	0.17	0.10	_	B7J0397	10/17/2017	10/17/17 16:12
Gasoline Range Organics by EPA 8015B (Modified)	8015B (Modified	(
	Result	ТÒd				Date/Time
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed
Gasoline Range Organics	ND	1.0	1	B7J0280	10/13/2017	10/13/17 11:02
Surrogate: 4-Bromofluorobenzene	% 801	50 - 138		B7J0280	10/13/2017	10/13/17 11:02
Diesel Range Organics by EPA 8015B	15B					
	Result	PQL				Date/Time
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed
DRO	200	50	50	B7J0415	10/16/2017	10/17/17 13:55
ORO	460	50	50	B7J0415	10/16/2017	10/17/17 13:55

Analyst: KEK

Notes

Analyst: VW

Notes

Analyst: TKT

Notes

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB1-0.5

Lab ID: 1703641-17

Diesel Range Organics by EPA 8015B

Notes **S**4 10/17/17 13:55 Date/Time Analyzed 10/16/2017 Prepared B7J0415 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result %0 Surrogate: p-Terphenyl Analyte

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB1-2.5 Lab ID: 1703641-18

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	TOd	:			Date/Time	,
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0379	10/16/2017	10/17/17 12:41	
Arsenic	1.7	1.0	1	B7J0379	10/16/2017	10/17/17 12:41	
Barium	78	1.0	1	B7J0379	10/16/2017	10/17/17 12:41	
Beryllium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:41	
Cadmium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:41	
Chromium	6.3	1.0	1	B7J0379	10/16/2017	10/17/17 12:41	
Cobalt	2.9	1.0	1	B7J0379	10/16/2017	10/17/17 12:41	
Copper	2.9	2.0	1	B7J0379	10/16/2017	10/17/17 12:41	
Lead	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:41	
Molybdenum	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:41	
Nickel	4.0	1.0	1	B7J0379	10/16/2017	10/17/17 12:41	
Selenium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:41	
Silver	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:41	
Thallium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:41	
Vanadium	13	1.0	1	B7J0379	10/16/2017	10/17/17 12:41	
Zinc	14	1.0	1	B7J0379	10/16/2017	10/17/17 12:41	

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A						7	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.17	0.10	1	B7J0397	10/17/2017	10/17/17 16:14	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0280	B7J0280 10/13/2017	10/13/17 11:21	
Surrogate: 4-Bromofluorobenzene	113 %	50 - 138		B7J0280	10/13/2017	10/13/17 11:21	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	8.4	1.0	1	B7J0415	10/16/2017	10/17/17 11:19	
ORO	7.1	1.0	1	B7J0415	10/16/2017	10/17/17 11:19	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB1-2.5

Lab ID: 1703641-18

Diesel Range Organics by EPA 8015B

	Result	PQL				Date/Time		
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes	
Surrogate: p-Terphenyl	83.1%	38 - 145		B7J0415	10/16/2017	91:11 21/21/01		

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB1-5.0 Lab ID: 1703641-19

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0379	10/16/2017	10/17/17 12:42	
Arsenic	2.0	1.0	1	B7J0379	10/16/2017	10/17/17 12:42	
Barium	26	1.0	1	B7J0379	10/16/2017	10/17/17 12:42	
Beryllium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:42	
Cadmium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:42	
Chromium	6.7	1.0	1	B7J0379	10/16/2017	10/17/17 12:42	
Cobalt	3.5	1.0	1	B7J0379	10/16/2017	10/17/17 12:42	
Copper	3.8	2.0	1	B7J0379	10/16/2017	10/17/17 12:42	
Lead	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:42	
Molybdenum	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:42	
Nickel	4.3	1.0	1	B7J0379	10/16/2017	10/17/17 12:42	
Selenium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:42	
Silver	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:42	
Thallium	ND	1.0	1	B7J0379	10/16/2017	10/17/17 12:42	
Vanadium	15	1.0	1	B7J0379	10/16/2017	10/17/17 12:42	
Zinc	16	1.0	1	B7J0379	10/16/2017	10/17/17 12:42	

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A						7	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0397	10/17/2017	10/17/17 16:16	

Gasoline Range Organics by EPA 8015B (Modified)

Gasoline Range Organics by EPA 80	EPA 8015B (Modified)						Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0280	10/13/2017	B7J0280 10/13/2017 10/13/17 11:39	
Surrogate: 4-Bromofluorobenzene	% 201	50 - 138		B7J0280	10/13/2017	10/13/17 11:39	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						1	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	5.0	1.0	1	B7J0415	10/16/2017	10/17/17 11:37	
ORO	4.4	1.0	1	B7J0415	10/16/2017	10/17/17 11:37	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB1-5.0

Lab ID: 1703641-19

Diesel Range Organics by EPA 8015B

Notes 10/17/17 11:37 Analyzed Date/Time 10/16/2017 Prepared B7J0415 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result % *901* Surrogate: p-Terphenyl Analyte

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB2-0.5 Lab ID: 1703641-20

Title 22 Metals by ICP-AES EPA 6010B

					tanany see
PQL				Date/Time	
(mg/kg) Dil	Dilution	Batch	Prepared	Analyzed	Notes
2.0	1 B7	B7J0379	10/16/2017	10/17/17 12:43	
1.0	1 B7	B7J0379	10/16/2017	10/17/17 12:43	
1.0	1 B7	B7J0379	10/16/2017	10/17/17 12:43	
1.0	1 B7	B7J0379	10/16/2017	10/17/17 12:43	
1.0	1 B7	B7J0379	10/16/2017	10/17/17 12:43	
1.0	1 B7	B7J0379	10/16/2017	10/17/17 12:43	
1.0	1 B7	B7J0379	10/16/2017	10/17/17 12:43	
2.0	1 B7	B7J0379	10/16/2017	10/17/17 12:43	
1.0	1 B7	B7J0379	10/16/2017	10/17/17 12:43	
1.0	1 B7	B7J0379	10/16/2017	10/17/17 12:43	
1.0	1 B7	B7J0379	10/16/2017	10/17/17 12:43	
1.0	1 B7	710379	10/16/2017	10/17/17 12:43	
1.0	1 B7	710379	10/16/2017	10/17/17 12:43	
1.0	1 B7	710379	10/16/2017	10/17/17 12:43	
1.0	1 B7	710379	10/16/2017	10/17/17 12:43	
1.0	1 B7		10/16/2017	10/17/17 12:43	
1.0 1.0 1.0 1.0		1 B B 1 1 1 B B 1 1 1 B B 1 1 1 B B 1 1 1 B B 1 1 1 B B 1 1 1 B B 1 B B	1 B7J0379 1 B7J0379 1 B7J0379 1 B7J0379		10/16/2017 10/16/2017 10/16/2017 10/16/2017

_
171A
7
EPA
(Lod
Ş
plo
<u></u>
Ĭ
by ∠
<u>-</u>
Mercury

Mercury by AA (Cold Vapor) EPA 7471A	1					7	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.28	0.10	1	B7J0397	10/17/2017	10/17/17 16:18	

Gasoline Range Organics by EPA 8015B (Modified)

Gasoline Range Organics by EPA 80	EPA 8015B (Modified)	•					Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0280	10/13/2017	B7J0280 10/13/2017 10/13/17 11:58	
Surrogate: 4-Bromofluorobenzene	% 001	50 - 138		B7J0280	B7J0280 10/13/2017	10/13/17 11:58	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						_f	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	720	100	100	B7J0415	10/16/2017	10/17/17 15:38	
ORO	1700	100	100	B7J0415	10/16/2017	10/17/17 15:38	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB2-0.5

Diesel Range Organics by EPA 8015B

Lab ID: 1703641-20

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: p-Terphenyl 0%	\0	38 - 145		B7J0415	10/16/2017	10/17/17 15:38	S4

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB20-2.5 Lab ID: 1703641-21

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	QN	2.0	1	B7J0380	10/16/2017	10/17/17 12:28	
Arsenic	3.3	1.0	1	B7J0380	10/16/2017	10/17/17 12:28	
Barium	30	1.0	1	B7J0380	10/16/2017	10/17/17 12:28	
Beryllium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 12:28	
Cadmium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 12:28	
Chromium	9.9	1.0	1	B7J0380	10/16/2017	10/17/17 12:28	
Cobalt	3.4	1.0	1	B7J0380	10/16/2017	10/17/17 12:28	
Copper	3.0	2.0	1	B7J0380	10/16/2017	10/17/17 12:28	
Lead	1.8	1.0	1	B7J0380	10/16/2017	10/17/17 12:28	
Molybdenum	ND	1.0	1	B7J0380	10/16/2017	10/17/17 12:28	
Nickel	4.5	1.0	1	B7J0380	10/16/2017	10/17/17 12:28	
Selenium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 12:28	
Silver	ND	1.0	1	B7J0380	10/16/2017	10/17/17 12:28	
Thallium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 12:28	
Vanadium	13	1.0	1	B7J0380	10/16/2017	10/17/17 12:28	
Zinc	17	1.0	1	B7J0380	10/16/2017	10/17/17 12:28	

	iOd
r) EPA 7471A	e e
ld Vapor) EPA	
ry by AA (Cold Vapor)	
Mercu	

Mercury by AA (Cold Vapor) EPA 7471A	1					,	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0398	10/17/2017	10/17/17 16:23	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0280	B7J0280 10/13/2017	10/13/17 12:16	
Surrogate: 4-Bromofluorobenzene	% 201	50 - 138		B7J0280	10/13/2017	10/13/17 12:16	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	3.2	1.0	1	B7J0430	10/16/2017	10/17/17 11:27	
ORO	3.7	1.0	1	B7J0430	10/16/2017	10/17/17 11:27	

Page 44 of 140

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB20-2.5

Lab ID: 1703641-21

Diesel Range Organics by EPA 8015B

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: p-Terphenyl	% 0.66	38 - 145		B7J0430	10/16/2017	10/17/17 11:27	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB20-5.0 Lab ID: 1703641-22

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0380	10/16/2017	10/17/17 12:37	
Arsenic	2.9	1.0	1	B7J0380	10/16/2017	10/17/17 12:37	
Barium	36	1.0	1	B7J0380	10/16/2017	10/17/17 12:37	
Beryllium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 12:37	
Cadmium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 12:37	
Chromium	7.1	1.0	1	B7J0380	10/16/2017	10/17/17 12:37	
Cobalt	3.7	1.0	1	B7J0380	10/16/2017	10/17/17 12:37	
Copper	3.1	2.0	1	B7J0380	10/16/2017	10/17/17 12:37	
Lead	2.3	1.0	1	B7J0380	10/16/2017	10/17/17 12:37	
Molybdenum	ND	1.0	1	B7J0380	10/16/2017	10/17/17 12:37	
Nickel	4.8	1.0	1	B7J0380	10/16/2017	10/17/17 12:37	
Selenium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 12:37	
Silver	ND	1.0	1	B7J0380	10/16/2017	10/17/17 12:37	
Thallium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 12:37	
Vanadium	15	1.0	1	B7J0380	10/16/2017	10/17/17 12:37	
Zinc	18	1.0	1	B7J0380	10/16/2017	10/17/17 12:37	

Mercury by AA (Cold Vapor) EPA 7471A

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	П	B7J0398	10/17/2017	10/17/17 16:35	

Analyst: KEK

Analyst: VW

Gasoline Range Organics by EPA 8015B (Modified)

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0280	B7J0280 10/13/2017	10/13/17 12:34	
Surrogate: 4-Bromofluorobenzene	% 80	50 - 138		B7J0280	10/13/2017	10/13/17 12:34	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	4.2	1.0	1	B7J0430	10/16/2017	10/17/17 10:56	
ORO	3.1	1.0	1	B7J0430	10/16/2017	10/17/17 10:56	

Page 46 of 140

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB20-5.0

Lab ID: 1703641-22

Diesel Range Organics by EPA 8015B

	Result	PQL				Date/Time		
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes	
Surrogate: p-Terphenyl 8	85.3 %	38 - 145		B7J0430	10/16/2017	10/17/17 10:56		

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB25-0.5 Lab ID: 1703641-23

Analyst: GO

Title 22 Metals by ICP-AES EPA 6010B

Notes

Date/Time Analyzed 10/17/17 12:40 10/17/17 12:40 10/17/17 12:40

10/17/17 12:40

10/17/17 12:40 10/17/17 12:40 10/17/17 12:40 10/17/17 12:40 10/17/17 12:40 10/17/17 12:40 10/17/17 12:40 10/17/17 12:40 10/17/17 12:40 10/17/17 12:40 10/17/17 12:40

	Result	PQL			
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared
Antimony	ND	2.0	1	B7J0380	10/16/2017
Arsenic	2.8	1.0	1	B7J0380	10/16/2017
Barium	18	1.0	1	B7J0380	10/16/2017
Beryllium	ND	1.0	1	B7J0380	10/16/2017
Cadmium	ND	1.0	1	B7J0380	10/16/2017
Chromium	8.8	1.0	1	B7J0380	10/16/2017
Cobalt	5.6	1.0	1	B7J0380	10/16/2017
Copper	2.4	2.0	1	B7J0380	10/16/2017
Lead	1.9	1.0	1	B7J0380	10/16/2017
Molybdenum	ND	1.0	1	B7J0380	10/16/2017
Nickel	3.2	1.0	1	B7J0380	10/16/2017
Selenium	ND	1.0	1	B7J0380	10/16/2017
Silver	ND	1.0	1	B7J0380	10/16/2017
Thallium	ND	1.0	1	B7J0380	10/16/2017
Vanadium	17	1.0	1	B7J0380	10/16/2017
Zinc	12	1.0	1	B7J0380	10/16/2017

Mercury by AA (Cold Vapor) EFA /4/1A	1					A	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0398	10/17/2017	10/17/17 16:37	

Gasoline Range Organics by EPA 8015B (Modified)	8015B (Modified)						Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND 1.0	1.0	1	B7J0280	10/13/2017	B7J0280 10/13/2017 10/13/17 12:53	
Surrogate: 4-Bromofluorobenzene	112 %	50 - 138		B7J0280	10/13/2017	10/13/17 12:53	

Diesel Range Organics by EPA 8015B						†	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	2.6	1.0	1	B7J0430	10/16/2017	10/17/17 09:25	
ORO	2.2	1.0	1	B7J0430	10/16/2017	10/17/17 09:25	

Page 48 of 140

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB25-0.5

Lab ID: 1703641-23

Diesel Range Organics by EPA 8015B	.8015B				
	Result	PQL			
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared
Surrogate: p-Terphenyl	76.0 %	38 - 145		B7J0430	10/16/2017

Analyst: TKT

Notes

Date/Time
Analyzed
10/17/17 09:25

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB25-2.5 Lab ID: 1703641-24

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0380	10/16/2017	10/17/17 12:43	
Arsenic	3.4	1.0	1	B7J0380	10/16/2017	10/17/17 12:43	
Barium	84	1.0	1	B7J0380	10/16/2017	10/17/17 12:43	
Beryllium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 12:43	
Cadmium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 12:43	
Chromium	9.8	1.0	1	B7J0380	10/16/2017	10/17/17 12:43	
Cobalt	5.0	1.0	1	B7J0380	10/16/2017	10/17/17 12:43	
Copper	4.7	2.0	1	B7J0380	10/16/2017	10/17/17 12:43	
Lead	1.8	1.0	1	B7J0380	10/16/2017	10/17/17 12:43	
Molybdenum	N	1.0	1	B7J0380	10/16/2017	10/17/17 12:43	
Nickel	6.5	1.0	1	B7J0380	10/16/2017	10/17/17 12:43	
Selenium	N	1.0	1	B7J0380	10/16/2017	10/17/17 12:43	
Silver	ND	1.0	1	B7J0380	10/16/2017	10/17/17 12:43	
Thallium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 12:43	
Vanadium	18	1.0	1	B7J0380	10/16/2017	10/17/17 12:43	
Zinc	25	1.0	1	B7J0380	10/16/2017	10/17/17 12:43	
Mercury by AA (Cold Vapor) EPA 7471A	A					7	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0398	10/17/2017	10/17/17 16:38	
Gasoline Range Organics by EPA 8015B	EPA 8015B (Modified)						Analyst: VW
V	Result	JOA TOTAL		177	ē	Date/Time	77.10
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Frepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0280	10/13/2017	10/13/17 13:11	
Surrogate: 4-Bromoftuorobenzene 108 %	%	50 - 138		B7J0280	10/13/2017	10/13/17 13:11	
Diesel Range Organics by EPA 8015B							Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	2.1	1.0	1	B7J0430	10/16/2017	10/17/17 09:10	
ORO	1.9	1.0	-	B7J0430	10/16/2017	10/17/17 09:10	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB25-2.5

Lab ID: 1703641-24

Diesel Range Organics by EPA 8015B

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: n-Ternhem/l	54.0 %	38 - 145		B710430	10/16/2017	01.60 21/21/01	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB25-5.0 Lab ID: 1703641-25

T:410 33 M 04010 L-1 ICB A DC DDA 2010B	

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Antimony	QN	2.0	1	B7J0380	10/16/2017	10/17/17 12:46	
Arsenic	2.4	1.0		B7J0380	10/16/2017	10/17/17 12:46	
Barium	24	1.0	1	B7J0380	10/16/2017	10/17/17 12:46	
Beryllium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 12:46	
Cadmium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 12:46	
Chromium	9.9	1.0	1	B7J0380	10/16/2017	10/17/17 12:46	
Cobalt	2.6	1.0	1	B7J0380	10/16/2017	10/17/17 12:46	
Copper	N	2.0	1	B7J0380	10/16/2017	10/17/17 12:46	
Lead	1.1	1.0	1	B7J0380	10/16/2017	10/17/17 12:46	
Molybdenum	ND	1.0	1	B7J0380	10/16/2017	10/17/17 12:46	
Nickel	3.5	1.0	1	B7J0380	10/16/2017	10/17/17 12:46	
Selenium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 12:46	
Silver	ND	1.0	1	B7J0380	10/16/2017	10/17/17 12:46	
Thallium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 12:46	
Vanadium	12	1.0	1	B7J0380	10/16/2017	10/17/17 12:46	
Zinc	14	1.0	1	B7J0380	10/16/2017	10/17/17 12:46	

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A	1					7	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0398	B7J0398 10/17/2017	10/17/17 16:40	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0280	10/13/2017	B7J0280 10/13/2017 10/13/17 13:30	
Surrogate: 4-Bromoftuorobenzene 10	% 201	50 - 138		B7J0280	10/13/2017	10/13/17 13:30	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	2.4	1.0	1	B7J0430	10/16/2017	10/17/17 12:45	
ORO	5.6	1.0	1	B7J0430	10/16/2017	10/17/17 12:45	

Page 52 of 140

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB25-5.0

Lab ID: 1703641-25

,	~	1
	×	
	₹ ` `	
,	NG SOL	2
	()rganics	
,	Agnoe (
•	1000	

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: p-Terphenyl	81.2 %	38 - 145		B7J0430	10/16/2017	10/17/17 12:45	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB24-0.5 Lab ID: 1703641-26

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
A	Result	TOd		Doctob	7	Date/Time	Motor
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0380	10/16/2017	10/17/17 12:49	
Arsenic	4.5	1.0	1	B7J0380	10/16/2017	10/17/17 12:49	
Barium	29	1.0	1	B7J0380	10/16/2017	10/17/17 12:49	
Beryllium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 12:49	
Cadmium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 12:49	
Chromium	12	1.0	1	B7J0380	10/16/2017	10/17/17 12:49	
Cobalt	6.7	1.0	1	B7J0380	10/16/2017	10/17/17 12:49	
Copper	7.6	2.0	1	B7J0380	10/16/2017	10/17/17 12:49	
Lead	2.9	1.0	1	B7J0380	10/16/2017	10/17/17 12:49	
Molybdenum	ND	1.0	1	B7J0380	10/16/2017	10/17/17 12:49	
Nickel	9.4	1.0	1	B7J0380	10/16/2017	10/17/17 12:49	
Selenium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 12:49	
Silver	N	1.0	1	B7J0380	10/16/2017	10/17/17 12:49	
Thallium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 12:49	
Vanadium	78	1.0	1	B7J0380	10/16/2017	10/17/17 12:49	
Zinc	35	1.0	1	B7J0380	10/16/2017	10/17/17 12:49	

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A	1					7	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0398	10/17/2017	10/17/17 16:42	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0280	B7J0280 10/13/2017	10/13/17 13:48	
Surrogate: 4-Bromofluorobenzene 108	% 80.	50 - 138		B7J0280	10/13/2017	10/13/17 13:48	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	5.1	1.0	1	B7J0430	10/16/2017	10/17/17 13:01	
ORO	6.2	1.0	1	B7J0430	10/16/2017	10/17/17 13:01	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB24-0.5

Lab ID: 1703641-26

Diesel Range Organics by EPA 8015B

	Result	PQL				Date/Time		
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes	
Surrogate: p-Terphenyl	140 %	38 - 145		B7J0430	10/16/2017	10/17/17 13:01		

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB24-2.5

Lab ID: 1703641-27

Analyte (mg/kg) Arsenic 3.3 Barium 3.6 Beryllium ND Cadmium ND Cobalt 7.2 Copper 1.5 Molybdenum ND Nickel 3.3 Lead ND Molybdenum ND Selenium ND Silver ND Thallium ND Vanadium 114 Zinc (mg/kg) Analyte (mg/kg) Mercury ND Gasoline Range Organics by EPA 8015B (Modified) Surrogate: 4-Bromofluorobenzene 110 % Diesel Range Organics by EPA 8015B (mg/kg)	(mg/kg) ND 3.3					,	
Antimony Arsenic Barium Barylium Cadmium Cobalt Copper	ND 3.3	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Beryllium	3.3	2.0	1	B7J0380	10/16/2017	10/17/17 12:59	
Beryllium Cadmium Cadmium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium Vanadium Analyte		1.0	1	B7J0380	10/16/2017	10/17/17 12:59	
Chromium Chromium Cobalt Cobper Lead Molybdenum Nickel Selenium Silver Thallium Vanadium Silver Thallium Vanadium Silver Analyte Mercury by AA (Cold Vapor) EPA 7471A Analyte Casoline Range Organics by EPA 8015B (Mogasoline Range Organics by EPA 8015B (Mogasoline Range Organics by EPA 8015B Surrogate: 4-Bromofluorobenzene Diesel Range Organics by EPA 8015B Surrogate: 4-Bromofluorobenzene Rese Rese Rese Rese Rese Rese	36	1.0	-	B7J0380	10/16/2017	10/17/17 12:59	
Cadmium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium Analyte Analyte Casoline Range Organics Surrogate: 4-Bromofluorobenzene Cobalt Cabalyte Analyte Analyte Casoline Range Organics Diesel Range Organics by EPA 8015B Surrogate: 4-Bromofluorobenzene Capalyte	ND	1.0	-	B7J0380	10/16/2017	10/17/17 12:59	
Cobalt Cobalt Cobalt Copper Lead Molybdenum Nickel Silver Thallium Vanadium Silver Thallium Vanadium Analyte Casoline Range Organics by EPA 8015B (Mogarrogate: 4-Bromofluorobenzene Surrogate: 4-Bromofluorobenzene Diesel Range Organics by EPA 8015B Surrogate: 4-Bromofluorobenzene II0 % Diesel Range Organics by EPA 8015B	ND	1.0	1	B7J0380	10/16/2017	10/17/17 12:59	
Copper Copper Lead Molybdenum Nickel Nickel Nickel Nickel Nickel Nickel Nickel Nalyte Analyte Analyte Gasoline Range Organics by EPA 8015B (Mogerty) Surrogate: 4-Bromofluorobenzene Diesel Range Organics by EPA 8015B Surrogate: 4-Bromofluorobenzene Diesel Range Organics by EPA 8015B	7.2	1.0	_	B7J0380	10/16/2017	10/17/17 12:59	
Lead Molybdenum Nickel Silver Thallium Vanadium Zinc Analyte Gasoline Range Organics by EPA 8015B (Mo Gasoline Range Organics by EPA 8015B Surrogate: 4-Bromofluorobenzene Diesel Range Organics by EPA 8015B Surrogate: 4-Bromofluorobenzene Nanalyte Gasoline Range Organics Nanalyte Reserved Analyte Gasoline Range Organics Diesel Range Organics by EPA 8015B	3.7	1.0	1	B7J0380	10/16/2017	10/17/17 12:59	
Molybdenum Nickel Silver Thallium Vanadium Zinc Analyte Gasoline Range Organics by EPA 8015B (MoGasoline Range Organics by EPA 8015B Surrogate: 4-Bromofluorobenzene Diesel Range Organics by EPA 8015B Surrogate: 4-Bromofluorobenzene Diesel Range Organics by EPA 8015B Reserved Analyte Reserved Reserved Analyte Surrogate: 4-Bromofluorobenzene Diesel Range Organics by EPA 8015B	3.3	2.0	1	B7J0380	10/16/2017	10/17/17 12:59	
Nickel Nickel Selenium Silver Thallium Vanadium Zinc Analyte Gasoline Range Organics by EPA 8015B (Mo Gasoline Range Organics Nurvogate: 4-Bromofluorobenzene Diesel Range Organics by EPA 8015B Survogate: 4-Bromofluorobenzene Note that the tha	1.5	1.0	1	B7J0380	10/16/2017	10/17/17 12:59	
Selenium Silver Thallium Vanadium Zinc Analyte Analyte Analyte Gasoline Range Organics by EPA 8015B (MoGasoline Range Organics Surrogate: 4-Bromofluorobenzene Diesel Range Organics by EPA 8015B Surrogate: 4-Bromofluorobenzene II0 % Diesel Range Organics by EPA 8015B	ND	1.0	1	B7J0380	10/16/2017	10/17/17 12:59	
Silver Thallium Vanadium Zinc Mercury by AA (Cold Vapor) EPA 7471A Rea Analyte Analyte Gasoline Range Organics by EPA 8015B (Mo Gasoline Range Organics N Gasoline Range Organics N Surrogate: 4-Bromofluorobenzene Diesel Range Organics by EPA 8015B Rea Rea Analyte Manyte Rea Surrogate: 4-Bromofluorobenzene Diesel Range Organics by EPA 8015B	5.2	1.0	1	B7J0380	10/16/2017	10/17/17 12:59	
Silver Thallium Vanadium Zinc Mercury by AA (Cold Vapor) EPA 7471A Res Analyte Analyte Analyte Gasoline Range Organics by EPA 8015B (Mo Gasoline Range Organics Narrogate: 4-Bromofluorobenzene Diesel Range Organics by EPA 8015B Res Analyte Res Res Analyte Manalyte Res Analyte Organics by EPA 8015B	N Q	1.0	1	B7J0380	10/16/2017	10/17/17 12:59	
Vanadium Zinc Mercury by AA (Cold Vapor) EPA 7471A Mercury Mercury Malyte Casoline Range Organics by EPA 8015B (Mo Gasoline Range Organics Nanalyte Casoline Range Organics Diesel Range Organics by EPA 8015B Surrogate: 4-Bromofluorobenzene Diesel Range Organics by EPA 8015B	N Q	1.0	1	B7J0380	10/16/2017	10/17/17 12:59	
Vanadium Zinc Mercury by AA (Cold Vapor) EPA 7471A Rea Analyte Gasoline Range Organics by EPA 8015B (Mo Gasoline Range Organics Surrogate: 4-Bromofluorobenzene Diesel Range Organics by EPA 8015B Rea Rea Rea Rea Analyte Surrogate: 4-Bromofluorobenzene Diesel Range Organics by EPA 8015B	ND	1.0	1	B7J0380	10/16/2017	10/17/17 12:59	
Analyte Analyte Analyte Analyte Analyte Analyte Analyte Casoline Range Organics by EPA 8015B (Mogasoline Range Organics) Surrogate: 4-Bromofluorobenzene Diesel Range Organics by EPA 8015B	14	1.0	-	B7J0380	10/16/2017	10/17/17 12:59	
Mercury by AA (Cold Vapor) EPA 7471A Rea Analyte Gasoline Range Organics by EPA 8015B (Mo Gasoline Range Organics Surrogate: 4-Bromofluorobenzene Diesel Range Organics by EPA 8015B Surrogate: 4-Bromofluorobenzene N Surrogate: 4-Bromofluorobenzene	19	1.0	1	B7J0380	10/16/2017	10/17/17 12:59	
Analyte (mg Mercury Gasoline Range Organics by EPA 8015B (Mo Res Analyte (mg Surrogate: 4-Bromofluorobenzene 110% Diesel Range Organics by EPA 8015B Res Res Analyte (mg						7	Analyst: KEK
Mercury Gasoline Range Organics by EPA 8015B (Mo Ranglyte (mg Gasoline Range Organics (mg Surrogate: 4-Bromofluorobenzene 110% Diesel Range Organics by EPA 8015B Res Analyte (mg	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Casoline Range Organics by EPA 8015B (Mo Re: Analyte Gasoline Range Organics Surrogate: 4-Bromofluorobenzene Diesel Range Organics by EPA 8015B Re: Analyte (mg	ND QN	0.10	1	B7J0398	10/17/2017	10/17/17 16:44	
ne 110%	[odified]						Analyst: VW
ne 110 % EPA 8015B	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
ne 110%	ND	1.0	1	B7J0280	10/13/2017	10/13/17 14:07	
EPA 8015B		50 - 138		B7J0280	10/13/2017	10/13/17 14:07	
						,	Analyst: TKT
	Result	PQL				Date/Time	
	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
	5.6	1.0	1	B7J0430	10/16/2017	10/17/17 10:10	
ORO	5.6	1.0	1	B7J0430	10/16/2017	10/17/17 10:10	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB24-2.5

Lab ID: 1703641-27

Diesel Range Organics by EPA 8015B

Analyst: TKT

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: p-Terphenyl	102 %	38 - 145		B7J0430	10/16/2017	10/17/17 10:10	

Page 57 of 140

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB24-5.0 Lab ID: 1703641-28

010D	₹	777077	
4 G G G G G G G G G G G G G G G G G G G			
T:41, 00 Mastell, 1.			

IOd					
PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
2.0	1	B7J0380	10/16/2017	10/17/17 13:48	
1.0	1	B7J0380	10/16/2017	10/17/17 13:48	
1.0		B7J0380	10/16/2017	10/17/17 13:48	
1.0		B7J0380	10/16/2017	10/17/17 13:48	
1.0	1	B7J0380	10/16/2017	10/17/17 13:48	
1.0	1	B7J0380	10/16/2017	10/17/17 13:48	
1.0	1	B7J0380	10/16/2017	10/17/17 13:48	
2.0	1	B7J0380	10/16/2017	10/17/17 13:48	
1.0	1	B7J0380	10/16/2017	10/17/17 13:48	
1.0		B7J0380	10/16/2017	10/17/17 13:48	
1.0	1	B7J0380	10/16/2017	10/17/17 13:48	
1.0	1	B7J0380	10/16/2017	10/17/17 13:48	
1.0	1	B7J0380	10/16/2017	10/17/17 13:48	
1.0	1	B7J0380	10/16/2017	10/17/17 13:48	
1.0	1	B7J0380	10/16/2017	10/17/17 13:48	
1.0	1	B7J0380	10/16/2017	10/17/17 13:48	
	1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1		1 B710380	1 B7J0380 10/16/2017

_
=
1471 ⁷
<u> </u>
≺
EPA .
Ξ
$\hat{\cdot}$
Vapor
ă
್ಡ
-
Cold
7
Ũ
$\overline{}$
⋖
¥
'AA
by AA
y by AA
Jercury by AA

			Į	Analyst: KEK
ЬОГ			Date/Time	
(mg/kg) Dilution	Batch	Prepared	Analyzed	Notes
0.10	B7J0398	10/17/2017	10/17/17 16:46	
0.10	1	1 B7J0398		10/17/2017

Gasoline Range Organics by EPA 8015B (Modified)

Gasoline Range Organics by EPA 801	EPA 8015B (Modified)	(Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0310	10/13/2017	B7J0310 10/13/2017 10/13/17 23:21	
Surrogate: 4-Bromofluorobenzene	113 %	50 - 138		B7J0310	10/13/2017	10/13/17 23:21	

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	4.3	1.0	1	B7J0430	10/16/2017	10/17/17 12:30	
ORO	4.7	1.0	1	B7J0430	10/16/2017	10/17/17 12:30	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB24-5.0

Lab ID: 1703641-28

Diesel Range Organics by EPA 8015B

Notes 10/17/17 12:30 Date/Time Analyzed 10/16/2017 Prepared B7J0430 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result 70.0% Surrogate: p-Terphenyl Analyte

Analyst: TKT

3275 Walnut Avenue, Signal Hill, CA 90755 • Tel: 562-989-4045 • Fax: 562-989-4040 • www.atlglobal.com

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB19-0.5 Lab ID: 1703641-29

etals by ICP-AES EPA 6010B
by ICP-AES EPA 6010
by ICP-AES EPA 60
by ICP-

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0380	10/16/2017	10/17/17 13:05	
Arsenic	3.1	1.0	1	B7J0380	10/16/2017	10/17/17 13:05	
Barium	37	1.0	1	B7J0380	10/16/2017	10/17/17 13:05	
Beryllium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:05	
Cadmium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:05	
Chromium	7.5	1.0	1	B7J0380	10/16/2017	10/17/17 13:05	
Cobalt	3.7	1.0	1	B7J0380	10/16/2017	10/17/17 13:05	
Copper	3.6	2.0	1	B7J0380	10/16/2017	10/17/17 13:05	
Lead	1.6	1.0	1	B7J0380	10/16/2017	10/17/17 13:05	
Molybdenum	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:05	
Nickel	4.9	1.0	1	B7J0380	10/16/2017	10/17/17 13:05	
Selenium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:05	
Silver	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:05	
Thallium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:05	
Vanadium	19	1.0	1	B7J0380	10/16/2017	10/17/17 13:05	
Zinc	21	1.0	-	B7J0380	10/16/2017	10/17/17 13:05	

_
∀ 1/
4
<u> </u>
apor)
>
Cold
AA A
Ş
Mercury by A
ĕ
€ .

Mercury by AA (Cold Vapor) EPA 7471A						7	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0398	10/17/2017	10/17/17 16:48	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0280	B7J0280 10/13/2017	10/13/17 14:44	
Surrogate: 4-Bromofluorobenzene	% II	50 - 138		B7J0280	10/13/2017	10/13/17 14:44	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						f	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	8.8	1.0	1	B7J0430	10/16/2017	10/17/17 12:14	
ORO	7.9	1.0	1	B7J0430	10/16/2017	10/17/17 12:14	

Page 60 of 140

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB19-0.5 Lab ID: 1703641-29

Diesel Range Organics by EPA 8015B

Analyst: TKT Notes 10/17/17 12:14 Date/Time Analyzed 10/16/2017 Prepared B7J0430 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result 102 % Analyte

Polychlorinated Biphenyls by EPA 8082

Surrogate: p-Terphenyl

Analyst: CO

10/18/17 13:43 10/18/17 13:43 10/18/17 13:43 10/18/17 13:43 10/18/17 13:43 10/18/17 13:43 10/18/17 13:43 10/18/17 13:43 10/18/17 13:43 10/18/17 13:43 Analyzed Date/Time 10/18/2017 10/18/2017 10/18/2017 10/18/2017 10/18/2017 10/18/2017 10/18/2017 10/18/2017 10/18/2017 10/18/2017 10/18/2017 Prepared B7J0511 Dilution 18 - 136 (ug/kg) PQL 16 16 91 16 16 16 16 (ug/kg) Result $\frac{1}{2}$ \mathbb{R} 8 \mathbb{R} \mathbb{R} 9 $\frac{1}{2}$ \mathbb{R} 8 52.8 % Surrogate: Decachlorobiphenyl Aroclor 1248 Aroclor 1260 Aroclor 1262 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1254 Aroclor 1268 Aroclor 1221 Analyte

10/18/17 13:43

30 - 130

Surrogate: Tetrachloro-m-xylene

Page 61 of 140

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB19-2.5 Lab ID: 1703641-30

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Antimony	ND	2.0	-	B7J0380	10/16/2017	10/17/17 13:08	
Arsenic	3.4	1.0	1	B7J0380	10/16/2017	10/17/17 13:08	
Barium	20	1.0	1	B7J0380	10/16/2017	10/17/17 13:08	
Beryllium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:08	
Cadmium	N	1.0	1	B7J0380	10/16/2017	10/17/17 13:08	
Chromium	0.9	1.0	1	B7J0380	10/16/2017	10/17/17 13:08	
Cobalt	2.9	1.0	1	B7J0380	10/16/2017	10/17/17 13:08	
Copper	N	2.0	1	B7J0380	10/16/2017	10/17/17 13:08	
Lead	1.4	1.0	1	B7J0380	10/16/2017	10/17/17 13:08	
Molybdenum	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:08	
Nickel	3.3	1.0	1	B7J0380	10/16/2017	10/17/17 13:08	
Selenium	N	1.0	1	B7J0380	10/16/2017	10/17/17 13:08	
Silver	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:08	
Thallium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:08	
Vanadium	17	1.0	1	B7J0380	10/16/2017	10/17/17 13:08	
Zinc	14	1.0	1	B7J0380	10/16/2017	10/17/17 13:08	

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A						1	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0398	10/17/2017	10/17/17 16:50	

Gasoline Range Organics by EPA 8015B (Modified)

Gasoline Range Organics by EPA 8015B	EPA 8015B (Modified)						Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0280	10/13/2017	B7J0280 10/13/2017 10/13/17 15:02	
Surrogate: 4-Bromofluorobenzene 111 %	%	50 - 138		B7J0280	10/13/2017	B7J0280 10/13/2017 10/13/17 15:02	

Diesel Range Organics by EPA 8015B						_f	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	3.3	1.0	1	B7J0430	10/16/2017	10/17/17 11:12	
ORO	3.7	1.0	1	B7J0430	10/16/2017	10/17/17 11:12	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB19-2.5

Lab ID: 1703641-30

Diesel Range Organics by EPA 8015B

	Notes	
Date/Time	Analyzed	21.11.21/21/01
	Prepared	10/16/2017
	Batch	B710430
	Dilution	
PQL	(mg/kg)	38 - 145
Result	(mg/kg)	128 %
	Analyte	Surrogate: n-Terphemyl

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB19-5.0 Lab ID: 1703641-31

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0380	10/16/2017	10/17/17 13:11	
Arsenic	3.0	1.0	1	B7J0380	10/16/2017	10/17/17 13:11	
Barium	33	1.0	1	B7J0380	10/16/2017	10/17/17 13:11	
Beryllium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:11	
Cadmium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:11	
Chromium	9.9	1.0	1	B7J0380	10/16/2017	10/17/17 13:11	
Cobalt	3.8	1.0	1	B7J0380	10/16/2017	10/17/17 13:11	
Copper	3.2	2.0	1	B7J0380	10/16/2017	10/17/17 13:11	
Lead	1.1	1.0	1	B7J0380	10/16/2017	10/17/17 13:11	
Molybdenum	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:11	
Nickel	4.9	1.0	1	B7J0380	10/16/2017	10/17/17 13:11	
Selenium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:11	
Silver	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:11	
Thallium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:11	
Vanadium	14	1.0	1	B7J0380	10/16/2017	10/17/17 13:11	
Zinc	19	1.0	-	B7J0380	10/16/2017	10/17/17 13:11	

▼
4
EFA
vapor)
Cold
AA A
ý
dercury by AA
₹

Mercury by AA (Cold Vapor) EPA 7471A	1					7	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0398	10/17/2017	10/17/17 16:55	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0280	B7J0280 10/13/2017	10/13/17 15:21	
Surrogate: 4-Bromofluorobenzene	83.2 %	50 - 138		B7J0280	10/13/2017	10/13/17 15:21	

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	3.9	1.0	1	B7J0430	10/16/2017	10/17/17 08:55	
ORO	4.0	1.0	1	B7J0430	10/16/2017	10/17/17 08:55	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB19-5.0

Lab ID: 1703641-31

Diesel Range Organics by EPA 8015B

Notes 10/17/17 08:55 Date/Time Analyzed 10/16/2017 Prepared B7J0430 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result 91.0% Surrogate: p-Terphenyl

Analyst: TKT

Analyte

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB13-0.5 Lab ID: 1703641-32

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0380	10/16/2017	10/17/17 13:14	
Arsenic	8.4	1.0	1	B7J0380	10/16/2017	10/17/17 13:14	
Barium	100	1.0	1	B7J0380	10/16/2017	10/17/17 13:14	
Beryllium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:14	
Cadmium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:14	
Chromium	15	1.0	1	B7J0380	10/16/2017	10/17/17 13:14	
Cobalt	5.5	1.0	1	B7J0380	10/16/2017	10/17/17 13:14	
Copper	34	2.0	1	B7J0380	10/16/2017	10/17/17 13:14	
Lead	42	1.0	1	B7J0380	10/16/2017	10/17/17 13:14	
Molybdenum	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:14	
Nickel	13	1.0	1	B7J0380	10/16/2017	10/17/17 13:14	
Selenium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:14	
Silver	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:14	
Thallium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:14	
Vanadium	27	1.0	1	B7J0380	10/16/2017	10/17/17 13:14	
Zinc	210	1.0	1	B7J0380	10/16/2017	10/17/17 13:14	

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A	1					7	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.62	0.10	1	B710398	10/17/2017	10/17/17 16:57	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0280	10/13/2017	10/13/17 15:39	
Surrogate: 4-Bromofluorobenzene 109	% 60	50 - 138		B710280	10/13/2017	10/13/17 15:39	

Diesel Range Organics by EPA 8015B

					1	Allalyst. TIVI
Result	PQL				Date/Time	
Analyte (mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO 350	100	50	B7J0430	10/16/2017	10/17/17 14:21	
ORO 1200	100	50	B7J0430	10/16/2017	10/17/17 14:21	

Page 66 of 140

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB13-0.5

Lab ID: 1703641-32

B
8015B
EPA
ics by
rgani
ge O
Range
Diesel

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: p-Terphenyl 0%	%	38 - 145		B7J0430	10/16/2017	10/17/17 14:21	S4

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB13-2.5 Lab ID: 1703641-33

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0380	10/16/2017	10/17/17 13:17	
Arsenic	3.7	1.0	1	B7J0380	10/16/2017	10/17/17 13:17	
Barium	47	1.0	1	B7J0380	10/16/2017	10/17/17 13:17	
Beryllium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:17	
Cadmium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:17	
Chromium	9.3	1.0	1	B7J0380	10/16/2017	10/17/17 13:17	
Cobalt	4.9	1.0	1	B7J0380	10/16/2017	10/17/17 13:17	
Copper	6.3	2.0	1	B7J0380	10/16/2017	10/17/17 13:17	
Lead	6.3	1.0	1	B7J0380	10/16/2017	10/17/17 13:17	
Molybdenum	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:17	
Nickel	7.4	1.0	1	B7J0380	10/16/2017	10/17/17 13:17	
Selenium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:17	
Silver	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:17	
Thallium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:17	
Vanadium	22	1.0	1	B7J0380	10/16/2017	10/17/17 13:17	
Zinc	31	1.0	-	B7J0380	10/16/2017	10/17/17 13:17	

Mercury by AA (Cold Vapor) EPA 7471A	1					ł	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0398	10/17/2017	10/17/17 16:59	

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	N Q	0.10	1	B710398	10/17/2017	10/17/17 16:59	
Gasoline Range Organics by EPA 8015B (Modified)	(Modified)						Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0310	B7J0310 10/13/2017	10/13/17 20:53	
Surrogate: 4-Bromofluorobenzene 113 %		50 - 138		B7J0310	B7J0310 10/13/2017	10/13/17 20:53	

Diesel Kange Organics by EPA 8015B						,	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	6.9	1.0	1	B7J0430	10/16/2017	10/17/17 13:33	
ORO	8.4	1.0	1	B7J0430	10/16/2017	10/17/17 13:33	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB13-2.5

Lab ID: 1703641-33

Diesel Range Organics by EPA 8015B

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: n-Ternhewl	18 %	38 - 145		B710430	10/16/2017	10/17/17 13.33	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB13-5.0 Lab ID: 1703641-34

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0380	10/16/2017	10/17/17 13:20	
Arsenic	2.8	1.0	1	B7J0380	10/16/2017	10/17/17 13:20	
Barium	25	1.0	1	B7J0380	10/16/2017	10/17/17 13:20	
Beryllium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:20	
Cadmium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:20	
Chromium	6.7	1.0	1	B7J0380	10/16/2017	10/17/17 13:20	
Cobalt	3.1	1.0	1	B7J0380	10/16/2017	10/17/17 13:20	
Copper	2.0	2.0	1	B7J0380	10/16/2017	10/17/17 13:20	
Lead	1.2	1.0	1	B7J0380	10/16/2017	10/17/17 13:20	
Molybdenum	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:20	
Nickel	4.0	1.0	1	B7J0380	10/16/2017	10/17/17 13:20	
Selenium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:20	
Silver	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:20	
Thallium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:20	
Vanadium	17	1.0	1	B7J0380	10/16/2017	10/17/17 13:20	
Zinc	15	1.0	1	B7J0380	10/16/2017	10/17/17 13:20	

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A						1	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0398	10/17/2017	10/17/17 17:01	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

Analvie	Result (m9/k9)	JÖd.	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
or frame,	(9w 8)	(S., S)		Toma C	no mdor r	, mm , 200	
Gasoline Range Organics	ND	1.0	1	B7J0310	10/13/2017	10/13/17 21:12	
Surrogate: 4-Bromofluorobenzene 114 %	0	50 - 138		B7J0310	10/13/2017	10/13/17 21:12	

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	6.7	1.0	1	B7J0430	10/16/2017	10/17/17 09:40	
ORO	6.7	1.0	1	B7J0430	10/16/2017	10/17/17 09:40	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB13-5.0

Lab ID: 1703641-34

Diesel Range Organics by EPA 8015B

Analyst: TKT Notes Date/Time Analyzed Prepared Batch Dilution (mg/kg) PQL (mg/kg) Result

10/17/17 09:40 10/16/2017 B7J0430 38 - 145 57.3 % Surrogate: p-Terphenyl Analyte

Page 71 of 140

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB8-0.5 Lab ID: 1703641-35

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0380	10/16/2017	10/17/17 13:23	
Arsenic	5.0	1.0	1	B7J0380	10/16/2017	10/17/17 13:23	
Barium	100	1.0	1	B7J0380	10/16/2017	10/17/17 13:23	
Beryllium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:23	
Cadmium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:23	
Chromium	11	1.0	1	B7J0380	10/16/2017	10/17/17 13:23	
Cobalt	6.1	1.0	-	B7J0380	10/16/2017	10/17/17 13:23	
Copper	42	2.0	1	B7J0380	10/16/2017	10/17/17 13:23	
Lead	29	1.0	1	B7J0380	10/16/2017	10/17/17 13:23	
Molybdenum	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:23	
Nickel	15	1.0	1	B7J0380	10/16/2017	10/17/17 13:23	
Selenium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:23	
Silver	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:23	
Thallium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:23	
Vanadium	27	1.0	1	B7J0380	10/16/2017	10/17/17 13:23	
Zinc	170	1.0	-	B7J0380	10/16/2017	10/17/17 13:23	

I A
4
F A
apor)
Cold
AA V
Š.
ercury
Ne.

Mercury by AA (Cold Vapor) EPA 7471A						,	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.21	0.10	1	B710398	10/17/2017	10/17/17 17:03	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0310	B7J0310 10/13/2017	10/13/17 21:30	
Surrogate: 4-Bromoftuorobenzene 54.	54.4%	50 - 138		B7J0310	10/13/2017	10/13/17 21:30	

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	180	50	50	B7J0430	10/16/2017	10/17/17 14:05	
ORO	280	50	50	B7J0430	10/16/2017	10/17/17 14:05	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB8-0.5

Lab ID: 1703641-35

Diesel Range Organics by EPA 8015B

Analyte

Analyst: TKT Notes **S**4 10/17/17 14:05 Date/Time Analyzed 10/16/2017 Prepared B7J0430 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result %0 Surrogate: p-Terphenyl

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB8-2.5

Lab ID: 1703641-36

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	_	B7J0380	10/16/2017	10/17/17 13:26	
Arsenic	2.9	1.0	_	B7J0380	10/16/2017	10/17/17 13:26	
Barium	34	1.0	_	B7J0380	10/16/2017	10/17/17 13:26	
Beryllium	ND	1.0	_	B7J0380	10/16/2017	10/17/17 13:26	
Cadmium	ND	1.0	_	B7J0380	10/16/2017	10/17/17 13:26	
Chromium	6.9	1.0	-	B7J0380	10/16/2017	10/17/17 13:26	
Cobalt	3.4	1.0	_	B7J0380	10/16/2017	10/17/17 13:26	
Copper	3.5	2.0	1	B7J0380	10/16/2017	10/17/17 13:26	
Lead	1.4	1.0	_	B7J0380	10/16/2017	10/17/17 13:26	
Molybdenum	ND	1.0	_	B7J0380	10/16/2017	10/17/17 13:26	
Nickel	4.6	1.0	1	B7J0380	10/16/2017	10/17/17 13:26	
Selenium	ND	1.0	_	B7J0380	10/16/2017	10/17/17 13:26	
Silver	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:26	
Thallium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:26	
Vanadium	15	1.0	_	B7J0380	10/16/2017	10/17/17 13:26	
Zinc	18	1.0	_	B7J0380	10/16/2017	10/17/17 13:26	
Mercury by AA (Cold Vapor) EPA 7471A	_					7	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0398	10/17/2017	10/17/17 17:05	
Gasoline Range Organics by EPA 8015B (Modified)	(Modified)						Analyst: VW
Amoltoto	Result	TOd	Dilution	Dotok	Decorated	Date/Time	Notes
Sulary to	(Sv/SIII)	(III)	Dinuid	Dateil	richarea	randin zeu	MOLES
Gasoline Range Organics	ND	1.0	1	B7J0310	10/13/2017	10/13/17 21:49	
Surrogate: 4-Bromofluorobenzene 110 %	\ 0	50 - 138		B7J0310	10/13/2017	10/13/17 21:49	
Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	4.8	1.0		B7J0430	10/16/2017	10/17/17 10:26	
ORO	5.0	1.0	_	B7J0430	10/16/2017	10/1//1/ 10:26	

Page 74 of 140

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB8-2.5

Lab ID: 1703641-36

Diesel Range Organics by EPA 8015B

Notes 10/17/17 10:26 Date/Time Analyzed 10/16/2017 Prepared B7J0430 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result 85.8 % Surrogate: p-Terphenyl Analyte

Analyst: TKT

Page 75 of 140

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB8-5.0 Lab ID: 1703641-37

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL	:	,		Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0380	10/16/2017	10/17/17 13:35	
Arsenic	2.9	1.0	1	B7J0380	10/16/2017	10/17/17 13:35	
Barium	56	1.0	1	B7J0380	10/16/2017	10/17/17 13:35	
Beryllium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:35	
Cadmium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:35	
Chromium	8.9	1.0	1	B7J0380	10/16/2017	10/17/17 13:35	
Cobalt	3.1	1.0	1	B7J0380	10/16/2017	10/17/17 13:35	
Copper	3.1	2.0	1	B7J0380	10/16/2017	10/17/17 13:35	
Lead	2.0	1.0	1	B7J0380	10/16/2017	10/17/17 13:35	
Molybdenum	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:35	
Nickel	3.9	1.0	1	B7J0380	10/16/2017	10/17/17 13:35	
Selenium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:35	
Silver	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:35	
Thallium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:35	
Vanadium	19	1.0	1	B7J0380	10/16/2017	10/17/17 13:35	
Zinc	15	1.0	-	B7J0380	10/16/2017	10/17/17 13:35	

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A	1					7	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0398	10/17/2017	10/17/17 17:07	

Gasoline Range Organics by EPA 8015B (Modified)

Gasoline Range Organics by EPA 8	EPA 8015B (Modified)						Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0349	B7J0349 10/14/2017	10/14/17 22:57	
Surrogate: 4-Bromofluorobenzene	% 60 <i>I</i>	50 - 138		B7J0349	10/14/2017	10/14/17 22:57	

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	3.7	1.0	1	B7J0430	10/16/2017	10/17/17 10:41	
ORO	3.7	1.0	1	B7J0430	10/16/2017	10/17/17 10:41	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB8-5.0

Lab ID: 1703641-37

Diesel Range Organics by EPA 8015B

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: p-Terphenyl	112 %	38 - 145		B7J0430	10/16/2017	10/17/17 10:41	

Analyst: TKT

Page 77 of 140

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB12-0.5 Lab ID: 1703641-38

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0380	10/16/2017	10/17/17 13:38	
Arsenic	5.4	1.0	1	B7J0380	10/16/2017	10/17/17 13:38	
Barium	140	1.0	1	B7J0380	10/16/2017	10/17/17 13:38	
Beryllium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:38	
Cadmium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:38	
Chromium	18	1.0	1	B7J0380	10/16/2017	10/17/17 13:38	
Cobalt	6.3	1.0	1	B7J0380	10/16/2017	10/17/17 13:38	
Copper	52	2.0	1	B7J0380	10/16/2017	10/17/17 13:38	
Lead	38	1.0	1	B7J0380	10/16/2017	10/17/17 13:38	
Molybdenum	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:38	
Nickel	16	1.0	1	B7J0380	10/16/2017	10/17/17 13:38	
Selenium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:38	
Silver	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:38	
Thallium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:38	
Vanadium	78	1.0	1	B7J0380	10/16/2017	10/17/17 13:38	
Zinc	200	1.0		B7J0380	10/16/2017	10/17/17 13:38	

Mercury by AA (Cold Vapor) EPA 7471A

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.34	0.10	1	B7J0398	10/17/2017	10/17/17 17:08	

Analyst: KEK

Analyst: VW

Gasoline Range Organics by EPA 8015B (Modified)

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0310	10/13/2017	B7J0310 10/13/2017 10/13/17 22:25	
Surrogate: 4-Bromofluorobenzene	% II	50 - 138		B7J0310	10/13/2017	10/13/17 22:25	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						A	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	180	100	50	B7J0430	10/16/2017	10/17/17 13:49	
ORO	420	100	50	B7J0430	10/16/2017	10/17/17 13:49	

Page 78 of 140

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB12-0.5

Lab ID: 1703641-38

Diesel Range Organics by EPA 8015B				
	Result	PQL		
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: p-Terphenyl 0%	9	38 - 145		B7J0430	10/16/2017	10/17/17 13:49	S4

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB12-2.5 Lab ID: 1703641-39

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0380	10/16/2017	10/17/17 13:41	
Arsenic	3.4	1.0	1	B7J0380	10/16/2017	10/17/17 13:41	
Barium	30	1.0	1	B7J0380	10/16/2017	10/17/17 13:41	
Beryllium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:41	
Cadmium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:41	
Chromium	7.9	1.0	1	B7J0380	10/16/2017	10/17/17 13:41	
Cobalt	5.6	1.0	1	B7J0380	10/16/2017	10/17/17 13:41	
Copper	ND	2.0	1	B7J0380	10/16/2017	10/17/17 13:41	
Lead	1.2	1.0	1	B7J0380	10/16/2017	10/17/17 13:41	
Molybdenum	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:41	
Nickel	3.1	1.0	1	B7J0380	10/16/2017	10/17/17 13:41	
Selenium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:41	
Silver	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:41	
Thallium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:41	
Vanadium	28	1.0	1	B7J0380	10/16/2017	10/17/17 13:41	
Zinc	13	1.0	1	B7J0380	10/16/2017	10/17/17 13:41	

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A						7	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0398	10/17/2017	10/17/17 17:10	

Gasoline Range Organics by EPA 8015B (Modified)

Gasoline Range Organics by EPA 80	EPA 8015B (Modified)						Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0310	10/13/2017	B7J0310 10/13/2017 10/13/17 22:44	
Surrogate: 4-Bromofluorobenzene	110 %	50 - 138		B7J0310	10/13/2017	10/13/17 22:44	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	5.7	1.0	1	B7J0430	10/16/2017	10/17/17 09:55	
ORO	5.7	1.0	1	B7J0430	10/16/2017	10/17/17 09:55	

Page 80 of 140

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB12-2.5

Lab ID: 1703641-39

Diesel Range Organics by EPA 8015B							Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: n-Ternhem! 94.	94.9 %	38 - 145		B710430	B710430 10/16/2017	10/17/17 00:55	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB12-5.0 Lab ID: 1703641-40

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0380	10/16/2017	10/17/17 13:45	
Arsenic	3.7	1.0	1	B7J0380	10/16/2017	10/17/17 13:45	
Barium	46	1.0	1	B7J0380	10/16/2017	10/17/17 13:45	
Beryllium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:45	
Cadmium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:45	
Chromium	8.5	1.0	1	B7J0380	10/16/2017	10/17/17 13:45	
Cobalt	4.6	1.0	1	B7J0380	10/16/2017	10/17/17 13:45	
Copper	4.7	2.0	1	B7J0380	10/16/2017	10/17/17 13:45	
Lead	1.6	1.0	1	B7J0380	10/16/2017	10/17/17 13:45	
Molybdenum	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:45	
Nickel	0.9	1.0	1	B7J0380	10/16/2017	10/17/17 13:45	
Selenium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:45	
Silver	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:45	
Thallium	ND	1.0	1	B7J0380	10/16/2017	10/17/17 13:45	
Vanadium	19	1.0	1	B7J0380	10/16/2017	10/17/17 13:45	
Zinc	23	1.0	1	B7J0380	10/16/2017	10/17/17 13:45	

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A						1	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.17	0.10	1	B7J0398	10/17/2017	10/17/17 17:12	

Gasoline Range Organics by EPA 8015B (Modified)

Gasoline Range Organics by EPA 8015	EPA 8015B (Modified)						Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0310	B7J0310 10/13/2017	10/13/17 23:02	
Surrogate: 4-Bromofluorobenzene	% 011	50 - 138		B7J0310	10/13/2017	10/13/17 23:02	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	6.4	1.0	1	B7J0430	10/16/2017	10/17/17 13:17	
ORO	9.9	1.0	1	B7J0430	10/16/2017	10/17/17 13:17	

Page 82 of 140

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB12-5.0

Lab ID: 1703641-40

Diesel Range Organics by EPA 8015B

Notes 10/17/17 13:17 Date/Time Analyzed 10/16/2017 Prepared B7J0430 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result % 00I Surrogate: p-Terphenyl Analyte

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB17-0.5 Lab ID: 1703641-41

Title 22 Metals by ICP-AES EPA 6010B

Analyst: GO Date/Time PQL Result

Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0381	10/16/2017	10/17/17 12:47	
Arsenic	1.4	1.0	1	B7J0381	10/16/2017	10/17/17 12:47	
Barium	75	1.0	1	B7J0381	10/16/2017	10/17/17 12:47	
Beryllium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 12:47	
Cadmium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 12:47	
Chromium	14	1.0	1	B7J0381	10/16/2017	10/17/17 12:47	
Cobalt	4.0	1.0	1	B7J0381	10/16/2017	10/17/17 12:47	
Copper	16	2.0	1	B7J0381	10/16/2017	10/17/17 12:47	
Lead	51	1.0	1	B7J0381	10/16/2017	10/17/17 12:47	
Molybdenum	ND	1.0	1	B7J0381	10/16/2017	10/17/17 12:47	
Nickel	10	1.0	1	B7J0381	10/16/2017	10/17/17 12:47	
Selenium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 12:47	
Silver	ND	1.0	1	B7J0381	10/16/2017	10/17/17 12:47	
Thallium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 12:47	
Vanadium	22	1.0	1	B7J0381	10/16/2017	10/17/17 12:47	
Zinc	250	1.0	1	B7J0381	10/16/2017	10/17/17 12:47	

Mercury by AA (Cold Vapor) EPA 7471A

Analyst: KEK Notes 10/17/17 17:21 Analyzed Date/Time 10/17/2017 Prepared B7J0399 Batch Dilution (mg/kg) PQL 0.10 (mg/kg) Result 0.73 Mercury Analyte

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

Notes 10/13/17 17:30 10/13/17 17:30 Analyzed Date/Time 10/13/2017 10/13/2017 Prepared B7J0310 Batch Dilution 50 - 138 (mg/kg) PQL (mg/kg) Result 9 105 % Surrogate: 4-Bromofluorobenzene Gasoline Range Organics Analyte

Diesel Range Organics by EPA 8015B						,	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	1400	100	50	B7J0491	10/17/2017	10/18/17 14:02	
ORO	3400	100	50	B7J0491	10/17/2017	10/18/17 14:02	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB17-0.5 Lab ID: 1703641-41

Diesel Range Organics by EPA 8015B

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: p-Terphenyl 09	%6	38 - 145		B7J0491	10/17/2017	10/18/17 14:02	S4

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB17-2.5

Lab ID: 1703641-42

	Result	POL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0381	10/16/2017	10/17/17 12:50	
Arsenic	1.3	1.0	1	B7J0381	10/16/2017	10/17/17 12:50	
Barium	46	1.0	-	B7J0381	10/16/2017	10/17/17 12:50	
Beryllium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 12:50	
Cadmium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 12:50	
Chromium	9.1	1.0	1	B7J0381	10/16/2017	10/17/17 12:50	
Cobalt	4.9	1.0	1	B7J0381	10/16/2017	10/17/17 12:50	
Copper	6.0	2.0	1	B7J0381	10/16/2017	10/17/17 12:50	
Lead	ND	1.0	1	B7J0381	10/16/2017	10/17/17 12:50	
Molybdenum	ND	1.0	1	B7J0381	10/16/2017	10/17/17 12:50	
Nickel	6.7	1.0	1	B7J0381	10/16/2017	10/17/17 12:50	
Selenium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 12:50	
Silver	ND	1.0	1	B7J0381	10/16/2017	10/17/17 12:50	
Thallium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 12:50	
Vanadium	20	1.0	1	B7J0381	10/16/2017	10/17/17 12:50	
Zinc	24	1.0	-	B7J0381	10/16/2017	10/17/17 12:50	
Mercury by AA (Cold Vapor) EPA 7471A	4 7471A					7	Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	ND	0.10	-	B7J0399	10/17/2017	10/17/17 17:29	
Gasoline Range Organics by EPA 8015B (Modified)	. 8015B (Modified)	(Analyst: VW
Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0310	10/13/2017	10/13/17 17:49	
Surrogate: 4-Bromofluorobenzene	80.1%	50 - 138		B7J0310	10/13/2017	10/13/17 17:49	
Diesel Range Organics by EPA 8015B	15B						Analyst: TKT
Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Can	=	0	-	101010	7100/21/01	10/18/17 12:52	
DRO	9.6	1.0		B7J0491	10/17/2017	10/18/17 12:52	
	1		T.	:			

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB17-2.5

Lab ID: 1703641-42

Diesel Range Organics by EPA 8015B

	10/18/17 12:52	10/17/2017	B7J0491		38 - 145	% 011	Surrogate: p-Terphenyl
Notes	Analyzed	Prepared	Batch	Dilution	(mg/kg)	(mg/kg)	Analyte
	Date/Time				PQL	Result	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB17-5.0 Lab ID: 1703641-43

Title 22 Metals by ICP-AES EPA 6010B	

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0381	10/16/2017	10/17/17 12:58	
Arsenic	1.0	1.0	1	B7J0381	10/16/2017	10/17/17 12:58	
Barium	51	1.0	-	B7J0381	10/16/2017	10/17/17 12:58	
Beryllium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 12:58	
Cadmium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 12:58	
Chromium	8.5	1.0	1	B7J0381	10/16/2017	10/17/17 12:58	
Cobalt	5.1	1.0	1	B7J0381	10/16/2017	10/17/17 12:58	
Copper	5.3	2.0	1	B7J0381	10/16/2017	10/17/17 12:58	
Lead	ND	1.0	1	B7J0381	10/16/2017	10/17/17 12:58	
Molybdenum	ND	1.0	1	B7J0381	10/16/2017	10/17/17 12:58	
Nickel	9.9	1.0	1	B7J0381	10/16/2017	10/17/17 12:58	
Selenium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 12:58	
Silver	N	1.0	1	B7J0381	10/16/2017	10/17/17 12:58	
Thallium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 12:58	
Vanadium	16	1.0	1	B7J0381	10/16/2017	10/17/17 12:58	
Zinc	24	1.0	1	B7J0381	10/16/2017	10/17/17 12:58	

71 / 1 / 1 / 1 / 1 / 1	10/17/2017	B710399	-	0.10	0.10	Mercury
Analyzec	Prepared	Batch	Dilution	(mg/kg)	(mg/kg)	Analyte
Date/Tim				JQ4	Result	

Mercury by AA (Cold Vapor) EPA 7471A

Analyst: KEK

	Meant	17				Date/ HIIIc	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.10	0.10	1	B7J0399	B7J0399 10/17/2017	10/17/17 17:31	
Gasoline Range Organics by EPA 8015B (Modified	(Modified)						Analyst: VW

(manuscrip) = 3.2.2.2.1.2.1.2.2.2.2.2.2.2.2.2.2.2.2.2.	(taning Sc. 1 11
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0310	B7J0310 10/13/2017	10/13/17 18:07	
Surrogate: 4-Bromofluorobenzene	% <i>201</i>	50 - 138		B7J0310	B7J0310 10/13/2017	10/13/17 18:07	

Diesel Range Organics by EPA 8015B						,	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	6.7	1.0	1	B7J0491	10/17/2017	10/18/17 11:08	
ORO	6.2	1.0	1	B7J0491	10/17/2017	10/18/17 11:08	

Page 88 of 140

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB17-5.0

Lab ID: 1703641-43

Diesel Range Organics by EPA 8015B

	10/18/17 11:08	10/17/2017	B7J0491		38 - 145	90.7 %	Surrogate: p-Terphenyl
Notes	Analyzed	Prepared	Batch	Dilution	(mg/kg)	(mg/kg)	Analyte
	Date/Time				PQL	Result	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB18-0.5 Lab ID: 1703641-44

Title 22 Metals by ICP-AES EPA 6010B

Analyst: GO

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	_	B7J0381	10/16/2017	10/17/17 12:59	
Arsenic	2.5	1.0	1	B7J0381	10/16/2017	10/17/17 12:59	
Barium	66	1.0	1	B7J0381	10/16/2017	10/17/17 12:59	
Beryllium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 12:59	
Cadmium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 12:59	
Chromium	35	1.0	1	B7J0381	10/16/2017	10/17/17 12:59	
Cobalt	7.3	1.0	1	B7J0381	10/16/2017	10/17/17 12:59	
Copper	100	2.0	1	B7J0381	10/16/2017	10/17/17 12:59	
Lead	33	1.0	1	B7J0381	10/16/2017	10/17/17 12:59	
Molybdenum	3.5	1.0	1	B7J0381	10/16/2017	10/17/17 12:59	
Nickel	32	1.0	1	B7J0381	10/16/2017	10/17/17 12:59	
Selenium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 12:59	
Silver	ND	1.0	1	B7J0381	10/16/2017	10/17/17 12:59	
Thallium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 12:59	
Vanadium	23	1.0	1	B7J0381	10/16/2017	10/17/17 12:59	
Zinc	150	1.0	-	B7J0381	10/16/2017	10/17/17 12:59	
Mercury by AA (Cold Vapor) EPA 7471A	71A					7	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.23	0.10	1	B7J0399	10/17/2017	10/17/17 17:33	
Gasoline Range Organics by EPA 801.	EPA 8015B (Modified)	•					Analyst: VW
Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0310	10/13/2017	10/13/17 18:25	
Surrogate: 4-Bromofluorobenzene	112 %	50 - 138		B7J0310	10/13/2017	10/13/17 18:25	
Diesel Range Organics by EPA 8015B						,	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	110	25	25	B7J0491	10/17/2017	10/18/17 13:27	
ORO	280	25	25	B7J0491	10/17/2017	10/18/17 13:27	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB18-0.5

Lab ID: 1703641-44

Diesel Range Organics by EPA 8015B

Notes **S**4 10/18/17 13:27 Analyzed Date/Time 10/17/2017 Prepared B7J0491 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result %0 Surrogate: p-Terphenyl Analyte

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB18-2.5 Lab ID: 1703641-45

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0381	10/16/2017	10/17/17 13:00	
Arsenic	2.1	1.0	1	B7J0381	10/16/2017	10/17/17 13:00	
Barium	28	1.0	1	B7J0381	10/16/2017	10/17/17 13:00	
Beryllium	N	1.0	1	B7J0381	10/16/2017	10/17/17 13:00	
Cadmium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:00	
Chromium	7.0	1.0	1	B7J0381	10/16/2017	10/17/17 13:00	
Cobalt	3.3	1.0	1	B7J0381	10/16/2017	10/17/17 13:00	
Copper	3.1	2.0	1	B7J0381	10/16/2017	10/17/17 13:00	
Lead	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:00	
Molybdenum	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:00	
Nickel	4.5	1.0	1	B7J0381	10/16/2017	10/17/17 13:00	
Selenium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:00	
Silver	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:00	
Thallium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:00	
Vanadium	16	1.0	1	B7J0381	10/16/2017	10/17/17 13:00	
Zinc	16	1.0	1	B7J0381	10/16/2017	10/17/17 13:00	

Mercury by AA (Cold Vapor) EPA 7471A

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0399	10/17/2017	10/17/17 17:35	

Analyst: KEK

Analyst: VW

Gasoline Range Organics by EPA 8015B (Modified)

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0310	10/13/2017	10/13/17 18:44	
Surrogate: 4-Bromofluorobenzene	112 %	50 - 138		B7J0310	10/13/2017	10/13/17 18:44	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	6.1	1.0	1	B7J0491	10/17/2017	10/18/17 11:26	
ORO	5.9	1.0	1	B7J0491	10/17/2017	10/18/17 11:26	

Page 92 of 140

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB18-2.5

Lab ID: 1703641-45

Diesel Range Organics by EPA 8015B

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: p-Terphenyl	137 %	38 - 145		B7J0491	10/17/2017	10/18/17 11:26	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB18-5.0 Lab ID: 1703641-46

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0381	10/16/2017	10/17/17 13:01	
Arsenic	2.2	1.0	1	B7J0381	10/16/2017	10/17/17 13:01	
Barium	35	1.0	1	B7J0381	10/16/2017	10/17/17 13:01	
Beryllium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:01	
Cadmium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:01	
Chromium	7.5	1.0	1	B7J0381	10/16/2017	10/17/17 13:01	
Cobalt	4.3	1.0	1	B7J0381	10/16/2017	10/17/17 13:01	
Copper	3.9	2.0	1	B7J0381	10/16/2017	10/17/17 13:01	
Lead	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:01	
Molybdenum	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:01	
Nickel	5.3	1.0	1	B7J0381	10/16/2017	10/17/17 13:01	
Selenium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:01	
Silver	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:01	
Thallium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:01	
Vanadium	17	1.0	1	B7J0381	10/16/2017	10/17/17 13:01	
Zinc	18	1.0	1	B7J0381	10/16/2017	10/17/17 13:01	

_
₹,
_
7471
7
٠.
⋖
EPA
Ξ
Ξ
┰
0
d
/apor
>
_
_
₹
Cold V
<u>5</u>
♦ (Cole
AA (Cole
AA (
AA (
by AA (Cole
y by AA ((
y by AA (
y by AA (
y by AA (
y by AA ((
y by AA (

Mercury by AA (Cold Vapor) EPA 7471A	1					,	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B710399	10/17/2017	10/17/17 17:40	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0310	10/13/2017	B7J0310 10/13/2017 10/13/17 19:02	
Surrogate: 4-Bromofluorobenzene	% 111	50 - 138		B7J0310	10/13/2017	10/13/17 19:02	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	11	1.0	1	B7J0491	10/17/2017	10/18/17 11:43	
ORO	8.6	1.0	1	B7J0491	10/17/2017	10/18/17 11:43	

Page 94 of 140

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB18-5.0

Lab ID: 1703641-46

Diesel Range Organics by EPA 8015B

Notes 10/18/17 11:43 Date/Time Analyzed 10/17/2017 Prepared B7J0491 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result % 6.06 Surrogate: p-Terphenyl Analyte

Analyst: TKT

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB23-0.5 Lab ID: 1703641-47

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0381	10/16/2017	10/17/17 13:02	
Arsenic	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:02	
Barium	24	1.0	1	B7J0381	10/16/2017	10/17/17 13:02	
Beryllium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:02	
Cadmium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:02	
Chromium	0.9	1.0	1	B7J0381	10/16/2017	10/17/17 13:02	
Cobalt	2.4	1.0	1	B7J0381	10/16/2017	10/17/17 13:02	
Copper	2.8	2.0	1	B7J0381	10/16/2017	10/17/17 13:02	
Lead	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:02	
Molybdenum	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:02	
Nickel	3.0	1.0	1	B7J0381	10/16/2017	10/17/17 13:02	
Selenium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:02	
Silver	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:02	
Thallium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:02	
Vanadium	14	1.0	1	B7J0381	10/16/2017	10/17/17 13:02	
Zinc	11	1.0	1	B7J0381	10/16/2017	10/17/17 13:02	

Mercury by AA (Cold Vapor) EPA 7471A

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0399	10/17/2017	10/17/17 17:42	

Analyst: KEK

Gasoline Range Organics by EPA 8015B (Modified)

Gasoline Range Organics by EPA 80151	EPA 8015B (Modified)						Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0310	10/13/2017	B7J0310 10/13/2017 10/13/17 19:21	
Surrogate: 4-Bromofluorobenzene 101	% 101	50 - 138		B7J0310		10/13/2017 10/13/17 19:21	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	14	1.0	1	B7J0491	10/17/2017	10/18/17 12:00	
ORO	12	1.0	1	B7J0491	10/17/2017	10/18/17 12:00	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB23-0.5

Lab ID: 1703641-47

Diesel Range Organics by EPA 8015B

	S	
	Notes	
Date/Time	Analyzed	00.21.71/8/101
	Prepared	10/17/2017
	Batch	B710491
	Dilution	
PQL	(mg/kg)	38 - 145
Result	(mg/kg)	144 %
	Analyte	Surrogate: n-Ternhemil

Analyst: TKT

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB23-2.5 Lab ID: 1703641-48

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0381	10/16/2017	10/17/17 13:03	
Arsenic	1.1	1.0	1	B7J0381	10/16/2017	10/17/17 13:03	
Barium	36	1.0	1	B7J0381	10/16/2017	10/17/17 13:03	
Beryllium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:03	
Cadmium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:03	
Chromium	8.4	1.0	1	B7J0381	10/16/2017	10/17/17 13:03	
Cobalt	4.2	1.0	1	B7J0381	10/16/2017	10/17/17 13:03	
Copper	5.9	2.0	1	B7J0381	10/16/2017	10/17/17 13:03	
Lead	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:03	
Molybdenum	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:03	
Nickel	5.7	1.0	1	B7J0381	10/16/2017	10/17/17 13:03	
Selenium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:03	
Silver	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:03	
Thallium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:03	
Vanadium	15	1.0	1	B7J0381	10/16/2017	10/17/17 13:03	
Zinc	20	1.0	1	B7J0381	10/16/2017	10/17/17 13:03	

V
7471
\mathbf{EPA}
/apor)
Cold V
) V
y by
[ercury

Mercury by AA (Cold Vapor) EPA 7471A						1	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.10	0.10	1	B7J0399	10/17/2017	10/17/17 17:44	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

77.1 V	Result	TÒd		1-7-0	ď	Date/Time	N
Analyte	(mg/kg)	(mg/kg)	Dilution	Баксп	rrepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0310	B7J0310 10/13/2017	10/13/17 19:39	
Surrogate: 4-Bromofluorobenzene 109 %	%	50 - 138		B7J0310	10/13/2017	10/13/17 19:39	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						<i>f</i>	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	6.3	1.0	1	B7J0491	10/17/2017	10/18/17 12:17	
ORO	7.1	1.0	1	B7J0491	10/17/2017	10/18/17 12:17	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB23-2.5

Lab ID: 1703641-48

Diesel Range Organics by EPA 8015B

Analyte

Analyst: TKT Notes 10/18/17 12:17 Analyzed Date/Time 10/17/2017 Prepared B7J0491 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result 141 % Surrogate: p-Terphenyl

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB23-5.0 Lab ID: 1703641-49

Fitle 22 Metals by ICP-AES EPA 6010B

Analyst: GO Notes 10/17/17 13:05 10/17/17 13:05 10/17/17 13:05 10/17/17 13:05 10/17/17 13:05 10/17/17 13:05 10/17/17 13:05 10/17/17 13:05 10/17/17 13:05 10/17/17 13:05 10/17/17 13:05 10/17/17 13:05 10/17/17 13:05 Date/Time Analyzed 10/16/2017 10/16/2017 10/16/2017 10/16/2017 10/16/2017 10/16/2017 10/16/2017 10/16/2017 10/16/2017 10/16/2017 10/16/2017 10/16/2017 10/16/2017 10/16/2017 Prepared B7J0381 Batch Dilution (mg/kg) PQL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 0.1 1.0 1.0 1.0 1.0 (mg/kg) Result B 8 \exists 8 4.0 8 2 8 5.8 2.9 2.6 15 28 Molybdenum Chromium Vanadium Antimony Beryllium Cadmium Selenium Arsenic **Thallium** Barium Copper Analyte Cobalt Nickel Silver Lead

Mercury by AA (Cold Vapor) EPA 7471A

Zinc

Analyst: KEK Notes 10/17/17 17:46 Analyzed Date/Time 10/17/2017 Prepared B7J0399 Batch Dilution (mg/kg) 0.10 PQL (mg/kg) Result 2 Mercury Analyte

10/17/17 13:05

10/16/2017

B7J0381

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0310	10/13/2017	10/13/17 19:58	
Surrogate: 4-Bromofluorobenzene 107 %	%	50 - 138		B7J0310	10/13/2017	10/13/17 19:58	

Diesel Range Organics by EPA 8015B

Analyst: TKT

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	8.7	1.0	1	B7J0491	10/17/2017	10/18/17 10:51	
ORO	9.7	1.0	1	B7J0491	10/17/2017	10/18/17 10:51	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB23-5.0

Lab ID: 1703641-49

Diesel Range Organics by EPA 8015B

Notes 10/18/17 10:51 Analyzed Date/Time 10/17/2017 Prepared B7J0491 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result % 80I Surrogate: p-Terphenyl Analyte

Analyst: TKT

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB2-2.5

Lab ID: 1703641-50

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0381	10/16/2017	10/17/17 13:06	
Arsenic	1.7	1.0	1	B7J0381	10/16/2017	10/17/17 13:06	
Barium	90	1.0	1	B7J0381	10/16/2017	10/17/17 13:06	
Beryllium	N	1.0	1	B7J0381	10/16/2017	10/17/17 13:06	
Cadmium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:06	
Chromium	7.9	1.0	1	B7J0381	10/16/2017	10/17/17 13:06	
Cobalt	4.0	1.0	1	B7J0381	10/16/2017	10/17/17 13:06	
Copper	5.2	2.0	1	B7J0381	10/16/2017	10/17/17 13:06	
Lead	5.8	1.0	1	B7J0381	10/16/2017	10/17/17 13:06	
Molybdenum	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:06	
Nickel	5.6	1.0	1	B7J0381	10/16/2017	10/17/17 13:06	
Selenium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:06	
Silver	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:06	
Thallium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:06	
Vanadium	15	1.0	1	B7J0381	10/16/2017	10/17/17 13:06	
Zinc	32	1.0	_	B7J0381	10/16/2017	10/17/17 13:06	
Mercury by AA (Cold Vapor) EPA 7471A	7471A					1	Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.16	0.10	1	B7J0399	10/17/2017	10/17/17 17:48	
Gasoline Range Organics by EPA	EPA 8015B (Modified)	(Analyst: VW
Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	QN	1.0		B7J0310	10/13/2017	10/13/17 20:16	
Surrogate: 4-Bromoftuorobenzene	112 %	50 - 138		B7J0310	10/13/2017	10/13/17 20:16	
Diesel Range Organics by EPA 8015B	(5B					,	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	8.7	1.0	1	B7J0491	10/17/2017	10/18/17 13:10	
ORO	13	1.0	1	B7J0491	10/17/2017	10/18/17 13:10	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB2-2.5

Lab ID: 1703641-50

Diesel Range Organics by EPA 8015B

	Notes	
Date/Time	Analyzed	10/18/17 13-10
	Prepared	10/17/2017
	Batch	B710491
	Dilution	
PQL	(mg/kg)	38 - 145
Result	(mg/kg)	75.3 %
	Analyte	Surrogate: n-Ternhemi

Analyst: TKT

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB2-5.0 Lab ID: 1703641-51

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	QN	2.0	1	B7J0381	10/16/2017	10/17/17 13:07	
Arsenic	3.5	1.0	1	B7J0381	10/16/2017	10/17/17 13:07	
Barium	25	1.0	1	B7J0381	10/16/2017	10/17/17 13:07	
Beryllium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:07	
Cadmium	1.2	1.0	1	B7J0381	10/16/2017	10/17/17 13:07	
Chromium	7.5	1.0	1	B7J0381	10/16/2017	10/17/17 13:07	
Cobalt	4.8	1.0	1	B7J0381	10/16/2017	10/17/17 13:07	
Copper	4.2	2.0	1	B7J0381	10/16/2017	10/17/17 13:07	
Lead	1.7	1.0	1	B7J0381	10/16/2017	10/17/17 13:07	
Molybdenum	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:07	
Nickel	9.6	1.0	1	B7J0381	10/16/2017	10/17/17 13:07	
Selenium	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:07	
Silver	ND	1.0	1	B7J0381	10/16/2017	10/17/17 13:07	
Thallium	N Q	1.0	1	B7J0381	10/16/2017	10/17/17 13:07	
Vanadium	15	1.0	1	B7J0381	10/16/2017	10/17/17 13:07	
Zinc	17	1.0	1	B7J0381	10/16/2017	10/17/17 13:07	

Mercury by AA (Cold Vapor) EPA 7471A	1						Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes

Analyte Mercury	(mg/kg)	mg/kg)	Dilution 1	Batch B7J0399	Prepared 10/17/2017	Analyzed 10/17/17 17:50	Notes
Gasoline Range Organics by EPA 8015B (Modified	(Modified)						Analyst: VW

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0310	10/13/2017	B7J0310 10/13/2017 10/13/17 20:35	
Surrogate: 4-Bromofluorobenzene	114 %	50 - 138		B7J0310	B7J0310 10/13/2017	10/13/17 20:35	
Diesel Range Organics by EPA 8015B							Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes

10/18/17 12:35 10/18/17 12:35

10/17/2017

B7J0491 B7J0491

1.0

8.1 8.3

DRO ORO

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB2-5.0

Lab ID: 1703641-51

Diesel Range Organics by EPA 8015B

Notes 10/18/17 12:35 Analyzed Date/Time 10/17/2017 Prepared B7J0491 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result 73.3 % Surrogate: p-Terphenyl Analyte

Analyst: TKT

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

QUALITY CONTROL SECTION

Title 22 Metals by ICP-AES EPA 6010B - Quality Control

Ľ.	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

% Rec RPD Limit Notes		Prepared: 10/16/2017 Analyzed: 10/17/2017																		Prepared: 10/16/2017 Analyzed: 10/17/2017	Analyzed: 10/17/2017 80 - 120	Analyzed: 10/17/2017 80 - 120 80 - 120	Analyzed: 10/17/2017 80 - 120 80 - 120 80 - 120	Analyzed: 10/17/2017 80 - 120 80 - 120 80 - 120 80 - 120	Analyzed: 10/17/2017 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120	Analyzed: 10/17/2017 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120	Analyzed: 10/17/2017 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120	Analyzed: 10/17/2017 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120	Analyzed: 10/17/2017 80 - 120 80 - 120	Analyzed: 10/17/2017 80 - 120 80 - 120	Analyzed: 10/17/2017 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120	Analyzed: 10/17/2017 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120	Analyzed: 10/17/2017 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120	Analyzed: 10/17/2017 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120	Analyzed: 10/17/2017 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120	Analyzed: 10/17/2017 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120	Prepared: 10/16/2017 Analyzed: 10/17/2017 92.5 80 - 120 93.5 80 - 120 95.0 80 - 120 92.1 80 - 120 94.9 80 - 120 94.9 80 - 120 94.9 80 - 120 94.9 80 - 120 95.0 80 - 120 95.0 80 - 120 95.4 80 - 120 95.6 80 - 120 95.6 80 - 120 91.3 80 - 120 91.3 80 - 120 91.3 80 - 120 91.8 80 - 120 91.8 80 - 120	Analyzed: 10/17/2017 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 81 - 120 82 - 120 83 - 120 80 - 120 81 - 120 82 - 120 83 - 120 84 - 120 85 - 120 86 - 120 87 - 120 88 - 120 88 - 120 89 - 120	Analyzed: 10/17/2017 80 - 120	Analyzed: 10/17/2017 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 81 - 120 82 - 120 83 - 98 48 - 101	Analyzed: 10/17/2017 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 81 - 120 82 - 120 83 - 98 48 - 101 25 - 131
% Rec		1: 10/16/2017																	1: 10/16/2017	92.5	93.5	95.0	92.1	90.2	94.9	94.4	92.8	95.0	95.4	91.3	9.68	92.6	94.8	93.9	8.16	1: 10/16/2017	68.4	6 98	600.9	4.6/	/8/
Source Result		Prepared																	Prepared																	Prepared	S	92062 6	23.691.0	72.6816	N N
Spike Level																				50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	641-01	125 000	125.000	125.000	125.000	125.000
MDL (mg/kg)			0.51	0.12	0.12	0.03	0.14	0.26	0.07	0.19	0.18	0.12	0.18	0.40	0.12	0.38	90.0	0.15		0.51	0.12	0.12	0.03	0.14	0.26	0.07	0.19	0.18	0.12	0.18	0.40	0.12	0.38	90.0	0.15	Source: 1703641-01	0.51	0.12	0.12	0.12	0.03
PQL (mg/kg)			2.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		2.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	9 1	2.0	0:1 -	1.0	0.1	1.0
Result (mg/kg)			ND	ND	ND	ND	ND	N	N	ND	ND	ND	ND	ND	ND	N	ND	ND		46,2293	46.7313	47.5238	46.0674	45.0805	47.4288	47.2101	46.4091	47.5108	47.6868	45.6636	44.7758	47.8175	47.3894	46.9669	45.8814		85 5382	111 456	111.430	166.942	98.3888
Analyte	Batch B7J0379 - EPA 3050B_S	Blank (B7J0379-BLK1)	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	LCS (B7J0379-BS1)	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	Matrix Spike (B7J0379-MS1)	Antimony	Arcanic	Ausenic	Barium	Beryllium

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Title 22 Metals by ICP-AES EPA 6010B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0379 - EPA 3050B_S (continued)

	memaca)									
Matrix Spike (B7J0379-MS1) - Continued	nued	S	Source: 1703641-01	641-01	Prepared:	10/16/2017	Prepared: 10/16/2017 Analyzed: 10/17/2017	//2017		
Cadmium	95.4847	1.0	0.14	125.000	0.168287	76.3	53 - 94			
Chromium	115.162	1.0	0.26	125.000	13.2773	81.5	45 - 113			
Cobalt	102.452	1.0	0.07	125.000	5.65825	77.4	51 - 97			
Copper	151.283	2.0	0.19	125.000	21.6896	104	51 - 113			
Lead	115.428	1.0	0.18	125.000	13.8384	81.3	33 - 127			
Molybdenum	103.279	1.0	0.12	125.000	ND	82.6	54 - 97			
Nickel	110.949	1.0	0.18	125.000	11.5540	79.5	46 - 102			
Selenium	98.5192	1.0	0.40	125.000	ND	78.8	52 - 93			
Silver	109.077	1.0	0.12	125.000	N	87.3	58 - 98			
Thallium	91.5100	1.0	0.38	125.000	ND	73.2	46 - 93			
Vanadium	120.486	1.0	90.0	125.000	23.0841	6.77	55 - 104			
Zinc	154.026	1.0	0.15	125.000	50.5551	82.8	26 - 118			
Matrix Spike Dup (B7J0379-MSD1)		S	Source: 1703641-01	641-01	Prepared:	10/16/2017	Prepared: 10/16/2017 Analyzed: 10/17/2017	/2017		
Antimony	93.2327	2.0	0.51	125.000	ND	74.6	33 - 98	8.61	20	
Arsenic	115.200	1.0	0.12	125.000	2.79076	6.68	48 - 101	3.30	20	
Barium	174.338	1.0	0.12	125.000	72.6816	81.3	25 - 131	4.33	20	
Beryllium	109.215	1.0	0.03	125.000	ND	87.4	56 - 97	10.4	20	
Cadmium	103.559	1.0	0.14	125.000	0.168287	82.7	53 - 94	8.11	20	
Chromium	126.520	1.0	0.26	125.000	13.2773	9.06	45 - 113	9.40	20	
Cobalt	110.255	1.0	0.07	125.000	5.65825	83.7	51 - 97	7.34	20	
Copper	149.962	2.0	0.19	125.000	21.6896	103	51 - 113	0.877	20	
Lead	121.817	1.0	0.18	125.000	13.8384	86.4	33 - 127	5.39	20	
Molybdenum	112.539	1.0	0.12	125.000	NO	0.06	54 - 97	8.58	20	
Nickel	119.986	1.0	0.18	125.000	11.5540	2.98	46 - 102	7.83	20	
Selenium	107.495	1.0	0.40	125.000	NO	0.98	52 - 93	8.71	20	
Silver	119.380	1.0	0.12	125.000	ND	95.5	58 - 98	9.02	20	
Thallium	100.374	1.0	0.38	125.000	ND	80.3	46 - 93	9.24	20	
Vanadium	129.178	1.0	90.0	125.000	23.0841	84.9	55 - 104	96.9	20	
Zinc	157.716	1.0	0.15	125.000	50.5551	85.7	26 - 118	2.37	20	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Title 22 Metals by ICP-AES EPA 6010B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD		
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes	

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Botoh B710380 - FPA 3050B S										
Blank (B7J0380-BLK1)					Prepared:	10/16/2017	Prepared: 10/16/2017 Analyzed: 10/17/2017	7/2017		
Antimony	N	2.0	0.51							
Arsenic	ND	1.0	0.12							
Barium	ND	1.0	0.12							
Beryllium	ND	1.0	0.03							
Cadmium	ND	1.0	0.14							
Chromium	ND	1.0	0.26							
Cobalt	ND	1.0	0.07							
Copper	ND	2.0	0.19							
Lead	N QN	1.0	0.18							
Molybdenum	N Q	1.0	0.12							
Nickel	ND	1.0	0.18							
Selenium	ND	1.0	0.40							
Silver	ND	1.0	0.12							
Thallium	ND	1.0	0.38							
Vanadium	ND	1.0	90.0							
Zinc	ND	1.0	0.15							
LCS (B7J0380-BS1)					Prepared:	10/16/2017	Prepared: 10/16/2017 Analyzed: 10/17/2017	7/2017		
Antimony	47.0305	2.0	0.51	50.0000		94.1	80 - 120			
Arsenic	46.2034	1.0	0.12	50.0000		92.4	80 - 120			
Barium	49.0116	1.0	0.12	50.0000		0.86	80 - 120			
Beryllium	50.0874	1.0	0.03	50.0000		100	80 - 120			
Cadmium	47.2200	1.0	0.14	50.0000		94.4	80 - 120			
Chromium	44.5935	1.0	0.26	50.0000		89.2	80 - 120			
Cobalt	48.2842	1.0	0.07	50.0000		9.96	80 - 120			
Copper	47.6718	2.0	0.19	50.0000		95.3	80 - 120			
Lead	47.6816	1.0	0.18	50.0000		95.4	80 - 120			
Molybdenum	47.2341	1.0	0.12	50.0000		94.5	80 - 120			
Nickel	46.7912	1.0	0.18	50.0000		93.6	80 - 120			
Selenium	45.8626	1.0	0.40	50.0000		91.7	80 - 120			
Silver	47.1944	1.0	0.12	50.0000		94.4	80 - 120			
Thallium	45.3317	1.0	0.38	50.0000		7.06	80 - 120			
Vanadium	48.4848	1.0	90.0	50.0000		0.76	80 - 120			
Zinc	47.9056	1.0	0.15	50.0000		8.56	80 - 120			
Matrix Spike (B7J0380-MS1)		Sc	Source: 1703641-21	41-21	Prepared:	10/16/2017	Prepared: 10/16/2017 Analyzed: 10/17/2017	7/2017		
Antimony	103.124	2.0	0.51	125.000	ND	82.5	33 - 98			
Arsenic	111.734	1.0	0.12	125.000	3.34353	86.7	48 - 101			
Barium	134.858	1.0	0.12	125.000	29.6164	84.2	25 - 131			
Beryllium	114.847	1.0	0.03	125.000	0.174839	91.7	26 - 97			
Cadmium	107.073	1.0	0.14	125.000	0.175724	85.5	53 - 94			
Chromium	105.960	1.0	0.26	125.000	6.59702	79.5	45 - 113			

Leighton Consulting, Inc.
17781 Cowan Street

Irvine, CA 92614

Project Number: POLA Berth 191-193, 11618.005
Report To: Brynn McCulloch

Reported: 10/19/2017

Title 22 Metals by ICP-AES EPA 6010B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0380 - EPA 3050B_S (continued)

Matrix Spike (B7J0380-MS1) - Continued	panu	9 1	Source: 1703641-21	541-21	Prepared:	10/16/2017	Prepared: 10/16/2017 Analyzed: 10/17/2017	7/2017	
Cobalt	109.839	1.0	0.07	125.000	3.43942	85.1	51 - 97		
Copper	114.968	2.0	0.19	125.000	2.96166	9.68	51 - 113		
Lead	107.460	1.0	0.18	125.000	1.77591	84.5	33 - 127		
Molybdenum	108.756	1.0	0.12	125.000	ND	87.0	54 - 97		
Nickel	109.287	1.0	0.18	125.000	4.54572	83.8	46 - 102		
Selenium	107.408	1.0	0.40	125.000	ND	85.9	52 - 93		
Silver	114.228	1.0	0.12	125.000	ND	91.4	58 - 98		
Thallium	103.067	1.0	0.38	125.000	ND	82.5	46 - 93		
Vanadium	122.976	1.0	90.0	125.000	13.2447	87.8	55 - 104		
Zinc	123.165	1.0	0.15	125.000	17.1458	84.8	26 - 118		
Matrix Spike Dup (B7J0380-MSD1)		3 2	Source: 1703641-21	541-21	Prepared:	10/16/2017	Prepared: 10/16/2017 Analyzed: 10/17/2017	7/2017	
Antimony	85.2524	2.0	0.51	125.000	ND	68.2	33 - 98	19.0	20
Arsenic	92.2532	1.0	0.12	125.000	3.34353	71.1	48 - 101	19.1	20
Barium	112.355	1.0	0.12	125.000	29.6164	66.2	25 - 131	18.2	20
Beryllium	95.0320	1.0	0.03	125.000	0.174839	75.9	56 - 97	18.9	20
Cadmium	90.7578	1.0	0.14	125.000	0.175724	72.5	53 - 94	16.5	20
Chromium	88.4502	1.0	0.26	125.000	6.59702	65.5	45 - 113	18.0	20
Cobalt	92.1372	1.0	0.07	125.000	3.43942	71.0	51 - 97	17.5	20
Copper	94.5574	2.0	0.19	125.000	2.96166	73.3	51 - 113	19.5	20
Lead	90.7600	1.0	0.18	125.000	1.77591	71.2	33 - 127	16.8	20
Molybdenum	90.4325	1.0	0.12	125.000	ND	72.3	54 - 97	18.4	20
Nickel	91.8061	1.0	0.18	125.000	4.54572	8.69	46 - 102	17.4	20
Selenium	88.6278	1.0	0.40	125.000	ND	6.07	52 - 93	19.2	20
Silver	95.4564	1.0	0.12	125.000	ND	76.4	58 - 98	17.9	20
Thallium	87.3198	1.0	0.38	125.000	ND	6.69	46 - 93	16.5	20
Vanadium	102.813	1.0	90.0	125.000	13.2447	71.7	55 - 104	17.9	20
Zinc	104.554	1.0	0.15	125.000	17.1458	6.69	26 - 118	16.3	20

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Title 22 Metals by ICP-AES EPA 6010B - Quality Control

				:	i					
	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0381 - EPA 3050B S										
I										
Blank (B7J0381-BLK1)					Prepared:	10/16/2017	Prepared: 10/16/2017 Analyzed: 10/17/2017	7/2017		
Antimony	ND	2.0	0.51							
Arsenic	Q Q	1.0	0.12							
Barium	ND	1.0	0.12							
Beryllium	ND	1.0	0.03							
Cadmium	ND	1.0	0.14							
Chromium	ND	1.0	0.26							
Cobalt	ND	1.0	0.07							
Copper	N	2.0	0.19							
Lead	N Q	1.0	0.18							
Molybdenum	N	1.0	0.12							
Nickel	N	1.0	0.18							
Selenium	N	1.0	0.40							
Silver	N	1.0	0.12							
Thallium	ND	1.0	0.38							
Vanadium	ND	1.0	90.0							
Zinc	ND	1.0	0.15							
LCS (B7J0381-BS1)					Prepared:	10/16/2017	Prepared: 10/16/2017 Analyzed: 10/17/2017	7/2017		
Antimony	47.1490	2.0	0.51	50.0000		94.3	80 - 120			
Arsenic	47.2644	1.0	0.12	50.0000		94.5	80 - 120			
Barium	49.7971	1.0	0.12	50.0000		9.66	80 - 120			
Beryllium	47.0830	1.0	0.03	50.0000		94.2	80 - 120			
Cadmium	47.5536	1.0	0.14	50.0000		95.1	80 - 120			
Chromium	49.6672	1.0	0.26	50.0000		99.3	80 - 120			
Cobalt	49.4810	1.0	0.07	50.0000		0.66	80 - 120			
Copper	48.1640	2.0	0.19	50.0000		96.3	80 - 120			
Lead	48.6745	1.0	0.18	50.0000		97.3	80 - 120			
Molybdenum	48.3511	1.0	0.12	50.0000		2.96	80 - 120			
Nickel	47.7093	1.0	0.18	50.0000		95.4	80 - 120			
Selenium	45.0212	1.0	0.40	50.0000		0.06	80 - 120			
Silver	48.6228	1.0	0.12	50.0000		97.2	80 - 120			
Thallium	48.5925	1.0	0.38	50.0000		97.2	80 - 120			
Vanadium	48.8791	1.0	90.0	50.0000		8.76	80 - 120			
Zinc	48.5428	1.0	0.15	50.0000		97.1	80 - 120			
Matrix Spike (B7J0381-MS1)		So	Source: 1703641-41	11-41	Prepared:	10/16/2017	Prepared: 10/16/2017 Analyzed: 10/17/2017	7/2017		
Antimony	82.9204	2.0	0.51	125.000	N	66.3	33 - 98			
Arsenic	95 2105	10	0 12	125 000	1 42955	75.0	48 - 101			
Barium	156.472	1.0	0.12	125.000	74.7185	65.4	25 - 131			
Beryllium	90.3796	1.0	0.03	125.000	QX	72.3	26 - 97			
Cadmium	84 6792	1.0	0.14	125.000	0.273155	67.5	53 - 94			
Chromium	99 3616	1.0	0.26	125 000	13 8810	68 4	45 - 113			
)	?	1	1)		; ;			

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Title 22 Metals by ICP-AES EPA 6010B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0381 - EPA 3050B_S (continued)

Matrix Spike (B7J0381-MS1) - Continued	inued	3 2	Source: 1703641-41	641-41	Prepared:	10/16/2017	Prepared: 10/16/2017 Analyzed: 10/17/2017	7/2017		
Cobalt	89.9234	1.0	0.07	125.000	3.99737	68.7	51 - 97			
opper	107.847	2.0	0.19	125.000	15.8790	73.6	51 - 113			
Lead	123.671	1.0	0.18	125.000	50.6071	58.5	33 - 127			
Molybdenum	89.8940	1.0	0.12	125.000	ND	71.9	54 - 97			
Nickel	93.4356	1.0	0.18	125.000	10.4888	66.4	46 - 102			
elenium	89.7774	1.0	0.40	125.000	ND	71.8	52 - 93			
Silver	97.8449	1.0	0.12	125.000	ND	78.3	86 - 85			
<u> Challium</u>	80.7193	1.0	0.38	125.000	ND	64.6	46 - 93			
Vanadium	107.243	1.0	90.0	125.000	21.9490	68.2	55 - 104			
Zinc	300.697	1.0	0.15	125.000	252.309	38.7	26 - 118			
Matrix Spike Dup (B7J0381-MSD1)		J 2	Source: 1703641-41	641-41	Prepared:	10/16/2017	Prepared: 10/16/2017 Analyzed: 10/17/2017	7/2017		
Antimony	76.4826	2.0	0.51	125.000	ND	61.2	33 - 98	8.08	20	
Arsenic	87.1824	1.0	0.12	125.000	1.42955	9.89	48 - 101	8.80	20	
Barium	145.655	1.0	0.12	125.000	74.7185	26.7	25 - 131	7.16	20	
Beryllium	83.6556	1.0	0.03	125.000	ND	6.99	26 - 97	7.73	20	
Cadmium	76.7280	1.0	0.14	125.000	0.273155	61.2	53 - 94	9.85	20	
Chromium	89.0623	1.0	0.26	125.000	13.8810	60.1	45 - 113	10.9	20	
Cobalt	81.2796	1.0	0.07	125.000	3.99737	61.8	51 - 97	10.1	20	
Copper	100.785	2.0	0.19	125.000	15.8790	6.79	51 - 113	6.77	20	
Lead	129.823	1.0	0.18	125.000	50.6071	63.4	33 - 127	4.85	20	
Molybdenum	82.4236	1.0	0.12	125.000	ND	62.9	54 - 97	8.67	20	
Nickel	84.9296	1.0	0.18	125.000	10.4888	9.69	46 - 102	9.54	20	
Selenium	82.8578	1.0	0.40	125.000	ND	66.3	52 - 93	8.02	20	
Silver	89.5600	1.0	0.12	125.000	ND	71.6	58 - 98	8.84	20	
Challium	74.0236	1.0	0.38	125.000	ND	59.2	46 - 93	8.65	20	
Vanadium	98.5222	1.0	90.0	125.000	21.9490	61.3	55 - 104	8.48	20	
Zinc	198.635	1.0	0.15	125.000	252.309	-42.9	26 - 118	40.9	20	M1, R

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Mercury by AA (Cold Vapor) EPA 7471A - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0397 - EPA 7471_S										
Blank (B7J0397-BLK1)					Prepared:	10/17/2017	Prepared: 10/17/2017 Analyzed: 10/17/2017	17/2017		
Mercury	ND	0.10	0.005							
LCS (B7J0397-BS1)					Prepared:	10/17/2017	Prepared: 10/17/2017 Analyzed: 10/17/2017	17/2017		
Mercury	0.916266	0.10	0.005	0.005 0.833333		110	80 - 120			
Matrix Spike (B7J0397-MS1)		So	Source: 1703641-01	541-01	Prepared:	10/17/2017	Prepared: 10/17/2017 Analyzed: 10/17/2017	17/2017		
Mercury	1.06931	0.10	0.005	0.005 0.833333	0.047388 123	123	70 - 130			
Matrix Spike Dup (B7J0397-MSD1)		So	Source: 1703641-01	541-01	Prepared:	10/17/2017	Prepared: 10/17/2017 Analyzed: 10/17/2017	17/2017		
Mercury	1.05166	0.10	0.005	0.005 0.833333	0.047388 121	121	70 - 130	1.66	20	
Post Spike (B7J0397-PS1)		So	Source: 1703641-01	541-01	Prepared:	10/17/2017	Prepared: 10/17/2017 Analyzed: 10/17/2017	17/2017		
Mercury	0.004139			5.00000E-3	0.000569 71.4	71.4	85 - 115			M1

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Mercury by AA (Cold Vapor) EPA 7471A - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0398 - EPA 7471_S										
Blank (B7J0398-BLK1)					Prepared:	10/17/2017	Prepared: 10/17/2017 Analyzed: 10/17/2017	7/2017		
Mercury	ND	0.10	0.005							
LCS (B7J0398-BS1)					Prepared:	10/17/2017	Prepared: 10/17/2017 Analyzed: 10/17/2017	7/2017		
Mercury	0.879681	0.10	0.005	0.005 0.833333		106	80 - 120			
Matrix Spike (B7J0398-MS1)		Š	Source: 1703641-21	541-21	Prepared:	10/17/2017	Prepared: 10/17/2017 Analyzed: 10/17/2017	7/2017		
Mercury	0.985725	0.10	0.005	0.005 0.833333	0.080635 109	109	70 - 130			
Matrix Spike Dup (B7J0398-MSD1)		Š	Source: 1703641-21	541-21	Prepared:	10/17/2017	Prepared: 10/17/2017 Analyzed: 10/17/2017	7/2017		
Mercury	1.00107	0.10	0.005	0.005 0.833333	0.080635 110	110	70 - 130	1.54	20	
Post Spike (B7J0398-PS1)		Š	Source: 1703641-21	541-21	Prepared:	10/17/2017	Prepared: 10/17/2017 Analyzed: 10/17/2017	7/2017		
Mercury	0.007328			5.00000E-3	0.000968 127	127	85 - 115			M1

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Mercury by AA (Cold Vapor) EPA 7471A - Quality Control

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit Notes	Notes
Batch B7J0399 - EPA 7471_S										
Blank (B7J0399-BLK1)					Prepared	: 10/17/2017	epared: 10/17/2017 Analyzed: 10/17/2	7/2017		

1											
Blank (B7J0399-BLK1)					Prepared:	10/17/2017	Prepared: 10/17/2017 Analyzed: 10/17/2017	/2017			
Mercury	ND	0.10	0.005								
LCS (B7J0399-BS1)					Prepared:	10/17/2017	Prepared: 10/17/2017 Analyzed: 10/17/2017	/2017			
Mercury	0.896462	0.10	0.005	0.005 0.833333		108	80 - 120				
Matrix Spike (B7J0399-MS1)			Source: 1703641-41	641-41	Prepared:	10/17/2017	Prepared: 10/17/2017 Analyzed: 10/17/2017	/2017			
Mercury	1.49409	0.10	0.005	0.005 0.833333	0.729856 91.7	91.7	70 - 130				
Matrix Spike Dup (B7J0399-MSD1)			Source: 1703641-41	641-41	Prepared:	10/17/2017	Prepared: 10/17/2017 Analyzed: 10/17/2017	/2017			
Mercury	1.97079	0.10	0.005	0.005 0.833333	0.729856 149	149	70 - 130	27.5	20	M1, R	
Post Spike (B7J0399-PS1)			Source: 1703641-41	641-41	Prepared:	10/17/2017	Prepared: 10/17/2017 Analyzed: 10/17/2017	/2017			
Mercury	0.014348			5.00000E-3	0.008758 112	112	85 - 115				

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Gasoline Range Organics by EPA 8015B (Modified) - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0257 - GCVOA_S

Blank (B7J0257-BLK1)					Prepared:	10/12/2017	Prepared: 10/12/2017 Analyzed: 10/12/2017	2017	
Gasoline Range Organics	ND	1.0	0.20						
Surrogate: 4-Bromofluorobenzene	0.2121			0.200000		901	50 - 138		
LCS (B7J0257-BS1)					Prepared:	10/12/2017	Prepared: 10/12/2017 Analyzed: 10/12/2017	2017	
Gasoline Range Organics	4.68900	1.0	0.20	5.00000		93.8	70 - 130		
Surrogate: 4-Bromofluorobenzene	0.2074			0.200000		104	50 - 138		
Duplicate (B7J0257-DUP1)			Source: 1703635-01	35-01	Prepared:	10/12/2017	Prepared: 10/12/2017 Analyzed: 10/12/2017	2017	
Gasoline Range Organics	ND	1.0	0.20		ND			NR	20
Surrogate: 4-Bromofluorobenzene	0.2071			0.200000		104	50 - 138		
Matrix Spike (B7J0257-MS1)			Source: 1703635-01	35-01	Prepared:	10/12/2017	Prepared: 10/12/2017 Analyzed: 10/12/2017	2017	
Gasoline Range Organics	4.38500	1.0	0.20	5.00000	ND	87.7	17 - 141		
Surrogate: 4-Bromofluorobenzene	0.1958			0.200000		6.79	50 - 138		
Matrix Spike Dup (B7J0257-MSD1)			Source: 1703635-01	35-01	Prepared:	10/12/2017	Prepared: 10/12/2017 Analyzed: 10/12/2017	2017	
Gasoline Range Organics	4.26100	1.0	0.20	5.00000	ND	85.2	17 - 141	2.87	20
Surrogate: 4-Bromofluorobenzene	0.2107			0.200000		105	50 - 138		

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Gasoline Range Organics by EPA 8015B (Modified) - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0270 - GCVOA_S

Blank (B7J0270-BLK1)					Prepared:	10/12/2017	Prepared: 10/12/2017 Analyzed: 10/12/2017	2017	
Gasoline Range Organics	ND	1.0	0.20						
Surrogate: 4-Bromofluorobenzene	0.2132			0.200000		107	50 - 138		
LCS (B7J0270-BS1)					Prepared:	10/12/2017	Prepared: 10/12/2017 Analyzed: 10/12/2017	2017	
Gasoline Range Organics	4.54800	1.0	0.20	5.00000		91.0	70 - 130		
Surrogate: 4-Bromofluorobenzene	0.2083			0.200000		104	50 - 138		
Duplicate (B7J0270-DUP1)			Source: 1703635-11	635-11	Prepared:	10/12/2017	Prepared: 10/12/2017 Analyzed: 10/12/2017	2017	
Gasoline Range Organics	ND	1.0	0.20		ND			NR	20
Surrogate: 4-Bromofluorobenzene	0.2220			0.200000		III	50 - 138		
Matrix Spike (B7J0270-MS1)			Source: 1703635-11	635-11	Prepared:	10/12/2017	Prepared: 10/12/2017 Analyzed: 10/12/2017	2017	
Gasoline Range Organics	3.85900	1.0	0.20	5.00000	ND	77.2	17 - 141		
Surrogate: 4-Bromofluorobenzene	0.2110			0.200000		105	50 - 138		
Matrix Spike Dup (B7J0270-MSD1)			Source: 1703635-11	635-11	Prepared:	10/12/2017	Prepared: 10/12/2017 Analyzed: 10/12/2017	2017	
Gasoline Range Organics	3.55500	1.0	0.20	5.00000	ND	71.1	17 - 141	8.20	20
Surrogate: 4-Bromofluorobenzene	0.2072			0.200000		I04	50 - 138		

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Gasoline Range Organics by EPA 8015B (Modified) - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0280 - GCVOA_S

Blank (B7J0280-BLK1)					Prepared:	10/13/2017	Prepared: 10/13/2017 Analyzed: 10/13/2017	2017		
Gasoline Range Organics	ND	1.0	0.20							
Surrogate: 4-Bromofluorobenzene	0.2147			0.200000		107	50 - 138			
LCS (B7J0280-BS1)					Prepared:	10/13/2017	Prepared: 10/13/2017 Analyzed: 10/13/2017	2017		
Gasoline Range Organics	4.80500	1.0	0.20	5.00000		96.1	70 - 130			
Surrogate: 4-Bromofluorobenzene	0.2181			0.200000		601	50 - 138			
Duplicate (B7J0280-DUP1)			Source: 1703635-22	35-22	Prepared:	10/13/2017	Prepared: 10/13/2017 Analyzed: 10/13/2017	2017		
Gasoline Range Organics	ND	1.0	0.20		ND			NR	20	
Surrogate: 4-Bromofluorobenzene	0.2195			0.200000		0II	50 - 138			
Matrix Spike (B7J0280-MS1)			Source: 1703635-22	35-22	Prepared:	10/13/2017	Prepared: 10/13/2017 Analyzed: 10/13/2017	2017		
Gasoline Range Organics	4.16100	1.0	0.20	5.00000	ND	83.2	17 - 141			
Surrogate: 4-Bromofluorobenzene	0.2140			0.200000		107	50 - 138			
Matrix Spike Dup (B7J0280-MSD1)			Source: 1703635-22	535-22	Prepared:	10/13/2017	Prepared: 10/13/2017 Analyzed: 10/13/2017	2017		
Gasoline Range Organics	3.37800	1.0	0.20	5.00000	ND	9.79	17 - 141	20.8	20	R
Surrogate: 4-Bromofluorobenzene	0.2112			0.200000		90I	50 - 138			

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Gasoline Range Organics by EPA 8015B (Modified) - Quality Control

Result P	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte (mg/kg) (m	mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0310 - GCVOA_S

Blank (B7J0310-BLK1)					Prepared	: 10/13/2017	Prepared: 10/13/2017 Analyzed: 10/13/2017	2017	
Gasoline Range Organics	ND	1.0	0.20						
Surrogate: 4-Bromofluorobenzene	0.2133			0.200000		107	50 - 138		
LCS (B7J0310-BS1)					Prepared	: 10/13/2017	Prepared: 10/13/2017 Analyzed: 10/13/2017	017	
Gasoline Range Organics	4.56600	1.0	0.20	0.20 5.00000		91.3	70 - 130		
Surrogate: 4-Bromofluorobenzene	0.2092			0.200000		105	50 - 138		
Matrix Spike (B7J0310-MS1)			Source: 1703641-41	541-41	Prepared	: 10/13/2017	Prepared: 10/13/2017 Analyzed: 10/13/2017	017	
Gasoline Range Organics	3.24800	1.0	0.20	0.20 5.00000	ND	65.0	17 - 141		
Surrogate: 4-Bromofluorobenzene	0.2185			0.200000		601	50 - 138		
Matrix Spike Dup (B7J0310-MSD1)			Source: 1703641-41	541-41	Prepared	: 10/13/2017	Prepared: 10/13/2017 Analyzed: 10/13/2017	2017	
Gasoline Range Organics	3.16200	1.0	0.20	0.20 5.00000	ND	63.2	17 - 141	2.68	20
Surrogate: 4-Bromofluorobenzene	0.2182			0.200000		601	50 - 138		

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Gasoline Range Organics by EPA 8015B (Modified) - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0349 - GCVOA_S

Blank (B7J0349-BLK1)					Prepared	: 10/14/2017	Prepared: 10/14/2017 Analyzed: 10/14/2017	2017	
Gasoline Range Organics	ND	1.0	0.20						
Surrogate: 4-Bromofluorobenzene	0.2160			0.200000		108	50 - 138		
LCS (B7J0349-BS1)					Prepared	10/14/2017	Prepared: 10/14/2017 Analyzed: 10/14/2017	2017	
Gasoline Range Organics	4.44400	1.0	0.20	5.00000		6.88	70 - 130		
Surrogate: 4-Bromofluorobenzene	0.2107			0.200000		105	50 - 138		
Matrix Spike (B7J0349-MS1)			Source: 1703653-23	653-23	Prepared	10/14/2017	Prepared: 10/14/2017 Analyzed: 10/14/2017	2017	
Gasoline Range Organics	3.81800	1.0	0.20	0.20 5.00000	ND	76.4	17 - 141		
Surrogate: 4-Bromofluorobenzene	0.2287			0.200000		114	50 - 138		
Matrix Spike Dup (B7J0349-MSD1)			Source: 1703653-23	653-23	Prepared	10/14/2017	Prepared: 10/14/2017 Analyzed: 10/14/2017	2017	
Gasoline Range Organics	3.42900	1.0	0.20	5.00000	ND	9.89	17 - 141	10.7	20
Surrogate: 4-Bromofluorobenzene	0.2234			0.200000		112	50 - 138		

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Gasoline Range Organics by EPA 8015B (Modified) (5035) - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0257 - GCVOA_S

Blank (B7J0257-BLK1)					Prepared:	10/12/2017	Prepared: 10/12/2017 Analyzed: 10/12/2017	2017	
Gasoline Range Organics	ND	1.0	0.20						
Surrogate: 4-Bromofluorobenzene	0.2121			0.200000		901	50 - 138		
LCS (B7J0257-BS1)					Prepared:	10/12/2017	Prepared: 10/12/2017 Analyzed: 10/12/2017	2017	
Gasoline Range Organics	4.68900	1.0	0.20	5.00000		93.8	70 - 130		
Surrogate: 4-Bromofluorobenzene	0.2074			0.200000		104	50 - 138		
Duplicate (B7J0257-DUP1)			Source: 1703635-01	35-01	Prepared:	10/12/2017	Prepared: 10/12/2017 Analyzed: 10/12/2017	2017	
Gasoline Range Organics	ND	1.0	0.20		ND			NR	20
Surrogate: 4-Bromofluorobenzene	0.2071			0.200000		104	50 - 138		
Matrix Spike (B7J0257-MS1)			Source: 1703635-01	35-01	Prepared:	10/12/2017	Prepared: 10/12/2017 Analyzed: 10/12/2017	2017	
Gasoline Range Organics	4.38500	1.0	0.20	5.00000	ND	87.7	17 - 141		
Surrogate: 4-Bromofluorobenzene	0.1958			0.200000		6.79	50 - 138		
Matrix Spike Dup (B7J0257-MSD1)			Source: 1703635-01	35-01	Prepared:	10/12/2017	Prepared: 10/12/2017 Analyzed: 10/12/2017	2017	
Gasoline Range Organics	4.26100	1.0	0.20	5.00000	ND	85.2	17 - 141	2.87	20
Surrogate: 4-Bromofluorobenzene	0.2107			0.200000		105	50 - 138		

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Diesel Range Organics by EPA 8015B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0415 - GCSEMI_DRO_LL_S

I	I									
Blank (B7J0415-BLK1)					Prepared:	10/16/2017	Prepared: 10/16/2017 Analyzed: 10/17/2017	117		
DRO	ND	1.0	1.0							
ORO	ND	1.0	1.0							
Surrogate: p-Terphenyl	3.853			2.66667		144	38 - 145			
LCS (B7J0415-BS1)					Prepared:	10/16/2017	Prepared: 10/16/2017 Analyzed: 10/17/2017	117		
DRO	32.8157	1.0	1.0	33.3333		98.4	33 - 143			
Surrogate: p-Terphenyl	3.614			2.66667		136	38 - 145			
Matrix Spike (B7J0415-MS1)			Source: 1703641-20	641-20	Prepared:	10/16/2017	Prepared: 10/16/2017 Analyzed: 10/17/2017	117		
DRO	752.867	100	100	100 33.3333	717.800	105	20 - 159			
Surrogate: p-Terphenyl	0.000			2.66667		NR	38 - 145			S4
Matrix Spike Dup (B7J0415-MSD1)			Source: 1703641-20	641-20	Prepared:	10/16/2017	Prepared: 10/16/2017 Analyzed: 10/17/2017	117		
DRO	751.367	100	100	100 33.3333	717.800	101	20 - 159	0.199	20	
Surrogate: p-Terphenyl	0.000			2.66667		NR	38 - 145			S4

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Diesel Range Organics by EPA 8015B - Quality Control

R	esult	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte (n.	mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0430 - GCSEMI DRO LL S

Batch B/J0430 - GCSEMI_DRO_LL_S	ZZ								
Blank (B7J0430-BLK1)					Prepared:	10/16/2017	Prepared: 10/16/2017 Analyzed: 10/17/2017	017	
DRO	N	1.0	1.0						
ORO	ND	1.0	1.0						
Surrogate: p-Terphenyl	3.691			2.66667		138	38 - 145		
LCS (B7J0430-BS1)					Prepared:	10/16/2017	Prepared: 10/16/2017 Analyzed: 10/17/2017	017	
DRO	36.2963	1.0	1.0	33.3333		109	33 - 143		
Surrogate: p-Terphenyl	3.580			2.66667		134	38 - 145		
Matrix Spike (B7J0430-MS1)			Source: 1703641-21	641-21	Prepared:	10/16/2017	Prepared: 10/16/2017 Analyzed: 10/17/2017	017	
DRO	26.1577	1.0	1.0	1.0 33.3333	3.16467	0.69	20 - 159		
Surrogate: p-Terphenyl	2.875			2.66667		801	38 - 145		
Matrix Spike Dup (B7J0430-MSD1)			Source: 1703641-21	641-21	Prepared:	10/16/2017	Prepared: 10/16/2017 Analyzed: 10/17/2017	017	
DRO	24.4543	1.0	1.0	33.3333	3.16467	63.9	20 - 159	6.73	20
Surrogate: p-Terphenyl	2.799			2.66667		105	38 - 145		

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Diesel Range Organics by EPA 8015B - Quality Control

		Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte (mg/kg) (mg/kg) (mg/kg) Level Result %Rec Limits RPD Limit Notes	Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0491 - GCSEMI_DRO_LL_S	rr_s									
Blank (B7J0491-BLK1)					Prepared:	10/17/2017	Prepared: 10/17/2017 Analyzed: 10/18/2017	/2017		
DRO	N	1.0	1.0							
ORO	N	1.0	1.0							
Surrogate: p-Terphenyl	3.695			2.66667		139	38 - 145			
LCS (B7J0491-BS1)					Prepared:	10/17/2017	Prepared: 10/17/2017 Analyzed: 10/18/2017	/2017		
DRO	26.6803	1.0	1.0	33.3333		0.08	33 - 143			
Surrogate: p-Terphenyl	4.167			5.33333		78.1	38 - 145			
Matrix Spike (B7J0491-MS1)			Source: 1703641-41	641-41	Prepared:	10/17/2017	Prepared: 10/17/2017 Analyzed: 10/18/2017	/2017		
DRO	972.300	100	100	33.3333	1427.37	-1370	20 - 159			M1
Surrogate: p-Terphenyl	0.000			2.66667		NR	38 - 145			S4
Matrix Spike Dup (B7J0491-MSD1)			Source: 1703641-41	641-41	Prepared:	10/17/2017	Prepared: 10/17/2017 Analyzed: 10/18/2017	/2017		
DRO	833.367	100	100	33.3333	1427.37	-1780	20 - 159	15.4	20	M1
Surrogate: p-Terphenyl	0.000			2.66667		NR	38 - 145			S4

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Polychlorinated Biphenyls by EPA 8082 - Quality Control

U. MDL Spike Source % Rec RPD	/kg) (ug/kg) Level Result % Rec Limits RPD Limit Notes	
ource	0	
0 1		
MDL	(ug/kg)	
PQL	(ug/kg)	
Result	(ug/kg)	
	Analyte	

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Note
Batch B7J0511 - GCSEMI_PCB/PEST_S	PEST_S									
Blank (B7J0511-BLK1)					Prepared	: 10/18/2017	Prepared: 10/18/2017 Analyzed: 10/18/2017	8/2017		
Aroclor 1016	N	16	4.6							
Aroclor 1221	ND	16	4.6							
Aroclor 1232	ND	16	4.6							
Aroclor 1242	N Q	16	4.6							
Aroclor 1248	N	16	4.6							
Aroclor 1254	ND	16	4.6							
Aroclor 1260	N	16	4.6							
Aroclor 1262	N	16	4.6							
Aroclor 1268	ND	16	4.6							
Surrogate: Decachlorobiphenyl	11.23			16.6667		67.4	18 - 136			
Surrogate: Tetrachloro-m-xylene	15.91			16.6667		95.4	30 - 130			
LCS (B7J0511-BS1)					Prepared	: 10/18/2017	Prepared: 10/18/2017 Analyzed: 10/18/2017	8/2017		
Aroclor 1016	182.618	16	4.6	166.667		110	73 - 111			
Aroclor 1260	159.355	16	4.6	166.667		9.56	75 - 125			
Surrogate: Decachlorobiphenyl	12.77			16.6667		9.92	18 - 136			
Surrogate: Tetrachloro-m-xylene	18.82			16.6667		113	30 - 130			
Duplicate (B7J0511-DUP1)		Š	Source: 1703681-24	81-24	Prepared	: 10/18/2017	Prepared: 10/18/2017 Analyzed: 10/18/2017	8/2017		
Aroclor 1016	N QN	16	4.6		N				20	
Aroclor 1260	N	16	4.6		N Q				20	
Surrogate: Decachlorobiphenyl	8.908			16.6667		53.4	18 - 136			
Surrogate: Tetrachloro-m-xylene	12.55			16.6667		75.3	30 - 130			
Matrix Spike (B7J0511-MS1)		Š	Source: 1703681-22	81-22	Prepared	: 10/18/2017	Prepared: 10/18/2017 Analyzed: 10/18/2017	8/2017		
Aroclor 1016	142.130	16	4.6	166.667	N	85.3	36 - 127			
Aroclor 1260	115.861	16	4.6	166.667	ND	69.5	31 - 142			
Surrogate: Decachlorobiphenyl	8.673			16.6667		52.0	18 - 136			
Surrogate: Tetrachloro-m-xylene	14.25			16.6667		85.5	30 - 130			
Matrix Spike Dup (B7J0511-MSD1)		Ĭ.	Source: 1703681-22	81-22	Prepared	: 10/18/2017	Prepared: 10/18/2017 Analyzed: 10/18/2017	8/2017		
Aroclor 1016	137.276	16	4.6	166.667	N	82.4	36 - 127	3.47	20	
Aroclor 1260	113.244	16	4.6	166.667	ND	6.79	31 - 142	2.29	20	
Surrogate: Decachlorobiphenyl Surrogate: Tetrachloro-m-xylene	8.437 13.89			16.6667 16.6667		50.6 83.4	18 - 136 30 - 130			

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 10/19/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Notes and Definitions

Surrogate was diluted out. S_4 RPD value outside acceptance criteria. Calculation is based on raw values. \approx

Matrix spike recovery outside of acceptance limit. The analytical batch was validated by the laboratory control sample. $\overline{\mathbb{M}}$ Analyte is not detected at or above the Practical Quantitation Limit (PQL). When client requests quantitation against MDL, B

analyte is not detected at or above the Method Detection Limit (MDL)

Practical Quantitation Limit PQL

Method Detection Limit MDL

Not Reported K.

Relative Percent Difference RPD

CA-ELAP (CDPH) CA2 OR-NELAP (OSPHL) OR1

Notes:

(1) The reported MDL and PQL are based on prep ratio variation and analytical dilution.

(2) The suffix [2C] of specific analytes signifies that the reported result is taken from the instrument's second column.

(3) Results are wet unless otherwise specified.

Page 125 of 140

Page ____ of ____

	For Laboratory U	se Offiy	ATLCOC Ver: 2	20130715
	Sa	mple Conditio	ns Upon Receipt	
Method of Transport	Condition	YN	Condition	Y N
□ Client □ ML	1. CHILLED	<u> </u>	5. # OF SAMPLES MATCH COC	2 0
☐ FedEx ☐ OnTrac	2. HEADSPACE (VOA)		6. PRESERVED	
□ GSO	3. CONTAINER INTACT	a c	7. COOLER TEMP, deg C:	100 0
Other:	4. SEALED	0 9	2.6 2.2	Collegi

3275 Walnut Ave., Signal Hill, CA 90755

nstruction: Complete all shaded areas.

	Tel:	(562) 989-4045 • Fa	x: (562) 989-4040	<u>Instructi</u>	<u>on</u> : Compi	ete ali snaaea areas.	L.		4. SEALED	<u> </u>	1.1 5/hl			
	Company:				Address: 1778 C			Chatal and	Tel: 949-253-9836 ate: CA Zip: 92614 Fax: 949-250-1114					
cc	Leighton Consulting INC				City:	lrv:ve		SEND INVOICE TO: Same as SEND REPORT TO						
CUSTOME	Leighton Consulting Inc. SEND REPORT TO: Bynn McCulloch Binccullodh a lei Company: Leighton Consulting Address: City: State:				Address: Attn: Acct. Pal Company: Address:			Email: SAME [State: Zip:						
	1 1 1 1 1			uctions/Comm			Write Requested A	A so busine	Encircle Sample Ma	trix Container	¥ 0.400			
	Proje	ect Name: la Berth 191 ect No.: 618.005 pler: KCH	그는 집 그들은 사람들이 되었다. 나는 그는 사람들은 그는 그 그는 그는 생각을 다 하는 것이 되었다. 나는 학생들은 그는 사람들이 되었다.			4 (Volatiles) volatiles) ochlorine Pesticides)	5 TPHy A TO	Aridysis	17 / SLUDGE FILTER ING / GROUND A / WASTE FERD - OIL	De: 2=VOA; 3=Liter; 4=Pint; 18t; 7=Canister almost and an arrange and arrange and arrange and arrange and arrange and arrange arrange arrange and arrange arra	QA/QC QA/QC Routing Caltrar Caltrar RWQC RWQC RWQC LOG RWQC CALTRACT CA			
S	ITEM	Lab No.	Sample Description			8260 / 62 8015(GRO) 8015(DRO) 8270(Semi: 8081(Organ 8082(PCBs) 6010 / 7000	70-15 Gol		SOLIDS / WIPE/ SOLIDS / WIPE/ WATER - DRINK WATER - STORN	# Type: 1=Tut 5=Jar; 6=Ted Material: 1	Preservative S=Zn ((Ac)2; 6: REMARKS			
MPLES	-		Sample ID / Location	Date	Time				\$ 5 5 4	5 4	a 0			
SAM			10/11/17			$+\Omega+1$								
ECT S	2	AND DESCRIPTION OF THE PROPERTY OF THE PROPERT	LB5-7.5		1012									
OJE(3	-09	LB9-0.5		1024									
PR(5				- Commission of the Commission									
	6	70-	LB9-2.5		1026									
	7		LB14-0.5		1044									
	8	- NY	LB14-2.5		1046									
	9	-09	LB14 - 5.0		1048									
	10	~ · · · ·	LB20-0.5		JIIZ									
Page 126 c	2. Sai 3. Th 4. We 5. Su res 6. Lid	mples Submitted AFTER 3:00 PM, ac following turnaround time condition TAT = 0:300% Surcharge SAM/E B TAT = 1:100% Surcharge SAM/E B TAT = 2:50% Surcharge 2ND BUSI TAT = 2:50% Surcharge 3ND BUSI TAT = 3:30% Surcharge 4TH BUSI TAT = 5:NO SURCHARGE 5th BUSI TAT = 4:50% Surcharge 4TH SUSI TAT = 5:NO SURCHARGE 5th BUSI TAT = 5:NO SURCHARGE 5th BUSI TAT = 5:NO SURCHARGE 5th BUSING TAT	considered received the following Business day at 8:00 AM. s apply: USINESS DAY (COB 5:00 PM) SINESS DAY (COB 5:00 PM) Air samples: Comercial comparison of the c	mples: Complimentary stie e or hold is requested. Inplimentary storage for to egenerated reports/EDDs ssed EDD. samples: add 2 days to al Iples will incur a disposal i	vears from report d 45 calendar days f orage for forty-fi ve en (10) calendar da : \$17.50 per hard c nalysis TAT for extr	ate. rom report date. ; (45) calendar days from receipt of sample ys from receipt of samples; \$20/ sample/w opy report requested; \$50.00 per regenera action on procedure. e.	veek if extended storage is ated/reforma? ed report;	purchase la hereby guar	orized agent of the boratory services frantee payment as er Print Name	om ATL as shown	above and			
웃	Relin	quished by: (Signature and Pr		1 /-	Time:	Received by: (Signature and	d Printed Name)	WIR	0/11	Date:	Time:			

Received by: (Signature and Printed Name)

Page	7_	of	5
0			\rightarrow

***************************************		ATLCOC Ver: 2	0130	715										
		Sam	Sample Conditions Upon Receipt											
Method	of Transport	Condition	Condition Y N				N							
□ Client	[] ATL	1. CHILLED			5. # OF SAMPLES MATCH COC									
☐ Fed£x	☐ OnTrac	2. HEADSPACE (VOA)			6. PRESERVED									
☐ GSO		3. CONTAINER INTACT		C	7. COOLER TEMP, deg C:									
Other:		4. SEALED												

3275 Walnut Ave., Signal Hill, CA 90755

	Tel: ((562) 989-4045 • Fa	x: (562) 989-4040		<u>Instruct</u>	<u>ion</u> : Compl	ete all shade	ed areas.		□ Other:	4. SEALED				***************************************	***************************************
П	-		The second of th			Address:	177	81 C	5 WAN						3-98	
		Leight	ran Consulting	WC.		City:	lryi			State: CA	Zip: 9261				0 - (11	
E R	0.11	<u> </u>	SEND REPORTATO:	Fmail			Attn:	refer a resident se se	esulenti eta	SEND INVO	ICE TO: Email		□ same	as SEND	REPORT	10
CUSTOMER	Attn:	BOYPH M	(olloch	Email: BincCul	lloch ale	ightorage	-pup.com	Acct.	PAyable							
ST(Comp	any: / Leisht	and Controlling	luci		J	Company:		얼마 하다 하다 하는데 얼마 보다 되었다.							
CO	Addre	ess:	- 10 As				Address:		1 / H	-Me						
	City:		ran Consulting SEND REPORTO: Colloch Consulting SAMO	State:	Zip:		City:		The second second			State:		Zip:		
													3 8		RG I	
		ect Name:	Quote No:	Special Instruc				Encircle o	or Write Requeste	d Analysis	Encircle Sa	mple Matri		Container		QA/QC Routine
	Po	olu Berth 1° ect No.:	11-195	5035 kit	s collect	અ/		Pesticides)	8015m					=Pint;	Aetal =H2SO	Caltran
		116 18 . 005	PO #:				iles)	Pesticide Metals)	8 3		UDGE R GROUND	필명		Liter; 4		Legal RWQC
	Samp	pler:					4 (Volatiles)	achlorine (Title 22	ROIS V			/ WAS	TAT	DA; 3≓l Caniste	2 M T 71	Level I
	'	KCH					4 3		1771		DIMENT/SI WIPE/FILTE DRINKING/	STORM / WASTE S / LAYERED - OIL		e; 2=V	=Glass;	
	_	CI- D-		e Description		Committee of the Commit	8260 / 62 8015(GRO) 8015(DRO)	8081(Organ 8082(PCBs) 6010 / 7000	ि स्त्र		/ SE - NS /			: 1=Tub 6=Ted	erial: 1 ervati ((Ac)2;	REMARKS
E S	ITEM	Lab No.	Sample ID / Location	n	Date	Time	8260 8015(8015(8081(Or 8082(PC 6010 / 7	55 55		SOLIDS /	WATER		Type:	Material: Preserva' 5≈Zn ((Ac)Z	REIV
MPLE	1	1703641-11	LB3-0.5		10-11-17	754							151	4		
SAN	2	1 . (LB3-2.5	2904-1440-1440-1440-1440-1440-1440-1440-1	1	756			NI							
CT	3 102.5					758										
PROJE	4	~(4	Contraction of the Contraction o)		834	illi									
P R	5	Section of the Contract of the	LB4-0.5			836										
		AND THE PROPERTY OF THE PROPER	THE PROPERTY OF THE PROPERTY O	***************************************		838		+						HT		-
	6	~ (¢	LB4-3.5	***************************************	_							-		HH		
	7	~ (7	LB-1-0.5 LB-1-2.5	entranscriptoria (m. 1911)		922					+H+	<u> </u>	HH	HH		-
	8	_	DEPOSITE OF THE PROPERTY OF TH			924					1-11-1-					
	9	ـ رم	LB 71-5.0			256						+ + +	111	\coprod		
	10	- 20	LB2-015			955			, NU				MI	<u>VIII</u>		-
	2. Sam	nples Submitted AFTER 3:00 PM, are a	DPM Monday - Friday; Saturday 8:00 AM to 12:00 PM. considered received the following Business day at 8:00 AM.	7. Electronic records n	osed of after 14 calen naintained for fi ve (5)	years from report d	ate.				norized agent					
S	3. The	TAT = 1: 100% Surcharge NEXT BU	JUSINESS DAY If received by 9:00 AM JSINESS DAY (COB 5:00 PM)	9. Storage and Report	vill be disposed of afte Fees: ples: Complimentary s			om receipt of sam	ples; \$2/sample/month		aboratory ser arantee paym			s showi	n above	and
7		TAT = 2:50% Surcharge 2ND BUSI TAT = 3:30% Surcharge 3RD BUSII TAT = 4:20% Surcharge 4TH BUSII	NESS DAY (COB 5:00 PM) NESS DAY (COB 5:00 PM)				e/week if extended stora	ap is		iciit as qi						
Page	1	TAT = 5 : NO SURCHARGE 5th BUS sekend, holiday, after-hours work - ask	SINESS DAY (COB 5:00 PM) k for quote.	\$35 per reprocesse	ed EDD			; \$50.00 per regen	erated/reforma? ed repo	Sewinding Company and Company	May		_A	·Hall		
72	resp 6. Liqu	pective to the subcontract lab — ask uid and solid samples will be disposet	for quote. If of after 45 calendar days from receipt of samples; air	10. Rush TCLP/STLC se 11. Unanalyzed sampl	imples: add 2 days to les will incur a disposa	nalysis TAT for extr fee of \$7 per samp	e.			Submit	ter Print Nam			<u> </u>	ature	
77 of	Relino	quished by: (Signature and Pr	1.7	Time 13	in n	f-r	and Printed Name) つんべへ	4	<u> </u>		Date: / 14	117	Time	<i>(۱۲</i>		
→ P	Relino	quished by: (Signature and Pr	rinted Name) = 120 mars	Date:	lulis	Time: /70 \	Received I	oy: (Signature a	and Printed Name)	1 MF	4 07/		Date: (10/	10 B	Lime	54
46	<u> </u>	10.	in a later of the second	Date		Time:	Received I	ov: (Signature a	and Printed Name)	outo-same-			Date:		Time	a: ´

Page	3	of	5

For Laboratory Use Only ATLCOC Ver: 20130715 Sample Conditions Upon Receipt Method of Transport ΥN Y N Condition Condition 5. # OF SAMPLES MATCH COC 🗀 🗆 . CHILLED ☐ Client ☐ ATŁ . HEADSPACE (VOA) ☐ FedEx OnTrac ☐ GSO 7. COOLER TEMP, deg C: 3. CONTAINER INTACT Other: __ 4. SEALED

3275 Walnut Ave., Signal Hill, CA 90755 Tel: (562) 989-4045 • Fax: (562) 989-4040

Instruction: Complete all shaded areas.

	Company:			Δ	Address: 1778 (Cowand					Tel: 949-253-9836								
	Paranger Saranger S			ity:	THE PERSON NAMED IN COLUMN	ાંગ્હ			State: CA	Zip: 🎙	7614 Fa	x:						
œ		- 00	SEND REPORT TO:		Useria, a estre e de l'arch	or an experience of the			JA SUNAPASUS	3 (44 N C) (4 N C)	SEND INVO		mail:	□ sam	e as S	END R	REPORT	TO
Σ	Attn:	RWHH V	ne Culturh Brico	ullach Dleiul	nterago	-0UP · C	dia	Acct.	Pay	able								
CUSTOMER	Attn: Brynd McCullach BmcCulloch Dleightongros Company: 17781 Cowan Leighton Address:						Company:											
0.0	Addre	\	COWAN CENTATION				Address:			TA	MQ.							
	60		SAMe		Zip:		City:			ΔH	· (&		Sta	e: Zip:				
	City:																	
	Proje	ect Name:	Quote No:	Special Instruction	ıs/Comme	ents:	SAMO CONTINUE - ILIANIAN	Encircle	or Write Re	equested Ar	nalysis	Enciro	ie Sample Ma	trix	Cor	ntainer	1 = 4C;	QA/QC
	Po	ola Bo-Lh 191	- 193	5035K:45				8								int;	80 1	□ Routine □ Caltrans
	Proje	ola Berth 191 ect No.:					(52)	Pesticide	letals				UND			a=Me	3, 3=1	⊒ Legal
		11618.005	PO#:				Hatile 7. 7. 1	ine Pr	N 77			SIUDC	/ GRO VASTE D - OIL	TAT		3=Lite nister Plastic	3 14 - 34	∃ RWQCB ⊐ Level IV
	Samp	VCH					1 (Volatil	chlor	an			NY / S	VILEA DRINKING / GF STORM / WAS 15 / LAYERED - (and and a		2=VOA; 7 = Ca	1=HCl;	
		NCH						8270(Semi-volatiles) 8081(Organochlorine Pesticides) 8082(PCBs)	ODD/			SCEN SEDIMENT / SLUDGE	WATER - DRINKING / G WATER - STORM / WAS AQUEOUS / LAYERED -			Tube; Tedlar; If 1=Gl	ative:	RKS .
	ITEM	Sample Lab No.		Description			8260 / 62 8015(SRO) 8015(DRO)	8270(Semi- 8081(Organ 8082(PCBs)	0-15			8/8	WATER - WATER - AQUEOL	Sancestones	#	Type: 1=Ti 5=Jar; 6=Te Material:	Preserv 5=2n ((A	REMARKS
LES	브	999-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Sample ID / Location		Date	Time	8 8 8	8 8 8	A H			119	ń s s s			-	6.5	<u>«</u>
SAMPLES	1	1703641-21	LB20-1.5	ال	11/11/17	1115		11/				$\perp \perp X$		5	4		1	
1	2	1 .22	LB20-5.0			1118		1								Name and Association		
CT	3	-23	LB 25 - 0.5			5411									Ш			
PROJECT	4	- 24	L825-2.5			1145												
P.R	5	- U	LB25 - 5.0			1,47												
	6	-16	LB24-0.5			1252												
	7		LB24-7.5			1254												
	8	~24	1624-5.0			1256												
	9	- 27	LB19-0.5			1305		X										
	10	-30	LB19-2.5		V	1307								V	Y			
	1. San	nole receiving hours: 7:30 AM to 7:30	0 PM Monday - Friday; Saturday 8:00 AM to 12:00 PM.	samples will be disposed of	f after 14 calendar	r days after receipt	of samples.	ALEXANDER CONTROL OF THE PROPERTY OF THE PROPE					gent of the					
	2. San 3. The	following turnaround time condition	considered received the following Business day at 8:00 AM. ns apply: BUSINESS DAY if received by 9:00 AM	7. Electronic records maintain 8. Hard copy reports will be di 9. Storage and Report Fees:	lisposed of after 4	5 calendar days fro	m report date.						, services f			hown	above	e and
Σ		TAT = 1 : 100% Surcharge NEXT BU TAT = 2 : 50% Surcharge 2ND BUS TAT = 3 : 30% Surcharge 3RD BUS	INESS DAY (COB 5:00 PM) INESS DAY (COB 5:00 PM)	 Liquid & solid samples: Co extended storage or hold i Air samples: Complimenta 	is requested.						hereby gu	arantee p	ayment as				11	
בו בו	a we	TAT = 4 : 20% Surcharge 4TH BUSI TAT = 5 : NO SURCHARGE 5th BUSI ekend, holiday, after-hours work - as	NESS DAY (COB 5:00 PM) SINESS DAY (COB 5:00 PM) k for quote.	requested Hard copy and regenerate	ed reports/EDDs: \$						K.L	lull		11	en	<u>1 C</u>	·W	eM
4	4. Weekend, holiday, after-hours work -ask for quote. 5. Subcontract TAT is 10 - 15 business days. Projects requiring shorter TATs will incur a surcharge respective to the subcontract lab ask for quote. 6. Liquid and solid samples will be disposed of after 45 calendar by system receipt of samples, all 11. Unanalyzed samples will incur a disposal		add 2 days to ana	alysis TAT for extra					Submit	tter Print	Name			Signat				
Σ - -	·	Relinquished by: (Signature and Printed Narge)			1/1/17	Time:	Receive	d by: (Signature	and Printed	Name)	/	A	Α -	Date:	67		Tim	ne: 16/}
, [6]	Relinquished by: (Signature and Printed Name) Date: 18/11/17					Time: 1704		d by: (Signature	and Printed	Name)	MFD	All	///	Date:	1//17	Received	Tim	ne: / 70
46	Relino	quished by: (Signature and P	rinted Name)	Date:		Time:		d by: (Signature	and Printed	Name)		(* /	Age Comment	Date:	4.1.F	***************************************	Tin	ne:

Page 4 of 9

	ATLCOC Ver: 2	0130	715										
		Sample Conditions Upon Receipt											
Method	of Transport	Condition	Υ	N	Condition	Υ	N						
□ Client	□ ATL	1. CHILLED	С		5. # OF SAMPLES MATCH COC								
☐ FedEx	☐ OnTrac				6. PRESERVED								
☐ GSO		3. CONTAINER INTACT			7. COOLER TEMP, deg C:								
Other:		4 SEALED											

3275 Walnut Ave., Signal Hill, CA 90755 Tel: (562) 989-4045 • Fax: (562) 989-4040

Instruction: Complete all shaded areas.

	Comp				Address:	1778/ (OMOU)	State: CA	Tel: Zip: 97614 Fax	949-253-	9836			
		Leight or	Consulting Inc.		Lity.	<u> 24:04/</u>	SEND INVOIC	A CONTRACTOR OF THE PROPERTY O	. ☐ same as SEND	REPORT TO			
A E F	Attn:	n J	Consulting Inc. SEND REPORTO: Email: [Culloch Briculloch DI	. 1 .	20	Attn: m Mcct. Paya	61	Email:					
0	Compa	Brynn II	CCVICCH BINCLVIICH DI	Company:	wie								
CUSTOMER	Addre:	ė¢				Address:	PIANO	0					
		33.	SH Me State:	Zip:		City:	> 17 V	 State	Zip:				
	City:		OF Me	Zip.		City.							
	1	ct Name:	Quote No: Special Instruc		ents:	Encircle or Write Reques	ted Analysis	Encircle Sample Matr	ix Container				
	Po	1A Berly 19	1-193 507KK;	F s		ides)			Pint;	ा Routine ☐ Caltrans			
	POLA Berth 191-193 Project No.: PO#:					Pesticides		DGE ROUND TE OIL	iter; 4=	E Sozs Sozs □ Legal RWQCB			
	Samp	18.005				Volati PH attles) Ilorine			TAT TAT	CG: 2=Hast			
		KCH				324 () 34 () 31 -vola 31 () 32 ()		SEDIMENT / S S / WIPE/ FILT S - DRINKING R - STORM / W DUS / LAYERE	0e; 2≈V Har; 7 ≈	Ve: 1=H			
	5	Sample Description				8250 / 624 (Volati 8015(pro.)		SE SE SE SE SE SE SE SE S					
ES	ITEM	Lab No.	Sample ID / Location	Date	Time	826 801 827 808 808 808 70-		SOLID WATE WATE	# Type: 5=Jac	Material: 1=4 Preservative 5=2n ((Ac)2: 6=2n (Kac)2: 6=2n			
SAMPLE	1	1703641-31	LB19-5.0	10/11/17	1309				15 14 1				
1 1	2	-3-	LB13-0,5	1	1340								
ECT	3	-).3	LB13-2.5		1346								
ROJ	4	- 34	LB13-5.0		13 44								
P	5	->-	LB8-015		1402								
	6	-3<	LB8-2.5		1404								
	7	->7	LB8-5.0		1406								
	8	- 36	LB12-0,5		1423								
	9	-39	LB12-7.5		1425								
	10	.45	LB12-5.0		1427				14141				
	1 2 Sam	nloc Submitted AFTER 3:00 PM, are o	. PM Monday - Friday; Saturday 8:00 AM to 12:00 PM. samples will be disp. considered received the following Business day at 8:00 AM. 7 Electronic records or	osed of after 14 calenda naintained for fi ve (5) ye				orized agent of the o					
S	3. The	following turnaround time condition TAT = 0: 300% Surcharge SAME B	is apply: USINESS DAY if received by 9:00 AM SINESS DAY (FOR 5:00 PM) SINESS DAY (FOR 5:00 PM) SINESS DAY (FOR 5:00 PM)	vill be disposed of after 4 Fees:	45 calendar days fro	m report date. 45) calendar days from receipt of samples; \$2/sample/mont		ooratory services fro antee payment as q		n above and			
- ≥ -		TAT = 2 : 50% Surcharge 2ND BUSI TAT = 3 : 30% Surcharge 3RD BUSI TAT = 4 : 20% Surcharge 4TH BUSI	NESS DAY (COB 5:00 PM) extended storage o NESS DAY (COB 5:00 PM) - Air samples: Compl NESS DAY (COB 5:00 PM)	or hold is requested.		from receipt of samples; \$20/ sample/week if extended sto	orage is		Ken (. 1)	1.01			
age	E Sub	TAT = 5 : NO SURCHARGE 5th BUS ekend, holiday, after-hours work - ask contract TAT is 10 - 15 business days	k for quote Hard copy and rege	by report requested; \$50.00 per regenerated/reforma? ed re	Respondent Comment of American	Hall /	Signa	Sturo					
129	6. Liqu		d of after 45 calendar days from receipt of samples; air 11. Unanalyzed sample	amples: add 2 days to an les will incur a disposal fo	ee of \$7 per sample.		Submitte			Time:			
ğ of	Relinquished by: (Signature and Prince Show) Date: 1/1/17 Time:					Received by Usignature and Printed Name			Date: () () () () () () () () () (1618			
0150 f 140	Relinquished by: (Signature and Printed Name) Proposus Polician Pate: Polician Polician Pate: Polician Polic					4 MAR (O) 10/1/10 12 09							
	Relino	uished by: (Signature and Pr	inted Name) Date:		Time:	Received by: (Signature and Printed Name)		16	Date.	I IIII C.			

CHAIN OF CUSTODY RECORD

ğ	6		J	ž			1	ø	٠.	•	Г	ø
Pa	ge	Ĭ	<u>5</u>	c	of	5						

Sample Conditions Upon Receipt Method of Transport Condition ΥN Condition Y N □ □ 5.# OF SAMPLES MATCH COC □ □ 1. CHILLED ☐ Client ☐ FedEx ☐ OnTraç . HEADSPACE (VOA) ☐ ☐ 6. PRESERVED ☐ GSO 3. CONTAINER INTACT ☐ 7. COOLER TEMP, deg C: Other: _

4. SEALED

For Laboratory Use Only

ATLCOC Ver: 20130715

3275 Walnut Ave., Signal Hill, CA 90755 Tel: (562) 989-4045 • Fax: (562) 989-4040

<u>Instruction</u>: Complete all shaded areas.

	1 3 30	npany:						Address:	17	78	C	owa	N		e. Bassa					Tel: 9	44-	250	5 6	1836
~		Lein	htor (on sultify luc.				City:	۱۲	vir					State: C			926		Fax:				
A E F	Attn	ر د	, 	SEND REPORT TO:	mail:	West of the	N 4 / 1	arangan da ka	Attn:		(s A Grain		<u>, </u>	Signature	SEND	INVOIC	E TO:	Emai			same	as SEN	D REP	ORT TO
CUSTOMER	Com	Bryr	IM AUCC	SEND REPORT TO: SEND REPORT TO: FINAL BMC(SHock	n Oleighte	12 h	rou	<u>p · Co^</u>	Compa	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4cc1		Paya	ble										
ΩS				·																				
٥	Addı	ress:	(A Me					Addre:	ss:				31	-Me	/								
	City:		/		State:	Zip:			City:										St	ate:		Zip		
	Proi	iect Nam	e:	Quote No:	Special Instruction	ons/C	`omme	ante.				<u>Ellantezo</u>		<u> </u>			8	***************************************	33.32 (7)					
	1				5035 W					П	TIT	circle or	Write	Requested A	nalysis		Enc	ircle Sa	imple M	iatrix		Contain	er 74 = 4	QA/QC
			Barth 19		5071 W	۲٦					Pesticides	Metals)						۵			200000000000000000000000000000000000000	4=Pint;	vletal =H2SO4	□ Caltrar
	1	16 18 . opler:	005	PO #:					Hiles F	2		2 Me					SLUDGE	ROUN	STE OIL	-		Liter; 4	itic; 3≈! NO3; 3	සි ය Legal RWQC
	Sam	ipier:	CH						(Volatiles)	Š	olatiles)	litle 2						FILTER NG / G	/ WAS		TAT	/OA; 3= Canist	; 2=Pla: 1Cl; 2=4	Level I
	emetric reported		Cil			A Delegation of the Control	and careful page		624 Of	1	mi-vc ganoc	(BS)					SEDIMENT,	WIPE/ DRINKI	STORM,		NASHONSU	be; 2=1 dlar; 7	1=Glass	OEN=9
S	ITEM	L	ab No.	04 in his house, person 170, 170,000,000,000,000,000 Autorope, person 170,000,000,000,000,000,000,000,000,000,	Description			THE	8260/ 8015(SR	8015(DRO	8270(Se 8081(Or	8082(PCBs) 6010 / 7000(Title 22	TO-15				S / SEI	SOLIDS / WIPE/ FILTER WATER - DRINKING / GROUND	WATER - S		Simple services	e: 1=Tu r; 6=Te	Material: Preservati	S=Zn ((Ac)2; 6 REMARKS
P L E		<u> </u>	Manager and Commission of the	Sample ID / Location		Da		Time			8 8	8 8	Ӹ	***************************************	COMPANY OF THE STREET, COMPANY OF		(à)	S ≥	W. AQ		#	Type S=Jar;	Ma	S=Zr RE!
SAMPLES	1	1703	641-41	LB17-0.5		0/11	-	1438	X	X		N.					X		<u> </u>		5 4			
-	2	(~ Y L	LB17-2.5			MENT THE LOTTER	1440													١			
JEC	3		-43	LB17-5.0	and the second s			1442				Ш												
PROJ	4	į.	-44	LB18-0.5	727124Z1023212014A			1453																
	5	***************************************	-45	LB18-2.5				1455									\mathbf{I}	-		П	П			
	6		-46	LB18-5.0				1457														11		
	7		-47	LB23-0.5				1515				III								Π	П			
	8		- 4Y	LB23-2.5				1518																
	9		-49	LB13-5.0				1520	V	V		J					W			Th	JN			
	10					A											ĬĬ			Ħ				
	2. San	noles Submitted	AFTER 3:00 PM, are co	M Monday - Friday; Saturday 8:00 AM to 12:00 PM. nsidered received the following Business day at 8:00 AM.	samples will be disposed										As the	author	rized s	gent	of the	Com	nany	مبرمط		
S	3. The	TAT = 0:300 TAT = 1:100	1% Surcharge NEXT BUS	SINESS DAY if received by 9:00 AM NESS DAY (COB 5:00 PM)	 Electronic records mainta Hard copy reports will be Storage and Report Fees: 	disposed	l of after 45	calendar days fro	n report da						purcha									
Σ		TAT = 3 : 309 TAT = 4 : 209	6 Surcharge 3RD BUSINE 6 Surcharge 4TH BUSINE	SS DAY (COR 5:00 PM)	 Liquid & solid samples: O extended storage or hole Air samples: Complimen 	is reque	ested.								hereby	y guarai	ntee p	oayme	ent as	quot	ed.			
Page	S. Sub	ekend, holidaγ, contract TAT is	after-hours work - ask f 10 - 15 business days. F	rojects requiring shorter TATs will incur a surcharge	requested Hard copy and regeneral \$35 per reprocessed FDD	ted repor																		
	resp	pective to the su	ubcontract lab ask fo	r quote. If after 45 calendar days from receipt of samples; air	10. Rush TCLP/STLC samples 11. Unanalyzed samples will	: add 2 d	lays to analy lisposal fee	sis TAT for extract of \$7 per sample.	ion on proc	edure.	***************************************				Suk	omitter	Print	Name	9			Sign	ature	Para Indonesia de Caración de
30	Relinc	quished by:	(Signature and Prin	i is in	Time:	Rece	ived b	y: (Signa	ture and	Printed I	Name)						Date:	Tul	7					
of 1	Relino	quished by:	(Signature and Prin	ted Name)	Date:	uli-	7	Time: 1704			y: (Signa				WIFE	0 1	11/1	7	···	Date:		V HA		<i></i>
40	Relino	quished by:	(Signature and Prin	ted Name)	Date:		Z-724-10-10-10-10-10-10-10-10-10-10-10-10-10-	Time:	Rece	ved b	y: (Signa	ture and	Printed I	Name)	1 1 80		×/ (Date	1011	105	-	

CHAIN OF CUSTODY RECORD

Page _.	1	of	\$
-------------------	---	----	----

For Laboratory Use Only

ATLCOC Ver: 20130715

3275 Walnut Ave., Signal Hill, CA 90755 Tel: (562) 989-4045 • Fax: (562) 989-4040

CUSTOMER

PROJECT SAMPLES

Company:

Address:

Project Name:

Project No.:

11618.005 Sampler:

KCH

Pola Berth 191-193

SEND REPORT TO:

Quote No:

PO #:

<u>Instruction</u>: Complete all shaded areas.

Attn:

Company:

Address:

City:

524 (Volatiles)

Irv: Ne

Address:

City:

BMcculloch a leightor group con

Zip:

Special Instructions/Comments:

State:

5035 Kits

areas. Gedex Ontrac 2. HEADSPACE (VOA) O G. PRESERVED GSO Other: A. SEALED D. C. COOLER TEMP.	HATCH COC B CO
areas. Gedex Ontrac 2. HEADSPACE (VOA) O G. PRESERVED GSO Other: A. SEALED D. C. COOLER TEMP.	1836 14
areas. GSO Other: State: CA Zip: 47614 Fax: 749 - 750 - 11 SEND INVOICE TO: Same as SEND REP State: CA State: CA State: Stat	1836
areas. Coward Fel: 949-773- SEND INVOICE TO: Dame as SEND REP Email: State: Zip:	.2 点点 1836 114
Coway State: CA Zip: 97614 Fax: 949-750-1 SEND INVOICE TO: same as SEND REP Email: State: Zip:	1836 114
SEND INVOICE TO: Fax: 949 - 750 SEND INVOICE TO: same as SEND REP Email: State: Zip:	114
SEND INVOICE TO: Same as SEND REP	
SEND INVOICE TO: Same as SEND REP	ORT TO
SHML State: Zip:	
SHML State: Zip:	
SHML State: Zip:	
	<u> </u>
Encircle or Write Requested Analysis Encircle Sample Matrix Container	
	QA/QC
	QA/QC Routine Caltran
8081(Organochlorine Pesticides) 8082(PCBs) 6010 / 7000(Title 22 Metals) 10-15 6010 / 7000(Title 22 Metals) 10-15 6010 / WAPER PENTER WATER DRINKING/GROUND WATER STORM / WASTE AQUEO IS / LAYERED - OIL \$500 / SETABLES - 2 - OIL \$100 / SE	□ Caltran
Mer	E Legal RWQCE
SER D D - O	RWQCE
CTITLE 22 (TITLE 22 INT / SLUD INT / SL	: HI LEVELIV
B.I. (Organochlorine Pesti B.Z. (PCBs) 10 / 7000(Title 22 Mets 1.15 B.O.I. S. T. P.H.y.) B.O.I. S. T. P.H.y.) B.O.I. S. T. S. L. D.G. B. S. T. WIPE / HITER TITLE BRINKING / GROUNT TITLE STORM / WASTE UEO J.S. / LAVERED - OIL UEO J.S. / LAVERED - OIL E. S. T. S. C. S.	e-Nai
PPCE STAND	RKS
8081(Organochlorine Pesticides 8082(PCGs) 6010 / 7000(Title 22 Metals) 10-15 6010 / 8000(Title 22 Metals) 10-15 6010 S WIPE/ FILTER WATER DRINKING / GROUND WATER STORM / WASTE AQUEO US / LAVERED - OIL ***The STORM / WASTE AQUEO US / LAVERED - OIL ***The STORM / WASTE ***THE STORM	REMARKS
╶┤┈┧┧╌┧┧┈┤┈┤┈┤┈┤┈┤┈╏┈	
公司,刘明明明中国开始中的主义中的制度,中国国际自己主义,积累制制的公司,大臣、自己和国国际重点规划,由国际国际国际	
공항의 [4] 영화 [4] 중하는 이 사람들의 사용 가는 사용하지 않아 보다 되었다. 그는 사용하다 하는 사용	ori,∎re i Sera Ziulio.

Σ	I. I. Ata	Sample Descri	ption		8260 /	S(GR	8270(Ser 8081(Org	Z(PCE	6010 / 70 TO-15	30		+		\dashv	+	+		S S	S 8		EO GS	-	- September	- 1=Yu	5=Jar; 6=Tec Material: 1	ervati	7	REMARK
ITEM	Lab No.	Sample ID / Location	Date	Time	826	801	827	808	103	ගු							252726530		WATER	WAT	AQUEO	KURCEMBA	CONT.	# Type:	5=Jar Mate	Pres	7-7	REN
1	1703641 -01	LB5-0.5	10/11/17	1010	a)meanin				X	X												5	,	\$		200		
2	, 0 -	LB5-7.5		1012													STATE STATE OF						-			on and and and		
3	-03	LB5-5.0		1014													To the same	Ш					SHIPPERE			V.		
4	-54	LB9-0.5		1024	and a second												226.202.00					and the same	astronomen (Ш		THE STREET		
5	-01-	LB9-2.5		1026																						SECURITION OF THE PERSON OF TH		
6	20-	LB9-5.0		1028													THE REAL PROPERTY.							Ш		THE REAL PROPERTY.		
7	-07	LB14-0.5		1044	2000													Ш				and the second				NAME OF TAXABLE PARTY.		
8	-0Y	LB14-2.5		1046						Ш							200							Ш				
9	~09	LB14 - 5.0		1048													2002					7		Ш				
10	2	LB20-0.5		1115											1		- Average				Ш	1	V			THE REAL PROPERTY.		
Sample receiving hours: 7:30 AM to 7:30 PM Monday - Friday; Saturday 8:00 AM to 12:00 PM. 2. Samples Submitted AFTER 3:00 PM, are considered received the following Business day at 8:00 AM. 3. The following turnaround time conditions apply: 1AT = 1:200% Surcharge SAME BusiNESS DAY (COB 5:00 PM) 1AT = 1:200% Surcharge VAD BUSINESS DAY (COB 5:00 PM) 1AT = 2:300% Surcharge VAD BUSINESS DAY (COB 5:00 PM) 1AT = 3:300% Surcharge 4 The BusiNESS DAY (COB 5:00 PM) 1AT = 3:300% Surcharge 4 The BusiNESS DAY (COB 5:00 PM) 1AT = 5:100 Surcharge 4 The BusiNESS DAY (COB 5:00 PM) 4. Weekend, holiday, after hours work - ask for quote. 5. Subcontract TAT is 10 1:5 business days, Projects requiring shorter TATs will incur a surcharge respective to the subcontract Lab ask for quote. 5. Subcontract TAT is 10 1:5 business days, Projects requiring shorter TATs will incur a surcharge respective to the subcontract Lab ask for quote. 5. Subcontract TAT is 10 1:5 business days, Projects requiring shorter TATs will incur a surcharge respective to the subcontract Lab ask for quote. 5. Subcontract TAT is 10 1:5 business days, Projects requiring shorter TATs will incur a surcharge respective to the subcontract Lab ask for quote. 5. Subcontract TAT is 10 1:5 business days, Projects requiring shorter TATs will incur a surcharge received the following Business day at 8:00 AM. 5. Electronic records maintained for five (5) years from report date. 7. Electronic records maintained for five (5) years from report date. 8. Hard copy reports will be disposed of after 14 calendar days from receipt of samples. 9. Liquid & solid samples: Complimentary storage for forty-five (45) calendar days from receipt of samples; \$2/sample/month if exception											own	abov Ha	∕e ar	ιd														
elino	uished by: (Signature and P	Printed Names Ren C. Undy	Date: (3/11/1°	7 161	8		d by: (Si	Po	رس	`>	,	$\bigcup I$					7						/11	19			me: 16/8	·/
enno	juished by: (Signature and P	FPDIWA	Date: 10/11/17	Time: 170	4		d by: (Si					<u> </u>	Ŀ	nt	Ý.	20	<u> </u>	<u>//</u>	<u></u>			Date:	0/	1//	<i>A</i> -	ļ.	me: 20	4
elino	uished by: (Signature and F	Printed Name)	Date:	Time:	R	eceived	d by: (Si	gnature	and Pr	inted I	Name)					0	,				Date:		. ,		Ti	me:	<i>,</i>
			7777																									

LABORATORIES

3275 Walnut Ave., Signal Hill, CA 90755 Tel: (562) 989-4045 • Fax: (562) 989-4040

CHAIN OF CUSTODY RECORD

Page 7 of 5

<u>Instruction</u>: Complete all shaded areas.

For Laboratory Use Only ATLCOC Ver: 201307												
84-46-4	T	Sar	nple Cor	ditio	ns Upon Receipt							
ivietnoa	of Transport	Condition	γ	N	Condition	γ	N					
☐ Client	□ ATL	1. CHILLED			5. # OF SAMPLES MATCH COC	0						
□ FedEx	□ OnTrac	2. HEADSPACE (VOA)			6. PRESERVED							
☐ GSO		3. CONTAINER INTACT			7. COOLER TEMP, deg C:							
Other:		4. SEALED										

	Comp					Address:	1776	1 Co	WAM				944-	753-9856	,
		Leight	SEND REPORT TO:	INC.		City:	Irvin	ی		State: CA	Zip: 92	614 Fax		250-1114	
ER	Attn:	<u> </u>	SEND REPORT JO: Email:				Attn:			SEND INVO		ail:	□ same as	SEND REPORT TO	
0	C	BOYPH MC	Colloch	Binccoll	och Dle	htoragi	Attn:	Ut.	PAyable						<u> </u>
CUSTOMER	Compa	Leight	Colloch on Consulting	luci		9			5						
5	Addre:	ss: U	CN M-				Address:		11/	me					
	City:		SHYP Sta	ate:	Zip:		City:		· · · · ·			State	•	Zip:	
				3-11	16								3 8	#	
		ct Name:			ions/Comm collect				Write Requeste	d Analysis	Encircle	Sample Matr	ix Co	ntainer 🖁 QA/ ÿ □ Rou	
	Proje	ia Berth 19	70	3 > K11)	Collect	W\		Pesticides)	8015m		257,025		a second	Calt	tran
		1618.005	PO #:				8 = 1 1 1 1		00 3		DGE	GROUND ASTE	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAM	Her; 4 = Free; 4 = Free; 4 = Free; 4 = Free; 3 = Free; 3 = Free; 3 = Free; 4 = Free;	
	Samp	oler:					Vola	llorine tle 23	BOUS		/ SLU	INKING / G DRM / WAS LAYERED -	TAT	Canistic Can	
		KCH					524 (524 (0)	rganochlorine CBs) 7000(Title 22	17,1		EDIMENT / WIPE/ F	RINKIN TORM		ar; 7= Glass e: 1=1	
	ITEM	Lab No.	Sample Desc	ription			8260 / 624 (Volat 8015(GRO) 8015(DRO) 8270(Semi-volatiles)	1(Org 2(PC) 0 / 70	12 F		SO / SEDIMENT/	WATER - DRINKING / GRO WATER - STORM / WASTE AQUEOUS / LAYERED - OIL	200	Type: 1=Tubs S=lar; 6=Tedl: Material: 1= Preservativ S=Zn ((Ac)2: 6	(A.P.P.
LES	E	Lab No.	Sample ID / Location		Date	Time	8260 8015(8015((8270(8081(0 8082(P 6010 /	570 57		SOLIDS/	WAT AQU	# #	Type: 5=lar; Mater Prese 5=Zn ((Ě
MPL	1	1703641-11	LB3-0.5		10-11-17	754							54		
SA	2	- 12	LB3-2.5		1	756							Control of the Contro		MORTA DE
E C J	3	- دع	LB3-5.0			758									
PROJI	4	(\	LB4-0.5			834									
Д.	5	~ \s\f	LB4-2.5			836									
	6	پ (ډ	LB4-3.5			838									
	7	~ i7	LB 71-0.5 LB 71-7.5			922									
	8	2.4	LB=1-7.5			924	Steenstern								
	9	~(9	LB 7.1-5.0			926							CONTROL CO		Salah Salah
	10	- 25	LB2-015		W W	959			VV				WW		
$\overline{\Box}$	1. Sam 2. Sam	aple receiving hours: 7:30 AM to 7:30			ed of after 14 calend					As the aut	horized age	nt of the c	ompany al	oove, I hereby	
S	3. The	TAT = 0 : 300% Surcharge SAME BU TAT = 1 : 100% Surcharge NEXT BUS	.apply: 8. Ha SISHESS DAY if received by 9:00 AM 9. Std SIMESS DAY (COB 5:00 PM)	rd copy reports will brage and Report Fe	be disposed of after es:	45 calendar days fr	om report date,		. 454	purchase	aboratory s	ervices fro	m ATL as s	hown above and	Ł
\Box		TAT = 2:50% Surcharge 2ND BUSIN TAT = 3:30% Surcharge 3RD BUSIN TAT = 4:20% Surcharge 4TH BUSIN	ESS DAY (COB 5:00 PM)	ktended storage or h	nold is requested.		(45) calendar days from r s from receipt of samples			eis 1	arantee pay	ment as q	uoted.		
age	5 Subr	TAT = 5 : NO SURCHARGE 5th 8USI ekend, holiday, after-hours work - ask contract TAT is 10 - 15 husiness days	NESS DAY (COB 5:00 PM) for quote. - H Projects requiring shorter TATs will incur a surchasse \$\frac{5}{2}\$	equested. ard copy and regen 35 per reprocessed	erated reports/EDDs	: \$17.50 per hard co	py report requested; \$50	.00 per regener	ated/reforma? ed repo	1: //On(Mall		K.F		
e 13	resp 6. Liqu	pective to the subcontract lab ask fo aid and solid samples will be disposed	gr quote. 10. R	ush TCLP/5TLC samp	oles: add 2 days to a will incur a disposal	nalysis TAT for extra fee of \$7 per sampli	ction on procedure.			Submi	ter Print Na	me		Signature	
32 o	Relinq	uished by: (Signature and Pri	rted Names Law	199911	, ,	Timeig	Received by:	Signature an	d Printed Name)	1			Date: /4 /1	7 Time:	8
Page 132 of 140	Reling	quished by: (Signature and Pri	nted Name) = 100 m / s	Date:	ulin	Time: /70 \f	Received by:	Signature an	d Printed Name)	1 MP	201/		Date: 10/1/	A 170 9	7
읟	Reling	quished by: (Signature and Pri	nted Name)	Date:		Time:	Received by:	Signature an	d Printed Name)				Date:	Time:	

LABORATORIES

3275 Walnut Ave., Signal Hill, CA 90755 Tel: (562) 989-4045 • Fax: (562) 989-4040

CHAIN OF CUSTODY RECORD

Page <u>3</u> of <u>5</u>

Instruction: Complete all shaded areas.

	For Laboratory Use Only ATLCOC Ver: 20130715												
		San	ople Cor	ditic	ons Upon Receipt								
wetnoa	of Transport	Condition	Υ	N	Condition	Υ	N						
☐ Client	□ ATL	1. CHILLED			5. # OF SAMPLES MATCH COC								
☐ FedEx	□ OnTrac	2. HEADSPACE (VOA)			6. PRESERVED								
□ GSO		3. CONTAINER INTACT			7. COOLER TEMP, deg C:								
Other:		4. SEALED											

	Comp) pany:		Addres	55: 1778 (Coward		Tel:	949-253-9836
		Leinhton (CONSULTING INC.	City:	Irviive	State: CA	Zip: 97614 Fax:	
R R		3	SEND REPORT TO:			SEND INVOIC	E TO: E Email:	same as SEND REPORT TO
Σ	Attn:	Brynn M	nccullach Bmcc	Which Dleightongroup	. Com Acct. Payab	2	Email	
CUSTOMER	Comp) 776	nccullach Bmcc		Company:			
C	Addre	ess:			Address:	AMO		
	City:		SAMe	State: Zip:	City:		State:	Zip:
Щ	Dunia	not Name of	Quote No:	Special Instructions/Comments:			24 (A. 1999) (1844) (A. 1999) (A. 1999)	
	1	ect Name:		5035 Kilys	Encircle or Write Reques	sted Analysis	Encircle Sample Matrix	Container (☐ QA/QC
	Proje	ola Berth 191 ect No.:		2032	iles) Pesticides) Metals)		Q,	Caltrans 33 3=Metal 33 3=Metal 23 3=Metal □ Caltrans
		11618.005	PO #:		(Volatiles) (Volatiles) (Volatiles) Intrine Pest		STE STE	RWQCB
	Samp	VCH			24 (Volatiles) TRM (4 TRM (4) Volatiles) nochlorine Pestit () () () () () () () () () () () () (AENT / SLL PE/ FILTER INKING / G DRM / WA:	25, 2=Pl 26, 2=Pl 27 = Canii 27 = Canii 27 = HCi; 27 = Pl 27 = Pl 27 = Pl
		1	Cample	Description	20 BB an E0 65			Tube; 2 Tedar; 1=Glar; 1=Glar; 2 Tedar; 2 Tedar; 3 Tedar; 4 Tedar;
S	ITEM	Lab No.		Date Tim	8260 / 62 8260 / 62 8015(6Re) 8015(DRD) 8081(Organ 8082(PCBs) 6010 / 7000 TO-15		SOLIDS / WILL WATER - ST AQUEOUS /	# # Type: 1=Tube S=!ar; G=Tedla Material: 1= mercrearing Preservative 5=2n ([Ac]2; 6 REMARKS
PLE	-	•7	Sample ID / Location					5 V
SAMPLES	-	1703641-21	LB20-1.5		╌╏╌┟╌┞╌╏╴┧╌┟╌╃╌┧╌╁╌┼╌		+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	
	2	۰۲۲	LB20-5.0	111				
) E (3	-23	1875-0.5	114				
PROJECT	4	- 24	L025-2.5	114				
	5	-15	L875 - 5.0					
	6	-16	LB24-0.5	12				
	7	٠٠٢٦	LB24-2.5		<u> </u>			
	8	75.	1624-5.0	10	६६			
	9	- 27	LB19-0.5	139	26			
Ш	10	-30	LB19-2.5	W 13	07 44 1 6			MAIIII
	2. Sam	noles Submitted AFTER 3:00 PM, are (PM Monday - Friday; Saturday 8:00 AM to 12:00 PM. considered received the following Business day at 8:00 AM.	samples will be disposed of after 14 calendar days after 7. Electronic records maintained for five (5) years from re	eport date.			mpany above, I hereby
115	3.111	Following turnaround time condition TAT = 0; 300% Surcharge SAME B TAT = 1: 100% Surcharge NEXT BU TAT = 2: S0% Surcharge 2ND BUSI	SINESS DAY (COB 5:00 PM) NESS DAY (COB 5:00 PM)	Hard copy reports will be disposed of after 45 calendar Storage and Report Fees: Liquid & solid samples: Complimentary storage for for	· aays from report date. rty-fi ve {45} calendar days from receipt of samples; \$2/sample/mont		oratory services fron antee payment as qu	n ATL as shown above and
Pag		TAT = 3:30% Surcharge 3RD BUSH TAT = 4:20% Surcharge 4TH BUSH TAT = 5:NO SURCHARGE 5th BUSH	NESS DAY (COB 5:00 PM) NESS DAY (COB 5:00 PM) INESS DAY (COB 5:00 PM)	requested.	ndar days from receipt of samples; \$20/ sample/week if extended sto	orage is		Nein C. Wall
īge	5. Subo	nortive to the subcontract lab ask t	. Projects requiring shorter TATs will incur a surcharge	\$35 per reprocessed EDD. 10. Rush TCLP/STLC samples: add 2 days to analysis TAT f	hard copy report requested; \$50.00 per regenerated/reforma? ed re or extraction on procedure.		r Print Name	Signature
3H			of after 45 calendar/flays from receipt of samples, air	11. Unanalyzed samples will incur a disposal fee of \$7 per Date: /g// / Time:	Received by: (Signature and Printed Name)		Acad a character and a case and a case	
오		quished by: (Signature and Pr	inted Name)	12/(1/17 16)	パリルト Received by: (Signature and Printed Name)	1100		ate Time: ISIN Time:
6		quished by: (Signature and Pr	15100ms	Date: Time:	704	MIK	(Y///	10///1)7 / 7Cl ate: Time: /
	1		1					

CHAIN OF CUSTODY RECORD

Page 4 of 5

		ATLCOC Ver: 2	0130	715			
Na - 411	- £ T	Sam	ple Cor	ditio	ns Upon Receipt		
wethou	of Transport	Condition	Υ	N	Condition	γ	N
☐ Client	□ ATŁ	1. CHILLED			S. # OF SAMPLES MATCH COC		
☐ FedEx	□ OnTrac	2. HEADSPACE (VOA)		0	6. PRESERVED		
C) GSO		3. CONTAINER INTACT			7. COOLER TEMP, deg C:		
Other:		4. SEALED					

3275 Walnut Ave., Signal Hill, CA 90755 Tel: (562) 989-4045 • Fax: (562) 989-4040

<u>Instruction</u>: Complete all shaded areas.

	Comp		COMSULTING INC.		Address: City:	177	/kv:46 3[(o M Wr		te: <i>C β</i>	Zip: Ÿ		el: ૧૫૧_ ax:		
1 E R	Attn:					Attn:	-A - 1	7		SEND INVO		nail:	□ same	as SEND	REPORT TO
⊥ 0 M	Comp	Brynn M	chullach Bracolloc	4 Dleighton	youp.c	Company:	Mect	. Payo	uble.						
CUST	Addre	SS:				Address:			$-\rho$	$\Lambda \Lambda$	^ <i>(</i>)				
	City:		H M C State	e: Zip:		City:			$-\lambda$	17 V	W_	Sta	to	Zip:	
	City.			- Lip.		City.						Sta		Ζίρ.	
П		ct Name:		I Instructions/Comm	ents:		Encircle o	r Write Reque	sted Analys	is	Encircl	e Sample Ma	trix	Containe	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Proje	1A Berth 191	-193	34 Kits			ides)						THE SECRET	Pint	Routine
		18.005	PO #:			iles)	Pestic Meta)GE	OUND OIL	CONTRACTOR	iter; 4=	# SSSS CI Legal
	Samp	oler:					slatiles) hlorine Title 22				SEDIMENT / SLUDGI S / WIPE/ FILTER	DRINKING / GRO STORM / WASTE IS / LAYERED - OII	TAT	OA; 3=1 Caniste	Feren IV
	T	KCH				624	mi-vol ganoch Bs) 000(T				DIMENT WIPE/	DRINKING / STORM / W IS / LAYEREI		lar:	1=Glass; ive: 1=F 6=NaOF
S	ITEM	Lab No.	Sample Descrip	otion		15(64 15(64	8270(Semi-volatiles) 8081(Organochlorine Pesticides) 8082(PCBs) 6010 / 7000(Title 22 Metals)	-15				WATER - DRINKING / GRO WATER - STORM / WASTE AQUEOUS / LAYERED - OIL	SECTION S	ne: 1=Tu n: 6=Te	Material: 1= Preservative 5=Zn ((Ac)2; 6: REMARKS
P L E			Sample ID / Location	Date	Time	82(801 801	808 808 808 \$ 601	2			Soulc	* * & &		Type.	Mat Pres S=Zn REN
AM	1	busen -31	LB19-5.0	10/11/17	1309				111				15.1	1	
2	2	-3-	LB13-0,5		1340	$\blacksquare \blacksquare \blacksquare \blacksquare$			444	111	1-111-			111	
OJECT	3	-)3	LB13-2.5		1342		_ _ _		111	$\bot \bot \bot$				11-1	
PRO	4	- 34	LB13-5.0		13 44					444	$\perp \downarrow \downarrow \downarrow$				
	5	-35	LB8-015		1402										
	6	-)<	UB8-1.5		1404										
	7	->7	LB8-5.0		1406										
	8	- }\$	LB12-0.5		1423										
	9	-39	LB12-7.5		1425										
	10	40	LB12-5.0	4	1727									<u> </u>	
Page 134 of 140	2. Sam 3. The	ples Submitted AFTER 3:00 PM, are conditions following turnaround time conditions TAT = 0:300% Surcharge SAME BL TAT = 1:100% Surcharge NEXT BU' TAT = 3:30% Surcharge 2ND BUSIN TAT = 3:30% Surcharge 3RD BUSIN TAT = 4:20% Surcharge 4TH BUSIN TAT = 5: NO SURCHARGE 5th BUSIN FAT = 5: NO SURCHARGE 5th BUSIN	onsidered received the following Business day at 8:00 AM. is apply: siapply: SINESS DAY (Freceived by 9:00 AM SINESS DAY (COB 5:00 PM) LIQUI SESS DAY (COB 5:00 PM) Hard for quote. Projects requiring shorter TATs will incur a surcharge or quote. 10. Rush	es will be disposed of after 14 calendi onic records maintained for five (5) y copy reports will be disposed of after; ge and Report Fees: d & Solid samples: Complimentary sto ided storage or hold is requested. messels: Complimentary storage for te espted. (copy and regenerated reports/EDDs: per reprocessed EDD. ICLIP/STLC samples: add 2 days to an analyzed samples will igcur a disposal f	ears from report d 45 calendar days fi orage for forty-fi ve n (10) calendar da \$17.50 per hard c alysis TAT for extr.	ate. om report date. (45) calendar days ys from receipt of si opy report requeste	imples; \$20/ sample/ d; \$50.00 per regenei	week if extended st	nth if h	urchase la ereby gua V .	aboratory	yment as	om ATL a	s showr	above and
34		uished by: (Signature and Fri		Date: 1/1/17	Time: 16 (3	***************************************	by: (Signature an	d Printed Name					Date: //-		Time:
of 14	Reling	uished by: (Signature and Pri	nted Name)	Date: 10/11/17	Time: /704	Received	by: (Signature ar	nd Printed Name) }	TFR.	(Ch)		Date:	·/+}	Jime:
Ö	Reling	uished by; (Signature and Pri		Date:	Time:		by: (Signature ar	d Printed Name		11/			Date:		Time:

3275 Walnut Ave., Signal Hill, CA 90755

CHAIN OF CUSTODY RECORD

Page 5 of 5

			ATLCOC Ver: 2	0130)715		
80-44-4		Sam	ple Con	ditio	ns Upon Receipt		
Method	of Transport	Condition	γ	N	Condition	Υ	N
☐ Client	⊡ ATL	1. CHILLED			5. # OF SAMPLES MATCH COC		
☐ FedEx	☐ OnTrac	2. HEADSPACE (VOA)			6. PRESERVED		
□ GSO		3. CONTAINER INTACT			7. COOLER TEMP, deg C:		
Other:		4. SEALED	D				

	Tel:	(562) 989-4045 • Fax	x: (562) 989-4040		<u>Instructio</u>	<u>on</u> : Comple	ete al	l shad	ded are	eas.			Other:			4. SE	EALED		Ð				
П	Com	pany:				Address:	17	778	C	nuwo-	4							Tel	: 944	1 - 3	153	- 9	<u> </u>
		Leightor C	onsulting INC.			City:	17	ZVir	აღ				State			ip: 9	2614	1 Fax	100 100				
1 E R	Attn:		SENØ REPORT TO:	mail:			Attn:		.	V	,		SE	ND INV	OICE 1		mail:		□ san	ne as	SEND	REPO	ORT TO
CUSTOMER	Comr	Brynn McC.	Send REPORT TO: SEND REPORT TO: VIloch BMcColloc	h Oleight	odgrou	p.com	Comr	oany:	<u>fict</u>	t. P	uya!	ole_							<u> </u>			-	
U.S.	1											()	1	n		+ - 3.1 + 4/1				19.7		<u> </u>	
٥	Addre	ess:	AMe				Addre	ess:				21	FM						and Te				
	City:	7		State:	Zip:		City:											State	≥:		Zip:		
	Proje	ect Name:	Quote No:	Special Instruc	tions/Comm	ents:	1		Fn	ncircle or 1	Mrite Re	ouested i	Analysis			Encirc	le Sami	ole Matr	rix	C	ontaine	r 19	QA/QC
	Po	ola Barth 19 ect No.:	1-193	5035 K	like .		T	TT			TT				T		TT		- Contraction of the Contraction		T., T	04; 4 =	□ Routine
	1						(5)	0	sticide	Metals)							N N		- CONTRACTOR	9239103880	4=Pint	3=Meta (3=H2S	□ Caltran සට Legal
	11	618.005	PO #:				olatiles		es) ne Pe	22 M						/sludge lter	GROL	RED - OIL	TAT	orazoana Grandania	3=Liter; ister	lastic; exemple: :=HNO3	RWQCE
	Sam	pler: KUH					0X)	0	olatii	(Title						I ⊢ I ≔	. Z :	M / W			¥ 2	=Glass; 2=P	៖ a Level Ⅳ
	-		Cample	Description			/ 62/	100	emi-v	CBs)						EDIMEN /WIPE/	DRIN	JS / LAYER	· assayona	COMPANY	dar;	~ 3.2 °	12; 6=N; KKS
ES	ITEM	Lab No.	Sample ID / Location		Date	Time	8260	8015(8270(Semi-volatiles) 8081(Organochlorine Pesticides	8082(PCBs) 6010 / 700	5					SOLIDS /	WATER	WATER - STURM / WASTE AQUEOUS / LAYERED - ON	32221532	# #	Type: 1= 5=Jar; 6=	Material:	S=Zn ((Ac)2; 6: REMARKS
1	1	47.55	LB17-0.5		 		 -		ω ω l	× W		++-	H				+++	11	15	4		2 4	in) &
CT SAMPI	2	1703641-41	Annual Control of the		10/11//	1438				-	++	╅╅	$\ \cdot\ $	_	_		++	╂	1	1	$\vdash \vdash$		
	3	-40	LB17-2.5	**************************************				HH	╼┼╌┤	-HH	++	++			_	H	╁┼	++	-		\vdash		A TO SERVICE AND A SERVICE AND
0 J E (()	LB17 - 5.0			1442		HH	-	$\dashv H$	++	++-	H			\mathbb{H}	++	++		728	$\vdash \vdash$	_	
PRC	4	, -44	LB18-0.5			1453		HH	\dashv			44-		4		Ш	++	$\bot \bot$			\vdash		
	5	-47	LB18-7.5		7	1455	1	$\parallel \parallel$	-1		44					Щ.	44	44					
	6	-46	UB18-5.0			1457		$\parallel \parallel$								Ш.	11						
	7	-47	LB23-0.5			1515		Щ								Ш							
	8	-48	LB23-2.5			1518		Ш													\coprod		
	9	-49	LB13-5.0			1520		M								\mathbb{W}_{\perp}			Ψ	V			
	10	-70			18/11/17	931	KH	M													Ш		
	1. San 2. San	mple receiving hours: 7:30 AM to 7:30 mples Submitted AFTER 3:00 PM, are c	PM Monday - Friday, Satural 8:00 AM to 12:00 PM. Onsidered received the following Business day at 8:00 AM.	7. Electronic records ma	used of after 14 calenda aintained for fi ve (5) ye	ears from report da	ite.	#4										f the c					
1.5	3. Ine	e following turnaround time condition: TAT = 0:300% Surcharge SAME BU TAT = 1:100% Surcharge NEXT BU TAT = 2:50% Surcharge 2ND BUSII	SINESS DAY (COB 5:00 PM)	9. Storage and Report F	II be disposed of after 4 ees: les: Complimentary sto				from receip	pt of samples	: \$2/sample	e/month if	1 1 1		. 1 . 1997 1		The state of the s				showi	n abo	ve and
P		TAT = 3 : 30% Surcharge 2ND BUSIN TAT = 3 : 30% Surcharge 3RD BUSIN TAT = 4 : 20% Surcharge 4TH BUSIN TAT = 5 : NO SURCHARGE 5th BUSI	NESS DAY (COB 5:00 PM) NESS DAY (COB 5:00 PM)	extended storage or	hold is requested. mentary storage for te									eby gi	Jaran	.ee pa	ymer	nt as q	uotea				
age	5. Sub	eekend, holiday, after-hours work - ask bcontract TAT is 10 - 15 business days.	for quote. Projects requiring shorter TATs will incur a surcharge	 Hard copy and reger \$35 per reprocessed 	nerated reports/EDDs: I EDD.					per regenerat	ed/reforma	i? ed report;								19. f 2.38			
135	6. Lice	pective to the subcontract lab ask f uid and solid samples will be disposed	of after 45.ealendar days from receipt of samples; air	11. Unanalyzed sample:	nples: add 2 days to and s will incur a disposal fe	ee of \$7 per sample	:.		-				_ال	Subm	itter P	rint N	ame				Signa		
5 of		quished by: (Signature and Pri	1/ 1//1/	Date:	11/17	Time: 18					2~~	, (1			-2			Date://	1/1	7		ime: 1618
14			700 mb		5/11/17	Time: 1704				nature and			Di	M	Ü,		1		Date:	2/10	114		ime:
Ò	Relino	quished by: (Signature and Pri	inted Name)	Date:		Time:	Re	ceived	by: (Sign	nature and	Printed N	lame)	-1			10			Date:	v		Ť	ime:

3275 Walnut Ave., Signal Hill, CA 90755 Tel: (562) 989-4045 • Fax: (562) 989-4040

CHAIN OF CUSTODY RECORD

Page _

of	_ of	\$	
----	------	----	--

<u>Instruction</u>: Complete all shaded areas.

		For Laboratory U	se Only		ATLCOC Ver: 2	0130	71.5
A4-44-	d of Turners of	S	ample Cor	ditio	ns Upon Receipt		
wetho	d of Transport	Condition	γ	N	Condition	Υ	N
☐ Client	□ ATL	1. CHILLED	_/6		5. # OF SAMPLES MATCH COC	Ø	
☐ FedEx	OnTrac	2. HEADSPACE (VOA)			6. PRESERVED	<u>D</u>	. 🗗
☐ G5O		3. CONTAINER INTACT	⁶ Z	۵	7. COOLER TEMP, deg C:	10	n
Other: _		4. SEALED	□	9	2.6.2.2	di.	2 7

П	Comp	oany:			Address:	17781 Comm	T	el: 944-253-9836
		Leighton	Consulting Inc SEND REPORT TO: Which Brice Hook DI Consulting SAME State:		City:	1rv:ne		ax: 947 - 750 - 1114
A E R	Attn:	2 10 0	SEND REPORT TO: Email:			Attn:	SEND INVOICE TO: Email:	LI Same as SEND KEPOKT TO
CUSTOMER	Comp	SALL Del	olloch Bracenloshal	eng htory	roup. (or	Company:		
US	3011.10	Leighto	a Consulting			Address:	$D_{1}M_{0}$	
٥	Addre	ess:	SD Mo			Address	17'W	
	City:		State:	Zip:		City:	Sta	ate: Zip:
	Proje	ect Name:	Quote No: Special Instru	ıctions/Comm	nents:	Encircle or Write Requested A	nalysis Encircle Sample M	atrix Container 🖁 QA/QC
	Pol	a Berth 191	-193 5035K	its				F □ Routine
	Proje	ect No.:				iles) Pesticide Metals)	DND	Caltran
		618.005	PO #:			1 (Volatiles) colatiles) chlorine Pestici (Title 22 Metal	LUDGE ER / GROUNI ASTE D - OIL	
	Sami	KCH				4 (Vol	DIMENT / S WIPE/ FILT DRINKING, STORM / W	2=VOA; 7 = Cat 355; 2= 355; 2= 1=HC!;
			Sample Description			/ 624 GRO) DRO) Semi-v Organo / 7000(V WIP DRIN	=Tube; =Tube; al: 1=Gl awareza rative: (2: 6=N
ES	ITEM	Lab No.	Sample ID / Location	Date	Time	8260 / 624 (Volatiles) 8015(GRO) 8015(DRO) 8270(Semi-volatiles) 8081(Organochlorine Pesticides) 8082(PCBs) 6010 / 7000(Title 22 Metals) TO-15 6015 TPHy/A/IC	SOUDS / SEDIMENT / SLUDGE SOUDS / WIPE / STORM / WASTE STORM / WASTE AQUEO US / LAVERED - OIL	Type: 1=Tube S=1ar; 6=Tedas Material: 1= S=2n ((Ae)2: 6: REMARKS
PL	1	1703641 -01	LB5-0.5	10/11/17	-			1541
SAM	2		LB5-7.5	177111	1012			
L	3		LB5-5.0		1014			
OJE	4	-03	LB9 = 0.5					
PR(5				1024			
		-0/-	LB9-2.5		1026			
	6	20-			8501			
	7	-07	LB14 - 0.5		1044			
	8	-or	LB14=2.5		1046			
	9	~09	LB14 - 5.0		1048			
	10	- 0	LB20-0.5		1115			
	 1 2. Sarr 	nple receiving hours: 7:30 AM to 7:30 nples Submitted AFTER 3:00 PM, are of following turnaround time condition	considered received the following Business day at 8:00 AM. 7. Electronic records	posed of after 14 calend maintained for five (5)	years from report da	te.	As the authorized agent of the	
√ S	3	TAT = 0:300% Surcharge SAME BI TAT = 1:100% Surcharge NEXT BU TAT = 2:50% Surcharge 2ND BUSI	USINESS DAY (Freceived by 9:00 AM 9. Storage and Repor 9. Liquid & solid sar	nples: Complimentary st	om report date. [45] calendar days from receipt of samples; \$2/sample/month if	purchase laboratory services f hereby guarantee payment as		
P.		TAT = 3:30% Surcharge 3RD BUSIT TAT = 4:20% Surcharge 4TH BUSIT TAT = 5:NO SURCHARGE 5th BUS	NESS DAY (COB 5:00 PM) - Air samples: Com INESS DAY (COB 5:00 PM) - Air samples: Com requested.			s from receipt of samples; \$20/ sample/week if extended storage is	Sent. Mall	그렇게 되는 것이 없는 사람들이 되었다.
age	5. Sub	nective to the subcontract lab ask!	. Projects requiring shorter TATs will incur a surcharge \$35 per reprocess for quote. 10. Rush TCLP/STLC			py report requested; \$50.00 per regenerated/reforma? ed report; ction on procedure.) Submitter Print Name	Kerial Hall Signature
136	6 Liou	uid and solid samples will be disposed	d of after 45 calendar days from receipt of samples; air 11 Unanalyzed same	ples will incur a disposal	fee of \$7 per sample		Judinice Time Name	
<u>ş</u>	Neiiii C	deraned by, faignature and st	inted Name Huc. Call Date	(3/11/1	7 Time: 61	Bosolived by: (Signature and Printed Name)	<u> </u>	Date: Time: GIS

1704

Received by: (Signature and Printed Name)

LABORATORIES

3275 Walnut Ave., Signal Hill, CA 90755 Tel: (562) 989-4045 • Fax: (562) 989-4040

CHAIN OF CUSTODY RECORD

Page 7 of 5

Instruction: Complete all shaded areas

		For Laboratory Us	e Only		ATLCOC Ver: 2	0130	715
	T	Sar	nple Cor	nditio	ons Upon Receipt		
Method	of Transport	Condition	γ	N	Condition	γ	N
☐ Client	□ ATL	1. CHILLED			5. # OF SAMPLES MATCH COC		
□ FedEx	□ OnTrac	2. HEADSPACE (VOA)			6. PRESERVED		
□ GSO		3. CONTAINER INTACT			7. COOLER TEMP, deg C:		
Other:		4. SEALED					-

	161. ((302) 303-4	045 - 17a	x. (302) 707-4040		IIISTIUCTI	<u>on</u> : comple	ete an s	nauea a	reas.						SEALED						
	Comp	oany:	11.45				Address:	17	1781	(0	WAM						Tel	: 94	4-	75	3 - 90	336
		1-8	in h	roa Coasilting	INC.		City:		ViN				State:	CA	Zip:	12614		: 94				
E R) '	ron Consulting SEND REPORTION							<u> </u>			ID INVOI	CE TO:					SEND R		
O M E	Attn:	R.	m	send reportions collect on Consulting SA-Me	Email: Binc Cull	lock Dla	h h Karin s	Attn:	no A	r L	PAVOL	is				Email:						
입	Compa	any:	H 11	Consch		1901 00 10	J.,, or, d.,	Compar	<i>γ</i> γ.		1 ///00											
S O	Addro	<u> </u>	eight	for Consulting	1401			Address			-c	AV	ne									
	Audre	:55.	J	CAMO				ridui C3.			() ا	71	' IL									
	City:			Shire	State:	Zip:		City:									State	2:		Zip:		**
				IO N	Ic sial last	/6-		l				<u> </u>						y 8			8.3	
		ect Name:	. ()	Quote No:	Special Instruc				E	ncircle or	Write Reque	sted An	alysis		Enci	cle Samı	ple Matr	ix	Con	tainer	4 = 4(QA/QC
	ro	ola Be	-th 1	11-195	5035 kits	collect	ev/		ides)	(5)	BUSM							and the second		int;		⊐ Routine ⊐ Caltrans
Ì				PO #:				es).	estic	Aeta	00 8				JE STE	UND				er; 4=Pint; 3=Metal		⊒ Legal
-	Samp	116 18.	203	PO #.				Volatiles)	les)	22,1	13.5				SLUDG	ER / GROU	MSTE D - OI	TAT		3=Lin	2=HNC	⊐ RWQCB ⊐ Level IV
	Saint	KCH	ı					2	volatiles)	l life	PHA 8				NT/	/ FILT	M / W		į į	rbe; 2=VOA; 3=Lite dlar; 7 = Canister 1=Glass; 2=Plastic;	I=HCl;	Leveliv
		<u> </u>			SEE LES CONTROL PER DE CONTROL PER D			30)	_ 1 1 6	8082(PCBs) 6010 / 7000(Title 22 Metals)	120				/ SEDIMENT / SLUDGI	SOLIDS / WIPE/ FILTER WATER - DRINKING / G	WATER - STORM / WASTE AQUEOUS / LAYERED - OIL			ube; edlar; edlar; 1=Gla	tive:	Ş
	ITEM	Lab N	lo.	Sampl	le Description		·	8260 / 62 8015(GRO)	8015(DRO 8270(Semi 8081(Organ	8082(PCBs) 6010 / 700C	의글걸				Z/SE	SOLIDS / WATER -	JEOU	Transco		Type: 1=Tu 5=Jar; 6=Te Material:	Serva ((Ac)	REMARKS
LES	=	Las		Sample ID / Location	n	Date	Time	8260	8015() 8270() 8081()	8 9	15 E				(3)	SO!	₩ A B		# 2	Type: 5=Jar; Mate	Pre S=Zr	RE
SAMPLES	1	170364	1 ~ (1	LB3-0.5		10-11-17	754											15	1			
SA	2	ì	~ (\	LB3-2.5	A STATE OF THE PERSON NAMED OF THE PERSON NAME	1	756				111		TT						П			
b	3		. · · ·)	LB3-5.0	monochosa nodeo nearranno emissa con sociale a cura nearranno esta e		758		11	1 111		$\dagger \dagger$	11			$\dashv \dashv$	+		Π			
PROJECT	4		~(4	LB4-0.5			834		+	++++	-11111	++	++	++-		$\dashv \dagger$	++		H	-		
P R	5	<u> </u>	- 12	LB4-2.5			836		++	++H	$\dashv H H$	++	$\dashv \dagger$	++		++	++		H	+	To a second	
	-	<u> </u>					838			++H	-HHH	++	++	++	┼╫┼				HH	+		
	6	 	~ (¢	LB4-3.5			<u> </u>			$\Box\Box\Box$		11	44		+ + + +	_ -	44		H		1	
	7		-17	LB-1-0.5 LB-1-2.5			922			$\perp \downarrow \downarrow \downarrow$		11	44	44			11	1/1	Ш			
	8		۲۰۸	LB-1-7.5			924												Ш			
	9		~ (9	LB71-5.0			926															
	10	1	س ۔	LB2-015		1	959				NU							b	W			
	1. Sam 2. Sam	nple receiving hours:	7:30 AM to 7:30 R 3:00 PM, are	PM Monday - Friday; Saturday 8:00 AM to 12:00 PM. considered received the following Business day at 8:00 AM.	samples will be dispo								As t	he auth	orized a	igent o	f the c	ompar	ny ab	ove, I	herel	ογ
S	3. The	following turnaroun TAT = 0 : 300% Su	d time condition charge SAME B	is apply: USINESS DAY if received by 9 :00 AM ISINESS DAY (COB 5:00 PM)	 Hard copy reports will Storage and Report Fr 	If be disposed of after ees:	45 calendar days fro	m report dat							borator					iown a	above	and
ጎ		TAT = 2 : 50% Sure	harge 2ND BUS harge 3RD BUS	NESS DAY (COB 5:00 PM) NESS DAY (COB 5:00 PM)	 Liquid & solid sample extended storage or 	hold is requested.							here	by gua	rantee	paymer	nt as q	uoted.				
Pa	4 Wes	TAT = 4 : 20% Sure	harge 4TH BUS HARGE 5th BU	NESS DAY (COB 5:00 PM) SINESS DAY (COB 5:00 PM)	 Air samples: Compline requested. Hard copy and reger 	, -						-	1	b. (.	Ala	11		M	8. H	a li		
e l	I c cub.	contract TAT is 10	S business days	k for quote: . Projects requiring shorter TATs will incur a surcharge for quote. If of after 45 calendar days from receipt of samples; air	\$35 per reprocessed 10. Rush TCLP/5TLC sam	l EDD. nples: add 2 days to a	nalysis TAT for extrac	tion on proc		,		r v		ubmitt	er Print	<u>~∖</u> Name				<u>9 II</u> Signati	ure	
131	·		11/	A A No	11. Unanalyzed samples	s will incur a disposal			ved by: (Si	gnature and	d Printed Name)	1			<u> </u>		Date: 2			<u> </u>	e:
으		quished by: (Sig		inted Name)	1996) Date:	1.7	Time:			1-100)レンツ d Printed Name	\mathcal{I}	<u>- </u>	m 1)	W) /		Date: / 6 Date:			/	e: / F
14	Keiind	daisusa na: (218	iature and Pi	C m. C c/2 (amer barne)	/9 /	lulin	1704	mece	veu by, (3)	Briature dile	o i inter name	′ (4/1/1	- ()			10	1114	<u> </u>	Tim / P	<u> 5 4</u>

Received by: (Signature and Printed Name)

LABORATORIES

3275 Walnut Ave., Signal Hill, CA 90755

CHAIN OF CUSTODY RECORD

Page <u>3</u> of <u>5</u>

		For Laboratory Use	Only		ATLCOC Ver: 2	0130	715
• • • • • • •		Sam	opte Con	ditio	ns Upon Receipt		
Method	of Transport	Condition	Υ	N	Condition	Υ	N
☐ Client	□ ATL	1. CHILLED			5. # OF SAMPLES MATCH COC	_	
☐ FedEx	☐ OnTrac	2. HEADSPACE (VOA)			6. PRESERVED		
□ GSO		3. CONTAINER INTACT			7. COOLER TEMP, deg C:		
Other:		4. SEALED					

	Tel: ((562) 989-4045 • Fa	ix: (362) 989-4040	<u>Instructio</u>	<u>on</u> : Comple	rte all shaded areas.		4. SEALED		
	Comp	pany:			Address:	17781 COWAN		Tel:	944-25	3-9836
		Leighton (Consulting Inc.		City:	levine	State: CA	Zip: 97614 Fax:		tani nga alika. Alika da Nasala sa gara
ارت ا	Attn	3	SEND REPORT TO:	mail	a wan	•••	SEND INVOICE	CE TO: [Email:	☐ same as SEN	D REPORT TO
CUSTOMER	rull.	Brynn V	Consulting INC. SEND REPORT TO: McCullach Binco Clowar Leighter	Work Dleightergi	-00p.C	lon Acct - Payabi	e	- Lindin		
ST	Comp	oany: \779	1 Coman Leighton	, and the second second		Company:				
D)	Addre	ess:				Address:	AMO			
	City:		SAMe	State: Zip:		City:	$\mu \sim -$	State:	Zip	:
										<u> </u>
	1	ect Name:	Quote No:	Special Instructions/Comm	ents:	Encircle or Write Requesto	ed Analysis	Encircle Sample Matrix	Contain	- Q7/QC
	PC	ola Barth 191 ect No.:	1-193	5035KiYS		ides)			lint;	Routine ☐ Caltrans
						les)		SE DUND	ec 4=f	₩ # 80 CI Legal
	Samo	116(8.005				TRN A TRN A Colorides) Colorides) Coloride Pest (Title 22 Met		T / SLUDGE FILTER NG / GROU I / WASTE ERED - OIL	TAT TAT	= Plastic
		KCH				4 (Volati TPM volatiles) ochlorine 0(Title 22		MENT / SLU PE/ FILTER INKING / G DRM / WAS	2=VO/ 7=C	Slass, 2
			Sample	Description		(62 (62 (62 (62 (62 (62 (62 (62		SEDIN S/WIF R-DRI OUS/I	ereemore =Tube; =Tedlar	al: 1=c vative v()2; 6= v()2; 6= v()2; 6=
S	ITEM	Lab No.	Sample ID / Location	Date	Time	8260 / 624 (Volatiles) 8015/GRB) TPM A 8015/DRD) TPM A 8015/DRD) TPM S 8270(Semi-volatiles) 8081(Organochlorine Pesticide 8082(PCBs) 6010 / 7000(Tttle 22 Metals) TO-1.5		SOLIDS / WIPE/ FILTER SOLIDS / WIPE/ FILTER WATER - DRINKING / GROUND WATER - STORM / WASTE AQUEOUS / LAYERED - OIL	# Type: J	Material: 1= encomponents Preservative 5=2n ((Ac)2; 6= REMARKS
] d		\$7:30 a.//	LB20-15	10/11/17	1115				5 4	
SAMPLES	2	1703641-21	LB20 - 5.0	10/11/11					1 1	
1 1		۰۲۷			1118					
)E(3	-23	LB75-0.5		1142					
PROJECT	4	- 4	L815-2.5		1145					
	5	-4	LB15-5.0		1141					
	6	-16	LB24-0.5		1252					
	7	-27	LB24-7.5		1254					
	8	-28	1624-5.0		1256					
	9	-27	LB19-0.5		1305					
	10	-30	LB19-2.5		1307				44	
늬	1. Sam		0 PM Monday - Friday; Saturday 8:00 AM to 12:00 PM. considered received the following Business day at 8:00 AM.	samples will be disposed of after 14 calenda	r days after receipt		Ac the outh	orized agent of the co	mnany abovy	Lhoroby
	2. Sam 3. The	e following turnaround time condition TAT = 0: 300% Surcharge SAME E	ns apply: BUSINESS DAY if received by 9:00 AM	7. Electronic records maintained for fi ve (5) ye 8. Hard copy reports will be disposed of after 4 9. Storage and Report Fees:	ears from report dat 15 calendar days fro	te. m report date.		orized agent of the co ooratory services from		
		TAT = 1: 100% Surcharge NEXT BU TAT = 2: S0% Surcharge 2ND BUS TAT = 3: 30% Surcharge 3RD BUS	INESS DAY (COB 5:00 PM) INESS DAY (COB 5:00 PM)	 Liquid & solid samples: Complimentary sto extended storage or hold is requested. 		45) calendar days from receipt of samples; \$2/sample/month	Inchesy Budi	antee payment as qu	11	
Pag	4. Wee	TAT = 4: 20% Surcharge 4TH BUSI TAT = 5: NO SURCHARGE 5th BUSE ekend, holiday, after-hours work - as	INESS DAY (COB 5:00 PM) SINESS DAY (COB 5:00 PM)	requested.		s from receipt of samples; \$20/ sample/week if extended stora py report requested; \$50.00 per regenerated/reforma? ed rep	1 3 / 3 3 4 3	XII	Mein	· Men
ਰ	1 5. Subi	bcontract TAT is 10 - 15 business day:	s. Projects requiring shorter TATs will incur a surcharge for quote. If or quote, and of after 45 calendars flays from receipt of samples, air	\$35 per reprocessed EDD. 10. Rush TCLP/STLC samples: add 2 days to an 11. Unanalyzed samples will incur a disposal fe	alysis TAT for extrac	ction on procedure.		er Print Name		nature
138 			rinted Narge) Len C. /// W	Date: 19// 12	Time	Received by: (Signature and Printed Name)	\int	D	ate; /_	Time:
오		quished by: (Signature and P	rinted Name)	Date:	1618 Time:	Received by: (Signature and Printed Name)	11100		10/11/17	Time:
<u> </u> 3		quished by: (Signature and P	FADIUS 1	N/11/17	/フのY Time:	Received by: (Signature and Printed Name)	MIT	(91/1/	/ [©] / <i>!</i> /1) 7 —	1700
,	1	quisited by, pignature and r						J	•	/

CHAIN OF CUSTODY RECORD

Page 4 of 5

		For Laboratory Use	Only		ATLCOC Ver: 2	0130	715
N 4 - 41	- f T	San	nple Cor	ditio	ons Upon Receipt		
wethou	of Transport	Condition	Υ	N	Condition	γ	N
☐ Client	□ ATŁ	1. CHILLED			S. # OF SAMPLES MATCH COC		
☐ FedEx	□ OnTrac	2. HEADSPACE (VOA)		0	6. PRESERVED		
C) GSO		3. CONTAINER INTACT			7. COOLER TEMP, deg C:		
Other:		4. SEALED					

3275 Walnut Ave., Signal Hill, CA 90755 Tel: (562) 989-4045 • Fax: (562) 989-4040

<u>Instruction</u>: Complete all shaded areas.

\Box	Comp	any:				Address:	17	187	(DNO)	_ω ν						949.	- 75	53-	9831	b
		Leight or	COMSULTING SEND REPORT TO:	NC.		City:		Irv:	<u> </u>		State:			92614		3 () () () ()				
1 E R	Attn:		SEND REPORT TO:	mail:			Attn:				Control of the second	D INVOI		Email:		□ sam	e as s	SEND	REPOR	110
0	Compa		cculloch Braci	mail: olloch Dlagh	ton 4	vo op.Co	∕∕h Compan	<u> 140</u>	ct. P	Payabl.	<u>e </u>									
CUSTOMER				9							7-10	- · · · A -						4		
	Addre	ss:	5 h Ma				Address:			1	(1/	- VV								
	City:		SAMe	State: Zi):		City:			() ''		V-		State			Zip:		
	Droje	ct Name:	Quote No:	Special Instructions,	Comm.	ents:		Cod	irola ou Whito	Requested A			15	rcle Samp	La Noneui	.1 1			<u> </u>	
	1	1A Berth 191		5034 Kity	COMM	ciito.		TTT	ircle or write	Requested A	naiysis	ПТ	Enci	rcie Samp	ie iviatri		Con	ntainer	04; 4 = 4	QA/QC Routine
	Proje	ct No.:					_5	ticide	Metals)					g l		COLUMN TO SERVICE SERV		4=Pint;	-Metai 3=H2SC 3	□ Caltran □ Legal
	116	18.005	PO #:					is)	22 Me				SLUDGE	SROUND	등	TAT		=Liter;	astic; 3 menyana HNO3; HAZS20	a RWQC
	Samp	oler: KCN					(Volati	Slatile	Title				1Τ / SL	WIPE/ FILTER DRINKING / G	LAYERED			LVOA;	.s; 2=PI mentariza =HCl; 2: OH; 7=b	a Level IV
	ГТ	NCN					624	8270(Semi-volatiles) 8081(Organochlorine Pesticides)	7000(DIME	WIPE/FILTER DRINKING/GRO	S/LA				: 1=Glass; tive: 1=H 2; 6=NaOH	S
S	ITEM	Lab No.		Description		1	8260 / 62 8015(680)	8270(Semi 8081(Organ	8082(P) 6010 / TO-15				olicy se	SOLIDS / WATER -	AQUEOUS /	- Comment		ar, 6=1	Materiai: Preservai 5=Zn ((Ac)2	REMARKS
ш	-		Sample ID / Location		ate	Time	8 8 8	8 8 6	8 8 P			_ _ _	S S	S × s			# 1	Type S=Jar	Mat Pres 5=Zn	8
SAMPL	1	WO3641-31	LB19-5.0	10/	11/17	1309		444	141-			_ _ _	L X	_ _ _		15	4	_		
1 1	2	-3-	LB13-0,5		-	1340			4444						11		Ш			
OJECT	3	-73	LB13-2.5			1342									$\perp \perp$		Ш		5	
PRO.	4	- 34	LB13-5.0			13 44											Ш			
۵.	5	-35	LB8-015			1402							and the same of th						as a substantial and a substan	
	6	-)<	LB8-2.5			1404												T	COLUMN TO SERVICE SERV	
	7	-37	LB8-5.0			1406												\square	CONTRACTOR OF THE PERSON OF TH	
	8	-38	LB12-0.5			1423											П			
	9	-39	LB12-2.5			1425													THE STREET	
	10	.40	LB12-5.0		d'	1427			W				W			V	1			
	2. Sam	ples Submitted AFTER 3:00 PM, are o	PM Monday - Friday; Saturday 8:00 AM to 12:00 PM. considered received the following Business day at 8:00 AM.	samples will be disposed of aft 7. Electronic records maintained							As tl	ne auth	orized a	agent of	f the c	ompar	ny ab	ove,	l here	by
S	3. The i	following turnaround time condition: TAT = 0 : 300% Surcharge SAME BU TAT = 1 : 100% Surcharge NEXT BU	USINESS OAY if received by 9:00 AM SINESS DAY (COB 5:00 PM)	8. Hard copy reports will be dispo 9. Storage and Report Fees: - Liquid & solid samples: Comp	sed of after 4	4S calendar days fro	m report date	our from racoint	of complete \$3 fear	mala/moath if				y servic			as sl	nown	above	e and
P		TAT = 2 : 50% Surcharge 2ND BUSH TAT = 3 : 3D% Surcharge 3RD BUSH TAT = 4 : 20% Surcharge 4TH BUSH	NESS DAY (COB 5:00 PM) NESS DAY (COB 5:00 PM)	extended storage or hold is re - Air samples: Complimentary :	quested.						here			paymen		Al	_	1	1 6 1	
Page	5. Subc	TAT = 5 : NO SURCHARGE 5th BUS kend, holiday, after-hours work - ask contract TAT is 10 - 15 business days.	INESS DAY (CO8 5:00 PM) : for quote. . Projects requiring shorter TATs will incur a surcharge	requested. - Hard copy and regenerated re \$35 per reprocessed EDD.					r regenerated/refo	orma? ed report;			Hall		_/,	Ken!		<u>M</u>	all	
139	respi 6. Liqui	ective to the subcontract lab ask f id and solid samples will be disposed	for quote. I of after A5 calendar days from receipt of samples; air	10. Rush TCLP/STLC samples: add 11. Unanalyzed samples will incu	2 days to an r a disposal fe	alysis TAT for extra ee of \$7 per sample				-17	_] [S	ubmitte	er Print	Name				Signa	ture	
9 of	Relinq	uished by: (Signature ang சிர்	ightainnic Collab	Date:	117	Time: 6 (3	<u> </u>		ture and Printe						())/1///	7		Tim / c	ne: C / § /
140		uished by: (Signature and Pri	1700 Wa	Date: /9 /11	lin	Time: 1704			ature and Printe		Mŧ	R	(V)	3		Date: ///	1/6	}	Jin	ne:
	Reling	uished by: (Signature and Pri	inted Name)	Date:		Time:	Receiv	ed by: (Sign	ature and Printe	ed Name)			70		Ī	Date:			Tin	1e:

CHAIN OF CUSTODY RECORD

Page 5 of 5

		For Laboratory Use	2 Only		ATLCOC Ver: 2	0130	715
80-44-4		San	nple Cor	ditio	ns Upon Receipt		
Method	of Transport	Condition	γ	N	Condition	Υ	N
☐ Client	□ ATL	1. CHILLED			5. # OF SAMPLES MATCH COC		
☐ FedEx	□ OnTrac	2. HEADSPACE (VOA)			6. PRESERVED		
□ GSO		3. CONTAINER INTACT			7. COOLER TEMP, deg C:	***************************************	
Other:		4. SEALED	D				

3275 Walnut Ave., Signal Hill, CA 90755 Tel: (562) 989-4045 • Fax: (562) 989-4040

<u>Instruction</u>: Complete all shaded areas.

LinhYork Cox Subtime left (Stude Proof To Stude Pro		Comp	oany:				Address:	17	781	Co	MUM								Tel:	944	- 7	53。	- 95	536
Project Name: Project Name			Leightor (onsulting Inc.			City:	lr	U112									614	Fax:					
Project Name: Project Name	П Я	Δttn:	J	SEND REPORT TO:	mail:		F. 3. 4. 46 a	Attn	- 75 75		Weignight			SEN	D INVOI	CE TO:		ail•	4. 4. 4.	□ sam	e as	SEND	REPO	RT TO
Project Name: Project Name	∑ 0		Brynn McC.	ulloch BMcColloc	h Dleighto	Harou	10.Com		}	act.	Pa	ya b	e_											
Project Name:	SŢ	Comp	any: '	그는 맛이 그렇게 되는 것 같다.		J		Compa	iny:					40										
Project Name: Project No:	D)	Addre	ess:	10 Ma				Addres	s:				1	-V// <i>X</i>	ソ					- 1	7-11	<u> </u>	****	
Project Name:		City	·	1711	State:	Zip:		City:					<u>۱۱</u>		<u> </u>	<u> </u>			State			Zip:		
Pole Berth 191-193								<u> </u>									1.11.5				1 38	<u></u>		<u> </u>
Sample:	\Box	1 1			Special Instruction	ons/Comm	ents:			Encir	cle or Wr	ite Requ	iested Ai	nalysis		En	circle S	Sample	Matri		Cor	ntainer	= 4C;	QA/QC
Sample:		Po	la Berth 19	1-193	5035 W	ts.		4		(es)						100	П					ų -	304; 4	□ Routine
The supplies receiving bours 2000Min 2-10 PM Monthly of the company above, i hereby a more fast angles, complimate of the company above, i hereby a more fast angles, complimate of the company above, i hereby a more fast angles, complimate of the company above, i hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby and the company and the comp		1						(SI		sticic	etals							ONC		METALOGICA METALOGICA		; 4=Pir	5=1vie. Especial 3; 3=H2 02	□ Caltrans
The supplies receiving bours 2000Min 2-10 PM Monthly of the company above, i hereby a more fast angles, complimate of the company above, i hereby a more fast angles, complimate of the company above, i hereby a more fast angles, complimate of the company above, i hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby and the company and the comp		11	618.005	PO #:				Patile 7	S (S	ine Pe	22 N					IUDG	æ	GROU	-01	TAT		3=Liter ister	Hasulu, Accessor HANO: NIA 252	□ RWQCB
The supplies receiving bours 2000Min 2-10 PM Monthly of the company above, i hereby a more fast angles, complimate of the company above, i hereby a more fast angles, complimate of the company above, i hereby a more fast angles, complimate of the company above, i hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby and the company and the comp		Samp	oier: Kris					l (Vo	Sati	chlor	Title					S/TN	FILTE	KING/	YEREC	onestations of the second		=VOA;	55, 4~1 =HCl; 7	□ Level IV
The supplies receiving bours 2000Min 2-10 PM Monthly of the company above, i hereby a more fast angles, complimate of the company above, i hereby a more fast angles, complimate of the company above, i hereby a more fast angles, complimate of the company above, i hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby and the company and the comp			NOT	Committee		MONTH STATES OF THE STATES OF	00000000000000000000000000000000000000	, 62 ⁴	emi-v	rgano CBs)	7000					DIME	WIPE	STOR	AJ / SL	STATE STATE OF		Fube; 2 Fedlar;	THOSE STATES	\$2
The supplies receiving bours 2000Min 2-10 PM Monthly of the company above, i hereby a more fast angles, complimate of the company above, i hereby a more fast angles, complimate of the company above, i hereby a more fast angles, complimate of the company above, i hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby a more fast angles, complimate of the company above, in hereby and the company and the comp	S	EM	Lab No.		· · · · · · · · · · · · · · · · · · ·	-h	I	260 / 115(6	15(F)	81(0 82(P	707					85/1	/ san	ATER -	NEOL	A TOTAL CONTRACTOR OF THE PROPERTY OF THE PROP		pe: 1=1 ar; 6=1	Sterios Esperve SServe	REMARKS
Compared to the substitution of the substitu	1 m [44000) PARTON PA						8 8	8 2			44	_		8	3 3	¥			Z 3	Pr	82
2	M	1	1703641 -41	LB17-0.5		10/11/17	1438				X									5	4			ļ
As the authorized agent of the company above, I hereby purchase laboratory services from ATL as shown above and the 1 students and 1 students	S	2	j -4c	LB17-2.5			2440														11			
4	l w l	3	()	LB17 - 5.0			1442	The Company								1							NEOSPECED.	
Sample receiving hours: 7:30 AM to 7:30 PM Monday - Fed.sq. Sauthly 8:00 AM to 1:20 PM. Samples with bed disposed of after 1x6 clearland days a flag plan of sq. samples with bed disposed of after 1x6 clearland days a flag plan of sq. samples with bed disposed of after 1x6 clearland days a flag plan of sq. samples with bed disposed of after 1x6 clearland days a flag plan of sq. samples with bed disposed of after 1x6 clearland days a flag plan of sq. samples with bed disposed of after 1x6 clearland days a flag plan of sq. samples with bed disposed of after 1x6 clearland days a flag plan of sq. samples with bed disposed of after 1x6 clearland days a flag plan of sq. samples with bed disposed of after 1x6 clearland days a flag plan of sq. samples with bed disposed of after 1x6 clearland days flag plan of sq. samples with bed disposed of after 1x6 clearland days flag plan of sq. samples with bed disposed of after 1x6 clearland days flag plan of sq. samples with bed disposed of after 1x6 clearland days flag plan of sq. samples with bed disposed of after 1x6 clearland days flag plan of sq. samples with bed disposed of after 1x6 clearland days flag plan of sq. samples with bed disposed of after 1x6 clearland days flag plan of sq. samples with bed disposed of after 1x6 clearland days from receipt of samples, 52/sample/month if st. samples. Complimentary storage for fently 8 ve (45) calendar days from receipt of samples, 52/sample/month if st. samples. Complimentary storage for fently 8 ve (45) calendar days from receipt of samples, 52/sample/month if st. samples. Complimentary storage for fently 8 ve (45) calendar days from receipt of samples, 52/sample/month if st. samples. Complimentary storage for fently 8 ve (45) calendar days from receipt of samples, 52/sample/month if st. samples. Complimentary storage for fently 8 ve (45) calendar days from receipt of samples, 52/sample/month if st. samples. Complimentary storage for fently 8 ve (45) calendar days from receipt of samples, 52/sample/month if st. samples. Compl		4	, -44				1453		\prod							3							The state of the s	
1 Sampler scentiving hours: 7:30 AN to 7:30 PM Monday - Redia, Saturbay 8:00 AMTo 12:00 PM. 2 Samples submitted AFER 3:00 PM, are considered received the following Submissed say at 8:00 AMTo 12:00 PM. 3 The first of the constraint of the first of the submissed AFER 3:00 PM, are considered received the following Submissed say at 8:00 AMTo 12:00 PM. 3 The first of the constraint of the first of the submissed AFER 3:00 PM, are considered received the following Submissed say at 8:00 AMTo 12:00 PM. 3 The first of the fir	۵	5	-45				1455														П			
7 - 47 LB23 - 2.5 8 -47 LB23 - 2.5 1518 9 -49 LB23 - 5.0 10 B2-7.16 1520		6	-46				1457														П			
1. Samples swithing bours: 7:30 AM to 7:30 PM Monday: Midra & Sun May 8:00 AM to 12:00 PM. 1. Samples swithing AFER 3:00 PM, are considered received the following Business day at 8:00 AM. 3. The following turnacound time conditions apply: 1. Tal = 1: 100% Surchange 8 AME BUSINESS DAY (CoB 5:00 PM) 1. Ta		7	-47				1515										П							
1. Sampler receiving hours: 7:30 AM to 7:30 PM Monday - Hofas Jatuniay 8:00 AM to 12:00 PM. 2. Samples Submitted AFTER 3:00 PM, are considered received the following Business day at 8:00 AM. 3. The following turnaround time conditions apply: 1.14 = 0:100% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.14 = 2:00% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.14 = 2:00% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.14 = 3:30% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.14 = 3:30% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.14 = 3:30% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.15 = 4:100% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.16 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.17 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.18 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.19 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.10 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.10 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.10 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.10 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.10 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.10 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.10 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.10 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.10 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.10 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.10 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.10 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.10 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.10 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.10 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.11 = 2:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.12 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.12 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.13 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.14 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.15 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.15 = 4:20% Surcharge SAME BUSINESS DAY		8	-48				1518										Π				П		TO SERVICE STREET	
1. Sampler receiving hours: 7:30 AM to 7:30 PM Monday - Hofas Jatuniay 8:00 AM to 12:00 PM. 2. Samples Submitted AFTER 3:00 PM, are considered received the following Business day at 8:00 AM. 3. The following turnaround time conditions apply: 1.14 = 0:100% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.14 = 2:00% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.14 = 2:00% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.14 = 3:30% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.14 = 3:30% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.14 = 3:30% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.15 = 4:100% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.16 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.17 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.18 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.19 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.10 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.10 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.10 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.10 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.10 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.10 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.10 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.10 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.10 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.10 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.10 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.10 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.10 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.10 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.10 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.11 = 2:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.12 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.12 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.13 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.14 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.15 = 4:20% Surcharge SAME BUSINESS DAY (COB 5:00 PM) 1.15 = 4:20% Surcharge SAME BUSINESS DAY		9	-49	LB13-5.0		V	1520	1	W							N				V	V			
1. Sample receiving hours: 7-30 AM to 7-30 PM Monday - Fleffin Satul-Nay 8:00 AM to 12:00 PM. 2. Samples Submitted AFTER 3:00 PM, are considered received the following Business day at 8:00 AM. 3. The following turnaround time conditions apply. TAT = 0: 300% Surcharge SAME BUSINESS DAY if received by 9:00 AM TAT = 1: 100% Surcharge RATE BUSINESS DAY (COB 5:00 PM) TAT = 2: 50% Surcharge RATE BUSINESS DAY (COB 5:00 PM) TAT = 3: 20% Surcharge RATE BUSINESS DAY (COB 5:00 PM) TAT = 3: 20% Surcharge RATE BUSINESS DAY (COB 5:00 PM) TAT = 3: 70% Surcharge RATE BUSINESS DAY (COB 5:00 PM) TAT = 3: 50% Surcharge RATE BUSINESS DAY (COB 5:00 PM) TAT = 5: 50% Surcharge RATE BUSINESS DAY (COB 5:00 PM) TAT = 5: 50% Surcharge RATE BUSINESS DAY (COB 5:00 PM) TAT = 5: 50% Surcharge RATE BUSINESS DAY (COB 5:00 PM) TAT = 5: 50% Surcharge RATE BUSINESS DAY (COB 5:00 PM) TAT = 5: 50% Surcharge RATE BUSINESS DAY (COB 5:00 PM) TAT = 5: 50% Surcharge RATE BUSINESS DAY (COB 5:00 PM) TAT = 5: 50% Surcharge RATE BUSINESS DAY (COB 5:00 PM) TAT = 5: 50% Surcharge State Business Rate Business Rat		10	1 -	182-2.6		18/11/17	957	XII													T			
3. The following turnaround time conditions apply: TAT = 0. 300% Surcharge SAME BUSINESS DAY (CR0 5:00 PM) TAT = 1. 100% Surcharge SAME BUSINESS DAY (CR0 5:00 PM) TAT = 1. 100% Surcharge SAME BUSINESS DAY (CR0 5:00 PM) TAT = 3. 30% Surcharge SAME BUSINESS DAY (CR0 5:00 PM) TAT = 3. 30% Surcharge SAME BUSINESS DAY (CR0 5:00 PM) TAT = 3. 30% Surcharge SAME BUSINESS DAY (CR0 5:00 PM) TAT = 5. NO SURCHARGE 5 th BUSINESS DAY (CR0 5:00 PM) TAT = 5. NO SURCHARGE 5 th BUSINESS DAY (CR0 5:00 PM) TAT = 5. NO SURCHARGE 5 th BUSINESS DAY (CR0 5:00 PM) TAT = 5. Subcontract TAT is 10 - 15 business days. Projects requiring shorter TATs will incur a surcharge respective to the subcontract Lab ask for quote. 4. Weekend, holiday, after-hours work - ask for quote. 5. Subcontract TAT is 10 - 15 business days. Projects requiring shorter TATs will incur a surcharge respective to the subcontract Lab ask for quote. 5. Subcontract TAT is 10 - 15 business days. Projects requiring shorter TATs will incur a surcharge respective to the subcontract Lab ask for quote. 5. Subcontract TAT is 10 - 15 business days. Projects requiring shorter TATs will incur a surcharge respective to the subcontract Lab ask for quote. 5. Subcontract TAT is 10 - 15 business days. Projects requiring shorter TATs will incur a surcharge respective to the subcontract Lab ask for quote. 5. Subcontract TAT is 10 - 15 business days. Projects requiring shorter TATs will incur a surcharge respective to the subcontract Lab ask for quote. 5. Subcontract TAT is 10 - 15 business days. Projects requiring shorter TATs will incur a surcharge respective to the subcontract Lab ask for quote. 5. Subcontract TAT is 10 - 15 business days. Projects requiring shorter TATs will incur a surcharge respective to the subcontract Lab ask for quote. 5. Subcontract TAT is 10 - 15 business days. Projects requiring shorter TATs will incur a surcharge respective to the subcontract Lab ask for quote. 5. Subcontract TAT is 10 - 15 business days. Project		1. Sam	pple receiving hours: 7:30 AM to 7:30	PM Monday - Retain Saturday 8:00 AM to 12:00 PM.			ir days after egyp		4		A.,	لسناسا		Acth	o auth	orizor) 200r	at of t	tho co	1	Y	2040	l bor	aby.
TAT = 1: 100% Surcharge RNXT BUSINESS DAY (COB 5:00 PM) TAT = 2: 50% Surcharge RND BUSINESS DAY (COB 5:00 PM) TAT = 3: 30% Surcharge RND BUSINESS DAY (COB 5:00 PM) TAT = 3: 30% Surcharge RND BUSINESS DAY (COB 5:00 PM) TAT = 5: NO SURCHARGE Sth BUSINESS DAY (COB 5:00 PM) TAT = 5: NOS SURCHARGE Sth BUSINESS DAY (COB 5:00 PM) TAT = 5: NOS SURCHARGE Sth BUSINESS DAY (COB 5:00 PM) TAT = 5: NOS SURCHARGE Sth BUSINESS DAY (COB 5:00 PM) TAT = 5: NOS SURCHARGE Sth BUSINESS DAY (COB 5:00 PM) TAT = 5: NOS SURCHARGE Sth BUSINESS DAY (COB 5:00 PM) TAT = 5: NOS SURCHARGE Sth BUSINESS DAY (COB 5:00 PM) TAT = 5: NOS SURCHARGE Sth BUSINESS DAY (COB 5:00 PM) TAT = 5: NOS SURCHARGE Sth BUSINESS DAY (COB 5:00 PM) TAT = 5: NOS SURCHARGE Sth BUSINESS DAY (COB 5:00 PM) TAT = 5: NOS SURCHARGE Sth BUSINESS DAY (COB 5:00 PM) TAT = 5: NOS SURCHARGE Sth BUSINESS DAY (COB 5:00 PM) TAT = 5: NOS SURCHARGE STANDARGE STANDARGE STANDARGE STANDARGE STAND		2. Sam 3. The	following turnaround time condition: TAT = 0:300% Surcharge SAME BU	8. Hard copy reports will be	disposed of after 4			ate.																
TAT = \$1.20% Surcharge 41H BUSINESS DAY (COB 5.00 PM) - Air samples: Complimentary storage for ten (10) calendar days from receipt of samples, \$20/ sample/week if extended storage is requested. - Air samples: Storage for ten (10) calendar days from receipt of samples, \$20/ sample/week if extended storage is requested. - Air samples: Storage for ten (10) calendar days from receipt of samples, \$20/ sample/week if extended storage is requested. - Air samples: Storage for ten (10) calendar days from receipt of samples, \$20/ sample/week if extended storage is requested. - Air samples: Complimentary storage for ten (10) calendar days from receipt of samples, \$20/ sample/week if extended storage is requested. - Air samples: Complimentary storage for ten (10) calendar days from receipt of samples, \$20/ sample/week if extended storage is requested. - Air samples: Complimentary storage for ten (10) calendar days from receipt of samples, \$20/ sample/week if extended storage is requested. - Air samples: Complimentary storage for ten (10) calendar days from receipt of samples, \$20/ sample/week if extended storage is requested. - Air samples: Complimentary storage for ten (10) calendar days from receipt of samples, \$20/ sample/week if extended storage is requested. - Air samples: Complimentary storage for ten (10) calendar days from receipt of samples, \$20/ sample/week if extended storage is requested. - Air samples: Complimentary storage for ten (10) calendar days from receipt of samples, \$20/ sample/week if extended storage is requested. - Air samples: Complimentary storage for ten (10) calendar days from receipt of samples; air samples; air samples: ai	1 š		TAT = 2 : S0% Surcharge 2ND BUSIN TAT = 3 : 30% Surcharge 3RD BUSIN	NESS DAY (COB 5:00 PM) NESS DAY (COB 5:00 PM)	 Liquid & solid samples: extended storage or hol 	Complimentary sto- ld is requested.								111111	化气烧性 化压力器		100	2 50 77 2	 10 (1) 					
Submitter Print Name Signature	Pa	4 Wes	TAT = 4 : 20% Surcharge 4TH BUSIN TAT = 5 : NO SURCHARGE 5th BUSIN	IESS DAY (COB 5:00 PM) INESS DAY (COB 5:00 PM)	requested.								-											
Relinquished by: (Signature and Printed Name) Date: Time: Received by: (Signature and Printed Name) Date: Time:	e	5. Subi resp	contract TAT is 10 - 15 business days. pective to the subcontract lab ask f	Projects requiring shorter TATs will incur a surcharge or quote. of after 45 ealendar days from receipt of samples: air	\$35 per reprocessed ED 10. Rush TCLP/STLC sample	D. es: add 2 days to an:	alysis TAT for extra	ction on pro		pci 11			cpo. c,		ubmitt	er Prir	ıt Na	me				Signa	ture	
	붜								eived by	/: (Signatu	re and Pri	nted Nan	ne)			T.	<u>-144</u>	-	D	ate: /	7		Ti	me:
Relinquished by: (Signature and Printed Name) Date: , Time: Received by: (Signature and Printed Name) Date: / Time: // Date: //	웃		uished by: (Signature and Pri	nted Name)	Date		Time:				<u> </u>			1	~~	A	m					<u> </u>	Ti	16/8 me: ,
Relinquished by: (Signature and Printed Name) Political Name Date: Time: Received by: (Signature and Printed Name)	46	L		700 wa		111/17								IMI	<u> </u>	<u>(U/</u>	1		E	10 ate:	[11	份_	_/ <u>`</u>	<u>≀O∕/</u> me:

November 08, 2017

Brynn McCulloch Leighton Consulting, Inc. 17781 Cowan Street

Irvine, CA 92614 Tel: (949) 394-2306 Fax:(949) 250-1114 ELAP No.: 1838 CSDLAC No.: 10196 ORELAP No.: CA300003

Re: ATL Work Order Number: 1703641

Client Reference: POLA Berth 191-193, 11618.005

Enclosed are the results for sample(s) received on October 11, 2017 by Advanced Technology Laboratories. The sample(s) are tested for the parameters as indicated on the enclosed chain of custody in accordance with applicable laboratory certifications. The laboratory results contained in this report specifically pertains to the sample(s) submitted.

Thank you for the opportunity to serve the needs of your company. If you have any questions, please feel free to contact me or your Project Manager.

Sincerely,

Eddie Rodriguez

Laboratory Director

The cover letter and the case narrative are an integral part of this analytical report and its absence renders the report invalid. Test results contained within this data package meet the requirements of applicable state-specific certification programs. The report cannot be reproduced without written permission from the client and Advanced Technology Laboratories.

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

SUMMARY OF SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LB5-0.5	1703641-01	Soil	10/11/17 10:10	10/11/17 16:18
LB5-2.5	1703641-02	Soil	10/11/17 10:12	10/11/17 16:18
LB9-0.5	1703641-04	Soil	10/11/17 10:24	10/11/17 16:18
LB9-2.5	1703641-05	Soil	10/11/17 10:26	10/11/17 16:18
LB4-0.5	1703641-14	Soil	10/11/17 8:34	10/11/17 16:18
LB4-2.5	1703641-15	Soil	10/11/17 8:36	10/11/17 16:18
LB4-3.5	1703641-16	Soil	10/11/17 8:38	10/11/17 16:18
LB2-0.5	1703641-20	Soil	10/11/17 9:59	10/11/17 16:18
LB19-0.5	1703641-29	Soil	10/11/17 13:05	10/11/17 16:18
LB13-0.5	1703641-32	Soil	10/11/17 13:40	10/11/17 16:18
LB13-2.5	1703641-33	Soil	10/11/17 13:42	10/11/17 16:18
LB17-0.5	1703641-41	Soil	10/11/17 14:38	10/11/17 16:18
LB17-2.5	1703641-42	Soil	10/11/17 14:40	10/11/17 16:18
LB2-2.5	1703641-50	Soil	10/11/17 9:57	10/11/17 16:18

Page 2 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB5-0.5 Lab ID: 1703641-01

Polychlorinated Biphenyls by EPA 8082

Polychlorinated Biphenyls by EPA	by EPA 8082						Analyst: CO/
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Aroclor 1016	ND	16	1	B7J0724	10/24/2017	10/25/17 15:54	
Aroclor 1221	ND	16	1	B7J0724	10/24/2017	10/25/17 15:54	
Aroclor 1232	ND	16	1	B7J0724	10/24/2017	10/25/17 15:54	
Aroclor 1242	ND	16	1	B7J0724	10/24/2017	10/25/17 15:54	
Aroclor 1248	ND	16	1	B7J0724	10/24/2017	10/25/17 15:54	
Aroclor 1254	ND	16	1	B7J0724	10/24/2017	10/25/17 15:54	
Aroclor 1260	ND	16	1	B7J0724	10/24/2017	10/25/17 15:54	
Aroclor 1262	ND	16	1	B7J0724	10/24/2017	10/25/17 15:54	
Aroclor 1268	ND	16	1	B7J0724	10/24/2017	10/25/17 15:54	
Surrogate: Decachlorobiphenyl	32.4 %	18 - 136		B7J0724	10/24/2017	10/25/17 15:54	
Surrogate: Tetrachloro-m-xylene	50.2 %	30 - 130		B7J0724	10/24/2017	10/25/17 15:54	

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 10:53	
1,1,1-Trichloroethane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 10:53	
1,1,2,2-Tetrachloroethane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 10:53	
1,1,2-Trichloroethane	N	4.6	1	B7J0750	10/25/2017	10/25/17 10:53	
1,1-Dichloroethane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 10:53	
1,1-Dichloroethene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 10:53	
1,1-Dichloropropene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 10:53	
1,2,3-Trichloropropane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 10:53	
1,2,3-Trichlorobenzene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 10:53	
1,2,4-Trichlorobenzene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 10:53	
1,2,4-Trimethylbenzene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 10:53	
1,2-Dibromo-3-chloropropane	ND	9.1	1	B7J0750	10/25/2017	10/25/17 10:53	
1,2-Dibromoethane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 10:53	
1,2-Dichlorobenzene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 10:53	
1,2-Dichloroethane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 10:53	
1,2-Dichloropropane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 10:53	
1,3,5-Trimethylbenzene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 10:53	
1,3-Dichlorobenzene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 10:53	
1,3-Dichloropropane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 10:53	
1,4-Dichlorobenzene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 10:53	
2,2-Dichloropropane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 10:53	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB5-0.5

Lab ID: 1703641-01

~	
v EPA 5035/EPA 8260B	
npounds by EP	•
olatile Organic Cor	0
>	

Analyst: AG

Notes 10/25/17 10:53 Date/Time Analyzed 10/25/2017 0/25/2017 0/25/2017 Prepared B7J0750 Batch Dilution (ug/kg) PQL 4.6 9.1 4.6 4.6 4.6 4.6 46 46 (ug/kg) Result 2 2 8 Θ Ð Ð Ð $\frac{1}{2}$ B 9 9 9 $\frac{1}{2}$ 9 Ð 8 $\frac{1}{2}$ 2 $\frac{1}{2}$ 9 Ð 8 Θ 8 9 9 8 Ð ₽ B Ð Ð 9 9 5 Dichlorodifluoromethane cis-1,3-Dichloropropene Bromodichloromethane Dibromochloromethane cis-1,2-Dichloroethene Bromochloromethane Hexachlorobutadiene Carbon tetrachloride Ethyl tert-butyl ether Methylene chloride 4-Isopropyltoluene Di-isopropyl ether sec-Butylbenzene Dibromomethane Isopropylbenzene n-Propylbenzene Carbon disulfide 2-Chlorotoluene 4-Chlorotoluene Chloromethane n-Butylbenzene Bromomethane Bromobenzene Chlorobenzene Chloroethane Ethyl Acetate Ethylbenzene Naphthalene m,p-Xylene Bromoform Chloroform Ethyl Ether Freon-113 Analyte Styrene Page 4 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB5-0.5 Lab ID: 1703641-01

Lab ID. 1705041-01

Totality Organity Compounds by Electronical Second	70 WITH 2000 WITH	O O O					Allalyst
Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
tert-Amyl methyl ether	ND	4.6	1	B7J0750	10/25/2017	10/25/17 10:53	
tert-Butanol	ND	91	1	B7J0750	10/25/2017	10/25/17 10:53	
tert-Butylbenzene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 10:53	
Tetrachloroethene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 10:53	
Toluene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 10:53	
trans-1,2-Dichloroethene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 10:53	
trans-1,3-Dichloropropene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 10:53	
Trichloroethene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 10:53	
Trichlorofluoromethane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 10:53	
Vinyl acetate	ND	46	1	B7J0750	10/25/2017	10/25/17 10:53	
Vinyl chloride	ND	4.6	1	B7J0750	10/25/2017	10/25/17 10:53	
Surrogate: 1,2-Dichloroethane-d4	105 %	32 - 140		B7J0750	10/25/2017	10/25/17 10:53	
Surrogate: 4-Bromofluorobenzene	92.0%	68 - 131		B7J0750	10/25/2017	10/25/17 10:53	
Surrogate: Dibromofluoromethane	% 101	49 - 134		B7J0750	10/25/2017	10/25/17 10:53	
Surrogate: Toluene-d8	107 %	75 - 132		B7J0750	10/25/2017	10/25/17 10:53	

Semivolatile Organic Compounds by EPA 8270/SIM	
IOI throad	Dete/Tim

Analyst: SP

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
2-Methylnaphthalene	ND	200	100	B7J0757	10/25/2017	10/25/17 17:37	D1
Acenaphthene	ND	500	100	B7J0757	10/25/2017	10/25/17 17:37	DI
Acenaphthylene	ND	500	100	B7J0757	10/25/2017	10/25/17 17:37	DI
Anthracene	ND	500	100	B7J0757	10/25/2017	10/25/17 17:37	DI
Benzo(a)anthracene	ND	500	100	B7J0757	10/25/2017	10/25/17 17:37	D1
Benzo(a)pyrene	ND	500	100	B7J0757	10/25/2017	10/25/17 17:37	DI
Benzo(b)fluoranthene	ND	500	100	B7J0757	10/25/2017	10/25/17 17:37	DI
Benzo(g,h,i)perylene	ND	500	100	B7J0757	10/25/2017	10/25/17 17:37	D1
Benzo(k)fluoranthene	ND	500	100	B7J0757	10/25/2017	10/25/17 17:37	D1
Chrysene	ND	500	100	B7J0757	10/25/2017	10/25/17 17:37	DI
Dibenz(a,h)anthracene	ND	500	100	B7J0757	10/25/2017	10/25/17 17:37	D1
Fluoranthene	ND	500	100	B7J0757	10/25/2017	10/25/17 17:37	D1
Fluorene	ND	500	100	B7J0757	10/25/2017	10/25/17 17:37	DI
Indeno(1,2,3-cd)pyrene	ND	500	100	B7J0757	10/25/2017	10/25/17 17:37	D1
Naphthalene	ND	500	100	B7J0757	10/25/2017	10/25/17 17:37	D1
Phenanthrene	ND	500	100	B7J0757	10/25/2017	10/25/17 17:37	D1
Pyrene	ND	500	100	B7J0757	10/25/2017	10/25/17 17:37	D1

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB5-0.5

Lab ID: 1703641-01

Semivolatile Organic Compounds by EPA 8270/SIM

Analyst: SP

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: 1,2-Dichlorobenzene-d4	%0	29 - 109		B7J0757	10/25/2017	10/25/17 17:37	S4
Surrogate: 2-Fluorobiphenyl	%0	39 - 108		B7J0757	10/25/2017	10/25/17 17:37	S4
Surrogate: Nitrobenzene-d5	%0	0 - 146		B7J0757	10/25/2017	10/25/17 17:37	
Surrogate: 4-Terphenyl-d14	%0	39 - 123		B7J0757	10/25/2017	10/25/17 17:37	S4

Page 6 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB5-2.5 Lab ID: 1703641-02

STLC Metals by ICP-AES by EPA 6010B

Analyst: GO

	Result	PQL				Date/Time	
Analyte	(mg/L)	(mg/L)	Dilution	Batch	Prepared	Analyzed	Notes
Lead	5.8	1.0	20	B7J0849	10/30/2017	10/30/17 12:10	DI

Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Rafch	Drenared	Date/Time	Notes
S. Carrent,	(T /S.III)	(¬,'S,')	Cuanon	Carca	no mdor r	rum y zoa	53501
Lead	5.8	1.0	20	B7J0849	10/30/2017	10/30/17 12:10	DI
Volatile Organic Compounds by EPA 5035/EPA 8260B	5/EPA 826	0 B					Analyst: AG
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
1,1,1-Trichloroethane	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
1,1,2,2-Tetrachloroethane	ND	5.2	-	B7J0750	10/25/2017	10/25/17 11:12	
1,1,2-Trichloroethane	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
1,1-Dichloroethane	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
1, 1-Dichloroethene	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
1,1-Dichloropropene	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
1,2,3-Trichloropropane	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
1,2,3-Trichlorobenzene	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
1,2,4-Trichlorobenzene	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
1,2,4-Trimethylbenzene	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
1,2-Dibromo-3-chloropropane	ND	10	1	B7J0750	10/25/2017	10/25/17 11:12	
1,2-Dibromoethane	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
1,2-Dichlorobenzene	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
1,2-Dichloroethane	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
1,2-Dichloropropane	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
1,3,5-Trimethylbenzene	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
1,3-Dichlorobenzene	N	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
1,3-Dichloropropane	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
1,4-Dichlorobenzene	ND	5.2	-	B7J0750	10/25/2017	10/25/17 11:12	
2,2-Dichloropropane	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
2-Chlorotoluene	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
4-Chlorotoluene	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
4-Isopropyltoluene	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
Benzene	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
Bromobenzene	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
Bromochloromethane	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
Bromodichloromethane	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
Bromoform	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
Bromomethane	N	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
Carbon disulfide	ND	5.2	-	B7J0750	10/25/2017	10/25/17 11:12	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB5-2.5 Lab ID: 1703641-02

ganic Compounds by EPA 5035/EPA 8260B
anic Compounds by
anic Compo

Analyst: AG

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Carbon tetrachloride	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
Chlorobenzene	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
Chloroethane	N Q	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
Chloroform	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
Chloromethane	NO	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
cis-1,2-Dichloroethene	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
cis-1,3-Dichloropropene	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
Di-isopropyl ether	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
Dibromochloromethane	N Q	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
Dibromomethane	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
Dichlorodifluoromethane	ND	5.2		B7J0750	10/25/2017	10/25/17 11:12	
Ethyl Acetate	ND	52	_	B7J0750	10/25/2017	10/25/17 11:12	
Ethyl Ether	ND	52		B7J0750	10/25/2017	10/25/17 11:12	
Ethyl tert-butyl ether	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
Ethylbenzene	ND	5.2	-	B7J0750	10/25/2017	10/25/17 11:12	
Freon-113	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
Hexachlorobutadiene	N	5.2		B7J0750	10/25/2017	10/25/17 11:12	
Isopropylbenzene	ND	5.2	_	B7J0750	10/25/2017	10/25/17 11:12	
m,p-Xylene	ND	10	1	B7J0750	10/25/2017	10/25/17 11:12	
Methylene chloride	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
MTBE	ND	5.2	-	B7J0750	10/25/2017	10/25/17 11:12	
n-Butylbenzene	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
n-Propylbenzene	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
Naphthalene	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
o-Xylene	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
sec-Butylbenzene	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
Styrene	N Q	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
tert-Amyl methyl ether	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
tert-Butanol	ND	100	1	B7J0750	10/25/2017	10/25/17 11:12	
tert-Butylbenzene	N Q	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
Tetrachloroethene	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
Toluene	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
trans-1,2-Dichloroethene	ND QN	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
trans-1,3-Dichloropropene	ND	5.2	1	B7J0750	10/25/2017	10/25/17 11:12	
Trichloroethene	N	5.2	-	B7J0750	10/25/2017	10/25/17 11:12	
Trichlorofluoromethane	QN	5.2	-	B7J0750	10/25/2017	10/25/17 11:12	
Vinyl acetate	ND	52	1	B7J0750	10/25/2017	10/25/17 11:12	

Page 8 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB5-2.5 Lab ID: 1703641-02

hv FPA 5035/FPA 8260R

Volatile Organic Compounds by	nds by EFA 5055/EFA 8260B	0UB					Analyst: AG
Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Vinyl chloride	ND	5.2	1	B7J0750	10/25/2017	B7J0750 10/25/2017 10/25/17 11:12	
Surrogate: 1,2-Dichloroethane-d4	% 101	32 - 140		B7J0750	10/25/2017	10/25/17 11:12	
Surrogate: 4-Bromofluorobenzene	96.5 %	68 - 131		B7J0750	10/25/2017	10/25/17 11:12	
Surrogate: Dibromofluoromethane	94.4%	49 - 134		B7J0750	10/25/2017	10/25/17 11:12	
Surrogate: Toluene-d8	105 %	75 - 132		B7J0750	10/25/2017	10/25/17 11:12	

SIM
Semivolatile Organic Compounds by EPA 8270/SIN

Semivolatile Organic Compounds by EPA 8270/SIM	y EPA 8270/SIN	1					Analyst: SP
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
2-Methylnaphthalene	ND	25	5	B7J0757	10/25/2017	10/25/17 18:07	
Acenaphthene	ND	25	5	B7J0757	10/25/2017	10/25/17 18:07	
Acenaphthylene	ND	25	5	B7J0757	10/25/2017	10/25/17 18:07	
Anthracene	ND	25	5	B7J0757	10/25/2017	10/25/17 18:07	
Benzo(a)anthracene	ND	25	5	B7J0757	10/25/2017	10/25/17 18:07	
Benzo(a)pyrene	ND	25	5	B7J0757	10/25/2017	10/25/17 18:07	
Benzo(b)fluoranthene	ND	25	5	B7J0757	10/25/2017	10/25/17 18:07	
Benzo(g,h,i)perylene	ND	25	5	B7J0757	10/25/2017	10/25/17 18:07	
Benzo(k)fluoranthene	ND	25	5	B7J0757	10/25/2017	10/25/17 18:07	
Chrysene	ND	25	5	B7J0757	10/25/2017	10/25/17 18:07	
Dibenz(a,h)anthracene	ND	25	S	B7J0757	10/25/2017	10/25/17 18:07	
Fluoranthene	ND	25	S	B7J0757	10/25/2017	10/25/17 18:07	
Fluorene	ND	25	5	B7J0757	10/25/2017	10/25/17 18:07	
Indeno(1,2,3-cd)pyrene	ND	25	S	B7J0757	10/25/2017	10/25/17 18:07	
Naphthalene	N Q	25	5	B7J0757	10/25/2017	10/25/17 18:07	
Phenanthrene	ND	25	5	B7J0757	10/25/2017	10/25/17 18:07	
Pyrene	ND	25	5	B7J0757	10/25/2017	10/25/17 18:07	
Surrogate: 1,2-Dichlorobenzene-d4	58.6%	29 - 109		B7J0757	10/25/2017	10/25/17 18:07	
Surrogate: 2-Fluorobiphenyl	77.0 %	39 - 108		B7J0757	10/25/2017	10/25/17 18:07	
Surrogate: Nitrobenzene-d5	52.2 %	0 - 146		B7J0757	10/25/2017	10/25/17 18:07	
Surrogate: 4-Terphenyl-d14	74.9%	39 - 123		B7J0757	10/25/2017	10/25/17 18:07	

Page 9 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB9-0.5 Lab ID: 1703641-04

Polychlorinated Biphenyls by EPA 8082

Analyst: CO/

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Aroclor 1016	ND	16	1	B7J0724	10/24/2017	10/25/17 16:12	
Aroclor 1221	ND	16	1	B7J0724	10/24/2017	10/25/17 16:12	
Aroclor 1232	ND	16	1	B7J0724	10/24/2017	10/25/17 16:12	
Aroclor 1242	ND	16	1	B7J0724	10/24/2017	10/25/17 16:12	
Aroclor 1248	ND	16	1	B7J0724	10/24/2017	10/25/17 16:12	
Aroclor 1254	ND	16	1	B7J0724	10/24/2017	10/25/17 16:12	
Aroclor 1260	ND	16	1	B7J0724	10/24/2017	10/25/17 16:12	
Aroclor 1262	ND	16	1	B7J0724	10/24/2017	10/25/17 16:12	
Aroclor 1268	ND	16	1	B7J0724	10/24/2017	10/25/17 16:12	
Surrogate: Decachlorobiphenyl	36.6 %	18 - 136		B7J0724	10/24/2017	10/25/17 16:12	
Surrogate: Tetrachloro-m-xylene	54.5 %	30 - 130		B7J0724	10/24/2017	10/25/17 16:12	

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
1,1,1,2-Tetrachloroethane	QN	4.6	-	B7J0750	10/25/2017	10/25/17 11:30	
1,1,1-Trichloroethane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
1,1,2,2-Tetrachloroethane	N	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
1,1,2-Trichloroethane	N	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
1,1-Dichloroethane	N	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
1,1-Dichloroethene	N	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
1,1-Dichloropropene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
1,2,3-Trichloropropane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
1,2,3-Trichlorobenzene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
1,2,4-Trichlorobenzene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
1,2,4-Trimethylbenzene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
1,2-Dibromo-3-chloropropane	ND	9.3	1	B7J0750	10/25/2017	10/25/17 11:30	
1,2-Dibromoethane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
1,2-Dichlorobenzene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
1,2-Dichloroethane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
1,2-Dichloropropane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
1,3,5-Trimethylbenzene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
1,3-Dichlorobenzene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
1,3-Dichloropropane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
1,4-Dichlorobenzene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
2,2-Dichloropropane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	

Page 10 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB9-0.5 Lab ID: 1703641-04

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
2-Chlorotoluene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
4-Chlorotoluene	N	4.6	_	B7J0750	10/25/2017	10/25/17 11:30	
4-Isopropyltoluene	N	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
Benzene	N	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
Bromobenzene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
Bromochloromethane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
Bromodichloromethane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
Bromoform	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
Bromomethane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
Carbon disulfide	N	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
Carbon tetrachloride	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
Chlorobenzene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
Chloroethane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
Chloroform	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
Chloromethane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
cis-1,2-Dichloroethene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
cis-1,3-Dichloropropene	N	4.6	_	B7J0750	10/25/2017	10/25/17 11:30	
Di-isopropyl ether	N Q	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
Dibromochloromethane	N	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
Dibromomethane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
Dichlorodifluoromethane	N Q	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
Ethyl Acetate	ND	46	1	B7J0750	10/25/2017	10/25/17 11:30	
Ethyl Ether	ND	46	1	B7J0750	10/25/2017	10/25/17 11:30	
Ethyl tert-butyl ether	N Q	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
Ethylbenzene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
Freon-113	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
Hexachlorobutadiene	N Q	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
Isopropylbenzene	N	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
m,p-Xylene	ND	9.3	1	B7J0750	10/25/2017	10/25/17 11:30	
Methylene chloride	N Q	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
MTBE	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
n-Butylbenzene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
n-Propylbenzene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
Naphthalene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
o-Xylene	ND	4.6	-	B7J0750	10/25/2017	10/25/17 11:30	
sec-Butylbenzene	N Q	4.6	_	B7J0750	10/25/2017	10/25/17 11:30	
Styrene	ND	4.6	-	B7J0750	10/25/2017	10/25/17 11:30	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB9-0.5

Lab ID: 1703641-04

Volatile Organic Compounds by EPA 5035/EPA 8260B	

Analyst: AG

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
tert-Amyl methyl ether	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
tert-Butanol	ND	93	1	B7J0750	10/25/2017	10/25/17 11:30	
tert-Butylbenzene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
Tetrachloroethene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
Toluene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
trans-1,2-Dichloroethene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
trans-1,3-Dichloropropene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
Trichloroethene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
Trichlorofluoromethane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
Vinyl acetate	ND	46	1	B7J0750	10/25/2017	10/25/17 11:30	
Vinyl chloride	ND	4.6	1	B7J0750	10/25/2017	10/25/17 11:30	
Surrogate: 1,2-Dichloroethane-d4	102 %	32 - 140		B7J0750	10/25/2017	10/25/17 11:30	
Surrogate: 4-Bromofluorobenzene	% OOI	68 - 131		B7J0750	10/25/2017	10/25/17 11:30	
Surrogate: Dibromofluoromethane 94	94.3 %	49 - 134		B7J0750	10/25/2017	10/25/17 11:30	
Surrogate: Toluene-d8	% 901	75 - 132		B7J0750	10/25/2017	10/25/17 11:30	

Semivolatile Organic Compounds by EPA 8270/SIM

Analyst: SP

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
2-Methylnaphthalene	QN	500	100	B7J0757	10/25/2017	10/25/17 18:36	DI
Acenaphthene	ND	500	100	B7J0757	10/25/2017	10/25/17 18:36	D1
Acenaphthylene	ND	500	100	B7J0757	10/25/2017	10/25/17 18:36	D1
Anthracene	ND	500	100	B7J0757	10/25/2017	10/25/17 18:36	D1
Benzo(a)anthracene	ND	500	100	B7J0757	10/25/2017	10/25/17 18:36	D1
Benzo(a)pyrene	ND	500	100	B7J0757	10/25/2017	10/25/17 18:36	D1
Benzo(b)fluoranthene	ND	500	100	B7J0757	10/25/2017	10/25/17 18:36	D1
Benzo(g,h,i)perylene	ND	500	100	B7J0757	10/25/2017	10/25/17 18:36	D1
Benzo(k)fluoranthene	ND	500	100	B7J0757	10/25/2017	10/25/17 18:36	D1
Chrysene	ND	500	100	B7J0757	10/25/2017	10/25/17 18:36	D1
Dibenz(a,h)anthracene	ND	500	100	B7J0757	10/25/2017	10/25/17 18:36	D1
Fluoranthene	ND	500	100	B7J0757	10/25/2017	10/25/17 18:36	D1
Fluorene	ND	500	100	B7J0757	10/25/2017	10/25/17 18:36	D1
Indeno(1,2,3-cd)pyrene	ND	500	100	B7J0757	10/25/2017	10/25/17 18:36	D1
Naphthalene	ND	500	100	B7J0757	10/25/2017	10/25/17 18:36	D1
Phenanthrene	ND	500	100	B7J0757	10/25/2017	10/25/17 18:36	DI

Page 12 of 83

D

10/25/17 18:36

10/25/2017

B7J0757

100

500

 \mathbb{R}

Pyrene

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB9-0.5

Lab ID: 1703641-04

Semivolatile Organic Compounds by EPA 8270/SIM

Analyst: SP

Notes \$4 \$ \$4 10/25/17 18:36 10/25/17 18:36 10/25/17 18:36 10/25/17 18:36 Date/Time Analyzed 10/25/2017 10/25/2017 10/25/2017 10/25/2017 Prepared B7J0757 B7J0757 B7J0757 B7J0757 Batch Dilution 29 - 109 39 - 108 39 - 123 0 - 146 (ug/kg) PQL (ug/kg) Result %0 %0 %0 %0 Surrogate: 1,2-Dichlorobenzene-d4 Surrogate: 2-Fluorobiphenyl Surrogate: 4-Terphenyl-d14 Surrogate: Nitrobenzene-d5 Analyte

Page 13 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB9-2.5 Lab ID: 1703641-05

Volatile Organic Compounds by EPA 5035/EPA 8260B

Volatile Organic Compounds by EPA 503	5035/EPA 8260B	0B					Analyst: AG
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
1,1,1-Trichloroethane	ND	5.3	_	B7J0750	10/25/2017	10/25/17 11:49	
1,1,2,2-Tetrachloroethane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
1,1,2-Trichloroethane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
1,1-Dichloroethane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
1,1-Dichloroethene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
1,1-Dichloropropene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
1,2,3-Trichloropropane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
1,2,3-Trichlorobenzene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
1,2,4-Trichlorobenzene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
1,2,4-Trimethylbenzene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
1,2-Dibromo-3-chloropropane	ND	11	1	B7J0750	10/25/2017	10/25/17 11:49	
1,2-Dibromoethane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
1,2-Dichlorobenzene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
1,2-Dichloroethane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
1,2-Dichloropropane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
1,3,5-Trimethylbenzene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
1,3-Dichlorobenzene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
1,3-Dichloropropane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
1,4-Dichlorobenzene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
2,2-Dichloropropane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
2-Chlorotoluene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
4-Chlorotoluene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
4-Isopropyltoluene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
Benzene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
Bromobenzene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
Bromochloromethane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
Bromodichloromethane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
Bromoform	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
Bromomethane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
Carbon disulfide	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
Carbon tetrachloride	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
Chlorobenzene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
Chloroethane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
Chloroform	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
Chloromethane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
cis-1,2-Dichloroethene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	

Page 14 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB9-2.5 Lab ID: 1703641-05

Volatile Organic Compounds by EPA 5035/EPA 8260B

Volatile Organic Compounds by EPA 5035/EPA 8260B	PA 5035/EPA 82	80B					Analyst: AG
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
cis-1,3-Dichloropropene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
Di-isopropyl ether	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
Dibromochloromethane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
Dibromomethane	ND	5.3	-	B7J0750	10/25/2017	10/25/17 11:49	
Dichlorodifluoromethane	ND	5.3	-	B7J0750	10/25/2017	10/25/17 11:49	
Ethyl Acetate	ND	53	1	B7J0750	10/25/2017	10/25/17 11:49	
Ethyl Ether	ND	53	1	B7J0750	10/25/2017	10/25/17 11:49	
Ethyl tert-butyl ether	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
Ethylbenzene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
Freon-113	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
Hexachlorobutadiene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
Isopropylbenzene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
m,p-Xylene	ND	11	1	B7J0750	10/25/2017	10/25/17 11:49	
Methylene chloride	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
MTBE	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
n-Butylbenzene	ND	5.3	-	B7J0750	10/25/2017	10/25/17 11:49	
n-Propylbenzene	ND	5.3	-	B7J0750	10/25/2017	10/25/17 11:49	
Naphthalene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
o-Xylene	ND	5.3	-	B7J0750	10/25/2017	10/25/17 11:49	
sec-Butylbenzene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
Styrene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
tert-Amyl methyl ether	ND	5.3	-	B7J0750	10/25/2017	10/25/17 11:49	
tert-Butanol	ND	110	-	B7J0750	10/25/2017	10/25/17 11:49	
tert-Butylbenzene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
Tetrachloroethene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
Toluene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
trans-1,2-Dichloroethene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
trans-1,3-Dichloropropene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
Trichloroethene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
Trichlorofluoromethane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
Vinyl acetate	ND	53	-	B7J0750	10/25/2017	10/25/17 11:49	
Vinyl chloride	ND	5.3	1	B7J0750	10/25/2017	10/25/17 11:49	
Surrogate: 1,2-Dichloroethane-d4	% 001	32 - 140		B7J0750	10/25/2017	10/25/17 11:49	
Surrogate: 4-Bromofluorobenzene	% 6.66	68 - 131		B7J0750	10/25/2017	10/25/17 11:49	
Surrogate: Dibromofluoromethane	95.8 %	49 - 134		B7J0750	10/25/2017	10/25/17 11:49	
Surrogate: Toluene-d8	NO %	75 - 132		B7J0750	10/25/2017	10/25/17 11:49	

Page 15 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB9-2.5 Lab ID: 1703641-05

Analyst: SP Semivolatile Organic Compounds by EPA 8270/SIM

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
2-Methylnaphthalene	ND	250	50	B7J0757	10/25/2017	10/25/17 19:05	DI
Acenaphthene	ND	250	50	B7J0757	10/25/2017	10/25/17 19:05	D1
Acenaphthylene	ND	250	50	B7J0757	10/25/2017	10/25/17 19:05	D1
Anthracene	ND	250	50	B7J0757	10/25/2017	10/25/17 19:05	D1
Benzo(a)anthracene	ND	250	50	B7J0757	10/25/2017	10/25/17 19:05	D1
Benzo(a)pyrene	N	250	50	B7J0757	10/25/2017	10/25/17 19:05	D1
Benzo(b)fluoranthene	ND	250	50	B7J0757	10/25/2017	10/25/17 19:05	D1
Benzo(g,h,i)perylene	N Q	250	50	B7J0757	10/25/2017	10/25/17 19:05	D1
Benzo(k)fluoranthene	N	250	50	B7J0757	10/25/2017	10/25/17 19:05	D1
Chrysene	NO	250	50	B7J0757	10/25/2017	10/25/17 19:05	DI
Dibenz(a,h)anthracene	N Q	250	50	B7J0757	10/25/2017	10/25/17 19:05	D1
Fluoranthene	ND	250	50	B7J0757	10/25/2017	10/25/17 19:05	D1
Fluorene	NO	250	50	B7J0757	10/25/2017	10/25/17 19:05	DI
Indeno(1,2,3-cd)pyrene	ND	250	50	B7J0757	10/25/2017	10/25/17 19:05	D1
Naphthalene	ND	250	50	B7J0757	10/25/2017	10/25/17 19:05	D1
Phenanthrene	ND	250	50	B7J0757	10/25/2017	10/25/17 19:05	D1
Pyrene	ND	250	50	B7J0757	10/25/2017	10/25/17 19:05	D1
Surrogate: 1,2-Dichlorobenzene-d4 0%	%	29 - 109		B7J0757	10/25/2017	10/25/17 19:05	S4
Surrogate: 2-Fluorobiphenyl 0%	%	39 - 108		B7J0757	10/25/2017	10/25/17 19:05	S4
Surrogate: Nitrobenzene-d5	%	0 - 146		B7J0757	10/25/2017	10/25/17 19:05	
Surrogate: 4-Terphenyl-d14 0%	<i>%</i>	39 - 123		B7J0757	10/25/2017	10/25/17 19:05	S4

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB4-0.5 Lab ID: 1703641-14

TCLP Metals by ICP-AES EPA 6010B

Analyst: GO

Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	ND	0.25	S	B7J0818	10/27/2017	10/27/17 17:51	DI
STLC Metals by ICP-AES by EPA 6010B	010B						Analyst: GO
Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	3.7	1.0	20	B7J0849	10/30/2017	10/30/17 12:14	D1
Polychlorinated Biphenyls by EPA 8082	182						Analyst: CO/
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Aroclor 1016	ND	16	1	B7J0724	10/24/2017	10/25/17 16:31	
Aroclor 1221	ND	16	1	B7J0724	10/24/2017	10/25/17 16:31	
Aroclor 1232	ND	16	1	B7J0724	10/24/2017	10/25/17 16:31	
Aroclor 1242	ND	16	1	B7J0724	10/24/2017	10/25/17 16:31	
Aroclor 1248	ND	16	1	B7J0724	10/24/2017	10/25/17 16:31	
Aroclor 1254	N	16	1	B7J0724	10/24/2017	10/25/17 16:31	
Aroclor 1260	62	16	1	B7J0724	10/24/2017	10/25/17 16:31	
Aroclor 1262	ND	16	1	B7J0724	10/24/2017	10/25/17 16:31	
Aroclor 1268	ND	16	1	B7J0724	10/24/2017	10/25/17 16:31	
Surrogate: Decachlorobiphenyl	29.8 %	18 - 136		B7J0724	10/24/2017	10/25/17 16:31	
Surrogate: Tetrachloro-m-xylene	47.5 %	30 - 130		B7J0724	10/24/2017	10/25/17 16:31	

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
1,1,1-Trichloroethane	ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
1,1,2,2-Tetrachloroethane	ND	4.9	-	B7J0750	10/25/2017	10/25/17 12:08	
1,1,2-Trichloroethane	ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
1,1-Dichloroethane	ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
1,1-Dichloroethene	ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
1,1-Dichloropropene	ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
1,2,3-Trichloropropane	ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
1,2,3-Trichlorobenzene	ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	

Page 17 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Lab ID: 1703641-14

Client Sample ID LB4-0.5

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
NO NO	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
ND	6.6	1	B7J0750	10/25/2017	10/25/17 12:08	
ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
ND	4.9	_	B7J0750	10/25/2017	10/25/17 12:08	
ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
ND	4.9	_	B7J0750	10/25/2017	10/25/17 12:08	
ND	4.9	-	B7J0750	10/25/2017	10/25/17 12:08	
ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
ND	49	1	B7J0750	10/25/2017	10/25/17 12:08	
NO	49	-	B7J0750	10/25/2017	10/25/17 12:08	
N Q	4.9		B7J0750	10/25/2017	10/25/17 12:08	
N Q	4.9		B7J0750	10/25/2017	10/25/17 12:08	
				6 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4.9 1 B710750 4.9 1 B710750 <t< td=""><td>4.9 1 B710750 10.25/2017 4.9 1 B710750 10.25/2017 4.9 1 B710750 10.25/2017 4.9 1 B710750 10/25/2017 4.9 1 B71</td></t<>	4.9 1 B710750 10.25/2017 4.9 1 B710750 10.25/2017 4.9 1 B710750 10.25/2017 4.9 1 B710750 10/25/2017 4.9 1 B71

Page 18 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB4-0.5

Lab ID: 1703641-14

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Freon-113	ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
Hexachlorobutadiene	ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
Isopropylbenzene	ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
m,p-Xylene	ND	6.6	1	B7J0750	10/25/2017	10/25/17 12:08	
Methylene chloride	ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
MTBE	ON	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
n-Butylbenzene	ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
n-Propylbenzene	ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
Naphthalene	ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
o-Xylene	ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
sec-Butylbenzene	ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
Styrene	ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
tert-Amyl methyl ether	ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
tert-Butanol	ND	66	1	B7J0750	10/25/2017	10/25/17 12:08	
tert-Butylbenzene	ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
Tetrachloroethene	27	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
Toluene	ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
trans-1,2-Dichloroethene	ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
trans-1,3-Dichloropropene	ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
Trichloroethene	ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
Trichlorofluoromethane	ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
Vinyl acetate	ND	49	1	B7J0750	10/25/2017	10/25/17 12:08	
Vinyl chloride	ND	4.9	1	B7J0750	10/25/2017	10/25/17 12:08	
Surrogate: 1,2-Dichloroethane-d4	% 00I	32 - 140		B7J0750	10/25/2017	10/25/17 12:08	
Surrogate: 4-Bromofluorobenzene	97.3 %	68 - 131		B7J0750	10/25/2017	10/25/17 12:08	
Surrogate: Dibromofluoromethane	% 0.96	49 - 134		B7J0750	10/25/2017	10/25/17 12:08	
Surrogate: Toluene-d8	% 901	75 - 132		B7J0750	10/25/2017	10/25/17 12:08	

Page 19 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB4-0.5

Lab ID: 1703641-14

Semivolatile Organic Compounds by EPA 8270/SIM

Analyst: SP

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
2-Methylnaphthalene	ND	500	100	B7J0757	10/25/2017	10/25/17 19:34	DI
Acenaphthene	ND	500	100	B7J0757	10/25/2017	10/25/17 19:34	DI
Acenaphthylene	ND	500	100	B7J0757	10/25/2017	10/25/17 19:34	DI
Anthracene	ND	500	100	B7J0757	10/25/2017	10/25/17 19:34	DI
Benzo(a)anthracene	ND	500	100	B7J0757	10/25/2017	10/25/17 19:34	DI
Benzo(a)pyrene	ND	500	100	B7J0757	10/25/2017	10/25/17 19:34	DI
Benzo(b)fluoranthene	ND	500	100	B7J0757	10/25/2017	10/25/17 19:34	DI
Benzo(g,h,i)perylene	ND	500	100	B7J0757	10/25/2017	10/25/17 19:34	DI
Benzo(k)fluoranthene	ND	500	100	B7J0757	10/25/2017	10/25/17 19:34	DI
Chrysene	ND	500	100	B7J0757	10/25/2017	10/25/17 19:34	DI
Dibenz(a,h)anthracene	ND	500	100	B7J0757	10/25/2017	10/25/17 19:34	DI
Fluoranthene	ND	500	100	B7J0757	10/25/2017	10/25/17 19:34	DI
Fluorene	ND	500	100	B7J0757	10/25/2017	10/25/17 19:34	DI
Indeno(1,2,3-cd)pyrene	ND	500	100	B7J0757	10/25/2017	10/25/17 19:34	DI
Naphthalene	ND	500	100	B7J0757	10/25/2017	10/25/17 19:34	DI
Phenanthrene	ND	500	100	B7J0757	10/25/2017	10/25/17 19:34	DI
Pyrene	ND	500	100	B7J0757	10/25/2017	10/25/17 19:34	D1
Surrogate: 1,2-Dichlorobenzene-d4 09	%0	29 - 109		B7J0757	10/25/2017	10/25/17 19:34	S4
Surrogate: 2-Fluorobiphenyl 0%	%	39 - 108		B7J0757	10/25/2017	10/25/17 19:34	S4
Surrogate: Nitrobenzene-d5	%	0 - 146		B7J0757	10/25/2017	10/25/17 19:34	
Surrogate: 4-Terphenyl-d14 09	%0	39 - 123		B7J0757	10/25/2017	10/25/17 19:34	S4

Page 20 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB4-2.5 Lab ID: 1703641-15

Volatile Organic Compounds by EPA 5035/EPA 8260B

41-15

Analyst: AG

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
1,1,1-Trichloroethane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
1,1,2,2-Tetrachloroethane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
1,1,2-Trichloroethane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
1,1-Dichloroethane	ND	4.6	_	B7J0750	10/25/2017	10/25/17 12:26	
1,1-Dichloroethene	ND	4.6	-	B7J0750	10/25/2017	10/25/17 12:26	
1,1-Dichloropropene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
1,2,3-Trichloropropane	ND	4.6	-	B7J0750	10/25/2017	10/25/17 12:26	
1,2,3-Trichlorobenzene	ND	4.6	-	B7J0750	10/25/2017	10/25/17 12:26	
1,2,4-Trichlorobenzene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
1,2,4-Trimethylbenzene	ND	4.6	-	B7J0750	10/25/2017	10/25/17 12:26	
1,2-Dibromo-3-chloropropane	ND	9.2	1	B7J0750	10/25/2017	10/25/17 12:26	
1,2-Dibromoethane	ND	4.6	-	B7J0750	10/25/2017	10/25/17 12:26	
1,2-Dichlorobenzene	ND	4.6	-	B7J0750	10/25/2017	10/25/17 12:26	
1,2-Dichloroethane	ND	4.6	-	B7J0750	10/25/2017	10/25/17 12:26	
1,2-Dichloropropane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
1,3,5-Trimethylbenzene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
1,3-Dichlorobenzene	ND	4.6	-	B7J0750	10/25/2017	10/25/17 12:26	
1,3-Dichloropropane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
1,4-Dichlorobenzene	ND	4.6	-	B7J0750	10/25/2017	10/25/17 12:26	
2,2-Dichloropropane	ND	4.6	-	B7J0750	10/25/2017	10/25/17 12:26	
2-Chlorotoluene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
4-Chlorotoluene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
4-Isopropyltoluene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
Benzene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
Bromobenzene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
Bromochloromethane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
Bromodichloromethane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
Bromoform	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
Bromomethane	ND	4.6	-	B7J0750	10/25/2017	10/25/17 12:26	
Carbon disulfide	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
Carbon tetrachloride	ND	4.6	-	B7J0750	10/25/2017	10/25/17 12:26	
Chlorobenzene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
Chloroethane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
Chloroform	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
Chloromethane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
cis-1,2-Dichloroethene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	

Page 21 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB4-2.5

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

Lab ID: 1703641-15

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
	<u> </u>	,	,				
cıs-1,3-Dıchloropropene	QN	4.6	_	B/J0/20	10/25/2017	10/25/17/12:26	
Di-isopropyl ether	ND	4.6	_	B7J0750	10/25/2017	10/25/17 12:26	
Dibromochloromethane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
Dibromomethane	N	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
Dichlorodifluoromethane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
Ethyl Acetate	ND	46	1	B7J0750	10/25/2017	10/25/17 12:26	
Ethyl Ether	ND	46	1	B7J0750	10/25/2017	10/25/17 12:26	
Ethyl tert-butyl ether	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
Ethylbenzene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
Freon-113	ND	4.6	_	B7J0750	10/25/2017	10/25/17 12:26	
Hexachlorobutadiene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
Isopropylbenzene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
m,p-Xylene	ND	9.2	1	B7J0750	10/25/2017	10/25/17 12:26	
Methylene chloride	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
MTBE	ND	4.6	_	B7J0750	10/25/2017	10/25/17 12:26	
n-Butylbenzene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
n-Propylbenzene	N	4.6	-	B7J0750	10/25/2017	10/25/17 12:26	
Naphthalene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
o-Xylene	ND	4.6		B7J0750	10/25/2017	10/25/17 12:26	
sec-Butylbenzene	N	4.6	-	B7J0750	10/25/2017	10/25/17 12:26	
Styrene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
tert-Amyl methyl ether	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
tert-Butanol	ND	92	-	B7J0750	10/25/2017	10/25/17 12:26	
tert-Butylbenzene	ND	4.6	-	B7J0750	10/25/2017	10/25/17 12:26	
Tetrachloroethene	ND	4.6	-	B7J0750	10/25/2017	10/25/17 12:26	
Toluene	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
trans-1,2-Dichloroethene	N	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
trans-1,3-Dichloropropene	N	4.6	_	B7J0750	10/25/2017	10/25/17 12:26	
Trichloroethene	ND	4.6	-	B7J0750	10/25/2017	10/25/17 12:26	
Trichlorofluoromethane	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
Vinyl acetate	ND	46	-	B7J0750	10/25/2017	10/25/17 12:26	
Vinyl chloride	ND	4.6	1	B7J0750	10/25/2017	10/25/17 12:26	
Surrogate: 1,2-Dichloroethane-d4	105 %	32 - 140		B7J0750	10/25/2017	10/25/17 12:26	
Surrogate: 4-Bromofluorobenzene	88.7 %	68 - 131		B7J0750	10/25/2017	10/25/17 12:26	
Surrogate: Dibromofluoromethane	% 6.76	49 - 134		B7J0750	10/25/2017	10/25/17 12:26	
Surrogate: Toluene-d8	% 101	75 - 132		B7J0750	10/25/2017	10/25/17 12:26	

Page 22 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB4-2.5 Lab ID: 1703641-15

Semivolatile Organic Compounds by EPA 8270/SIM

Analyst: SP

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
2-Methylnaphthalene	ND	100	20	B7J0757	10/25/2017	10/25/17 20:03	D1
Acenaphthene	ND	100	20	B7J0757	10/25/2017	10/25/17 20:03	D1
Acenaphthylene	ND	100	20	B7J0757	10/25/2017	10/25/17 20:03	D1
Anthracene	ND	100	20	B7J0757	10/25/2017	10/25/17 20:03	DI
Benzo(a)anthracene	ND	100	20	B7J0757	10/25/2017	10/25/17 20:03	DI
Benzo(a)pyrene	ND	100	20	B7J0757	10/25/2017	10/25/17 20:03	DI
Benzo(b)fluoranthene	ND	100	20	B7J0757	10/25/2017	10/25/17 20:03	DI
Benzo(g,h,i)perylene	ND	100	20	B7J0757	10/25/2017	10/25/17 20:03	DI
Benzo(k)fluoranthene	NO	100	20	B7J0757	10/25/2017	10/25/17 20:03	D1
Chrysene	ND	100	20	B7J0757	10/25/2017	10/25/17 20:03	D1
Dibenz(a,h)anthracene	ND	100	20	B7J0757	10/25/2017	10/25/17 20:03	DI
Fluoranthene	NO	100	20	B7J0757	10/25/2017	10/25/17 20:03	D1
Fluorene	ND	100	20	B7J0757	10/25/2017	10/25/17 20:03	D1
Indeno(1,2,3-cd)pyrene	ND	100	20	B7J0757	10/25/2017	10/25/17 20:03	DI
Naphthalene	N Q	100	20	B7J0757	10/25/2017	10/25/17 20:03	D1
Phenanthrene	ND	100	20	B7J0757	10/25/2017	10/25/17 20:03	D1
Pyrene	ND	100	20	B7J0757	10/25/2017	10/25/17 20:03	D1
Surrogate: 1,2-Dichlorobenzene-d4	%0	29 - 109		B7J0757	10/25/2017	10/25/17 20:03	S4
Surrogate: 2-Fluorobiphenyl	%0	39 - 108		B7J0757	10/25/2017	10/25/17 20:03	S4
Surrogate: Nitrobenzene-d5	%0	0 - 146		B7J0757	10/25/2017	10/25/17 20:03	
Surrogate: 4-Terphenyl-d14	%0	39 - 123		B7J0757	10/25/2017	10/25/17 20:03	S4

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB4-3.5

Lab ID: 1703641-16

STLC Metals by ICP-AES by EPA 6010B

Analyst: GO Notes DI 10/30/17 12:16 Date/Time Analyzed 10/30/2017 Prepared B7J0849 Batch Dilution 20 (mg/L) PQL 1.0 (mg/L) Result **8** Analyte Copper Page 24 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB2-0.5 Lab ID: 1703641-20

TCLP Metals by ICP-AES EPA 6010B

Analyst: GO

Analyte	Result (mg/L)	JOd (T)	Dilution	Batch	Prenared	Date/Time Analyzed	Nofes
Zilan y C	(mg/r)	(§/.ட.)	Cination	Daton	robaros	Post and	11003
Lead	ND	0.50	10	B7J0818	10/27/2017	10/27/17 18:17	D5
STLC Metals by ICP-AES by EPA 6010B	æ						Analyst: GO
Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Copper	2.6	1.0	20	B7J0849	10/30/2017	10/30/17 12:17	DI
Lead	2.5	1.0	20	B7J0849	10/30/2017	10/30/17 12:17	DI
Polychlorinated Biphenyls by EPA 8082							Analyst: CO/
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Aroclor 1016	ND	16	1	B7J0724	10/24/2017	10/25/17 16:50	
Aroclor 1221	N	16	1	B7J0724	10/24/2017	10/25/17 16:50	
Aroclor 1232	ND	16	1	B7J0724	10/24/2017	10/25/17 16:50	
Aroclor 1242	ND	16	1	B7J0724	10/24/2017	10/25/17 16:50	
Aroclor 1248	ND	16	1	B7J0724	10/24/2017	10/25/17 16:50	
Aroclor 1254	ND	16	1	B7J0724	10/24/2017	10/25/17 16:50	
Aroclor 1260	ND	16	1	B7J0724	10/24/2017	10/25/17 16:50	
Aroclor 1262	ND	16	1	B7J0724	10/24/2017	10/25/17 16:50	
Aroclor 1268	ND	16	1	B7J0724	10/24/2017	10/25/17 16:50	
Surrogate: Decachlorobiphenyl 27.9% Surrogate: Tetrachloro-m-xylene 35.9%	% %	18 - 136 30 - 130		B7J0724 B7J0724	10/24/2017 10/24/2017	10/25/17 16:50 10/25/17 16:50	

Volatile Organic Compounds by EPA 5035/EPA 8260B

Volatine Organic Compounds by Erra 3033/Erra 8200B	033/EFA 820	UB					Analyst: AG
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
1,1,1-Trichloroethane	ND	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
1,1,2,2-Tetrachloroethane	ND	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
1,1,2-Trichloroethane	ND	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
1,1-Dichloroethane	ND	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
1,1-Dichloroethene	ND	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
1,1-Dichloropropene	ND	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
1,2,3-Trichloropropane	ND	4.7	-	B7J0750	10/25/2017	10/25/17 12:45	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB2-0.5

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

Lab ID: 1703641-20

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
1,2,3-Trichlorobenzene	ND	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
1,2,4-Trichlorobenzene	ND	4.7	-	B7J0750	10/25/2017	10/25/17 12:45	
1,2,4-Trimethylbenzene	ND	4.7	_	B7J0750	10/25/2017	10/25/17 12:45	
1,2-Dibromo-3-chloropropane	ND	9.3	-	B7J0750	10/25/2017	10/25/17 12:45	
1,2-Dibromoethane	ND	4.7	-	B7J0750	10/25/2017	10/25/17 12:45	
1,2-Dichlorobenzene	ND	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
1,2-Dichloroethane	ND	4.7	-	B7J0750	10/25/2017	10/25/17 12:45	
1,2-Dichloropropane	ND	4.7	-	B7J0750	10/25/2017	10/25/17 12:45	
1,3,5-Trimethylbenzene	ND	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
1,3-Dichlorobenzene	ND	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
1,3-Dichloropropane	ND	4.7	_	B7J0750	10/25/2017	10/25/17 12:45	
1,4-Dichlorobenzene	ND	4.7	_	B7J0750	10/25/2017	10/25/17 12:45	
2,2-Dichloropropane	ND	4.7	-	B7J0750	10/25/2017	10/25/17 12:45	
2-Chlorotoluene	ND	4.7	_	B7J0750	10/25/2017	10/25/17 12:45	
4-Chlorotoluene	ND	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
4-Isopropyltoluene	ND	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
Benzene	ND	4.7	-	B7J0750	10/25/2017	10/25/17 12:45	
Bromobenzene	ND	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
Bromochloromethane	ND	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
Bromodichloromethane	ND	4.7	-	B7J0750	10/25/2017	10/25/17 12:45	
Bromoform	ND	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
Bromomethane	ND	4.7	-	B7J0750	10/25/2017	10/25/17 12:45	
Carbon disulfide	5.3	4.7	-	B7J0750	10/25/2017	10/25/17 12:45	
Carbon tetrachloride	ND	4.7	-	B7J0750	10/25/2017	10/25/17 12:45	
Chlorobenzene	ND	4.7	-	B7J0750	10/25/2017	10/25/17 12:45	
Chloroethane	ND	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
Chloroform	ND	4.7	-	B7J0750	10/25/2017	10/25/17 12:45	
Chloromethane	ND	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
cis-1,2-Dichloroethene	ND	4.7	-	B7J0750	10/25/2017	10/25/17 12:45	
cis-1,3-Dichloropropene	ND	4.7	-	B7J0750	10/25/2017	10/25/17 12:45	
Di-isopropyl ether	ND	4.7	-	B7J0750	10/25/2017	10/25/17 12:45	
Dibromochloromethane	ND	4.7	-	B7J0750	10/25/2017	10/25/17 12:45	
Dibromomethane	ND	4.7	-	B7J0750	10/25/2017	10/25/17 12:45	
Dichlorodifluoromethane	ND	4.7	-	B7J0750	10/25/2017	10/25/17 12:45	
Ethyl Acetate	ND	47	-	B7J0750	10/25/2017	10/25/17 12:45	
Ethyl Ether	ND	47	-	B7J0750	10/25/2017	10/25/17 12:45	
Ethyl tert-butyl ether	ND	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	

Page 26 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB2-0.5 Lab ID: 1703641-20

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

							c
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Ethylbenzene	ND	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
Freon-113	N	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
Hexachlorobutadiene	N	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
Isopropylbenzene	N	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
m,p-Xylene	N	9.3	1	B7J0750	10/25/2017	10/25/17 12:45	
Methylene chloride	ND	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
MTBE	ND	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
n-Butylbenzene	ND	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
n-Propylbenzene	ND	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
Naphthalene	N	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
o-Xylene	N	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
sec-Butylbenzene	ND	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
Styrene	ND	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
tert-Amyl methyl ether	N	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
tert-Butanol	ND	93	1	B7J0750	10/25/2017	10/25/17 12:45	
tert-Butylbenzene	N	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
Tetrachloroethene	ND	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
Toluene	ND	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
trans-1,2-Dichloroethene	N	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
trans-1,3-Dichloropropene	N	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
Trichloroethene	ND	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
Trichlorofluoromethane	ND	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
Vinyl acetate	N	47	1	B7J0750	10/25/2017	10/25/17 12:45	
Vinyl chloride	ND	4.7	1	B7J0750	10/25/2017	10/25/17 12:45	
Surrogate: 1,2-Dichloroethane-d4	103 %	32 - 140		B7J0750	10/25/2017	10/25/17 12:45	
Surrogate: 4-Bromofluorobenzene	99.1 %	68 - 131		B7J0750	10/25/2017	10/25/17 12:45	
Surrogate: Dibromofluoromethane	95.0%	49 - 134		B7J0750	10/25/2017	10/25/17 12:45	
Surrogate: Toluene-d8	104 %	75 - 132		B7J0750	10/25/2017	10/25/17 12:45	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB2-0.5

Lab ID: 1703641-20

Semivolatile Organic Compounds by EPA 8270/SIM

Analyst: SP

Notes DI D \overline{D} DI DI D DI DI \overline{D} DI DI D DI DI **S**4 DI **S**4 10/25/17 20:31 Date/Time Analyzed 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 Prepared B7J0757 Batch Dilution 001 001 001 001 001 001 001 001 001 100 001 001 100 001 100 001 39 - 108 39 - 123 29 - 109 0 - 146 (ug/kg) PQL 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 (ug/kg) Result $\frac{1}{2}$ 8 9 B 2 9 S 8 5 B 8 9 B 9 9 9 %0 %0 %0 Surrogate: 1,2-Dichlorobenzene-d4 Surrogate: 2-Fluorobiphenyl Surrogate: Nitrobenzene-d5 Surrogate: 4-Terphenyl-d14 Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene 2-Methylnaphthalene Benzo(g,h,i)perylene Benzo(a)anthracene Acenaphthylene Benzo(a)pyrene Acenaphthene Phenanthrene Fluoranthene Naphthalene Anthracene Chrysene Fluorene Analyte Pyrene

Page 28 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB19-0.5 Lab ID: 1703641-29

Polychlorinated Biphenyls by EPA 8082

Analyst: CO Notes 10/18/17 13:43 10/18/17 13:43 10/18/17 13:43 10/18/17 13:43 10/18/17 13:43 10/18/17 13:43 10/18/17 13:43 10/18/17 13:43 10/18/17 13:43 10/18/17 13:43 10/18/17 13:43 Date/Time Analyzed 10/18/2017 10/18/2017 10/18/2017 10/18/2017 10/18/2017 10/18/2017 10/18/2017 10/18/2017 10/18/2017 10/18/2017 10/18/2017 Prepared B7J0511 Batch Dilution 18 - 136 30 - 130 (ug/kg) PQL 16 16 16 16 16 16 91 (ug/kg) Result 9 9 \mathbb{R} 8 $\frac{1}{2}$ 9 8 9 52.8 % 80.2 % Surrogate: Tetrachloro-m-xylene Surrogate: Decachlorobiphenyl Aroclor 1242 Aroclor 1248 Aroclor 1262 Aroclor 1268 Aroclor 1016 Aroclor 1260 Aroclor 1232 Aroclor 1254 Aroclor 1221 Analyte

Page 29 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB13-0.5 Lab ID: 1703641-32

Polychlorinated Biphenyls by EPA 8082

Analyst: CO/

							•
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Aroclor 1016	ND	16	-	B7J0724	10/24/2017	10/25/17 17:09	
Aroclor 1221	ND	16	1	B7J0724	10/24/2017	10/25/17 17:09	
Aroclor 1232	ND	16	1	B7J0724	10/24/2017	10/25/17 17:09	
Aroclor 1242	ND	16	1	B7J0724	10/24/2017	10/25/17 17:09	
Aroclor 1248	ND	16	-	B7J0724	10/24/2017	10/25/17 17:09	
Aroclor 1254	ND	16	1	B7J0724	10/24/2017	10/25/17 17:09	
Aroclor 1260	21	16	-	B7J0724	10/24/2017	10/25/17 17:09	
Aroclor 1262	ND	16	1	B7J0724	10/24/2017	10/25/17 17:09	
Aroclor 1268	ND	16	1	B7J0724	10/24/2017	10/25/17 17:09	
Surrogate: Decachlorobiphenyl	36.3 %	18 - 136		B7J0724	10/24/2017	10/25/17 17:09	
Surrogate: Tetrachloro-m-xylene	52.8 %	30 - 130		B7J0724	10/24/2017	10/25/17 17:09	

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

Analyte (ug/kg)		ļ .		-	-	Date/ IIIIte	
		(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
1,1,1,2-Tetrachloroethane	D	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	
1,1,1-Trichloroethane	Q	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	
1,1,2,2-Tetrachloroethane	D	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	
1,1,2-Trichloroethane	Q	4.7	-	B7J0750	10/25/2017	10/25/17 13:23	
1,1-Dichloroethane	Q	4.7	_	B7J0750	10/25/2017	10/25/17 13:23	
1,1-Dichloroethene	D	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	
1,1-Dichloropropene	Q	4.7	-	B7J0750	10/25/2017	10/25/17 13:23	
1,2,3-Trichloropropane	Q	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	
1,2,3-Trichlorobenzene	D	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	
1,2,4-Trichlorobenzene	Q	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	
1,2,4-Trimethylbenzene	Q	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	
1,2-Dibromo-3-chloropropane	Q	9.4	1	B7J0750	10/25/2017	10/25/17 13:23	
1,2-Dibromoethane	Q	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	
1,2-Dichlorobenzene ND	Q	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	
1,2-Dichloroethane ND	Q	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	
1,2-Dichloropropane	Q	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	
1,3,5-Trimethylbenzene	Q	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	
1,3-Dichlorobenzene ND	Q	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	
1,3-Dichloropropane	Q	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	
1,4-Dichlorobenzene	Q	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	
2,2-Dichloropropane ND	Q	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	

Page 30 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Reported: 11/08/2017

Client Sample ID LB13-0.5

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

Lab ID: 1703641-32

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
2-Chlorotoluene	N	4.7	_	B7J0750	10/25/2017	10/25/17 13:23	
4-Chlorotoluene	N	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	
4-Isopropyltoluene	ND	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	
Benzene	ND	4.7		B7J0750	10/25/2017	10/25/17 13:23	
Bromobenzene	ND	4.7		B7J0750	10/25/2017	10/25/17 13:23	
Bromochloromethane	ND	4.7		B7J0750	10/25/2017	10/25/17 13:23	
Bromodichloromethane	ND	4.7	_	B7J0750	10/25/2017	10/25/17 13:23	
Bromoform	ND	4.7	_	B7J0750	10/25/2017	10/25/17 13:23	
Bromomethane	N	4.7	_	B7J0750	10/25/2017	10/25/17 13:23	
Carbon disulfide	ND	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	
Carbon tetrachloride	ND	4.7		B7J0750	10/25/2017	10/25/17 13:23	
Chlorobenzene	ND	4.7	_	B7J0750	10/25/2017	10/25/17 13:23	
Chloroethane	ND	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	
Chloroform	ND	4.7	_	B7J0750	10/25/2017	10/25/17 13:23	
Chloromethane	ND	4.7	_	B7J0750	10/25/2017	10/25/17 13:23	
cis-1,2-Dichloroethene	ND	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	
cis-1,3-Dichloropropene	ND	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	
Di-isopropyl ether	ND	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	
Dibromochloromethane	ND	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	
Dibromomethane	ND	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	
Dichlorodifluoromethane	ND	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	
Ethyl Acetate	ND	47	1	B7J0750	10/25/2017	10/25/17 13:23	
Ethyl Ether	ND	47	1	B7J0750	10/25/2017	10/25/17 13:23	
Ethyl tert-butyl ether	ND	4.7	-	B7J0750	10/25/2017	10/25/17 13:23	
Ethylbenzene	ND	4.7	_	B7J0750	10/25/2017	10/25/17 13:23	
Freon-113	ND	4.7		B7J0750	10/25/2017	10/25/17 13:23	
Hexachlorobutadiene	ND	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	
Isopropylbenzene	ND	4.7	_	B7J0750	10/25/2017	10/25/17 13:23	
m,p-Xylene	ND	9.4	-	B7J0750	10/25/2017	10/25/17 13:23	
Methylene chloride	ND	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	
MTBE	ND	4.7	_	B7J0750	10/25/2017	10/25/17 13:23	
n-Butylbenzene	ND	4.7	-	B7J0750	10/25/2017	10/25/17 13:23	
n-Propylbenzene	ND	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	
Naphthalene	ND	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	
o-Xylene	ND	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	
sec-Butylbenzene	ND	4.7	-	B7J0750	10/25/2017	10/25/17 13:23	
Styrene	ND	4.7	1	B7J0750	10/25/2017	10/25/17 13:23	

Page 31 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB13-0.5 Lab ID: 1703641-32

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG Notes 10/25/17 13:23 10/25/17 13:23 10/25/17 13:23 10/25/17 13:23 10/25/17 13:23 10/25/17 13:23 10/25/17 13:23 10/25/17 13:23 10/25/17 13:23 10/25/17 13:23 Date/Time Analyzed 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 Prepared B7J0750 B7J0750 B7J0750 B7J0750 B7J0750 B7J0750 B7J0750 B7J0750 B7J0750 Batch Dilution 32 - 140 (ug/kg) 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 47 94 (ug/kg) Result 8 8 9 9 2 2 8 \exists 9 9 102 % Surrogate: 1,2-Dichloroethane-d4 trans-1,3-Dichloropropene trans-1,2-Dichloroethene Trichlorofluoromethane tert-Amyl methyl ether **Tetrachloroethene** tert-Butylbenzene Trichloroethene Vinyl chloride Vinyl acetate tert-Butanol Analyte Toluene

Semivolatile Organic Compounds by EPA 8270/SIM

Analyst: SP

10/25/17 13:23 10/25/17 13:23 10/25/17 13:23

10/25/2017 10/25/2017

B7J0750

10/25/2017

B7J0750

95.1 % 8.66

Surrogate: Dibromofluoromethane

Surrogate: Toluene-d8

Surrogate: 4-Bromofluorobenzene

% I0I

75 - 132

DI DI DI D DI DI D DI DI D D DI D D DI DI 10/25/17 20:59 10/25/17 20:59 10/25/17 20:59 10/25/17 20:59 10/25/17 20:59 10/25/17 20:59 10/25/17 20:59 10/25/17 20:59 10/25/17 20:59 10/25/17 20:59 10/25/17 20:59 10/25/17 20:59 10/25/17 20:59 10/25/17 20:59 Date/Time 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 B7J0757 100 100 001 001 001 100 100 100 100 100 001 100 001 001 100 100 (ug/kg) PQL 500 500 200 500 500 500 500 500 500 500 500 500 500 500 500 500 (ug/kg) Ð 2 2 B 2 9 9 9 9 8 9 9 B 9 5 B Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene 2-Methylnaphthalene Benzo(g,h,i)perylene Benzo(a)anthracene Acenaphthylene Benzo(a)pyrene Acenaphthene Phenanthrene Fluoranthene Naphthalene Anthracene Chrysene Fluorene Analyte

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB13-0.5 Lab ID: 1703641-32

Semivolatile Organic Compounds by EPA 8270/SIM

Analyst: SP

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: 1,2-Dichlorobenzene-d4	%0	29 - 109		B7J0757	10/25/2017	10/25/17 20:59	S4
Surrogate: 2-Fluorobiphenyl	%0	39 - 108		B7J0757	10/25/2017	10/25/17 20:59	S4
Surrogate: Nitrobenzene-d5	%0	0 - 146		B7J0757	10/25/2017	10/25/17 20:59	
Surrogate: 4-Terphenyl-d14	%0	39 - 123		B7J0757	10/25/2017	10/25/17 20:59	S4

Page 33 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB13-2.5

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

Lab ID: 1703641-33

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
1,1,1,2-Tetrachloroethane	N N	5.3	-	B7J0750	10/25/2017	10/25/17 13:41	
1,1,1-Trichloroethane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
1,1,2,2-Tetrachloroethane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
1,1,2-Trichloroethane	N	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
1,1-Dichloroethane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
1,1-Dichloroethene	ND	5.3		B7J0750	10/25/2017	10/25/17 13:41	
1,1-Dichloropropene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
1,2,3-Trichloropropane	ND	5.3	П	B7J0750	10/25/2017	10/25/17 13:41	
1,2,3-Trichlorobenzene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
1,2,4-Trichlorobenzene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
1,2,4-Trimethylbenzene	ND	5.3	П	B7J0750	10/25/2017	10/25/17 13:41	
1,2-Dibromo-3-chloropropane	ND	11	-	B7J0750	10/25/2017	10/25/17 13:41	
1,2-Dibromoethane	ND	5.3	-	B7J0750	10/25/2017	10/25/17 13:41	
1,2-Dichlorobenzene	ND	5.3	П	B7J0750	10/25/2017	10/25/17 13:41	
1,2-Dichloroethane	ND	5.3	П	B7J0750	10/25/2017	10/25/17 13:41	
1,2-Dichloropropane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
1,3,5-Trimethylbenzene	ND	5.3	П	B7J0750	10/25/2017	10/25/17 13:41	
1,3-Dichlorobenzene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
1,3-Dichloropropane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
1,4-Dichlorobenzene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
2,2-Dichloropropane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
2-Chlorotoluene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
4-Chlorotoluene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
4-IsopropyItoluene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
Benzene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
Bromobenzene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
Bromochloromethane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
Bromodichloromethane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
Bromoform	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
Bromomethane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
Carbon disulfide	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
Carbon tetrachloride	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
Chlorobenzene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
Chloroethane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
Chloroform	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
Chloromethane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
cis-1,2-Dichloroethene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	

Page 34 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB13-2.5

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

Lab ID: 1703641-33

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
cis-1,3-Dichloropropene	QN	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
Di-isopropyl ether	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
Dibromochloromethane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
Dibromomethane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
Dichlorodifluoromethane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
Ethyl Acetate	ND	53	1	B7J0750	10/25/2017	10/25/17 13:41	
Ethyl Ether	ND	53	1	B7J0750	10/25/2017	10/25/17 13:41	
Ethyl tert-butyl ether	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
Ethylbenzene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
Freon-113	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
Hexachlorobutadiene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
Isopropylbenzene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
m,p-Xylene	ND	11	1	B7J0750	10/25/2017	10/25/17 13:41	
Methylene chloride	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
MTBE	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
n-Butylbenzene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
n-Propylbenzene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
Naphthalene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
o-Xylene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
sec-Butylbenzene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
Styrene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
tert-Amyl methyl ether	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
tert-Butanol	ND	110	1	B7J0750	10/25/2017	10/25/17 13:41	
tert-Butylbenzene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
Tetrachloroethene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
Toluene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
trans-1,2-Dichloroethene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
trans-1,3-Dichloropropene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
Trichloroethene	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
Trichlorofluoromethane	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
Vinyl acetate	ND	53	1	B7J0750	10/25/2017	10/25/17 13:41	
Vinyl chloride	ND	5.3	1	B7J0750	10/25/2017	10/25/17 13:41	
Surrogate: 1,2-Dichloroethane-d4	103 %	32 - 140		B7J0750	10/25/2017	10/25/17 13:41	
Surrogate: 4-Bromofluorobenzene	105 %	68 - 131		B7J0750	10/25/2017	10/25/17 13:41	
Surrogate: Dibromofluoromethane	93.7 %	49 - 134		B7J0750	10/25/2017	10/25/17 13:41	
Surrogate: Toluene-d8	% 90 <i>I</i>	75 - 132		B7J0750	10/25/2017	10/25/17 13:41	

Page 35 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB13-2.5 Lab ID: 1703641-33

Semivolatile Organic Compounds by EPA 8270/SIM

Analyst: SP

Notes 10/25/17 13:31 10/25/17 13:31 10/25/17 13:31 10/25/17 13:31 10/25/17 13:31 10/25/17 13:31 10/25/17 13:31 10/25/17 13:31 10/25/17 13:31 10/25/17 13:31 10/25/17 13:31 Date/Time Analyzed 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 Prepared B7J0757 Batch Dilution (ug/kg) PQL 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 (ug/kg) Result 8 8 9 8 2 9 2 8 2 B 8 Dibenz(a,h)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene 2-Methylnaphthalene Benzo(g,h,i)perylene Benzo(a)anthracene Acenaphthylene Benzo(a)pyrene Acenaphthene Fluoranthene Anthracene Chrysene Analyte

10/25/17 13:31 10/25/17 13:31

10/25/2017 10/25/2017

B7J0757

39 - 123

0 - 146

52.4 % 82.8 %

Surrogate: Nitrobenzene-d5 Surrogate: 4-Terphenyl-d14

10/25/17 13:31 10/25/17 13:31

10/25/2017

B7J0757

39 - 108

29 - 109

63.8 %

Surrogate: 1,2-Dichlorobenzene-d4 Surrogate: 2-Fluorobiphenyl

83.4 %

10/25/17 13:31

10/25/17 13:31

10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017

B7J0757 B7J0757 B7J0757 B7J0757

5.0 5.0 5.0 5.0

9999

Indeno(1,2,3-cd)pyrene

Fluorene

Phenanthrene

Pyrene

Naphthalene

10/25/17 13:31 10/25/17 13:31

10/25/17 13:31

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB17-0.5 Lab ID: 1703641-41

STLC Metals by ICP-AES by EPA 6010B

STEC METALS BY ICF-AES BY EFA 0010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/L)	(mg/L)	Dilution	Batch	Prepared	Analyzed	Notes
Lead	7.0	1.0	20	B7J0849	B710849 10/30/2017	10/30/17 12:19 DI	DI

Polychlorinated Biphenyls by EPA 8082

Analyst: CO/

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Aroclor 1016	ND	16	1	B7J0724	10/24/2017	10/25/17 17:28	
Aroclor 1221	N	16	1	B7J0724	10/24/2017	10/25/17 17:28	
Aroclor 1232	N	16	1	B7J0724	10/24/2017	10/25/17 17:28	
Aroclor 1242	N QN	16	1	B7J0724	10/24/2017	10/25/17 17:28	
Aroclor 1248	N	16	1	B7J0724	10/24/2017	10/25/17 17:28	
Aroclor 1254	N	16	1	B7J0724	10/24/2017	10/25/17 17:28	
Aroclor 1260	32	16	1	B7J0724	10/24/2017	10/25/17 17:28	
Aroclor 1262	N QN	16	1	B7J0724	10/24/2017	10/25/17 17:28	
Aroclor 1268	ND	16	1	B7J0724	10/24/2017	10/25/17 17:28	
Surrogate: Decachlorobiphenyl	39.4 %	18 - 136		B7J0724	10/24/2017	10/25/17 17:28	
Surrogate: Tetrachloro-m-xylene	66.5 %	30 - 130		B7J0724	10/24/2017	10/25/17 17:28	

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
1,1,1-Trichloroethane	ND	5.1		B7J0750	10/25/2017	10/25/17 14:00	
1,1,2,2-Tetrachloroethane	ND	5.1	_	B7J0750	10/25/2017	10/25/17 14:00	
1,1,2-Trichloroethane	ND	5.1		B7J0750	10/25/2017	10/25/17 14:00	
1,1-Dichloroethane	ND	5.1		B7J0750	10/25/2017	10/25/17 14:00	
1,1-Dichloroethene	ND	5.1	-	B7J0750	10/25/2017	10/25/17 14:00	
1,1-Dichloropropene	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
1,2,3-Trichloropropane	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
1,2,3-Trichlorobenzene	ND	5.1	-	B7J0750	10/25/2017	10/25/17 14:00	
1,2,4-Trichlorobenzene	ND	5.1		B7J0750	10/25/2017	10/25/17 14:00	
1,2,4-Trimethylbenzene	ND	5.1		B7J0750	10/25/2017	10/25/17 14:00	
1,2-Dibromo-3-chloropropane	ND	10	-	B7J0750	10/25/2017	10/25/17 14:00	
1,2-Dibromoethane	ND	5.1		B7J0750	10/25/2017	10/25/17 14:00	
1,2-Dichlorobenzene	ND	5.1		B7J0750	10/25/2017	10/25/17 14:00	
1,2-Dichloroethane	ND	5.1	-	B7J0750	10/25/2017	10/25/17 14:00	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Reported: 11/08/2017

Client Sample ID LB17-0.5

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

Lab ID: 1703641-41

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
1,2-Dichloropropane	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
1,3,5-Trimethylbenzene	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
1,3-Dichlorobenzene	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
1,3-Dichloropropane	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
1,4-Dichlorobenzene	ND	5.1	-	B7J0750	10/25/2017	10/25/17 14:00	
2,2-Dichloropropane	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
2-Chlorotoluene	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
4-Chlorotoluene	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
4-Isopropyltoluene	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
Benzene	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
Bromobenzene	ND	5.1	-	B7J0750	10/25/2017	10/25/17 14:00	
Bromochloromethane	ND	5.1	_	B7J0750	10/25/2017	10/25/17 14:00	
Bromodichloromethane	ND	5.1	-	B7J0750	10/25/2017	10/25/17 14:00	
Bromoform	ND	5.1	_	B7J0750	10/25/2017	10/25/17 14:00	
Bromomethane	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
Carbon disulfide	12	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
Carbon tetrachloride	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
Chlorobenzene	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
Chloroethane	ND	5.1	-	B7J0750	10/25/2017	10/25/17 14:00	
Chloroform	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
Chloromethane	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
cis-1,2-Dichloroethene	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
cis-1,3-Dichloropropene	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
Di-isopropyl ether	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
Dibromochloromethane	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
Dibromomethane	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
Dichlorodifluoromethane	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
Ethyl Acetate	ND	51	1	B7J0750	10/25/2017	10/25/17 14:00	
Ethyl Ether	ND	51	1	B7J0750	10/25/2017	10/25/17 14:00	
Ethyl tert-butyl ether	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
Ethylbenzene	N N	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
Freon-113	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
Hexachlorobutadiene	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
Isopropylbenzene	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
m,p-Xylene	ND	10	1	B7J0750	10/25/2017	10/25/17 14:00	
Methylene chloride	ND	5.1	-	B7J0750	10/25/2017	10/25/17 14:00	
MTBE	ND QN	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	

Page 38 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB17-0.5 Lab ID: 1703641-41

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

	(ug/kg)	(119/kg)		Dotak	-	beziten	
n-Butylbenzene n-Propylbenzene Naphthalene o-Xylene		(00)	Dilution	Batch	Prepared	Anaryzeu	Notes
n-Propylbenzene Naphthalene o-Xylene	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
Naphthalene o-Xylene	<u>R</u>	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
o-Xylene	<u>R</u>	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
Doctor House com	N	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
sec-parkinelizere	<u>R</u>	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
Styrene	<u>R</u>	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
tert-Amyl methyl ether	N Q	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
tert-Butanol	<u>R</u>	100	1	B7J0750	10/25/2017	10/25/17 14:00	
tert-Butylbenzene	N Q	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
Tetrachloroethene	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
Toluene	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
trans-1,2-Dichloroethene	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
trans-1,3-Dichloropropene	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
Trichloroethene	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
Trichlorofluoromethane	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
Vinyl acetate	ND	51	1	B7J0750	10/25/2017	10/25/17 14:00	
Vinyl chloride	ND	5.1	1	B7J0750	10/25/2017	10/25/17 14:00	
Surrogate: 1,2-Dichloroethane-d4 107 %		32 - 140		B7J0750	10/25/2017	10/25/17 14:00	
Surrogate: 4-Bromofluorobenzene		68 - 131		B7J0750	10/25/2017	10/25/17 14:00	
Surrogate: Dibromofluoromethane 98.6 %		49 - 134		B7J0750	10/25/2017	10/25/17 14:00	
Surrogate: Toluene-d8		75 - 132		B7J0750	10/25/2017	10/25/17 14:00	

_	
2	i
7	5
\geq	5
F	
8270/CTS	1
_	4
ĭ PA I	1
-	i
֡	
Š	2
U	2
2	2
Ξ	3
րսուսա	?
Ξ	Ť
5	
Č)
٠	
Ē	
5	3
roan	Ō
Ć	5
٥	•
Ē	
ć	3
7	5
2	
Ē	

Semivolatile Organic Compounds by EPA 8270/SIM	A 8270/SIM						Analyst: SP
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
2-Methylnaphthalene	ND	250	50	B7J0757	10/25/2017	10/25/17 21:28	D1
Acenaphthene	ND	250	50	B7J0757	10/25/2017	10/25/17 21:28	DI
Acenaphthylene	ND	250	50	B7J0757	10/25/2017	10/25/17 21:28	D1
Anthracene	ND	250	50	B7J0757	10/25/2017	10/25/17 21:28	D1
Benzo(a)anthracene	ND	250	50	B7J0757	10/25/2017	10/25/17 21:28	DI
Benzo(a)pyrene	ND	250	50	B7J0757	10/25/2017	10/25/17 21:28	DI
Benzo(b)fluoranthene	ND	250	50	B7J0757	10/25/2017	10/25/17 21:28	DI
Benzo(g,h,i)perylene	ND	250	50	B7J0757	10/25/2017	10/25/17 21:28	DI
Benzo(k)fluoranthene	ND	250	50	B7J0757	10/25/2017	10/25/17 21:28	DI
Chrysene	ND	250	50	B7J0757	10/25/2017	10/25/17 21:28	DI
Dibenz(a,h)anthracene	N	250	50	B7J0757	10/25/2017	10/25/17 21:28	D1

Page 39 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB17-0.5 Lab ID: 1703641-41

Semivolatile Organic Compounds by EPA 8270/SIM

Analyst: SP

Notes \overline{D} D DI DI D \Box \$4 **S**4 \$ 10/25/17 21:28 10/25/17 21:28 10/25/17 21:28 10/25/17 21:28 10/25/17 21:28 10/25/17 21:28 10/25/17 21:28 10/25/17 21:28 10/25/17 21:28 10/25/17 21:28 Date/Time Analyzed 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 Prepared B7J0757 Batch Dilution 50 50 50 50 50 50 29 - 109 39 - 108 39 - 123 0 - 146(ug/kg) PQL 250 250 250 250 250 250 (ug/kg) Result 9 B R R 2 9 %0 %0 Surrogate: 1,2-Dichlorobenzene-d4 Surrogate: 2-Fluorobiphenyl Surrogate: Nitrobenzene-d5 Surrogate: 4-Terphenyl-d14 Indeno(1,2,3-cd)pyrene Phenanthrene Fluoranthene Naphthalene Fluorene Analyte Pyrene

Page 40 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB17-2.5 Lab ID: 1703641-42

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

							Ser and Ser and
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
1,1,1-Trichloroethane	ND	5.5		B7J0750	10/25/2017	10/25/17 14:18	
1,1,2,2-Tetrachloroethane	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
1,1,2-Trichloroethane	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
1,1-Dichloroethane	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
1,1-Dichloroethene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
1,1-Dichloropropene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
1,2,3-Trichloropropane	ND	5.5		B7J0750	10/25/2017	10/25/17 14:18	
1,2,3-Trichlorobenzene	N	5.5	-	B7J0750	10/25/2017	10/25/17 14:18	
1,2,4-Trichlorobenzene	N	5.5		B7J0750	10/25/2017	10/25/17 14:18	
1,2,4-Trimethylbenzene	N	5.5		B7J0750	10/25/2017	10/25/17 14:18	
1,2-Dibromo-3-chloropropane	N	11	1	B7J0750	10/25/2017	10/25/17 14:18	
1,2-Dibromoethane	N	5.5		B7J0750	10/25/2017	10/25/17 14:18	
1,2-Dichlorobenzene	ND	5.5		B7J0750	10/25/2017	10/25/17 14:18	
1,2-Dichloroethane	N	5.5	-	B7J0750	10/25/2017	10/25/17 14:18	
1,2-Dichloropropane	N	5.5		B7J0750	10/25/2017	10/25/17 14:18	
1,3,5-Trimethylbenzene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
1,3-Dichlorobenzene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
1,3-Dichloropropane	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
1,4-Dichlorobenzene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
2,2-Dichloropropane	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
2-Chlorotoluene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
4-Chlorotoluene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
4-Isopropyltoluene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
Benzene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
Bromobenzene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
Bromochloromethane	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
Bromodichloromethane	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
Bromoform	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
Bromomethane	ND	5.5	-	B7J0750	10/25/2017	10/25/17 14:18	
Carbon disulfide	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
Carbon tetrachloride	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
Chlorobenzene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
Chloroethane	N	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
Chloroform	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
Chloromethane	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
cis-1,2-Dichloroethene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	

Page 41 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB17-2.5 Lab ID: 1703641-42

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

,							
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
cis-1,3-Dichloropropene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
Di-isopropyl ether	ND	5.5	-	B7J0750	10/25/2017	10/25/17 14:18	
Dibromochloromethane	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
Dibromomethane	ND	5.5	-	B7J0750	10/25/2017	10/25/17 14:18	
Dichlorodifluoromethane	ND	5.5	-	B7J0750	10/25/2017	10/25/17 14:18	
Ethyl Acetate	ND	55	1	B7J0750	10/25/2017	10/25/17 14:18	
Ethyl Ether	ND	55	1	B7J0750	10/25/2017	10/25/17 14:18	
Ethyl tert-butyl ether	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
Ethylbenzene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
Freon-113	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
Hexachlorobutadiene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
Isopropylbenzene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
m,p-Xylene	ND	11	1	B7J0750	10/25/2017	10/25/17 14:18	
Methylene chloride	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
MTBE	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
n-Butylbenzene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
n-Propylbenzene	ND	5.5	-	B7J0750	10/25/2017	10/25/17 14:18	
Naphthalene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
o-Xylene	ND	5.5	-	B7J0750	10/25/2017	10/25/17 14:18	
sec-Butylbenzene	ND	5.5	-	B7J0750	10/25/2017	10/25/17 14:18	
Styrene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
tert-Amyl methyl ether	ND	5.5	-	B7J0750	10/25/2017	10/25/17 14:18	
tert-Butanol	ND	110	-	B7J0750	10/25/2017	10/25/17 14:18	
tert-Butylbenzene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
Tetrachloroethene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
Toluene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
trans-1,2-Dichloroethene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
trans-1,3-Dichloropropene	ND	5.5		B7J0750	10/25/2017	10/25/17 14:18	
Trichloroethene	ND	5.5	-	B7J0750	10/25/2017	10/25/17 14:18	
Trichlorofluoromethane	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
Vinyl acetate	ND	55	-	B7J0750	10/25/2017	10/25/17 14:18	
Vinyl chloride	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:18	
Surrogate: 1,2-Dichloroethane-d4	103 %	32 - 140		B7J0750	10/25/2017	10/25/17 14:18	
Surrogate: 4-Bromofluorobenzene	103 %	68 - 131		B7J0750	10/25/2017	10/25/17 14:18	
Surrogate: Dibromofluoromethane	97.7%	49 - 134		B7J0750	10/25/2017	10/25/17 14:18	
Surrogate: Toluene-d8	% 80I	75 - 132		B7J0750	10/25/2017	10/25/17 14:18	

Page 42 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB17-2.5 Lab ID: 1703641-42

Analyst: SP Semivolatile Organic Compounds by EPA 8270/SIM

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
2-Methylnaphthalene	ND	5.0	1	B7J0757	10/25/2017	10/25/17 17:07	
Acenaphthene	ND	5.0	_	B7J0757	10/25/2017	10/25/17 17:07	
Acenaphthylene	ND	5.0	_	B7J0757	10/25/2017	10/25/17 17:07	
Anthracene	ND	5.0	_	B7J0757	10/25/2017	10/25/17 17:07	
Benzo(a)anthracene	ND	5.0	_	B7J0757	10/25/2017	10/25/17 17:07	
Benzo(a)pyrene	ND	5.0	-	B7J0757	10/25/2017	10/25/17 17:07	
Benzo(b)fluoranthene	ND	5.0	_	B7J0757	10/25/2017	10/25/17 17:07	
Benzo(g,h,i)perylene	ND	5.0	_	B7J0757	10/25/2017	10/25/17 17:07	
Benzo(k)fluoranthene	ND	5.0	_	B7J0757	10/25/2017	10/25/17 17:07	
Chrysene	ND	5.0	_	B7J0757	10/25/2017	10/25/17 17:07	
Dibenz(a,h)anthracene	ND	5.0	_	B7J0757	10/25/2017	10/25/17 17:07	
Fluoranthene	ND	5.0	_	B7J0757	10/25/2017	10/25/17 17:07	
Fluorene	ND	5.0	_	B7J0757	10/25/2017	10/25/17 17:07	
Indeno(1,2,3-cd)pyrene	ND	5.0	_	B7J0757	10/25/2017	10/25/17 17:07	
Naphthalene	ND	5.0	_	B7J0757	10/25/2017	10/25/17 17:07	
Phenanthrene	ND	5.0	_	B7J0757	10/25/2017	10/25/17 17:07	
Pyrene	ND	5.0	1	B7J0757	10/25/2017	10/25/17 17:07	
Surrogate: 1,2-Dichlorobenzene-d4 59.9	59.9 %	29 - 109		B7J0757	10/25/2017	10/25/17 17:07	
Surrogate: 2-Fluorobiphenyl 82.2	82.2 %	39 - 108		B7J0757	10/25/2017	10/25/17 17:07	
Surrogate: Nitrobenzene-d5 54.1	54.1 %	0 - 146		B7J0757	10/25/2017	10/25/17 17:07	
Surrogate: 4-Terphenyl-d14 79.5	79.9 %	39 - 123		B7J0757	10/25/2017	10/25/17 17:07	

Leighton Consulting, Inc. 17781 Cowan Street

Irvine, CA 92614

Report To: Brynn McCulloch

Project Number: POLA Berth 191-193, 11618.005

Reported: 11/08/2017

Client Sample ID LB2-2.5 Lab ID: 1703641-50

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: VW

	Doenlt	DOI				Doto/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	4.3	_	B7K0166	11/07/2017	11/07/17 17:07	H7
1,1,1-Trichloroethane	N	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
1, 1, 2, 2- Tetrachloroethane	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
1,1,2-Trichloroethane	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
1,1-Dichloroethane	ND	4.3	-	B7K0166	11/07/2017	11/07/17 17:07	H7
1,1-Dichloroethene	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
1,1-Dichloropropene	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
1,2,3-Trichloropropane	ND	4.3	-	B7K0166	11/07/2017	11/07/17 17:07	H7
1,2,3-Trichlorobenzene	ND	4.3		B7K0166	11/07/2017	11/07/17 17:07	H7
1,2,4-Trichlorobenzene	ND	4.3		B7K0166	11/07/2017	11/07/17 17:07	H7
1,2,4-Trimethylbenzene	N	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
1,2-Dibromo-3-chloropropane	ND	8.6		B7K0166	11/07/2017	11/07/17 17:07	H7
1,2-Dibromoethane	N	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
1,2-Dichlorobenzene	ND	4.3	-	B7K0166	11/07/2017	11/07/17 17:07	H7
1,2-Dichloroethane	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
1,2-Dichloropropane	ND	4.3	-	B7K0166	11/07/2017	11/07/17 17:07	H7
1,3,5-Trimethylbenzene	ND	4.3	-	B7K0166	11/07/2017	11/07/17 17:07	H7
1,3-Dichlorobenzene	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
1,3-Dichloropropane	ND	4.3	-	B7K0166	11/07/2017	11/07/17 17:07	H7
1,4-Dichlorobenzene	ND	4.3	-	B7K0166	11/07/2017	11/07/17 17:07	H7
2,2-Dichloropropane	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
2-Chlorotoluene	ND	4.3	-	B7K0166	11/07/2017	11/07/17 17:07	H7
4-Chlorotoluene	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
4-Isopropyltoluene	N	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
Benzene	N	4.3		B7K0166	11/07/2017	11/07/17 17:07	H7
Bromobenzene	N	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
Bromochloromethane	N	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
Bromodichloromethane	ND	4.3	-	B7K0166	11/07/2017	11/07/17 17:07	H7
Bromoform	N	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
Bromomethane	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
Carbon disulfide	7.4	4.3	-	B7K0166	11/07/2017	11/07/17 17:07	H7
Carbon tetrachloride	ND	4.3	-	B7K0166	11/07/2017	11/07/17 17:07	H7
Chlorobenzene	ND	4.3	-	B7K0166	11/07/2017	11/07/17 17:07	H7
Chloroethane	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
Chloroform	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
Chloromethane	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
cis-1,2-Dichloroethene	ND	4.3	_	B7K0166	11/07/2017	11/07/17 17:07	H7

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB2-2.5 Lab ID: 1703641-50

Volatile Organic Compounds by E	s by EPA 5035/EPA 8260B	60B					Analyst: VW
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
cis-1,3-Dichloropropene	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
Di-isopropyl ether	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
Dibromochloromethane	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
Dibromomethane	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
Dichlorodifluoromethane	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
Ethyl Acetate	ND	43	1	B7K0166	11/07/2017	11/07/17 17:07	H7
Ethyl Ether	ND	43	1	B7K0166	11/07/2017	11/07/17 17:07	H7
Ethyl tert-butyl ether	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
Ethylbenzene	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
Freon-113	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
Hexachlorobutadiene	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
Isopropylbenzene	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
m,p-Xylene	ND	8.6	1	B7K0166	11/07/2017	11/07/17 17:07	H7
Methylene chloride	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
MTBE	ND	4.3	_	B7K0166	11/07/2017	11/07/17 17:07	H7
n-Butylbenzene	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
n-Propylbenzene	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
Naphthalene	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
o-Xylene	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
sec-Butylbenzene	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
Styrene	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
tert-Amyl methyl ether	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
tert-Butanol	ND	98	1	B7K0166	11/07/2017	11/07/17 17:07	H7
tert-Butylbenzene	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
Tetrachloroethene	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
Toluene	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
trans-1,2-Dichloroethene	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
trans-1,3-Dichloropropene	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
Trichloroethene	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
Trichlorofluoromethane	ND	4.3	1	B7K0166	11/07/2017	11/07/17 17:07	H7
Vinyl acetate	ND	43	1	B7K0166	11/07/2017	11/07/17 17:07	H7
Vinyl chloride	ND	4.3	-	B7K0166	11/07/2017	11/07/17 17:07	H7
Surrogate: 1,2-Dichloroethane-d4	120 %	32 - 140		B7K0166	11/07/2017	11/07/17 17:07	
Surrogate: 4-Bromofluorobenzene	105 %	68 - 131		B7K0166	11/07/2017	11/02/17 17:07	
Surrogate: Dibromofluoromethane	% 901	49 - 134		B7K0166	11/07/2017	11/07/17 17:07	
Surrogate: Toluene-d8	104 %	75 - 132		B7K0166	11/07/2017	11/07/17 17:07	

Page 45 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB2-2.5

Lab ID: 1703641-50

Semivolatile Organic Compound	pounds by ErA 82/U/SIM	4					Analyst: SP
	Result	PQL	i d	1	ē	Date/Time	, T. V.
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
2-Methylnaphthalene	ND	10	2	B7K0185	11/07/2017	11/07/17 17:12	H4
Acenaphthene	ND	10	7	B7K0185	11/07/2017	11/07/17 17:12	H4
Acenaphthylene	ND	10	2	B7K0185	11/07/2017	11/07/17 17:12	H4
Anthracene	ND	10	2	B7K0185	11/07/2017	11/07/17 17:12	H4
Benzo(a)anthracene	ND	10	2	B7K0185	11/07/2017	11/07/17 17:12	H4
Benzo(a)pyrene	ND	10	2	B7K0185	11/07/2017	11/07/17 17:12	H4
Benzo(b)fluoranthene	10	10	7	B7K0185	11/07/2017	11/07/17 17:12	H4
Benzo(g,h,i)perylene	ND	10	7	B7K0185	11/07/2017	11/07/17 17:12	H4
Benzo(k)fluoranthene	N	10	7	B7K0185	11/07/2017	11/07/17 17:12	H4
Chrysene	N	10	7	B7K0185	11/07/2017	11/07/17 17:12	H4
Dibenz(a,h)anthracene	ND	10	2	B7K0185	11/07/2017	11/07/17 17:12	H4
Fluoranthene	12	10	7	B7K0185	11/07/2017	11/07/17 17:12	H4
Fluorene	ND	10	7	B7K0185	11/07/2017	11/07/17 17:12	H4
Indeno(1,2,3-cd)pyrene	ND	10	2	B7K0185	11/07/2017	11/07/17 17:12	H4
Naphthalene	ND	10	7	B7K0185	11/07/2017	11/07/17 17:12	H4
Phenanthrene	N	10	7	B7K0185	11/07/2017	11/07/17 17:12	H4
Pyrene	11	10	2	B7K0185	11/07/2017	11/07/17 17:12	H4
Surrogate: 1,2-Dichlorobenzene-d4	50.8 %	29 - 109		B7K0185	11/07/2017	11/07/17 17:12	
Surrogate: 2-Fluorobiphenyl	70.0%	39 - 108		B7K0185	11/07/2017	11/07/17 17:12	

11/07/17 17:12 11/07/17 17:12

11/07/2017

46.3 % 66.6 %

Surrogate: Nitrobenzene-d5 Surrogate: 4-Terphenyl-d14

11/07/2017

B7K0185 B7K0185 Page 46 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

QUALITY CONTROL SECTION

TCLP Metals by ICP-AES EPA 6010B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/L)	(mg/L)	(mg/L)	Level		% Rec	Limits	RPD	Limit	Notes
Batch B7J0818 - EPA 3010A_S										
Blank (B7J0818-BLK1)					Prepared: 1	0/27/2017 A	Prepared: 10/27/2017 Analyzed: 10/27/2017	/2017		
Lead	ND	0.050	0.0047							
Blank (B7J0818-BLK2)					Prepared: 1	0/27/2017 A	Prepared: 10/27/2017 Analyzed: 10/27/2017	/2017		
Fead	ND	0.050	0.0047							
LCS (B7J0818-BS1)					Prepared: 1	0/27/2017 A	Prepared: 10/27/2017 Analyzed: 10/27/2017	/2017		
Lead	0.937282	0.050	0.0047	1.00000		93.7	80 - 120			
Duplicate (B7J0818-DUP1)		Son	Source: 1703718-01	18-01	Prepared: 1	0/27/2017 A	Prepared: 10/27/2017 Analyzed: 10/27/2017	/2017		
Lead	ND	0.50	0.047		0.055943			NR	20	
Duplicate (B7J0818-DUP2)		Son	Source: 1703720-02	20-02	Prepared: 1	0/27/2017 A	Prepared: 10/27/2017 Analyzed: 10/27/2017	/2017		
Lead	0.913033	0.62	0.059		0.821568			10.5	20	
Matrix Spike (B7J0818-MS1)		Son	Source: 1703718-01	18-01	Prepared: 1	0/27/2017 A	Prepared: 10/27/2017 Analyzed: 10/27/2017	/2017		
Lead	2.32879	0.50	0.047 2.50000	2.50000	0.055943 90.9	6.06	78 - 109			
Matrix Spike (B7J0818-MS2)		Sou	Source: 1703653-04	53-04	Prepared: 1	0/27/2017 A	Prepared: 10/27/2017 Analyzed: 10/27/2017	/2017		
Lead	11.7478	0.25	0.024	2.50000	0.040223	468	78 - 109			M1
Matrix Spike Dup (B7J0818-MSD1)		Son	Source: 1703718-01	18-01	Prepared: 1	0/27/2017 A	Prepared: 10/27/2017 Analyzed: 10/27/2017	/2017		
Lead	2.28561	0.50	0.047	2.50000	0.055943	89.2	78 - 109	1.87	20	

Page 47 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

STLC Metals by ICP-AES by EPA 6010B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/L)	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0849 - STLC_S Extraction

										20	20
0/2017			0/2017		7,007,0	/ 107/0			0/2017	0.469	3.34
Prepared: 10/30/2017 Analyzed: 10/30/2017			Prepared: 10/30/2017 Analyzed: 10/30/2017	80 - 120	Dranger of 10/30/2017 Angly red 10/30/2017	/ Allatyzea. 10/2	62 - 129	44 - 130	Prepared: 10/30/2017 Analyzed: 10/30/2017	62 - 129	44 - 130
: 10/30/201			: 10/30/201	91.4	. 10/30/201	. 10/20/201	81.8	67.2	: 10/30/201	82.6	77.3
Prepared			Prepared		Denonara	Topaca	2.49998	5.75609	Prepared	2.49998	5.75609
	0.076	0.094		2.00000	Source: 1703641 02	3041-05.1703041-02	2.50000	2.50000	Source: 1703641-02	2.50000	2.50000
	1.0	1.0									
	N	N Q		1.82832			4.54437	7.43540		4.56573	7.68783
Blank (B7J0849-BLK1)	Copper	Lead	LCS (B7J0849-BS1)	Copper Lead	Motrix Caile (B710840 MC1)	Matilia Spine (B/30047-MS1)	Copper	Lead	Matrix Spike Dup (B7J0849-MSD1)	Copper	Lead

Page 48 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Mercury by AA (Cold Vapor) EPA 7471A - Quality Control

Analyte	Result (mo/ko)	PQL (mo/ko)	MDL (mø/kø)	Spike Level	Source	% Rec	% Rec	RPD	RPD Limit	Notes
or finers,	(Gw Aur)	(9 m A)	(9 m 9 m)		mon	201.0				
Batch B7J0820 - EPA 7471_S										

Batch B7J0820 - EPA 7471_S									
Blank (B7J0820-BLK1)					Prepared: 1	0/27/2017	Prepared: 10/27/2017 Analyzed: 10/27/2017	/2017	
Mercury	ND	0.10	0.005						
LCS (B7J0820-BS1)					Prepared: 1	0/27/2017	Prepared: 10/27/2017 Analyzed: 10/27/2017	/2017	
Mercury	0.871909	0.10	0.005	0.005 0.833333		105	80 - 120		
Duplicate (B7J0820-DUP1)			Source: 1703641-46RE1	541-46RE1	Prepared: 1	0/27/2017	Prepared: 10/27/2017 Analyzed: 10/27/2017	/2017	
Mercury	0.470609	0.10	0.005		0.140500			108	20
Matrix Spike (B7J0820-MS1)			Source: 1703641-46RE1	541-46RE1	Prepared: 1	0/27/2017	Prepared: 10/27/2017 Analyzed: 10/27/2017	/2017	
Mercury	0.995021	0.10	0.005	0.005 0.833333	0.140500 103	103	70 - 130		
Matrix Spike Dup (B7J0820-MSD1)			Source: 1703641-46RE1	541-46RE1	Prepared: 1	0/27/2017	Prepared: 10/27/2017 Analyzed: 10/27/2017	/2017	
Mercury	0.975706	0.10	0.005	0.005 0.833333	0.140500 100	100	70 - 130	1.96	20
Post Spike (B7J0820-PS1)			Source: 1703641-46RE1	541-46RE1	Prepared: 1	0/27/2017	Prepared: 10/27/2017 Analyzed: 10/27/2017	/2017	
Mercury	0.007902			5.00000E-3	0.001686	124	85 - 115		

 \mathbb{R}

 ${\mathbb M}$

Page 49 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Polychlorinated Biphenyls by EPA 8082 - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0511 - GCSEMI_PCB/PEST_S	PEST_S									
Blank (B7J0511-BLK1)					Prepared	1: 10/18/2017	Prepared: 10/18/2017 Analyzed: 10/18/2017	8/2017		
Aroclor 1016	ND	16	4.6							
Aroclor 1221	N	16	4.6							
Aroclor 1232	ND	16	4.6							
Aroclor 1242	N	16	4.6							
Aroclor 1248	N	16	4.6							
Aroclor 1254	N	16	4.6							
Aroclor 1260	N	16	4.6							
Aroclor 1262	N	16	4.6							
Aroclor 1268	N	16	4.6							
Surrogate: Decachlorobiphenyl	11.23			16.6667		67.4	18 - 136			
Surrogate: Tetrachloro-m-xylene	15.91			16.6667		95.4	30 - 130			
LCS (B7J0511-BS1)					Prepared	1: 10/18/2017	Prepared: 10/18/2017 Analyzed: 10/18/2017	8/2017		
Aroclor 1016	182.618	16	4.6	166.667		110	73 - 111			
Aroclor 1260	159.355	16	4.6	166.667		92.6	75 - 125			
Surrogate: Decachlorobiphenyl	12.77			16.6667		26.6	18 - 136			
Surrogate: Tetrachloro-m-xylene	18.82			16.6667		113	30 - 130			
Duplicate (B7J0511-DUP1)		S	Source: 1703681-24	581-24	Prepared	1: 10/18/2017	Prepared: 10/18/2017 Analyzed: 10/18/2017	8/2017		
Aroclor 1016	N	16	4.6		ND				20	
Aroclor 1260	ND	16	4.6		ND				20	
Surrogate: Decachlorobiphenyl	8.908			16.6667		53.4	18 - 136			
Surrogate: Tetrachloro-m-xylene	12.55			16.6667		75.3	30 - 130			
Matrix Spike (B7J0511-MS1)		S	Source: 1703681-22	581-22	Prepared	1: 10/18/2017	Prepared: 10/18/2017 Analyzed: 10/18/2017	8/2017		
Aroclor 1016	142.130	16	4.6	166.667	N	85.3	36 - 127			
Aroclor 1260	115.861	16	4.6	166.667	ND	69.5	31 - 142			
Surrogate: Decachlorobiphenyl	8.673			16.6667		52.0	18 - 136			
Surrogate: Tetrachloro-m-xylene	14.25			16.6667		85.5	30 - 130			
Matrix Spike Dup (B7J0511-MSD1)		S	Source: 1703681-22	581-22	Prepared	1: 10/18/2017	Prepared: 10/18/2017 Analyzed: 10/18/2017	8/2017		
Aroclor 1016	137.276	16	4.6	166.667	Q !	82.4	36 - 127	3.47	20	
Aroclor 1260	113.244	16	4.6	166.667		6.7.9	31 - 142	2.29	20	
Surrogate: Decachlorobiphenyl Surrogate: Tetrachloro-m-xylene	8.437 13.89			16.6667 16.6667		50.6 83.4	18 - 136 30 - 130			

Page 50 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Polychlorinated Biphenyls by EPA 8082 - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0724 - GCSEMI_PCB/P	PCB/PEST_S									
Blank (B7J0724-BLK2)					Prepared	10/24/2017	Prepared: 10/24/2017 Analyzed: 10/25/2017	:5/2017		
Aroclor 1016	ND	16	4.6							
Aroclor 1221	ND	16	4.6							
Aroclor 1232	ND	16	4.6							
Aroclor 1242	ND	16	4.6							
Aroclor 1248	ND	16	4.6							
Aroclor 1254	ND	16	4.6							
Aroclor 1260	N	16	4.6							
Aroclor 1262	N	16	4.6							
Aroclor 1268	ND	16	4.6							
Surrogate: Decachlorobiphenyl	13.23			16.6667		79.4	18 - 136			
Surrogate: Tetrachloro-m-xylene	14.64			16.6667		87.8	30 - 130			
LCS (B7J0724-BS2)					Prepared	: 10/24/2017	Prepared: 10/24/2017 Analyzed: 10/25/2017	:5/2017		
Aroglor 1016	149 223	16	4 6	166 667		89.5	73 - 111			
Aroclor 1260	155.316	16	4.6	166.667		93.2	75 - 125			
Surrogate: Decachlorobiphenyl	13.98			16.6667		83.9	18 - 136			
Surrogate: Tetrachloro-m-xylene	15.23			16.6667		91.4	30 - 130			
Matrix Spike (B7J0724-MS3)		Ø	Source: 1703770-02	70-02	Prepared	10/24/2017	Prepared: 10/24/2017 Analyzed: 10/25/2017	5/2017		
Araclar 1016	27 6048	16	46	166 667	CN.	46.6	36-127			
Aroclor 1260	86.5117	16	5. 4 0. 6	166 667	2 2	51.9	31 - 142			
	711000	2	2	100:001	į		1 1 1			
Surrogate: Decacniorobipnenyi Surrogate: Tetrachloro-m-xylene	7.314 6.630			10.000/ 16.6667		45.1 39.8	18 - 130 30 - 130			
Matrix Spike (B7J0724-MS4)		Š	Source: 1703770-03	70-03	Prepared	: 10/24/2017	Prepared: 10/24/2017 Analyzed: 10/25/2017	:5/2017		
Aroglor 1016	89.5710	16	4.6	166.667	QN	53.7	36 - 127			
Aroclor 1260	95.6437	16	4.6	166.667	ND	57.4	31 - 142			
Surrogate: Decachlorobiphenyl	8.150			16.6667		48.9	18 - 136			
Surrogate: Tetrachloro-m-xylene	8.857			16.6667		53.1	30 - 130			
Matrix Spike Dup (B7J0724-MSD3)		Š	Source: 1703770-02	70-02	Prepared	: 10/24/2017	Prepared: 10/24/2017 Analyzed: 10/25/2017	5/2017		
Aroclor 1016	87.3318	16	4.6	166.667	ND	52.4	36 - 127	11.8	20	
Aroclor 1260	82.0210	16	4.6	166.667	ND	49.2	31 - 142	5.33	20	
Surrogate: Decachlorobiphenyl	6.951			16.6667		41.7	18 - 136			
Surrogate: Tetrachloro-m-xylene	6.484			16.6667		38.9	30 - 130			
Matrix Spike Dup (B7J0724-MSD4)		Š	Source: 1703770-03	70-03	Prepared	: 10/24/2017	Prepared: 10/24/2017 Analyzed: 10/25/2017	5/2017		
Aroclor 1016	100.878	16	4.6	166.667	ND	60.5	36 - 127	11.9	20	
Aroclor 1260	102.184	16	4.6	166.667	ND	61.3	31 - 142	6.61	20	
Surrogate: Decachlorobiphenyl	800.6			16.6667		54.0	18 - 136			
Surrogate: Tetrachloro-m-xylene	9.429			16.6667		56.6	30 - 130			

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD		
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes	

	Result	PQL	MDL	Spike	Source		% Rec		KPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0750 - MSVOA_S										
Blank (B7J0750-BLK1)					Prepared	: 10/25/2017	Prepared: 10/25/2017 Analyzed: 10/25/2017	5/2017		
1,1,1,2-Tetrachloroethane	N QN	5.0	96.0							
1,1,1-Trichloroethane	N	5.0	1.1							
1,1,2,2-Tetrachloroethane	ND	5.0	0.62							
1,1,2-Trichloroethane	ND	5.0	1.6							
1,1-Dichloroethane	ND	5.0	0.81							
1,1-Dichloroethene	ND	5.0	2.6							
1,1-Dichloropropene	ND	5.0	2.3							
1,2,3-Trichloropropane	ND	5.0	0.54							
1,2,3-Trichlorobenzene	ND	5.0	1.2							
1,2,4-Trichlorobenzene	ND	5.0	1.1							
1,2,4-Trimethylbenzene	ND	5.0	1.5							
1,2-Dibromo-3-chloropropane	ND	10	1.6							
1,2-Dibromoethane	ND	5.0	3.2							
1,2-Dichlorobenzene	ND	5.0	1.1							
1,2-Dichloroethane	ND	5.0	1.2							
1,2-Dichloropropane	ND	5.0	1.8							
1,3,5-Trimethylbenzene	ND	5.0	1.7							
1,3-Dichlorobenzene	ND	5.0	1.3							
1,3-Dichloropropane	ND	5.0	1.1							
1,4-Dichlorobenzene	N N	5.0	1.2							
2,2-Dichloropropane	ND	5.0	1.2							
2-Chlorotoluene	ND	5.0	1.6							
4-Chlorotoluene	ND	5.0	1.5							
4-Isopropyltoluene	N	5.0	2.3							
Benzene	ND	5.0	0.64							
Bromobenzene	ND	5.0	1.1							
Bromochloromethane	N Q	5.0	0.64							
Bromodichloromethane	N Q	5.0	1.2							
Bromoform	N Q	5.0	0.80							
Bromomethane	Ω	5.0	2.5							
Carbon disulfide	N Q	5.0	3.5							
Carbon tetrachloride	Ω	5.0	1.2							
Chlorobenzene	ND	5.0	1.0							
Chloroethane	ND	5.0	1.1							
Chloroform	Ω	5.0	0.82							
Chloromethane	ND	5.0	1.4							
cis-1,2-Dichloroethene	ND	5.0	0.67							
cis-1,3-Dichloropropene	N N	5.0	1.9							
Di-isopropyl ether	N N	5.0	0.55							
Dibromochloromethane	R	5.0	1.0							
Dibromomethane	ND	5.0	1.6							

Page 52 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Dodge D710750 MCVOA S	(oon tinned)					
Daten Disolate May Off S (Con	(nonum					
Blank (B7J0750-BLK1) - Continued					Prepared: 10/25/2017	Prepared: 10/25/2017 Analyzed: 10/25/2017
Dichlorodifluoromethane	ND	5.0	2.2			
Ethyl Acetate	ND	50	8.1			
Ethyl Ether	ND	50	6.1			
Ethyl tert-butyl ether	ND	5.0	0.67			
Ethylbenzene	ND	5.0	0.91			
Freon-113	ND	5.0	2.8			
Hexachlorobutadiene	ND	5.0	2.5			
Isopropylbenzene	ND	5.0	1.8			
m,p-Xylene	ND	10	1.5			
Methylene chloride	ND	5.0	2.3			
MTBE	ND	5.0	0.63			
n-Butylbenzene	ND	5.0	2.4			
n-Propylbenzene	ND	5.0	2.2			
Naphthalene	ND	5.0	0.97			
o-Xylene	ND	5.0	0.87			
sec-Butylbenzene	ND	5.0	2.3			
Styrene	ND	5.0	1.5			
tert-Amyl methyl ether	ND	5.0	0.59			
tert-Butanol	ND	100	19			
tert-Butylbenzene	ND	5.0	2.0			
Tetrachloroethene	ND	5.0	1.6			
Toluene	ND	5.0	0.94			
trans-1,2-Dichloroethene	ND	5.0	0.59			
trans-1,3-Dichloropropene	ND	5.0	2.1			
Trichloroethene	ND	5.0	3.1			
Trichlorofluoromethane	ND	5.0	1.4			
Vinyl acetate	N	50	8.6			
Vinyl chloride	ND	5.0	1.7			
Surrogate: 1,2-Dichloroethane-d4	42.17			50.0000	84.3	32 - 140
Surrogate: 4-Bromofluorobenzene	50.38			50.0000	I0I	68 - 131
Surrogate: Dibromofluoromethan	43.07			50.0000	86.1	49 - 134
Surrogate: Toluene-d8	49.82			50.0000	9.66	75 - 132
LCS (B7J0750-BS1)					Prepared: 10/25/2017	Prepared: 10/25/2017 Analyzed: 10/25/2017
1,1,1,2-Tetrachloroethane	45.3800	5.0	96.0	50.0000	8.06	80 - 117
1,1,1-Trichloroethane	46.3500	5.0	1.1	50.0000	92.7	70 - 122
1,1,2,2-Tetrachloroethane	47.1400	5.0	0.62	50.0000	94.3	69 - 115
1,1,2-Trichloroethane	48.3600	5.0	1.6	50.0000	2.96	74 - 120
1,1-Dichloroethane	47.7700	5.0	0.81	50.0000	95.5	72 - 118
1,1-Dichloroethene	48.1100	5.0	2.6	50.0000	96.2	61 - 124
1,1-Dichloropropene	48.2400	5.0	2.3	50.0000	96.5	74 - 128

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614 Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0750 - MSVOA_S (continued)

Prepared: 10/25/2017 Analyzed: 10/25/2017	67 - 116	86 - 127	88 - 137	78 - 125	70 - 134	73 - 127	85 - 116	65 - 120	81 - 114	76 - 125	83 - 117	79 - 119	84 - 115	72 - 121	76 - 120	77 - 122	77 - 131	78 - 115	79 - 113	66 - 123	79 - 112	67 - 125	49 - 150	61 - 146	65 - 133	82 - 113	46 - 146	73 - 116	46 - 158	72 - 121	79 - 123	67 - 125	79 - 116	72 - 117	38 - 168	55 - 144	52 - 133	68 - 126	79 - 116	66 - 134	84 - 133	67 - 134
Prepared: 10/25/2017	0.68	91.5	95.4	98.1	94.2	93.9	95.3	94.6	97.2	9.76	95.2	8.96	97.5	95.2	95.0	97.1	100	95.1	92.2	88.2	91.4	0.06	134	104	92.7	94.5	109	91.3	103	94.2	94.6	97.3	92.5	93.3	105	105	95.0	99.1	95.8	99.5	94.7	0.96
	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	100.000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	500.000	500.000	50.0000	100.000	50.0000	50.0000	50.0000
	0.54	1.2	1.1	1.5	1.6	3.2	1.1	1.2	1.8	1.7	1.3	1.1	1.2	1.2	1.6	1.5	2.3	0.64	1.1	0.64	1.2	0.80	2.5	3.5	1.2	1.0	1.1	0.82	1.4	0.67	1.9	0.55	1.0	1.6	2.2	8.1	6.1	0.67	0.91	2.8	2.5	1.8
	5.0	5.0	5.0	5.0	10	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	50	50	5.0	5.0	5.0	5.0	5.0
	44.5200	45.7500	47.7100	49.0700	47.0900	46.9600	47.6300	47.2900	48.6000	48.7800	47.6100	48.4200	48.7500	47.6000	47.5000	48.5700	50.1100	95.0900	46.0900	44.1200	45.6800	45.0000	66.9100	52.1500	46.3700	47.2400	54.5300	45.6600	51.3500	47.0800	47.3000	48.6600	46.2500	46.6700	52.6200	526.690	475.190	49.5600	95.7800	49.7500	47.3300	48.0100
	1,2,3-Trichloropropane	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,2-Dibromo-3-chloropropane	1,2-Dibromoethane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane	1,4-Dichlorobenzene	2,2-Dichloropropane	2-Chlorotoluene	4-Chlorotoluene	4-Isopropyltoluene	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Di-isopropyl ether	Dibromochloromethane	Dibromomethane	Dichlorodifluoromethane	Ethyl Acetate	Ethyl Ether	Ethyl tert-butyl ether	Ethylbenzene	Freon-113	Hexachlorobutadiene	Isopropylbenzene

Page 54 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control (cont'd)

Analyte (ug/kg) (ug/kg) (ug/kg) Level Result % Rec Limits RPD Limit Notes		Result	PQL	MDL	Spike	Source		% Rec		RPD	
	Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0750 - MSVOA_S (con	(continued)							
LCS (B7J0750-BS1) - Continued					Prepared: 10/25/2017 Analyzed: 10/25/2017	' Analyzed: 10/25	//2017	
m,p-Xylene	00/9.66	10	1.5	100.000	7.66	78 - 126		
Methylene chloride	49.8300	5.0	2.3	50.0000	7.66	31 - 148		
MTBE	46.4700	5.0	0.63	50.0000	92.9	59 - 131		
n-Butylbenzene	50.8900	5.0	2.4	50.0000	102	75 - 141		
n-Propylbenzene	48.5700	5.0	2.2	50.0000	97.1	73 - 127		
Naphthalene	47.2300	5.0	0.97	50.0000	94.5	78 - 129		
o-Xylene	91.8500	5.0	0.87	100.000	91.8	81 - 113		
sec-Butylbenzene	48.9100	5.0	2.3	50.0000	8.76	73 - 129		
Styrene	50.1800	5.0	1.5	50.0000	100	88 - 118		
tert-Amyl methyl ether	47.2700	5.0	0.59	50.0000	94.5	62 - 122		
tert-Butanol	235.130	100	19	250.000	94.1	36 - 142		
tert-Butylbenzene	48.3000	5.0	2.0	50.0000	9.96	74 - 126		
Tetrachloroethene	47.3700	5.0	1.6	50.0000	94.7	74 - 127		
Toluene	96.5300	5.0	0.94	100.000	96.5	79 - 119		
trans-1,2-Dichloroethene	39.2100	5.0	0.59	50.0000	78.4	61 - 128		
trans-1,3-Dichloropropene	48.4800	5.0	2.1	50.0000	97.0	75 - 116		
Trichloroethene	46.7000	5.0	3.1	50.0000	93.4	76 - 123		
Trichlorofluoromethane	50.2600	5.0	1.4	50.0000	101	58 - 134		
Vinyl acetate	526.560	50	8.6	500.000	105	63 - 143		
Vinyl chloride	53.9100	5.0	1.7	50.0000	108	51 - 145		
Surrogate: 1,2-Dichloroethane-d4	52.52			50.0000	105	32 - 140		
Surrogate: 4-Bromofluorobenzene	49.88			50.0000	8.66	68 - 131		
Surrogate: Dibromofluoromethan	49.24			50.0000	98.5	49 - 134		
Surrogate: Toluene-d8	52.12			50.0000	104	75 - 132		
LCS Dup (B7J0750-BSD1)					Prepared: 10/25/2017 Analyzed: 10/25/2017	' Analyzed: 10/25	/2017	
1,1,1,2-Tetrachloroethane	45.1500	5.0	96.0	50.0000	90.3	80 - 117	0.508	20
1,1,1-Trichloroethane	44.5900	5.0	1.1	50.0000	89.2	70 - 122	3.87	20
1,1,2,2-Tetrachloroethane	45.8800	5.0	0.62	50.0000	91.8	69 - 115	2.71	20
1,1,2-Trichloroethane	46.7000	5.0	1.6	50.0000	93.4	74 - 120	3.49	20
1,1-Dichloroethane	45.7000	5.0	0.81	50.0000	91.4	72 - 118	4.43	20
1,1-Dichloroethene	44.3500	5.0	2.6	50.0000	88.7	61 - 124	8.13	20
1,1-Dichloropropene	45.6500	5.0	2.3	50.0000	91.3	74 - 128	5.52	20
1,2,3-Trichloropropane	42.5900	5.0	0.54	50.0000	85.2	67 - 116	4.43	20
1,2,3-Trichlorobenzene	47.6400	5.0	1.2	50.0000	95.3	86 - 127	4.05	20
1,2,4-Trichlorobenzene	50.2200	5.0	1.1	50.0000	100	88 - 137	5.13	20
1,2,4-Trimethylbenzene	48.2600	5.0	1.5	50.0000	96.5	78 - 125	1.66	20
1,2-Dibromo-3-chloropropane	52.0400	10	1.6	50.0000	104	70 - 134	66.6	20
1,2-Dibromoethane	50.4600	5.0	3.2	50.0000	101	73 - 127	7.19	20
1,2-Dichlorobenzene	47.6800	5.0	1.1	50.0000	95.4	85 - 116	0.105	20
1,2-Dichloroethane	48.0600	5.0	1.2	50.0000	96.1	65 - 120	1.62	20

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control (cont'd)

	Recult	POI	IdM	Snike	Source		0% R ec		RPD	
	Incom	1 45	TAIN	abide	2000		201.0/		N D	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

																																					ĸ						
		20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
	5/2017	1.28	1.97	0.569	1.16	1.95	4.82	1.46	3.63	2.53	2.51	1.38	0.591	0.902	0.266	7.89	6.56	3.53	1.21	0.110	1.95	4.11	1.28	2.77	3.30	2.54	0.0429	7.23	1.28	5.33	3.26	2.58	5.73	5.39	3.13	1.48	23.8	0.259	1.48	3.63	1.60	0.633	1.63
	Analyzed: 10/2	81 - 114	76 - 125	83 - 117	79 - 119	84 - 115	72 - 121	76 - 120	77 - 122	77 - 131	78 - 115	79 - 113	66 - 123	79 - 112	67 - 125	49 - 150	61 - 146	65 - 133	82 - 113	46 - 146	73 - 116	46 - 158	72 - 121	79 - 123	67 - 125	79 - 116	72 - 117	38 - 168	55 - 144	52 - 133	68 - 126	79 - 116	66 - 134	84 - 133	67 - 134	78 - 126	31 - 148	59 - 131	75 - 141	73 - 127	78 - 129	81 - 113	73 - 129
	Prepared: 10/25/2017 Analyzed: 10/25/2017	0.96	7.56	94.7	7.56	92.6	7.06	93.6	93.7	7.79	92.7	6.06	7.78	90.5	90.2	124	7.76	89.5	93.3	109	9.68	9.86	93.0	97.3	94.2	90.2	93.3	6.76	104	90.1	626	93.3	94.0	6.66	93.1	98.2	127	92.7	100	93.7	0.96	91.3	96.2
		50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	100.000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	500.000	500.000	50.0000	100.000	50.0000	50.0000	50.0000	100.000	50.0000	50.0000	50.0000	50.0000	50.0000	100.000	50.0000
		1.8	1.7	1.3	1.1	1.2	1.2	1.6	1.5	2.3	0.64	1.1	0.64	1.2	0.80	2.5	3.5	1.2	1.0	1.1	0.82	1.4	0.67	1.9	0.55	1.0	1.6	2.2	8.1	6.1	0.67	0.91	2.8	2.5	1.8	1.5	2.3	0.63	2.4	2.2	0.97	0.87	2.3
		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	20	20	5.0	5.0	5.0	5.0	5.0	10	5.0	5.0	5.0	5.0	5.0	5.0	5.0
_S (continued)	- Continued	47.9800	47.8300	47.3400	47.8600	47.8100	45.3600	46.8100	46.8400	48.8600	92.7300	45.4600	43.8600	45.2700	45.1200	61.8300	48.8400	44.7600	46.6700	54.5900	44.7800	49.2800	46.4800	48.6300	47.0800	45.0900	46.6500	48.9500	520.010	450.520	47.9700	93.3400	46.9800	49.9500	46.5300	98.2100	63.3200	46.3500	50.1400	46.8400	47.9900	91.2700	48.1200
Batch B7J0750 - MSVOA_	LCS Dup (B7J0750-BSD1) - C	1,2-Dichloropropane	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane	1,4-Dichlorobenzene	2,2-Dichloropropane	2-Chlorotoluene	4-Chlorotoluene	4-Isopropyltoluene	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Di-isopropyl ether	Dibromochloromethane	Dibromomethane	Dichlorodifluoromethane	Ethyl Acetate	Ethyl Ether	Ethyl tert-butyl ether	Ethylbenzene	Freon-113	Hexachlorobutadiene	Isopropylbenzene	m,p-Xylene	Methylene chloride	MTBE	n-Butylbenzene	n-Propylbenzene	Naphthalene	o-Xylene	sec-Butylbenzene

Page 56 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0750 - MSVOA_S (continued)

LCS Dup (B7J0750-BSD1) - Continued	ned				Prepared: 10/25/2017 Analyzed: 10/25/2017	7 Analyzed: 10/2.	5/2017	
Styrene	49.8200	5.0	1.5	50.0000	9.66	88 - 118	0.720	20
tert-Amyl methyl ether	45.3500	5.0	0.59	50.0000	7.06	62 - 122	4.15	20
tert-Butanol	224.480	100	19	250.000	8.68	36 - 142	4.63	20
tert-Butylbenzene	46.7200	5.0	2.0	50.0000	93.4	74 - 126	3.33	20
Tetrachloroethene	45.8800	5.0	1.6	50.0000	91.8	74 - 127	3.20	20
Toluene	94.2800	5.0	0.94	100.000	94.3	79 - 119	2.36	20
trans-1,2-Dichloroethene	44.9700	5.0	0.59	50.0000	6.68	61 - 128	13.7	20
trans-1,3-Dichloropropene	48.0700	5.0	2.1	50.0000	96.1	75 - 116	0.849	20
Trichloroethene	46.3600	5.0	3.1	50.0000	92.7	76 - 123	0.731	20
Trichlorofluoromethane	44.9000	5.0	1.4	50.0000	8.68	58 - 134	11.3	20
Vinyl acetate	493.040	50	8.6	500.000	9.86	63 - 143	6.58	20
Vinyl chloride	50.5400	5.0	1.7	50.0000	101	51 - 145	6.45	20
Surrogate: 1,2-Dichloroethane-d4	51.52			50.0000	103	32 - 140		
Surrogate: 4-Bromofluorobenzene	50.20			50.0000	100	68 - 131		
Surrogate: Dibromofluoromethan	47.79			50.0000	95.6	49 - 134		
Surrogate: Toluene-d8	51.39			50.0000	103	75 - 132		

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Page 58 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

mov) S VOMSW 221021Ed 4040	(Pomeitano) S					
	(namen)					
Blank (B7K0166-BLK1) - Continued					Prepared: 11/7/2017 Analyzed: 11/7/2017	Analyzed: 11/7/2017
Dichlorodifluoromethane	ND	5.0	2.2			
Ethyl Acetate	ND	50	8.1			
Ethyl Ether	ND	50	6.1			
Ethyl tert-butyl ether	ND	5.0	0.67			
Ethylbenzene	ND	5.0	0.91			
Freon-113	ND	5.0	2.8			
Hexachlorobutadiene	ND	5.0	2.5			
Isopropylbenzene	ND	5.0	1.8			
m,p-Xylene	ND	10	1.5			
Methylene chloride	ND	5.0	2.3			
MTBE	ND	5.0	0.63			
n-Butylbenzene	ND	5.0	2.4			
n-Propylbenzene	ND	5.0	2.2			
Naphthalene	ND	5.0	0.97			
o-Xylene	ND	5.0	0.87			
sec-Butylbenzene	ND	5.0	2.3			
Styrene	ND	5.0	1.5			
tert-Amyl methyl ether	ND	5.0	0.59			
tert-Butanol	ND	100	19			
tert-Butylbenzene	ND	5.0	2.0			
Tetrachloroethene	ND	5.0	1.6			
Toluene	ND	5.0	0.94			
trans-1,2-Dichloroethene	ND	5.0	0.59			
trans-1,3-Dichloropropene	ND	5.0	2.1			
Trichloroethene	ND	5.0	3.1			
Trichlorofluoromethane	ND	5.0	1.4			
Vinyl acetate	ND	50	8.6			
Vinyl chloride	ND	5.0	1.7			
Surrogate: 1,2-Dichloroethane-d4	47.81			50.0000	95.6	32 - 140
Surrogate: 4-Bromofluorobenzene	52.27			50.0000	105	68 - 131
Surrogate: Dibromofluoromethan	46.03			50.0000	92.1	49 - 134
Surrogate: Toluene-d8	53.18			50.0000	901	75 - 132
LCS (B7K0166-BS1)					Prepared: 11/7/2017 Analyzed: 11/7/2017	Analyzed: 11/7/2017
1,1,1,2-Tetrachloroethane	53.7000	5.0	96.0	50.0000	107	80 - 117
1,1,1-Trichloroethane	51.8000	5.0	1.1	50.0000	104	70 - 122
1,1,2,2-Tetrachloroethane	52.3700	5.0	0.62	50.0000	105	69 - 115
1,1,2-Trichloroethane	51.2700	5.0	1.6	50.0000	103	74 - 120
1,1-Dichloroethane	49.9700	5.0	0.81	50.0000	6.66	72 - 118
1,1-Dichloroethene	45.0600	5.0	2.6	50.0000	90.1	61 - 124
1,1-Dichloropropene	50.0200	5.0	2.3	50.0000	100	74 - 128

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614 Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7K0166 - MSVOA_S (continued)

I	`					
LCS (B7K0166-BS1) - Continued				Prepared:	11/7/2017 A	Prepared: 11/7/2017 Analyzed: 11/7/2017
1,2,3-Trichloropropane	52.9300	5.0	0.54	50.0000	106	67 - 116
1,2,3-Trichlorobenzene	51.6600	5.0	1.2	50.0000	103	86 - 127
1,2,4-Trichlorobenzene	55.4000	5.0	1.1	50.0000	111	88 - 137
1,2,4-Trimethylbenzene	58.5800	5.0	1.5	50.0000	1117	78 - 125
1,2-Dibromo-3-chloropropane	58.2100	10	1.6	50.0000	116	70 - 134
1,2-Dibromoethane	55.5400	5.0	3.2	50.0000	111	73 - 127
1,2-Dichlorobenzene	55.2600	5.0	1.1	50.0000	111	85 - 116
1,2-Dichloroethane	54.2900	5.0	1.2	50.0000	109	65 - 120
1,2-Dichloropropane	52.3600	5.0	1.8	50.0000	105	81 - 114
1,3,5-Trimethylbenzene	58.5900	5.0	1.7	50.0000	117	76 - 125
1,3-Dichlorobenzene	56.0300	5.0	1.3	50.0000	112	83 - 117
1,3-Dichloropropane	53.6900	5.0	1.1	50.0000	107	79 - 119
1,4-Dichlorobenzene	56.0100	5.0	1.2	50.0000	112	84 - 115
2,2-Dichloropropane	54.4900	5.0	1.2	50.0000	109	72 - 121
2-Chlorotoluene	56.7100	5.0	1.6	50.0000	113	76 - 120
4-Chlorotoluene	57.4700	5.0	1.5	50.0000	115	77 - 122
4-Isopropyltoluene	60.3700	5.0	2.3	50.0000	121	77 - 131
Benzene	98.1500	5.0	0.64	100.000	98.2	78 - 115
Bromobenzene	53.2700	5.0	1.1	50.0000	107	79 - 113
Bromochloromethane	46.1400	5.0	0.64	50.0000	92.3	66 - 123
Bromodichloromethane	51.7700	5.0	1.2	50.0000	104	79 - 112
Bromoform	50.5800	5.0	08.0	50.0000	101	67 - 125
Bromomethane	61.2400	5.0	2.5	50.0000	122	49 - 150
Carbon disulfide	49.4900	5.0	3.5	50.0000	0.66	61 - 146
Carbon tetrachloride	51.5400	5.0	1.2	50.0000	103	65 - 133
Chlorobenzene	53.3800	5.0	1.0	50.0000	107	82 - 113
Chloroethane	53.7300	5.0	1.1	50.0000	107	46 - 146
Chloroform	50.1200	5.0	0.82	50.0000	100	73 - 116
Chloromethane	51.3900	5.0	1.4	50.0000	103	46 - 158
cis-1,2-Dichloroethene	47.4300	5.0	0.67	50.0000	94.9	72 - 121
cis-1,3-Dichloropropene	49.4400	5.0	1.9	50.0000	6.86	79 - 123
Di-isopropyl ether	51.8300	5.0	0.55	50.0000	104	67 - 125
Dibromochloromethane	51.8400	5.0	1.0	50.0000	104	79 - 116
Dibromomethane	49.7700	5.0	1.6	50.0000	5.66	72 - 117
Dichlorodifluoromethane	51.8500	5.0	2.2	50.0000	104	38 - 168
Ethyl Acetate	562.800	50	8.1	500.000	113	55 - 144
Ethyl Ether	471.550	50	6.1	500.000	94.3	52 - 133
Ethyl tert-butyl ether	52.4800	5.0	0.67	50.0000	105	68 - 126
Ethylbenzene	109.560	5.0	0.91	100.000	110	79 - 116
Freon-113	50.4900	5.0	2.8	50.0000	101	66 - 134
Hexachlorobutadiene	59.2600	5.0	2.5	50.0000	119	84 - 133
Isopropylbenzene	55.9600	5.0	1.8	50.0000	112	67 - 134

Page 60 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7K0166 - MSVOA_S (con	(continued)							
LCS (B7K0166-BS1) - Continued					Prepared: 11/7/2017 Analyzed: 11/7/2017	Analyzed: 11/7/20	717	
m,p-Xylene	116.320	10	1.5	100.000	116	78 - 126		
Methylene chloride	58.6900	5.0	2.3	50.0000	117	31 - 148		
MTBE	48.2200	5.0	0.63	50.0000	96.4	59 - 131		
n-Butylbenzene	62.7600	5.0	2.4	50.0000	126	75 - 141		
n-Propylbenzene	57.4700	5.0	2.2	50.0000	115	73 - 127		
Naphthalene	50.4600	5.0	0.97	50.0000	101	78 - 129		
o-Xylene	106.770	5.0	0.87	100.000	107	81 - 113		
sec-Butylbenzene	59.4800	5.0	2.3	50.0000	119	73 - 129		
Styrene	56.8500	5.0	1.5	50.0000	114	88 - 118		
tert-Amyl methyl ether	50.4400	5.0	0.59	50.0000	101	62 - 122		
tert-Butanol	91.8600	100	19	250.000	36.7	36 - 142		
tert-Butylbenzene	57.3500	5.0	2.0	50.0000	115	74 - 126		
Tetrachloroethene	51.4800	5.0	1.6	50.0000	103	74 - 127		
Toluene	112.860	5.0	0.94	100.000	113	79 - 119		
trans-1,2-Dichloroethene	46.0800	5.0	0.59	50.0000	92.2	61 - 128		
trans-1,3-Dichloropropene	56.7000	5.0	2.1	50.0000	113	75 - 116		
Trichloroethene	48.5600	5.0	3.1	50.0000	97.1	76 - 123		
Trichlorofluoromethane	51.6300	5.0	1.4	50.0000	103	58 - 134		
Vinyl acetate	547.720	50	8.6	500.000	110	63 - 143		
Vinyl chloride	52.0400	5.0	1.7	50.0000	104	51 - 145		
Surrogate: 1,2-Dichloroethane-d4	57.29			50.0000	115	32 - 140		
Surrogate: 4-Bromofluorobenzene	52.94			50.0000	901	68 - 131		
Surrogate: Dibromofluoromethan	48.70			50.0000	97.4	49 - 134		
Surrogate: Toluene-d8	52.52			50.0000	105	75 - 132		
LCS Dup (B7K0166-BSD1)					Prepared: 11/7/2017 Analyzed: 11/7/2017	Analyzed: 11/7/20	710	
1,1,1,2-Tetrachloroethane	48.6600	5.0	96.0	50.0000	97.3	80 - 117	9.85	20
1,1,1-Trichloroethane	48.9800	5.0	1.1	50.0000	0.86	70 - 122	5.60	20
1,1,2,2-Tetrachloroethane	49.8200	5.0	0.62	50.0000	9.66	69 - 115	4.99	20
1,1,2-Trichloroethane	51.8300	5.0	1.6	50.0000	104	74 - 120	1.09	20
1,1-Dichloroethane	47.7500	5.0	0.81	50.0000	95.5	72 - 118	4.54	20
1,1-Dichloroethene	45.4500	5.0	2.6	50.0000	6.06	61 - 124	0.862	20
1,1-Dichloropropene	46.1400	5.0	2.3	50.0000	92.3	74 - 128	8.07	20
1,2,3-Trichloropropane	48.1700	5.0	0.54	50.0000	6.3	67 - 116	9.42	20
1,2,3-Trichlorobenzene	51.0800	5.0	1.2	50.0000	102	86 - 127	1.13	20
1,2,4-Trichlorobenzene	53.6400	5.0	1.1	50.0000	107	88 - 137	3.23	20
1,2,4-Trimethylbenzene	51.6100	5.0	1.5	50.0000	103	78 - 125	12.7	20
1,2-Dibromo-3-chloropropane	56.9000	10	1.6	50.0000	114	70 - 134	2.28	20
1,2-Dibromoethane	50.9400	5.0	3.2	50.0000	102	73 - 127	8.64	20
1,2-Dichlorobenzene	51.0600	5.0	1.1	50.0000	102	85 - 116	7.90	20
1,2-Dichloroethane	50.5900	5.0	1.2	50.0000	101	65 - 120	7.06	20

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614 Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control (cont'd)

RPD % Rec Source Spike Level MDL PQL Result

Notes

Limit

RPD

Limits

% Rec

Result

(ug/kg)

(ug/kg)

(ug/kg)

Analyte

Batch B7K0166 - MSVOA_S (continued)

	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
2017	4.53	14.0	10.7	7.36	10.3	8.43	10.6	13.3	15.1	4.77	9.56	3.68	5.72	3.17	7.89	4.08	06.6	10.0	6.26	0.661	5.99	2.37	2.79	1.36	7.98	2.73	10.7	0.556	3.38	0.0572	11.0	5.20	10.1	13.6	13.3	1.41	1.58	15.8	13.3	0.0198	10.4	16.2
Analyzed: 11/7/2	81 - 114	76 - 125	83 - 117	79 - 119	84 - 115	72 - 121	76 - 120	77 - 122	77 - 131	78 - 115	79 - 113	66 - 123	79 - 112	67 - 125	49 - 150	61 - 146	65 - 133	82 - 113	46 - 146	73 - 116	46 - 158	72 - 121	79 - 123	67 - 125	79 - 116	72 - 117	38 - 168	55 - 144	52 - 133	68 - 126	79 - 116	66 - 134	84 - 133	67 - 134	78 - 126	31 - 148	59 - 131	75 - 141	73 - 127	78 - 129	81 - 113	73 - 129
Prepared: 11/7/2017 Analyzed: 11/7/2017	100	102	101	8.66	101	100	102	101	104	93.6	8.96	7.56	8.76	0.86	133	95.0	93.4	9.96	101	9.66	8.96	97.1	96.2	102	95.7	6.96	93.2	113	9.76	105	98.2	95.9	107	7.76	102	116	0.86	107	101	101	96.3	101
Pre	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	100.000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	500.000	500.000	50.0000	100.000	50.0000	50.0000	50.0000	100.000	50.0000	50.0000	50.0000	50.0000	50.0000	100.000	50.0000
	1.8	1.7	1.3	1.1	1.2	1.2	1.6	1.5	2.3	0.64	1.1	0.64	1.2	08.0	2.5	3.5	1.2	1.0	1.1	0.82	1.4	0.67	1.9	0.55	1.0	1.6	2.2	8.1	6.1	0.67	0.91	2.8	2.5	1.8	1.5	2.3	0.63	2.4	2.2	0.97	0.87	2.3
	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	50	50	5.0	5.0	5.0	5.0	5.0	10	5.0	5.0	5.0	5.0	5.0	5.0	5.0
-Continued	50.0400	50.9300	50.3600	49.8800	50.5400	50.0800	50.9800	50.3100	51.9200	93.5800	48.4100	47.8700	48.8900	49.0000	66.2700	47.5100	46.6800	48.2800	50.4700	49.7900	48.4000	48.5700	48.0800	51.1300	47.8600	48.4300	46.5800	565.940	487.780	52.4500	98.1800	47.9300	53.5400	48.8500	101.840	57.8700	48.9900	53.5800	50.3100	50.4500	96.2600	50.5600
LCS Dup (B7K0166-BSD1) - C	1,2-Dichloropropane	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane	1,4-Dichlorobenzene	2,2-Dichloropropane	2-Chlorotoluene	4-Chlorotoluene	4-Isopropyltoluene	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Di-isopropyl ether	Dibromochloromethane	Dibromomethane	Dichlorodifluoromethane	Ethyl Acetate	Ethyl Ether	Ethyl tert-butyl ether	Ethylbenzene	Freon-113	Hexachlorobutadiene	Isopropylbenzene	m,p-Xylene	Methylene chloride	MTBE	n-Butylbenzene	n-Propylbenzene	Naphthalene	o-Xylene	sec-Butylbenzene

Page 62 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7K0166 - MSVOA_S (continued)

LCS Dup (B7K0166-BSD1) - Continued	ned				Prepared: 11/7/2017 Analyzed: 11/7/2017	Analyzed: 11/7/2	017	
Styrene	51.4400	5.0	1.5	50.0000	103	88 - 118	66.6	20
tert-Amyl methyl ether	50.3000	5.0	0.59	50.0000	101	62 - 122	0.278	20
tert-Butanol	0099.66	100	19	250.000	39.9	36 - 142	8.15	20
tert-Butylbenzene	50.1400	5.0	2.0	50.0000	100	74 - 126	13.4	20
Tetrachloroethene	46.0700	5.0	1.6	50.0000	92.1	74 - 127	11.1	20
Toluene	106.450	5.0	0.94	100.000	106	79 - 119	5.85	20
trans-1,2-Dichloroethene	44.8300	5.0	0.59	50.0000	7.68	61 - 128	2.75	20
trans-1,3-Dichloropropene	55.4200	5.0	2.1	50.0000	111	75 - 116	2.28	20
Trichloroethene	45.9700	5.0	3.1	50.0000	91.9	76 - 123	5.48	20
Trichlorofluoromethane	47.2200	5.0	1.4	50.0000	94.4	58 - 134	8.92	20
Vinyl acetate	545.980	50	8.6	500.000	109	63 - 143	0.318	20
Vinyl chloride	49.0600	5.0	1.7	50.0000	98.1	51 - 145	5.90	20
Surrogate: 1,2-Dichloroethane-d4	57.05			50.0000	114	32 - 140		
Surrogate: 4-Bromofluorobenzene	49.76			50.0000	99.5	68 - 131		
Surrogate: Dibromofluoromethan	51.58			50.0000	103	49 - 134		
Surrogate: Toluene-d8	52.18			50.0000	104	75 - 132		

Page 63 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Semivolatile Organic Compounds by EPA 8270/SIM - Quality Control

	Result	POL	MDI	Snike	Source		% Rec		RPD	
	5	· ·	5	-		á				
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Kesult	% Kec	Limits	KPD	Limit	Notes

Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Kesult	% Rec	Limits	RPD	Lımıt	Notes	
Batch B7J0757 - MSSEMI_S											
Blank (B7J0757-BLK1)					Prepare	1: 10/25/2017	Prepared: 10/25/2017 Analyzed: 10/25/2017	25/2017			
2-Methylnaphthalene	ND	5.0	09.0								
Acenaphthene	N	5.0	0.41								
Acenaphthylene	ND	5.0	0.41								
Anthracene	ND	5.0	0.56								
Benzo(a)anthracene	ND	5.0	0.56								
Benzo(a)pyrene	ND	5.0	69.0								
Benzo(b)fluoranthene	ND	5.0	2.2								
Benzo(g,h,i)perylene	ND	5.0	0.80								
Benzo(k)fluoranthene	ND	5.0	0.70								
Chrysene	ND	5.0	0.61								
Dibenz(a,h)anthracene	ND	5.0	0.88								
Fluoranthene	ND	5.0	0.45								
Fluorene	N	5.0	0.35								
Indeno(1,2,3-cd)pyrene	N	5.0	0.82								
Naphthalene	NO	5.0	0.56								
Phenanthrene	N	5.0	0.34								
Pyrene	ND	5.0	0.51								
Surrogate: 1,2-Dichlorobenzene-d	21.72			33.3333		65.2	29 - 109				
Surrogate: 2-Fluorobiphenyl	26.50			33.3333		79.5	39 - 108				
Surrogate: Nitrobenzene-d5	17.05			33.3333		5I.I	0 - 146				
Surrogate: 4-Terphenyl-d14	31.30			33.3333		93.9	39 - 123				
LCS (B7J0757-BS1)					Prepare	d: 10/25/2017	Prepared: 10/25/2017 Analyzed: 10/25/2017	25/2017			
2-Methylnaphthalene	15.4713	5.0	09.0	33.3333		46.4	23 - 127				
Acenaphthene	17.9283	5.0	0.41	33.3333		53.8	35 - 91				
Acenaphthylene	18.3447	5.0	0.41	33.3333		55.0	35 - 92				
Anthracene	19.9567	5.0	0.56	33.3333		59.9	43 - 109				
Benzo(a)anthracene	24.4347	5.0	0.56	33.3333		73.3	46 - 121				
Benzo(a)pyrene	21.8650	5.0	69.0	33.3333		9.59	49 - 126				
Benzo(b)fluoranthene	28.0460	5.0	2.2	33.3333		84.1	34 - 137				
Benzo(g,h,i)perylene	28.6290	5.0	0.80	33.3333		85.9	40 - 124				
Benzo(k)fluoranthene	23.0450	5.0	0.70	33.3333		69.1	21 - 132				
Chrysene	21.9727	5.0	0.61	33.3333		62.9	51 - 124				
Dibenz(a,h)anthracene	30.3893	5.0	0.88	33.3333		91.2	38 - 123				
Fluoranthene	23.2743	5.0	0.45	33.3333		8.69	47 - 105				
Fluorene	20.2763	5.0	0.35	33.3333		8.09	34 - 95				
Indeno(1,2,3-cd)pyrene	28.1337	5.0	0.82	33.3333		84.4	45 - 124				
Naphthalene	21.1413	5.0	0.56	33.3333		63.4	26 - 110				
Phenanthrene	20.3483	5.0	0.34	33.3333		61.0	39 - 108				
Pyrene	22.9497	5.0	0.51	33.3333		8.89	47 - 107				
Surrogate: 1,2-Dichlorobenzene-d	21.74			33.3333		65.2	29 - 109				

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Semivolatile Organic Compounds by EPA 8270/SIM - Quality Control (cont'd)

	Result	PQL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0757 - MSSEMI_S (continued)

LCS (B7J0757-BS1) - Continued					Prepared:	10/25/2017	Prepared: 10/25/2017 Analyzed: 10/25/2017	5/2017		
Surrogate: 2-Fluorobinhenyl	25.54			33 3333		992	39 - 108			
Surrogate: Nitrobenzene-d5	17.26			33.3333		51.8	0 - 146			
Surrogate: 4-Terphenyl-d14	30.92			33.3333		92.8	39 - 123			
Matrix Spike (B7J0757-MS1)		9 1	Source: 1703641-33	641-33	Prepared:	10/25/2017	Prepared: 10/25/2017 Analyzed: 10/25/2017	:5/2017		
2-Methylnaphthalene	16.0677 5	5.0	09.0	33.3333	N	48.2	30 - 141			
Acenaphthene	18.3313 5	5.0	0.41	33.3333	N	55.0	9 - 155			
Acenaphthylene	19.1713 5	5.0	0.41	33.3333	ND	57.5	43 - 110			
Anthracene	19.6413 5	5.0	0.56	33.3333	ND	58.9	33 - 146			
Benzo(a)anthracene		5.0	0.56	33.3333	0.886000	8.69	49 - 130			
Benzo(a)pyrene	22.4533 5	5.0	0.69	33.3333	0.972000	4.49	36 - 134			
Benzo(b)fluoranthene		5.0	2.2	33.3333	ND	84.6	26 - 148			
Benzo(g,h,i)perylene	27.3003 5	5.0	08.0	33.3333	1.07733	78.7	16 - 156			
Benzo(k)fluoranthene	21.5640 5	5.0	0.70	33.3333	ND	64.7	29 - 132			
Chrysene	21.7687 5	5.0	0.61	33.3333	0.950333	62.5	0 - 184			
Dibenz(a,h)anthracene	26.4073 5	5.0	0.88	33.3333	N	79.2	29 - 149			
Fluoranthene	24.6230 5	5.0	0.45	33.3333	1.39000	2.69	14 - 162			
Fluorene	20.6440 5	5.0	0.35	33.3333	N	61.9	48 - 111			
Indeno(1,2,3-cd)pyrene	26.3657 5	5.0	0.82	33.3333	N	79.1	37 - 135			
Naphthalene	21.3907 5	5.0	0.56	33.3333	ND	64.2	34 - 126			
Phenanthrene		5.0	0.34	33.3333	0.683333	61.1	19 - 155			
Pyrene	24.2550 5	5.0	0.51	33.3333	1.37100	68.7	13 - 162			
Surrogate: 1,2-Dichlorobenzene-d	20.75			33.3333		62.3	29 - 109			
Surrogate: 2-Fluorobiphenyl	26.44			33.3333		79.3	39 - 108			
Surrogate: Nitrobenzene-d5	17.07			33.3333		51.2	0 - 146			
Surrogate: 4-Terphenyl-d14	26.58			33.3333		7.67	39 - 123			
Matrix Spike Dup (B7J0757-MSD1)		9 1	Source: 1703641-33	641-33	Prepared:	10/25/2017	Prepared: 10/25/2017 Analyzed: 10/25/2017	:5/2017		
2-Methylnaphthalene	14.5860 5	5.0	09.0	33.3333	N	43.8	30 - 141	6.67	20	
Acenaphthene	17.5750 5	5.0	0.41	33.3333	ND	52.7	9 - 155	4.21	20	
Acenaphthylene	18.6233 5	5.0	0.41	33.3333	ND	55.9	43 - 110	2.90	20	
Anthracene	18.6273 5	5.0	0.56	33.3333	ND	55.9	33 - 146	5.30	20	
Benzo(a)anthracene		5.0	0.56	33.3333	0.886000	6.59	49 - 130	5.58	20	
Benzo(a)pyrene	20.7357 5	5.0	69.0	33.3333	0.972000	59.3	36 - 134	7.95	20	
Benzo(b)fluoranthene		5.0	2.2	33.3333	ND	74.7	26 - 148	12.3	20	
Benzo(g,h,i)perylene		5.0	08.0	33.3333	1.07733	73.3	16 - 156	6.73	20	
Benzo(k)fluoranthene		5.0	0.70	33.3333	ND	63.9	29 - 132	1.16	20	
Chrysene		5.0	0.61	33.3333	0.950333	58.2	0 - 184	89.9	20	
Dibenz(a,h)anthracene		5.0	0.88	33.3333	ND	76.4	29 - 149	3.61	20	
Fluoranthene		5.0	0.45	33.3333	1.39000	9.59	14 - 162	5.74	20	
Fluorene		5.0	0.35	33.3333	ND	59.3	48 - 111	4.34	20	
Indeno(1,2,3-cd)pyrene	25.2027 5	5.0	0.82	33.3333	ND	75.6	37 - 135	4.51	20	

Page 65 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Semivolatile Organic Compounds by EPA 8270/SIM - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0757 - MSSEMI_S (continued)

Matrix Spike Dup (B7J0757-MSD1) - Continued	- Continued		Source: 1703641-33	541-33	Prepared:	10/25/2017	Prepared: 10/25/2017 Analyzed: 10/25/2017	5/2017	
Naphthalene	19.5670	5.0	0.56	33.3333	ND	58.7	34 - 126	8.91	20
Phenanthrene	19.8897	5.0	0.34	33.3333	0.683333	57.6	19 - 155	5.61	20
Pyrene	22.3383	5.0	0.51	33.3333	1.37100	67.9	13 - 162	8.23	20
Surrogate: 1,2-Dichlorobenzene-d	18.94			33.3333		56.8	29 - 109		
Surrogate: 2-Fluorobiphenyl	25.06			33.3333		75.2	39 - 108		
Surrogate: Nitrobenzene-d5	16.15			33.3333		48.5	0 - 146		
Surrogate: 4-Terphenyl-d14	25.38			33.3333		1.97	39 - 123		

Page 66 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Semivolatile Organic Compounds by EPA 8270/SIM - Quality Control

	Result	POL	MDI	Snike	Source		% Rec		RPD	
	5	· ·	5	-		á				
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Kesult	% Kec	Limits	KPD	Limit	Notes

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7K0185 - MSSEMI_S										
Blank (B7K0185-BLK1)					Prepared	: 11/7/2017 A	Prepared: 11/7/2017 Analyzed: 11/7/2017	72017		
2-Methylnaphthalene	ND	5.0	09.0							
Acenaphthene	ND	5.0	0.41							
Acenaphthylene	N	5.0	0.41							
Anthracene	ND	5.0	0.56							
Benzo(a)anthracene	N	5.0	0.56							
Benzo(a)pyrene	ND	5.0	69.0							
Benzo(b)fluoranthene	ND	5.0	2.2							
Benzo(g,h,i)perylene	ND	5.0	0.80							
Benzo(k)fluoranthene	ND	5.0	0.70							
Chrysene	ND	5.0	0.61							
Dibenz(a,h)anthracene	ND	5.0	0.88							
Fluoranthene	ND	5.0	0.45							
Fluorene	ND	5.0	0.35							
Indeno(1,2,3-cd)pyrene	ND	5.0	0.82							
Naphthalene	ND	5.0	0.56							
Phenanthrene	ND	5.0	0.34							
Pyrene	ND	5.0	0.51							
Surrogate: 1,2-Dichlorobenzene-d	27.25			33.3333		81.8	29 - 109			
Surrogate: 2-Fluorobiphenyl	34.29			33.3333		103	39 - 108			
Surrogate: Nitrobenzene-d5	24.62			33.3333		73.9	0 - 146			
Surrogate: 4-Terphenyl-d14	33.84			33.3333		102	39 - 123			
LCS (B7K0185-BS1)					Prepared	: 11/7/2017 A	Prepared: 11/7/2017 Analyzed: 11/7/2017	′2017		
2-Methylnaphthalene	20.1087	5.0	09.0	33.3333		60.3	23 - 127			
Acenaphthene	19.6647	5.0	0.41	33.3333		59.0	35 - 91			
Acenaphthylene	20.9243	5.0	0.41	33.3333		62.8	35 - 92			
Anthracene	23.4547	5.0	0.56	33.3333		70.4	43 - 109			
Benzo(a)anthracene	23.4143	5.0	0.56	33.3333		70.2	46 - 121			
Benzo(a)pyrene	20.3937	5.0	69.0	33.3333		61.2	49 - 126			
Benzo(b)fluoranthene	24.8267	5.0	2.2	33.3333		74.5	34 - 137			
Benzo(g,h,i)perylene	26.5013	5.0	0.80	33.3333		79.5	40 - 124			
Benzo(k)fluoranthene	21.3610	5.0	0.70	33.3333		64.1	21 - 132			
Chrysene	21.0713	5.0	0.61	33.3333		63.2	51 - 124			
Dibenz(a,h)anthracene	28.1980	5.0	0.88	33.3333		84.6	38 - 123			
Fluoranthene	21.9470	5.0	0.45	33.3333		8.59	47 - 105			
Fluorene	21.3553	5.0	0.35	33.3333		64.1	34 - 95			
Indeno(1,2,3-cd)pyrene	26.7523	5.0	0.82	33.3333		80.3	45 - 124			
Naphthalene	26.7567	5.0	0.56	33.3333		80.3	26 - 110			
Phenanthrene	23.8837	5.0	0.34	33.3333		71.7	39 - 108			
Pyrene	21.2220	5.0	0.51	33.3333		63.7	47 - 107			
Surrogate: 1,2-Dichlorobenzene-d	23.78			33.3333		71.3	29 - 109			

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Semivolatile Organic Compounds by EPA 8270/SIM - Quality Control (cont'd)

Result PQL Spike Source %Rec	6 Rec RPD
Analyte (ug/kg) (ug/kg) Level Result % Rec Limits RPD	

Batch B7K0185 - MSSEMI_S (continued)

Baten B/R0183 - MSSEMI S (continued)	ırınuea)									
LCS (B7K0185-BS1) - Continued					Prepared:	11/7/2017	Prepared: 11/7/2017 Analyzed: 11/7/2017	.017		
Surrogate: 2-Fluorobiphenyl	29.51			33.3333		88.5	39 - 108			
Surrogate: Nitrobenzene-d5 Surrogate: A Tormbom: 1-414	22.01 35.70			33.3333		66.0	0 - 146 30 - 123			
Surroguie. +-respinentys-us +	07.70			00000		101	621 - 66			
Matrix Spike (B7K0185-MS1)			Source: 1703641-50	541-50	Prepared:	11/7/2017	Prepared: 11/7/2017 Analyzed: 11/7/2017	.017		
2-Methylnaphthalene	18.9647	10	1.2	33.3333	N	6.95	30 - 141			
Acenaphthene	19.3413	10	0.81	33.3333	NO	58.0	9 - 155			
Acenaphthylene	19.8833	10	0.82	33.3333	NO	9.69	43 - 110			
Anthracene	20.7007	10	1.1	33.3333	ND	62.1	33 - 146			
Benzo(a)anthracene	21.0707	10	1.1	33.3333	7.46467	40.8	49 - 130			M2
Benzo(a)pyrene	18.6480	10	1.4	33.3333	6.18400	37.4	36 - 134			
Benzo(b)fluoranthene	22.2553	10	4.3	33.3333	10.4213	35.5	26 - 148			
Benzo(g,h,i)perylene	23.8513	10	1.6	33.3333	6.74933	51.3	16 - 156			
Benzo(k)fluoranthene	19.1973	10	1.4	33.3333	3.38667	47.4	29 - 132			
Chrysene	19.5920	10	1.2	33.3333	7.70800	35.7	0 - 184			
Dibenz(a,h)anthracene	23.9493	10	1.8	33.3333	1.83333	66.3	29 - 149			
Fluoranthene	21.0953	10	0.90	33.3333	12.0507	27.1	14 - 162			
Fluorene	20.4567	10	0.70	33.3333	N	61.4	48 - 111			
Indeno(1,2,3-cd)pyrene	23.8653	10	1.6	33.3333	5.13200	56.2	37 - 135			
Naphthalene	24.7907	10	1.1	33.3333	N	74.4	34 - 126			
Phenanthrene	22.4720	10	89.0	33.3333	2.67733	59.4	19 - 155			
Pyrene	20.7007	10	1.0	33.3333	11.3913	27.9	13 - 162			
Surrogate: 1,2-Dichlorobenzene-d	21.05			33.3333		63.2	29 - 109			
Surrogate: 2-Fluorobiphenyl	29.50			33.3333		88.5	39 - 108			
Surrogate: Nitrobenzene-d5	19.02			33.3333		57.1	0 - 146			
Surrogate: 4-Terphenyl-d14	30.92			33.3333		92.8	39 - 123			
Matrix Spike Dup (B7K0185-MSD1)			Source: 1703641-50	541-50	Prepared:	11/7/2017	Prepared: 11/7/2017 Analyzed: 11/7/2017	.017		
2-Methylnaphthalene	18.6940	10	1.2	33.3333	ND	56.1	30 - 141	1.4	20	
Acenaphthene	18.8967	10	0.81	33.3333	ND	26.7	9 - 155	2.33	20	
Acenaphthylene	20.0773	10	0.82	33.3333	ND	60.2	43 - 110	0.971	20	
Anthracene	22.3647	10	1.1	33.3333	ND	67.1	33 - 146	7.73	20	
Benzo(a)anthracene	22.6600	10	1.1	33.3333	7.46467	45.6	49 - 130	7.27	20	M2
Benzo(a)pyrene	19.1027	10	1.4	33.3333	6.18400	38.8	36 - 134	2.41	20	
Benzo(b)fluoranthene	23.3067	10	4.3	33.3333	10.4213	38.7	26 - 148	4.61	20	
Benzo(g,h,i)perylene	28.8453	10	1.6	33.3333	6.74933	66.3	16 - 156	19.0	20	
Benzo(k)fluoranthene	18.7720	10	1.4	33.3333	3.38667	46.2	29 - 132	2.24	20	
Chrysene	22.0927	10	1.2	33.3333	7.70800	43.2	0 - 184	12.0	20	
Dibenz(a,h)anthracene	23.8720	10	1.8	33.3333	1.83333	66.1	29 - 149	0.323	20	
Fluoranthene	22.2113	10	0.90	33.3333	12.0507	30.5	14 - 162	5.15	20	
Fluorene	20.2513	10	0.70	33.3333	ND	8.09	48 - 111	1.01	20	
Indeno(1,2,3-cd)pyrene	24.7347	10	1.6	33.3333	5.13200	58.8	37 - 135	3.58	20	

Page 68 of 83

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/08/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Semivolatile Organic Compounds by EPA 8270/SIM - Quality Control (cont'd)

Result	PQL	MDL	Spike	Source		% Rec		RPD	
nalyte (ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7K0185 - MSSEMI_S (continued)

Matrix Spike Dup (B7K0185-MSD1) -	ISD1) - Continued	01	Source: 1703641-50	641-50	Prepared:	11/7/2017	Prepared: 11/7/2017 Analyzed: 11/7/2017	017	
Naphthalene	24.6073	10	1.1	33.3333	ND	73.8	34 - 126	0.742	20
Phenanthrene	23.2120	10	0.68	33.3333	2.67733	61.6	19 - 155	3.24	20
Pyrene	22.2207	10	1.0	33.3333	11.3913	32.5	13 - 162	7.08	20
Surrogate: 1,2-Dichlorobenzene-d	21.01			33.3333		63.0	29 - 109		
Surrogate: 2-Fluorobiphenyl	29.74			33.3333		89.2	39 - 108		
Surrogate: Nitrobenzene-d5	19.37			33.3333		58.1	0 - 146		
Surrogate: 4-Terphenyl-d14	28.87			33.3333		9.98	39 - 123		

Page 69 of 83

Project Number: POLA Berth 191-193, 11618.005 Leighton Consulting, Inc.

17781 Cowan Street Irvine, CA 92614

Brynn McCulloch 11/08/2017 Reported: Report To:

Notes and Definitions

S4 Surrogate was diluted out.

R RPD value outside acceptance criteria. Calculation is based on raw values.

Matrix spike recovery outside of acceptance limit due to possible matrix interference. The analytical batch was validated by the laboratory M2

Matrix spike recovery outside of acceptance limit. The analytical batch was validated by the laboratory control sample. \mathbb{Z}

H7 The sample was logged past hold time.

H4 Change order analysis requested past the sample holding time.

D5 Sample diluted due to failing internal standard in the original run.

D1 Sample required dilution due to possible matrix interference.

Analyte is not detected at or above the Practical Quantitation Limit (PQL). When client requests quantitation against MDL, analyte is not detected at or above the Method Detection Limit (MDL) \mathbb{R}

PQL Practical Quantitation Limit

MDL Method Detection Limit

NR Not Reported

RPD Relative Percent Difference

CA2 CA-ELAP (CDPH)

OR1 OR-NELAP (OSPHL)

Notes:

- (1) The reported MDL and PQL are based on prep ratio variation and analytical dilution.
- (2) The suffix [2C] of specific analytes signifies that the reported result is taken from the instrument's second column.
 - (3) Results are wet unless otherwise specified.

Page 70 of 83

Ceres Analytical Laboratory, Inc. 4919 Windplay Dr., Suite 1 El Dorado Hills, CA 95762

October 30, 2017

Ceres ID: 11677

Advanced Technology Laboratories 3275 Walnut Avenue Signal Hill, CA 90755

The following report contains the results for the one soil sample received on October 25, 2017. This sample was analyzed for tetra through octa chlorinated dioxins and dibenzofurans by EPA method 8290A. Routine turn-around time was provided for this work.

Sample results are reported on a dry weight basis.

This work was authorized under Advanced Technology Laboratories' Work Order # 1703641 and P.O. # SC12135.

The report consists of a Cover Letter, Sample Inventory (Section I), Data Summary (Section II), Sample Tracking (Section VI), and Qualifiers/Abbreviations (Section VII). Raw Data (Section III), Continuing Calibration (Section IV), and Initial Calibration (Section V) are available in a full report (.pdf format) upon request.

If you have any questions regarding this report, please feel free to contact me at (916)932-5011.

Sincerely,

James M. Hedin

Director of Operations/CEO

jhedin@ceres-lab.com

Section I: Sample Inventory

 Ceres Sample ID:
 Sample ID
 Date Received
 Collection Date
 &Time

 11677-001
 1703641-41 / LB17-0.5
 10/25/2017
 10/11/2017
 14:38

Section II: Data Summary

EPA Method 8290A

 Quality Assurance Sample
 Date Received: NA

 Method Blank
 QC Batch #: 1677
 Date Extracted: 10/26/2017

 Matrix: Soil
 ZB-5MS Analysis: 10/27/2017

 Project ID: 1703641
 Sample Size: 10.00 g

Analyte	Conc. (pg/g)	MDL	Qualifiers	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	DL= 0.487	0.172		13C-2378-TCDD	92.3	40-135	
12378-PeCDD	DL= 0.985	0.327		13C-12378-PeCDD	82.0	40-135	
123478-HxCDD	DL= 1.14	0.327		13C-123478-HxCDD	101	40-135	
123678-HxCDD	DL= 1.29	0.655		13C-123678-HxCDD	108	40-135	
123789-HxCDD	DL= 1.17	0.315		13C-1234678-HpCDD	90.0	40-135	
1234678-HpCDD	DL= 1.73	0.409		13C-OCDD	99.9	40-135	
OCDD	DL= 1.64	1.01		13C-2378-TCDF	118	40-135	
2,3,7,8-TCDF	DL= 0.458	0.0886		13C-12378-PeCDF	94.5	40-135	
12378-PeCDF	DL= 0.684	0.412		13C-23478-PeCDF	105	40-135	
23478-PeCDF	DL= 0.627	0.422		13C-123478-HxCDF	109	40-135	
123478-HxCDF	DL= 0.710	0.518		13C-123678-HxCDF	125	40-135	
123678-HxCDF	DL= 0.606	0.533		13C-234678-HxCDF	118	40-135	
234678-HxCDF	DL= 0.705	0.319		13C-123789-HxCDF	107	40-135	
123789-HxCDF	DL= 0.964	0.425		13C-1234678-HpCDF	112	40-135	
1234678-HpCDF	DL= 0.794	0.279		13C-1234789-HpCDF	112	40-135	
1234789-HpCDF	DL= 1.09	0.378					
OCDF	DL= 1.84	0.461					
Totals	Conc. (pg/g)	EMPC		<u>CRS</u>			
Total TCDD	DL= 0.487			37Cl4-2378-TCDD	115	40-135	
Total PeCDD	DL= 0.985						
Total HxCDD	DL= 1.29			DL - Signifies Non-Detect	(ND) at samp	le specific detection l	imit.
Total HpCDD	DL= 1.73			EMPC - Estimated Maximi	um Possible (Concentration due to	ion abundance
Total TCDF	DL= 0.458			ratio failure.			
Total PeCDF	DL= 0.684			(a) - Lower control limit - U	pper control l	imit	
Total HxCDF	DL= 0.964			(b) - TEQ based on (2005)	World Health	n Organization (WHO) Toxic
Total HpCDF	DL= 1.09			Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 0.0 pg/g

Analyst: JMH Reviewed by: BS

EPA Method 8290A

 Quality Assurance Samples
 Date Received: NA

 Laboratory Control Samples
 QC Batch #: 1677
 Date Extracted: 10/26/2017

 Matrix: Soil
 ZB-5MS Analysis: 10/27/2017

 Project ID: 1703641
 Sample Size: 10.00 g

% Rec. 114 113 121 115 113 122 124 117	%RSD 3.17 3.66 4.21 1.22 2.46 0.58 2.91	13C-2378-TCDD 13C-12378-PeCDD 13C-123478-HxCDD 13C-123678-HxCDD 13C-1234678-HpCDD 13C-0CDD	81.5 73.6 98.2 107 97.1	89.3 79.9 93.0 105 89.6	40-135 40-135 40-135 40-135 40-135
113 121 115 113 122 124	3.66 4.21 1.22 2.46 0.58	13C-12378-PeCDD 13C-123478-HxCDD 13C-123678-HxCDD 13C-1234678-HpCDD	73.6 98.2 107 97.1	79.9 93.0 105	40-135 40-135 40-135
121 115 113 122 124	4.21 1.22 2.46 0.58	13C-123478-HxCDD 13C-123678-HxCDD 13C-1234678-HpCDD	98.2 107 97.1	93.0 105	40-135 40-135
115 113 122 124	1.22 2.46 0.58	13C-123678-HxCDD 13C-1234678-HpCDD	107 97.1	105	40-135
113 122 124	2.46 0.58	13C-1234678-HpCDD	97.1		
122 124	0.58	'		89.6	40-135
124		13C-OCDD	404		
	2.91		104	86.2	40-135
117		13C-2378-TCDF	99.1	92.6	40-135
	2.96	13C-12378-PeCDF	90.8	90.8	40-135
118	0.60	13C-23478-PeCDF	94.9	101	40-135
102	6.61	13C-123478-HxCDF	113	113	40-135
112	1.92	13C-123678-HxCDF	124	123	40-135
113	1.26	13C-234678-HxCDF	118	108	40-135
114	0.00	13C-123789-HxCDF	101	96.8	40-135
119	1.81	13C-1234678-HpCDF	113	103	40-135
107	0.66	13C-1234789-HpCDF	117	108	40-135
103	0.68				
127	3.42				
		CRS			
		37CI4-2378-TCDD	101	114	40-135
	112 113 114 119 107 103	112 1.92 113 1.26 114 0.00 119 1.81 107 0.66 103 0.68	112 1.92 13C-123678-HxCDF 113 1.26 13C-234678-HxCDF 114 0.00 13C-123789-HxCDF 119 1.81 13C-1234678-HpCDF 107 0.66 13C-1234789-HpCDF 103 0.68 127 3.42 CRS	112 1.92 13C-123678-HxCDF 124 113 1.26 13C-234678-HxCDF 118 114 0.00 13C-123789-HxCDF 101 119 1.81 13C-1234678-HpCDF 113 107 0.66 13C-1234789-HpCDF 117 103 0.68 127 3.42 CRS	112 1.92 13C-123678-HxCDF 124 123 113 1.26 13C-234678-HxCDF 118 108 114 0.00 13C-123789-HxCDF 101 96.8 119 1.81 13C-1234678-HpCDF 113 103 107 0.66 13C-1234789-HpCDF 117 108 103 0.68 127 3.42 CRS

Analyst: JMH Reviewed by: BS

EPA Method 8290A

 Client Sample ID: 1703641-41 / LB17-0.5

 Project ID: 1703641
 Ceres Sample ID: 11677-001
 Date Received: 10/25/2017

 QC Batch #: 1677
 Date Extracted: 10/26/2017

 Date Collected: 10/11/2017
 Matrix: Soil
 ZB-5MS Analysis: 10/27/2017

 Time Collected: 2:38 PM
 Sample Size: 10.02 g
 % Solids: 100
 Q-225 Analysis: NA

Analyte	Conc. (pg/g)	MDL	Qualifiers	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	DL= 0.480	0.172		13C-2378-TCDD	59.4	40-135	
12378-PeCDD	DL= 0.988	0.327		13C-12378-PeCDD	70.4	40-135	
123478-HxCDD	DL= 1.67	0.327		13C-123478-HxCDD	79.7	40-135	
123678-HxCDD	7.34	0.655		13C-123678-HxCDD	87.1	40-135	
123789-HxCDD	DL= 1.62	0.315		13C-1234678-HpCDD	69.5	40-135	
1234678-HpCDD	245	0.409		13C-OCDD	61.2	40-135	
OCDD	2,150	1.01		13C-2378-TCDF	71.5	40-135	
2,3,7,8-TCDF	DL= 0.424	0.0886		13C-12378-PeCDF	74.3	40-135	
12378-PeCDF	DL= 0.781	0.412		13C-23478-PeCDF	75.5	40-135	
23478-PeCDF	2.82	0.422	J	13C-123478-HxCDF	93.8	40-135	
123478-HxCDF	DL= 1.38	0.518		13C-123678-HxCDF	94.9	40-135	
123678-HxCDF	3.47	0.533	J	13C-234678-HxCDF	92.5	40-135	
234678-HxCDF	DL= 1.30	0.319		13C-123789-HxCDF	73.7	40-135	
123789-HxCDF	DL= 2.37	0.425		13C-1234678-HpCDF	87.6	40-135	
1234678-HpCDF	22.6	0.279		13C-1234789-HpCDF	104	40-135	
1234789-HpCDF	DL= 2.05	0.378					
OCDF	86.7	0.461					
Totals	Conc. (pg/g)	EMPC		CRS			
Total TCDD	DL= 0.480			37Cl4-2378-TCDD	69.7	40-135	
Total PeCDD	8.34						
Total HxCDD	80.9			DL - Signifies Non-Detect	(ND) at samp	le specific detection	limit.
Total HpCDD	564			EMPC - Estimated Maxim	um Possible (Concentration due to	ion abundance
Total TCDF	26.8			ratio failure.			
Total PeCDF	44.1	50.5		(a) - Lower control limit - L	Ipper control	limit	
Total HxCDF	48.1			(b) - TEQ based on (2005)	World Healtl	n Organization (WHC) Toxic
Total HpCDF	66.7			Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 5.27 pg/g

Analyst: JMH Reviewed by: BS

Section VI: Sample Tracking

SUBCONTRACT ORDER

Work Order: 1703641

SENDING LABORATORY:

Advanced Technology Laboratories

3275 Walnut Avenue Signal Hill, CA 90755 Phone: 562.989.4045

Fax: 562.989.6348

Project Manager: Rachelle Arada (Rachelle@atlglobal.com)

Sampler: KCH

RECEIVING LABORATORY:

Ceres Analytical Laboratory, Inc. 4919 Windplay Dr., Suite 1 El Dorado Hills, CA 95762 Phone:(916) 932-5011

Fax: (888) 932-5011

PO#: SC12135- STANDARD TAT

Dar

IMPORTANT: Please include Work Order # and PO # in your invoice.

Analysis		Due	Expires	Sampled	Comments
ATL Lab#: 1703641-41 8290_SUB [Dioxins and Dibenzofurans] 1-Glass Jar - 4 oz	/ LB17-0.5	11/08/17 17:00	Soil 11/10/17 14:38	10/11/17 14:38	Dioxins/Furan PLEASE NOTE HOLDING TIME

| 10/24/17 | ONTRAC D/00/1/838533 68 10/24/17 | Released By | Date | Proced By | Date | Date | Proced By | Date | Proced By | Date | Date | Proced By | Date
Page 1 of 1\ r. s Page 78 of 83

Sample Receipt Check List

Ceres ID: 1/677		Date/Time: /1 /0:52)
Client Project ID: 1703641		Received Temp: 2.3 °C
		Acceptable: (Y/N
Chain of Custody Relinquished by signed?		Ø/ N
Custody Seals?	Present?	Y/N
	Intact?	Y / N
	NA:	NA
Unlabeled / Illegible Samples		Y(/ Ŋ)
Proper Containers:		Q/N
Preservation Acceptable (Chemical or Temperat	ure)?	(y/N
Drinking Water, Sodium Thiosulfate present? Residual Cl?		Y/N(NA) Y/N
Aqueous sample pH:		
List Damaged Samples:		
List Damaged Samples:	Jil .	

Section VII: Qualifiers/Abbreviations

J Concentration found below the lower quantitation limit but greater

than zero.

B Analyte present in the associated Method Blank.

E Concentration found exceeds the Calibration range of the

HRGC/HRMS.

D This analyte concentration was calculated from a dilution.

X The concentration found is the estimated maximum possible

concentration due to chlorinated diphenyl ethers present in the

sample.

H Recovery limits exceeded. See cover letter.

* Results taken from dilution.

I Interference. See cover letter.

Conc. Concentration Found

DL Calculated Detection Limit

ND Non-Detect

% Rec. Percent Recovery

Dominic Mata

From: Brynn McCulloch [bmcculloch@leightongroup.com]

Sent: Tuesday, October 24, 2017 4:50 PM

To: Dominic Mata

Cc: customer.relations@atlglobal.com

Subject: RE: Results - POLA Berth 191-193, 11618.005 (ATL# 1703641)

Hi Dominic,

Please run the STLC and TCLP tests as shown below.

Thank you!

Brynn McCulloch, PG 8798

Associate Geologist 17781 Cowan Irvine, Ca 92614 Cell – 949.394.2306 Office – 949.681.4287 Fax – 949.250.1114

Leighton

Solutions You Can Build On

The information accompanying this email transmission may contain confidential or legally privileged information that is intended only for the use of the individual or entity named in this message. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution or reliance upon the contents of this email is strictly prohibited. If you receive this email in error, please immediately notify the sender by reply e-mail and destroy all copies of the communication and any attachments

Please don't print this e-mail unless you really need to.

From: Dominic Mata [mailto:dominic@atlglobal.com]

Sent: Tuesday, October 24, 2017 10:48 AM

To: Brynn McCulloch

Cc: customer.relations@atlglobal.com

Subject: RE: Results - POLA Berth 191-193, 11618.005 (ATL# 1703641)

Good morning Brynn,

I received your request for additional analyses below. There are no delays with soils so they will not need to be subbed out. Also, we will make sure the groundwater sample gets ran before the hold time is up. It has 14 days from the sampled date giving us until Friday but we plan to run before that. If I can further assist, please let me know.

Thanks, Dominic

From: Brynn McCulloch [mailto:bmcculloch@leightongroup.com]

Sent: Monday, October 23, 2017 9:27 PM

To: Dominic Mata

Subject: RE: Results - POLA Berth 191-193, 11618.005 (ATL# 1703641)

Hi Dominic,

For the groundwater 8260, I'm fine with waiting as long as hold times are met.

For the soil samples, we need the following additional analyses for the samples listed below. If we need to sub out the soil samples for 8260 to meet hold times, please do.

VOCs (8260B) and PAHs (8270SIM)

LB2-0.5, LB2-2.5

LB4-0.5, LB4-2.5

LB5-0.5, LB5-2.5

LB9-0.5, LB9-2.5

LB13-0.5, LB13-2.5

LB17-0.5, LB17-2.5

LB28-5.0

PCBs (8082)

LB2-0.5

LB4-0.5

LB5-0.5

LB9-0.5

LB13-0.5

LB17-0.5

LB28-5.0

Dioxins/Furans

LB17-0.5

Please run the above analyses on normal turnaround time.

The list below is the potential samples requiring STLC and TCLP, I will confirm tomorrow if we need to proceed with these tests, but I wanted to give you a heads up in case we have limited sample recovery.

STLCs

LB2-0.5 - Lead and Copper

LB4-0.5 - Lead

LB4-3.5 - Copper

LB5-2.5 - Lead

LB11-0.5 - Lead, Copper, and Mercury >

LB17-0.5 - Lead

LB27-0.5 - Lead -

LB28-0.5 - Lead ·

LB28-2.5 - Lead

LB30-2.5 - Lead

LB31-0.5 - Lead

LB33-2.5 - Lead

TCLPs

LB2-0.5 - Lead

LB4-0.5 - Lead

LB11-0.5 - Lead and Mercury .

LB27-0.5 - Lead

LB30-2.5 - Lead

LB31-0.5 - Lead LB33-2.5 - Lead

Thank you!

Brynn McCulloch, PG 8798

Associate Geologist 17781 Cowan Irvine, Ca 92614 Cell – 949.394.2306 Office – 949.681.4287 Fax – 949.250.1114

Leighton

Solutions You Can Build On

The information accompanying this email transmission may contain confidential or legally privileged information that is intended only for the use of the individual or entity named in this message. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution or reliance upon the contents of this email is strictly prohibited. If you receive this email in error, please immediately notify the sender by reply e-mail and destroy all copies of the communication and any attachments

Please don't print this e-mail unless you really need to.

From: Dominic Mata [mailto:dominic@atlglobal.com]

Sent: Monday, October 23, 2017 4:16 PM

To: Brynn McCulloch

Cc: customer.relations@atlglobal.com

Subject: RE: Results - POLA Berth 191-193, 11618.005 (ATL# 1703641)

Good afternoon Brynn,

Here's an update for your two work orders due today:

- DRO in 1703653 will be done tomorrow
- 8260 water sample our instrument has been down for several days and is now running but due to the back log, samples with hold times expiring are being prioritized. Would you like to have this sample sub contracted out or keep it in house and looking to have it run Wed (10/25) or Thurs (10/26)? Also, I can provided an updated partial report that includes the DRO for this work order.

Thanks, Dominic

From: Brynn McCulloch [mailto:bmcculloch@leightongroup.com]

Sent: Monday, October 23, 2017 11:47 AM

To: Dominic Mata

Cc: customer.relations@atlglobal.com

Subject: RE: Results - POLA Berth 191-193, 11618.005 (ATL# 1703641)

Any partial results would be helpful, thank you!

Brynn McCulloch, PG 8798

November 02, 2017

Brynn McCulloch Leighton Consulting, Inc. 17781 Cowan Street

Irvine, CA 92614 Tel: (949) 394-2306 Fax:(949) 250-1114 ELAP No.: 1838 CSDLAC No.: 10196 ORELAP No.: CA300003

Re: ATL Work Order Number: 1703653

Client Reference: POLA Berth 191-193, 11618.005

Enclosed are the results for sample(s) received on October 12, 2017 by Advanced Technology Laboratories. The sample(s) are tested for the parameters as indicated on the enclosed chain of custody in accordance with applicable laboratory certifications. The laboratory results contained in this report specifically pertains to the sample(s) submitted.

Thank you for the opportunity to serve the needs of your company. If you have any questions, please feel free to contact me or your Project Manager.

Sincerely,

Eddie Rodriguez

Laboratory Director

The cover letter and the case narrative are an integral part of this analytical report and its absence renders the report invalid. Test results contained within this data package meet the requirements of applicable state-specific certification programs. The report cannot be reproduced without written permission from the client and Advanced Technology Laboratories.

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

SUMMARY OF SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LB7-0.5	1703653-01	Soil	10/12/17 7:26	10/12/17 15:41
LB7-2.5	1703653-02	Soil	10/12/17 7:28	10/12/17 15:41
LB7-5.0	1703653-03	Soil	10/12/17 7:30	10/12/17 15:41
LB11-0.5	1703653-04	Soil	10/12/17 7:50	10/12/17 15:41
LB11-2.5	1703653-05	Soil	10/12/17 7:52	10/12/17 15:41
LB11-5.0	1703653-06	Soil	10/12/17 7:54	10/12/17 15:41
LB16-0.5	1703653-07	Soil	10/12/17 8:10	10/12/17 15:41
LB16-2.5	1703653-08	Soil	10/12/17 8:12	10/12/17 15:41
LB16-5.0	1703653-09	Soil	10/12/17 8:14	10/12/17 15:41
LB22-0.5	1703653-10	Soil	10/12/17 8:26	10/12/17 15:41
LB22-2.5	1703653-11	Soil	10/12/17 8:28	10/12/17 15:41
LB22-5.0	1703653-12	Soil	10/12/17 8:30	10/12/17 15:41
LB27-0.5	1703653-13	Soil	10/12/17 8:56	10/12/17 15:41
LB27-2.5	1703653-14	Soil	10/12/17 8:58	10/12/17 15:41
LB27-5.0	1703653-15	Soil	10/12/17 9:00	10/12/17 15:41
LB30-0.5	1703653-16	Soil	10/12/17 9:30	10/12/17 15:41
LB30-2.5	1703653-17	Soil	10/12/17 9:32	10/12/17 15:41
LB30-5.0	1703653-18	Soil	10/12/17 9:34	10/12/17 15:41
LB32-0.5	1703653-23	Soil	10/12/17 9:50	10/12/17 15:41
LB32-2.5	1703653-24	Soil	10/12/17 9:52	10/12/17 15:41
LB32-5.0	1703653-25	Soil	10/12/17 9:55	10/12/17 15:41
LB33-0.5	1703653-26	Soil	10/12/17 10:06	10/12/17 15:41
LB33-2.5	1703653-27	Soil	10/12/17 10:08	10/12/17 15:41
LB33-5.0	1703653-28	Soil	10/12/17 10:10	10/12/17 15:41
LB31-0.5	1703653-29	Soil	10/12/17 10:38	10/12/17 15:41
LB31-2.5	1703653-30	Soil	10/12/17 10:40	10/12/17 15:41
LB31-5.0	1703653-31	Soil	10/12/17 10:42	10/12/17 15:41
LB29-0.5	1703653-32	Soil	10/12/17 11:20	10/12/17 15:41
LB29-2.5	1703653-33	Soil	10/12/17 11:22	10/12/17 15:41
LB29-5.0	1703653-34	Soil	10/12/17 11:24	10/12/17 15:41
LB28-0.5	1703653-35	Soil	10/12/17 11:46	10/12/17 15:41
LB28-2.5	1703653-36	Soil	10/12/17 11:48	10/12/17 15:41
LB28-5.0	1703653-37	Soil	10/12/17 11:50	10/12/17 15:41
LB26-0.5	1703653-38	Soil	10/12/17 12:02	10/12/17 15:41
LB26-2.5	1703653-39	Soil	10/12/17 12:04	10/12/17 15:41
LB26-5.0	1703653-40	Soil	10/12/17 12:06	10/12/17 15:41
LB21-0.5	1703653-41	Soil	10/12/17 12:22	10/12/17 15:41

Page 2 of 210

Project Number: POLA Berth 191-193, 11618.005	Report To: Brynn McCulloch	Reported: 11/02/2017
	Report T	Reporte
Leighton Consulting, Inc.	17781 Cowan Street	Irvine, CA 92614

LB21-2.5	1703653-42	Soil	10/12/17 12:24	10/12/17 15:41
LB21-5.0	1703653-43	Soil	10/12/17 12:26	10/12/17 15:41
LB15-0.5	1703653-44	Soil	10/12/17 12:40	10/12/17 15:41
LB15-2.5	1703653-45	Soil	10/12/17 12:42	10/12/17 15:41
LB15-5.0	1703653-46	Soil	10/12/17 12:44	10/12/17 15:41
LB10-0.5	1703653-47	Soil	10/12/17 12:56	10/12/17 15:41
LB10-2.5	1703653-48	Soil	10/12/17 12:58	10/12/17 15:41
LB10-5.0	1703653-49	Soil	10/12/17 13:00	10/12/17 15:41
LB6-0.5	1703653-50	Soil	10/12/17 13:15	10/12/17 15:41
LB6-2.5	1703653-51	Soil	10/12/17 13:17	10/12/17 15:41
LB6-5.0	1703653-52	Soil	10/12/17 13:19	10/12/17 15:41
LB6-GW	1703653-53	Groundwater	10/12/17 13:22	10/12/17 15:41
LB27-GW	1703653-54	Groundwater	10/12/17 9:02	10/12/17 15:41
LB31-GW	1703653-55	Groundwater	10/12/17 10:44	10/12/17 15:41

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB7-0.5 Lab ID: 1703653-01

Title 22 Metals by ICP-AES EPA 6010B	

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0512	10/18/2017	10/19/17 09:22	
Arsenic	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:22	
Barium	110	1.0	1	B7J0512	10/18/2017	10/19/17 09:22	
Beryllium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:22	
Cadmium	QN	1.0	1	B7J0512	10/18/2017	10/19/17 09:22	
Chromium	12	1.0	1	B7J0512	10/18/2017	10/19/17 09:22	
Cobalt	11	1.0	1	B7J0512	10/18/2017	10/19/17 09:22	
Copper	27	2.0	1	B7J0512	10/18/2017	10/19/17 09:22	
Lead	16	1.0	1	B7J0512	10/18/2017	10/19/17 09:22	
Molybdenum	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:22	
Nickel	12	1.0	1	B7J0512	10/18/2017	10/19/17 09:22	
Selenium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:22	
Silver	QN	1.0	1	B7J0512	10/18/2017	10/19/17 09:22	
Thallium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:22	
Vanadium	36	1.0	1	B7J0512	10/18/2017	10/19/17 09:22	
Zinc	71	1.0	_	B7J0512	10/18/2017	10/19/17 09:22	

M
4
4 A
apor)
old o
3
1
Ś
ury
Merc
\geq

Mercury by AA (Cold Vapor) EPA 7471A	1					7	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0517	10/18/2017	10/19/17 12:10	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	QN QN	1.0	1	B7J0337	10/14/2017	10/14/17 09:44	
Surrogate: 4-Bromofluorobenzene 10'	% 201	50 - 138		B7J0337	10/14/2017	10/14/17 09:44	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	270	25	25	B7J0525	10/18/2017	10/19/17 06:45	
ORO	630	25	25	B7J0525	10/18/2017	10/19/17 06:45	

Page 4 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB7-0.5

Lab ID: 1703653-01

Diesel Range Organics by EPA 8015B

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: p-Terphenyl 0:	%6	38 - 145		B7J0525	10/18/2017	10/19/17 06:45	S4

Analyst: TKT

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB7-2.5 Lab ID: 1703653-02

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Antimony	ND	2.0	1	B7J0512	10/18/2017	10/19/17 09:25	
Arsenic	1.5	1.0	1	B7J0512	10/18/2017	10/19/17 09:25	
Barium	52	1.0		B7J0512	10/18/2017	10/19/17 09:25	
Beryllium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:25	
Cadmium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:25	
Chromium	9.3	1.0	1	B7J0512	10/18/2017	10/19/17 09:25	
Cobalt	4.5	1.0	1	B7J0512	10/18/2017	10/19/17 09:25	
Copper	20	2.0	1	B7J0512	10/18/2017	10/19/17 09:25	
Lead	49	1.0	1	B7J0512	10/18/2017	10/19/17 09:25	
Molybdenum	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:25	
Nickel	14	1.0	1	B7J0512	10/18/2017	10/19/17 09:25	
Selenium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:25	
Silver	1.5	1.0	1	B7J0512	10/18/2017	10/19/17 09:25	
Thallium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:25	
Vanadium	16	1.0	1	B7J0512	10/18/2017	10/19/17 09:25	
Zinc	68	1.0	1	B7J0512	10/18/2017	10/19/17 09:25	

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A						7	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.25	0.10	1	B7J0517	10/18/2017	10/19/17 12:17	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0337	10/14/2017	B7J0337 10/14/2017 10/14/17 10:03	
Surrogate: 4-Bromofluorobenzene 107	% 201	50 - 138		B7J0337	10/14/2017	10/14/17 10:03	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	92	1.0	1	B7J0525	10/18/2017	10/19/17 07:19	
ORO	130	1.0	1	B7J0525	10/18/2017	10/19/17 07:19	

Page 6 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB7-2.5

Lab ID: 1703653-02

Diesel Range Organics by EPA 8015B

Notes 91:70 71/61/01 Date/Time Analyzed 10/18/2017 Prepared B7J0525 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result 82.4 % Surrogate: p-Terphenyl Analyte

Analyst: TKT

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB7-5.0 Lab ID: 1703653-03

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0512	10/18/2017	10/19/17 09:27	
Arsenic	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:27	
Barium	29	1.0	1	B7J0512	10/18/2017	10/19/17 09:27	
Beryllium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:27	
Cadmium	ND	1.0	-	B7J0512	10/18/2017	10/19/17 09:27	
Chromium	9.9	1.0	_	B7J0512	10/18/2017	10/19/17 09:27	
Cobalt	3.5	1.0	_	B7J0512	10/18/2017	10/19/17 09:27	
Copper	4.1	2.0	_	B7J0512	10/18/2017	10/19/17 09:27	
Lead	1.0	1.0	-	B7J0512	10/18/2017	10/19/17 09:27	
Molybdenum	ND	1.0	_	B7J0512	10/18/2017	10/19/17 09:27	
Nickel	5.0	1.0	-	B7J0512	10/18/2017	10/19/17 09:27	
Selenium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:27	
Silver	ND	1.0	-	B7J0512	10/18/2017	10/19/17 09:27	
Thallium	ND	1.0	_	B7J0512	10/18/2017	10/19/17 09:27	
Vanadium	13	1.0	-	B7J0512	10/18/2017	10/19/17 09:27	
Zinc	19	1.0	1	B7J0512	10/18/2017	10/19/17 09:27	

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A	1					7	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Метешу	ND	0.10	1	B7J0517	10/18/2017	10/19/17 12:19	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0337	B7J0337 10/14/2017	10/14/17 10:21	
Surrogate: 4-Bromofluorobenzene 108 %	%	50 - 138		B7J0337	10/14/2017	10/14/17 10:21	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						F	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	10	1.0	-1	B7J0525	10/18/2017	10/19/17 02:45	
ORO	11	1.0	1	B7J0525	10/18/2017	10/19/17 02:45	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB7-5.0

Lab ID: 1703653-03

	Y (70100
	\ \ \ \ \	
	Tropulce Pr	
	49nge	
,	Į d	3

Notes 10/19/17 02:45 Date/Time Analyzed 10/18/2017 Prepared B7J0525 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result % 90I Surrogate: p-Terphenyl Analyte

Analyst: TKT

Page 9 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB11-0.5 Lab ID: 1703653-04

Title 22 Metals by ICP-AES EPA 6010B

Analyst: GO

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0512	10/18/2017	10/19/17 09:28	
Arsenic	12	1.0	1	B7J0512	10/18/2017	10/19/17 09:28	
Barium	19	1.0	1	B7J0512	10/18/2017	10/19/17 09:28	
Beryllium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:28	
Cadmium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:28	
Chromium	25	1.0	1	B7J0512	10/18/2017	10/19/17 09:28	
Cobalt	5.1	1.0	1	B7J0512	10/18/2017	10/19/17 09:28	
Copper	890	2.0	1	B7J0512	10/18/2017	10/19/17 09:28	
Lead	150	1.0	1	B7J0512	10/18/2017	10/19/17 09:28	
Molybdenum	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:28	
Nickel	11	1.0	1	B7J0512	10/18/2017	10/19/17 09:28	
Selenium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:28	
Silver	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:28	
Thallium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:28	
Vanadium	17	1.0	1	B7J0512	10/18/2017	10/19/17 09:28	
Zinc	780	1.0	-	B7J0512	10/18/2017	10/19/17 09:28	
TCLP Metals by ICP-AES EPA 6010B							Analyst: GO
							Amany st. GO

	Result	PQL				Date/Time	
Analyte	(mg/L)	(mg/L)	Dilution	Batch	Prepared	Analyzed	Notes
Copper	0.77	0.25	5	B7J0818	10/27/2017	10/27/17 17:54	
Lead	ND	0.25	S	B7J0818	10/27/2017	10/27/17 17:54 DI	DI
STLC Metals by ICP-AES by EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/L)	(mg/L)	Dilution	Batch	Prepared	Analyzed	Notes

D1 D1

10/30/17 12:20 10/30/17 12:20

10/30/2017

B7J0849 B7J0849

20

1.0

25

Copper Lead

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB11-0.5 Lab ID: 1703653-04

Mercury by AA (Cold Vapor) EPA 7471A	1						Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	2.2	0.10	1	B7J0517	10/18/2017	10/19/17 12:21	
STLC Mercury by AA (Cold Vapor) EPA 7470A	A 7470A						Analyst: KEK
Analyte	Result (ug/L)	(J/gn)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	ND	1.0	1	B7J0854	10/30/2017	10/30/17 14:28	
TCLP Mercury by AA (Cold Vapor) by EPA 7470A	PA 7470A						Analyst: KEK
Analyte	Result (ug/L)	(T/gu)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	ND	0.20	1	B7J0833	10/27/2017	10/30/17 10:27	
Gasoline Range Organics by EPA 8015B (Modified)	(Modified)						Analyst: VW
Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0337	10/14/2017	10/14/17 10:39	
Surrogate: 4-Bromofluorobenzene 106 %	\0	50 - 138		B7J0337	10/14/2017	10/14/17 10:39	
Diesel Range Organics by EPA 8015B							Analyst: TKT
Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	310	25	25	B7J0525	10/18/2017	10/19/17 06:11	
ORO Surrogate: p-Terphenyl 0%	730	25 38 - 145	25	B7J0525 B7J0525	10/18/2017	10/19/17 06:11 10/19/17 06:11	S4
Polychlorinated Biphenyls by EPA 8082							Analyst: CO/
Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aroclor 1016 Aroclor 1221 Aroclor 1232	ON ON ON	16 16 16		B7J0770 B7J0770 B7J0770	10/25/2017 10/25/2017 10/25/2017	10/25/17 22:48 10/25/17 22:48 10/25/17 22:48	

Page 11 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB11-0.5 Lab ID: 1703653-04

Analyst: CO/ Polychlorinated Biphenyls by EPA 8082

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Aroclor 1242	ND	16	1	B7J0770	10/25/2017	10/25/17 22:48	
Aroclor 1248	ND	16	1	B7J0770	10/25/2017	10/25/17 22:48	
Aroclor 1254	870	160	10	B7J0770	10/25/2017	10/30/17 17:12	
Aroclor 1260	ND	16	1	B7J0770	10/25/2017	10/25/17 22:48	
Aroclor 1262	ND	16	1	B7J0770	10/25/2017	10/25/17 22:48	
Aroclor 1268	ND	16	1	B7J0770	10/25/2017	10/25/17 22:48	
Surrogate: Decachlorobiphenyl	42.5 %	18 - 136		B7J0770	10/25/2017	10/25/17 22:48	
Surrogate: Decachlorobiphenyl	85.8%	18 - 136		B7J0770	10/25/2017	10/30/17 17:12	
Surrogate: Tetrachloro-m-xylene	86.5 %	30 - 130		B7J0770	10/25/2017	10/30/17 17:12	
Surrogate: Tetrachloro-m-xylene	% 9.69	30 - 130		B7J0770	10/25/2017	10/25/17 22:48	

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
1,1,1-Trichloroethane	N	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
1,1,2,2-Tetrachloroethane	N	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
1,1,2-Trichloroethane	N	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
1,1-Dichloroethane	N	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
1,1-Dichloroethene	N	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
1,1-Dichloropropene	N	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
1,2,3-Trichloropropane	N	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
1,2,3-Trichlorobenzene	N	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
1,2,4-Trichlorobenzene	N	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
1,2,4-Trimethylbenzene	N	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
1,2-Dibromo-3-chloropropane	N	9.5	1	B7J0791	10/26/2017	10/26/17 15:11	
1,2-Dibromoethane	N	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
1,2-Dichlorobenzene	N	4.7	-	B7J0791	10/26/2017	10/26/17 15:11	
1,2-Dichloroethane	N	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
1,2-Dichloropropane	N Q	4.7	-	B7J0791	10/26/2017	10/26/17 15:11	
1,3,5-Trimethylbenzene	N Q	4.7	-	B7J0791	10/26/2017	10/26/17 15:11	
1,3-Dichlorobenzene	N	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
1,3-Dichloropropane	N Q	4.7	-	B7J0791	10/26/2017	10/26/17 15:11	
1,4-Dichlorobenzene	N	4.7	-	B7J0791	10/26/2017	10/26/17 15:11	
2,2-Dichloropropane	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:11	
2-Chlorotoluene	N	4.7	-	B7J0791	10/26/2017	10/26/17 15:11	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB11-0.5

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

Lab ID: 1703653-04

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
4-Chlorotoluene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
4-Isopropyltoluene	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:11	
Benzene	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:11	
Bromobenzene	ND	4.7		B7J0791	10/26/2017	10/26/17 15:11	
Bromochloromethane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
Bromodichloromethane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
Bromoform	ND	4.7	_	B7J0791	10/26/2017	10/26/17 15:11	
Bromomethane	ND	4.7	_	B7J0791	10/26/2017	10/26/17 15:11	
Carbon disulfide	ND	4.7	_	B7J0791	10/26/2017	10/26/17 15:11	
Carbon tetrachloride	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
Chlorobenzene	ND	4.7		B7J0791	10/26/2017	10/26/17 15:11	
Chloroethane	ND	4.7	_	B7J0791	10/26/2017	10/26/17 15:11	
Chloroform	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
Chloromethane	ND	4.7	_	B7J0791	10/26/2017	10/26/17 15:11	
cis-1,2-Dichloroethene	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:11	
cis-1,3-Dichloropropene	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:11	
Di-isopropyl ether	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:11	
Dibromochloromethane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
Dibromomethane	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:11	
Dichlorodifluoromethane	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:11	
Ethyl Acetate	ND	47	-	B7J0791	10/26/2017	10/26/17 15:11	
Ethyl Ether	ND	47	-	B7J0791	10/26/2017	10/26/17 15:11	
Ethyl tert-butyl ether	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:11	
Ethylbenzene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
Freon-113	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:11	
Hexachlorobutadiene	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:11	
Isopropylbenzene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
m,p-Xylene	ND	9.5	-	B7J0791	10/26/2017	10/26/17 15:11	
Methylene chloride	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
MTBE	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
n-Butylbenzene	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:11	
n-Propylbenzene	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:11	
Naphthalene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
o-Xylene	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:11	
sec-Butylbenzene	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:11	
Styrene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
tert-Amyl methyl ether	ND	4.7	П	B7J0791	10/26/2017	10/26/17 15:11	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB11-0.5 Lab ID: 1703653-04

Volatile Organic Compounds by EPA 5035/EPA 8260B

VOIATHE OFGANIC COMPOUNDS BY EFA 3033/EFA 8260B	EFA 5055/EFA 82	OUB					Analyst: AG
Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
tert-Butanol	ND	95	-	B7J0791	10/26/2017	10/26/17 15:11	
tert-Butylbenzene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
Tetrachloroethene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
Toluene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
trans-1,2-Dichloroethene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
trans-1,3-Dichloropropene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
Trichloroethene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
Trichlorofluoromethane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
Vinyl acetate	ND	47	1	B7J0791	10/26/2017	10/26/17 15:11	
Vinyl chloride	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:11	
Surrogate: 1,2-Dichloroethane-d4	103 %	32 - 140		B7J0791	10/26/2017	10/26/17 15:11	
Surrogate: 4-Bromofluorobenzene	102 %	68 - 131		B7J0791	10/26/2017	10/26/17 15:11	
Surrogate: Dibromofluoromethane	97.3 %	49 - 134		B7J0791	10/26/2017	10/26/17 15:11	
Surrogate: Toluene-d8	107 %	75 - 132		B7J0791	10/26/2017	10/26/17 15:11	

Ĭ
S/0 /
(1
7
EP/
ģ
apun
mo
mp
Ō
ganic
Org
latile
6
emiv
Se

Analyst: SP

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
2-Methylnaphthalene	ND	100	20	B7J0764	10/25/2017	10/27/17 13:31	D1
Acenaphthene	ND	100	20	B7J0764	10/25/2017	10/27/17 13:31	DI
Acenaphthylene	ND	100	20	B7J0764	10/25/2017	10/27/17 13:31	DI
Anthracene	ND	100	20	B7J0764	10/25/2017	10/27/17 13:31	DI
Benzo(a)anthracene	ND	100	20	B7J0764	10/25/2017	10/27/17 13:31	D1
Benzo(a)pyrene	ND	100	20	B7J0764	10/25/2017	10/27/17 13:31	DI
Benzo(b)fluoranthene	ND	100	20	B7J0764	10/25/2017	10/27/17 13:31	DI
Benzo(g,h,i)perylene	ND	100	20	B7J0764	10/25/2017	10/27/17 13:31	DI
Benzo(k)fluoranthene	ND	100	20	B7J0764	10/25/2017	10/27/17 13:31	DI
Chrysene	ND	100	20	B7J0764	10/25/2017	10/27/17 13:31	DI
Dibenz(a,h)anthracene	ND	100	20	B7J0764	10/25/2017	10/27/17 13:31	DI
Fluoranthene	ND	100	20	B7J0764	10/25/2017	10/27/17 13:31	DI
Fluorene	ND	100	20	B7J0764	10/25/2017	10/27/17 13:31	DI
Indeno(1,2,3-cd)pyrene	ND	100	20	B7J0764	10/25/2017	10/27/17 13:31	DI
Naphthalene	ND	100	20	B7J0764	10/25/2017	10/27/17 13:31	DI
Phenanthrene	ND	100	20	B7J0764	10/25/2017	10/27/17 13:31	DI
Pyrene	ND	100	20	B7J0764	10/25/2017	10/27/17 13:31	D1
Surrogate: 1,2-Dichlorobenzene-d4	%0	29 - 109		B7J0764	10/25/2017	10/27/17 13:31	S4

Page 14 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB11-0.5 Lab ID: 1703653-04

Semivolatile Organic Compounds by EPA 8270/SIM

Analyst: SP

Notes **S**4 10/27/17 13:31 10/27/17 13:31 10/27/17 13:31 Date/Time Analyzed 10/25/2017 10/25/2017 10/25/2017 Prepared B7J0764 B7J0764 B7J0764 Batch Dilution 39 - 108 0 - 146 39 - 123 (ug/kg) PQL (ug/kg) Result %0 %0 Surrogate: 2-Fluorobiphenyl Surrogate: Nitrobenzene-d5 Surrogate: 4-Terphenyl-d14 Analyte

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB11-2.5 Lab ID: 1703653-05

Title 22 Metals by ICP-AES EPA 6010B	В						Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0512	10/18/2017	10/19/17 09:29	
Arsenic	5.0	1.0	1	B7J0512	10/18/2017	10/19/17 09:29	
Barium	62	1.0	1	B7J0512	10/18/2017	10/19/17 09:29	
Beryllium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:29	
Cadmium	N	1.0	1	B7J0512	10/18/2017	10/19/17 09:29	
Chromium	14	1.0	1	B7J0512	10/18/2017	10/19/17 09:29	
Cobalt	9.0	1.0	1	B7J0512	10/18/2017	10/19/17 09:29	
Copper	16	2.0	1	B7J0512	10/18/2017	10/19/17 09:29	
Lead	3.9	1.0	1	B7J0512	10/18/2017	10/19/17 09:29	
Molybdenum	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:29	
Nickel	13	1.0	1	B7J0512	10/18/2017	10/19/17 09:29	
Selenium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:29	
Silver	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:29	
Thallium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:29	
Vanadium	32	1.0	1	B7J0512	10/18/2017	10/19/17 09:29	
Zinc	38	1.0	_	B7J0512	10/18/2017	10/19/17 09:29	
Mercury by AA (Cold Vapor) EPA 7471A	1A					7	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0517	10/18/2017	10/19/17 12:23	
Gasoline Range Organics by EPA 8015B (Modified)	3B (Modified)						Analyst: VW
Anslyte	Result (mo/kg)	PQL	Dilution	Ratch	Drenared	Date/Time	Notes
or times t	(9 v /9)	(9x 8m)	Dinaco	Dance	na maari	ratary 200	50001
Gasoline Range Organics	ND	1.0	1	B7J0337	10/14/2017	10/14/17 10:58	
Surrogate: 4-Bromofluorobenzene 85.0	85.6%	50 - 138		B7J0337	10/14/2017	10/14/17 10:58	
Diesel Range Organics by EPA 8015B							Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	9.8	1.0	1	B7J0525	10/18/2017	10/19/17 01:20	
ORO	7.9	1.0	-	B7J0525	10/18/2017	10/19/17 01:20	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB11-2.5 Lab ID: 1703653-05

Diesel Range Organics by EPA 8015B

Analyst: TKT

	Result	PQL				Date/Time	
nalyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
urrogate: p-Terphenyl	73.3 %	38 - 145		B7J0525	10/18/2017	10/19/17 01:20	

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:29	
1,1,1-Trichloroethane	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:29	
1, 1, 2, 2- Tetrachloroethane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:29	
1,1,2-Trichloroethane	ND	4.7	_	B7J0791	10/26/2017	10/26/17 15:29	
1,1-Dichloroethane	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:29	
1,1-Dichloroethene	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:29	
1,1-Dichloropropene	N	4.7	-	B7J0791	10/26/2017	10/26/17 15:29	
1,2,3-Trichloropropane	N	4.7	-	B7J0791	10/26/2017	10/26/17 15:29	
1,2,3-Trichlorobenzene	N	4.7	-	B7J0791	10/26/2017	10/26/17 15:29	
1,2,4-Trichlorobenzene	N	4.7	-	B7J0791	10/26/2017	10/26/17 15:29	
1,2,4-Trimethylbenzene	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:29	
1,2-Dibromo-3-chloropropane	ND	9.5	-	B7J0791	10/26/2017	10/26/17 15:29	
1,2-Dibromoethane	ND	4.7	_	B7J0791	10/26/2017	10/26/17 15:29	
1,2-Dichlorobenzene	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:29	
1,2-Dichloroethane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:29	
1,2-Dichloropropane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:29	
1,3,5-Trimethylbenzene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:29	
1,3-Dichlorobenzene	ND	4.7	_	B7J0791	10/26/2017	10/26/17 15:29	
1,3-Dichloropropane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:29	
1,4-Dichlorobenzene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:29	
2,2-Dichloropropane	ND	4.7	_	B7J0791	10/26/2017	10/26/17 15:29	
2-Chlorotoluene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:29	
4-Chlorotoluene	ND	4.7	_	B7J0791	10/26/2017	10/26/17 15:29	
4-Isopropyltoluene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:29	
Benzene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:29	
Bromobenzene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:29	
Bromochloromethane	ND	4.7	_	B7J0791	10/26/2017	10/26/17 15:29	
Bromodichloromethane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:29	
Bromoform	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:29	
Bromomethane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:29	
Carbon disulfide	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:29	

Page 17 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB11-2.5 Lab ID: 1703653-05

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Carbon tetrachloride	ND	4.7	1	B7J0791	10/26/2017	10/26/17 15:29	
Chlorobenzene	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:29	
Chloroethane	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:29	
Chloroform	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:29	
Chloromethane	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:29	
cis-1,2-Dichloroethene	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:29	
cis-1,3-Dichloropropene	N	4.7	_	B7J0791	10/26/2017	10/26/17 15:29	
Di-isopropyl ether	ND	4.7	_	B7J0791	10/26/2017	10/26/17 15:29	
Dibromochloromethane	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:29	
Dibromomethane	ND	4.7	_	B7J0791	10/26/2017	10/26/17 15:29	
Dichlorodifluoromethane	ND	4.7	_	B7J0791	10/26/2017	10/26/17 15:29	
Ethyl Acetate	ND	47	-	B7J0791	10/26/2017	10/26/17 15:29	
Ethyl Ether	N	47	_	B7J0791	10/26/2017	10/26/17 15:29	
Ethyl tert-butyl ether	ND	4.7	_	B7J0791	10/26/2017	10/26/17 15:29	
Ethylbenzene	ND	4.7	_	B7J0791	10/26/2017	10/26/17 15:29	
Freon-113	ND	4.7	_	B7J0791	10/26/2017	10/26/17 15:29	
Hexachlorobutadiene	ND	4.7	_	B7J0791	10/26/2017	10/26/17 15:29	
Isopropylbenzene	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:29	
m,p-Xylene	ND	9.5	-	B7J0791	10/26/2017	10/26/17 15:29	
Methylene chloride	ND	4.7	_	B7J0791	10/26/2017	10/26/17 15:29	
MTBE	ND	4.7	_	B7J0791	10/26/2017	10/26/17 15:29	
n-Butylbenzene	ND	4.7	_	B7J0791	10/26/2017	10/26/17 15:29	
n-Propylbenzene	ND	4.7	_	B7J0791	10/26/2017	10/26/17 15:29	
Naphthalene	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:29	
o-Xylene	ND	4.7	_	B7J0791	10/26/2017	10/26/17 15:29	
sec-Butylbenzene	ND	4.7	_	B7J0791	10/26/2017	10/26/17 15:29	
Styrene	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:29	
tert-Amyl methyl ether	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:29	
tert-Butanol	ND	95	-	B7J0791	10/26/2017	10/26/17 15:29	
tert-Butylbenzene	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:29	
Tetrachloroethene	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:29	
Toluene	ND	4.7	_	B7J0791	10/26/2017	10/26/17 15:29	
trans-1,2-Dichloroethene	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:29	
trans-1,3-Dichloropropene	ND	4.7	_	B7J0791	10/26/2017	10/26/17 15:29	
Trichloroethene	N	4.7		B7J0791	10/26/2017	10/26/17 15:29	
Trichlorofluoromethane	ND	4.7	-	B7J0791	10/26/2017	10/26/17 15:29	
Vinyl acetate	ND	47	_	B7J0791	10/26/2017	10/26/17 15:29	

Page 18 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB11-2.5 Lab ID: 1703653-05

Volatile Organic Compounds by EPA 5035/EPA 8260B

Volatile Organic Compounds by EP	ds by EPA 5035/EPA 8260B	0B					Analyst: AG
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Vinyl chloride	ND	4.7	1	B7J0791	10/26/2017	B7J0791 10/26/2017 10/26/17 15:29	
Surrogate: 1,2-Dichloroethane-d4	99.3 %	32 - 140		B7J0791	10/26/2017	10/26/17 15:29	
Surrogate: 4-Bromofluorobenzene	105 %	68 - 131		B7J0791	10/26/2017	10/26/17 15:29	
Surrogate: Dibromofluoromethane	94.9 %	49 - 134		B7J0791	10/26/2017	10/26/17 15:29	
Surrogate: Toluene-d8	% 80I	75 - 132		B7J0791	10/26/2017	10/26/17 15:29	

Z
8270/SI
V EPA 8270/SIN
by E
yd spunoc
onu
Ξ
CO
ganic
-
atile
emivolatile O
emi

Semivolatile Organic Compounds by EPA 8270/SIM	y EPA 8270/SIN	1					Analyst: SP
	Result	JÒd				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
2-Methylnaphthalene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 10:55	
Acenaphthene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 10:55	
Acenaphthylene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 10:55	
Anthracene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 10:55	
Benzo(a)anthracene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 10:55	
Benzo(a)pyrene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 10:55	
Benzo(b)fluoranthene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 10:55	
Benzo(g,h,i)perylene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 10:55	
Benzo(k)fluoranthene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 10:55	
Chrysene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 10:55	
Dibenz(a,h)anthracene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 10:55	
Fluoranthene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 10:55	
Fluorene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 10:55	
Indeno(1,2,3-cd)pyrene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 10:55	
Naphthalene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 10:55	
Phenanthrene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 10:55	
Pyrene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 10:55	
Surrogate: 1,2-Dichlorobenzene-d4	74.6%	29 - 109		B7J0764	10/25/2017	10/27/17 10:55	
Surrogate: 2-Fluorobiphenyl	% 9.66	39 - 108		B7J0764	10/25/2017	10/27/17 10:55	
Surrogate: Nitrobenzene-d5	71.6%	0 - 146		B7J0764	10/25/2017	10/27/17 10:55	
Surrogate: 4-Terphenyl-d14	102 %	39 - 123		B7J0764	10/25/2017	10/27/17 10:55	

Page 19 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB11-5.0 Lab ID: 1703653-06

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0512	10/18/2017	10/19/17 09:30	
Arsenic	2.9	1.0	1	B7J0512	10/18/2017	10/19/17 09:30	
Barium	110	1.0	1	B7J0512	10/18/2017	10/19/17 09:30	
Beryllium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:30	
Cadmium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:30	
Chromium	19	1.0	1	B7J0512	10/18/2017	10/19/17 09:30	
Cobalt	9.3	1.0	1	B7J0512	10/18/2017	10/19/17 09:30	
Copper	19	2.0	1	B7J0512	10/18/2017	10/19/17 09:30	
Lead	3.9	1.0	1	B7J0512	10/18/2017	10/19/17 09:30	
Molybdenum	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:30	
Nickel	14	1.0	1	B7J0512	10/18/2017	10/19/17 09:30	
Selenium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:30	
Silver	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:30	
Thallium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:30	
Vanadium	33	1.0	1	B7J0512	10/18/2017	10/19/17 09:30	
Zinc	46	1.0	1	B7J0512	10/18/2017	10/19/17 09:30	

Mercury by AA (Cold Vapor) EPA 7471A				
	Result	PQL		
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch

mercary by ma (cond tapor) Erra (4116)						F	Analyst: NEK
ଧ	Result	PQL				Date/Time	
Analyte (m	mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0517	10/18/2017	10/19/17 12:33	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0337	B7J0337 10/14/2017	10/14/17 11:16	
Surrogate: 4-Bromofluorobenzene	% OI	50 - 138		B7J0337	10/14/2017	10/14/17 11:16	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	12	1.0	1	B7J0525	10/18/2017	10/19/17 01:37	
ORO	9.3	1.0	1	B7J0525	10/18/2017	10/19/17 01:37	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB11-5.0

Lab ID: 1703653-06

Diesel Range Organics by EPA 8015B

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: n-Ternhenyl	128 %	38 - 145		B710525	10/18/2017	10/19/17 01:37	

Analyst: TKT

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB16-0.5 Lab ID: 1703653-07

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL	:			Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0512	10/18/2017	10/19/17 09:34	
Arsenic	2.2	1.0	1	B7J0512	10/18/2017	10/19/17 09:34	
Barium	74	1.0	1	B7J0512	10/18/2017	10/19/17 09:34	
Beryllium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:34	
Cadmium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:34	
Chromium	6.7	1.0	1	B7J0512	10/18/2017	10/19/17 09:34	
Cobalt	0.9	1.0	1	B7J0512	10/18/2017	10/19/17 09:34	
Copper	27	2.0	1	B7J0512	10/18/2017	10/19/17 09:34	
Lead	5.0	1.0	1	B7J0512	10/18/2017	10/19/17 09:34	
Molybdenum	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:34	
Nickel	7.1	1.0	1	B7J0512	10/18/2017	10/19/17 09:34	
Selenium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:34	
Silver	N N	1.0	1	B7J0512	10/18/2017	10/19/17 09:34	
Thallium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:34	
Vanadium	17	1.0	1	B7J0512	10/18/2017	10/19/17 09:34	
Zinc	180	1.0	-	B7J0512	10/18/2017	10/19/17 09:34	

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A						A	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0517	10/18/2017	10/19/17 12:35	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

Analvte	Result (mo/ko)	PQL (mo/ko)	Dilution	Ratch	Prenared	Date/Time Analyzed	Notes
	(9 y 9 y y)	(9 A)		Tana T	no mdo r	, mm ,	
Gasoline Range Organics	ND	1.0	1	B7J0337		10/14/2017 10/14/17 11:35	
Surrogate: 4-Bromofluorobenzene	15 %	50 - 138		B7J0337	10/14/2017	10/14/17 11:35	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	7.7	1.0	1	B7J0525	10/18/2017	10/19/17 03:03	
ORO	10	1.0	1	B7J0525	10/18/2017	10/19/17 03:03	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB16-0.5

Lab ID: 1703653-07

Diesel Range Organics by EPA 8015B

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Sumoscator or Toursbound	70 17	20 145		2020170	7100/01/01	20.50 71/01/01	

Analyst: TKT

10/19/17 03:03 10/18/2017 B7J0525 144 % Surrogate: p-Terphenyl

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB16-2.5 Lab ID: 1703653-08

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0512	10/18/2017	10/19/17 09:35	
Arsenic	2.5	1.0	1	B7J0512	10/18/2017	10/19/17 09:35	
Barium	78	1.0	1	B7J0512	10/18/2017	10/19/17 09:35	
Beryllium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:35	
Cadmium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:35	
Chromium	10	1.0	1	B7J0512	10/18/2017	10/19/17 09:35	
Cobalt	9.9	1.0	1	B7J0512	10/18/2017	10/19/17 09:35	
Copper	19	2.0	1	B7J0512	10/18/2017	10/19/17 09:35	
Lead	33	1.0	1	B7J0512	10/18/2017	10/19/17 09:35	
Molybdenum	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:35	
Nickel	11	1.0	1	B7J0512	10/18/2017	10/19/17 09:35	
Selenium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:35	
Silver	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:35	
Thallium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:35	
Vanadium	18	1.0	1	B7J0512	10/18/2017	10/19/17 09:35	
Zinc	160	1.0	1	B7J0512	10/18/2017	10/19/17 09:35	

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A						+	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0517	10/18/2017	10/19/17 12:37	

Gasoline Range Organics by EPA 8015B (Modified)

Gasoline Range Organics by EPA 8	EPA 8015B (Modified)						Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0337	10/14/2017	B7J0337 10/14/2017 10/14/17 11:53	
Surrogate: 4-Bromofluorobenzene	104 %	50 - 138		B7J0337		10/14/2017 10/14/17 11:53	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						1	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	390	50	50	B7J0525	10/18/2017	10/19/17 07:02	
ORO	1100	50	50	B7J0525	10/18/2017	10/19/17 07:02	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB16-2.5 Lab ID: 1703653-08

EPA 8015B
s by EPA 8
Organica
Diesel Range

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: p-Terphenyl	%6	38 - 145		B7J0525	10/18/2017	10/19/17 07:02 S4	S4

Polychlorinated Biphenyls by EPA 8082

Analyst: CO/

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Aroclor 1016	ND	16	1	B7J0770	10/25/2017	10/25/17 23:07	
Aroclor 1221	ND	16	1	B7J0770	10/25/2017	10/25/17 23:07	
Aroclor 1232	ND	16	1	B7J0770	10/25/2017	10/25/17 23:07	
Aroclor 1242	ND	16	1	B7J0770	10/25/2017	10/25/17 23:07	
Aroclor 1248	ND	16	1	B7J0770	10/25/2017	10/25/17 23:07	
Aroclor 1254	110	16	1	B7J0770	10/25/2017	10/25/17 23:07	
Aroclor 1260	ND	16	1	B7J0770	10/25/2017	10/25/17 23:07	
Aroclor 1262	ND	16	1	B7J0770	10/25/2017	10/25/17 23:07	
Aroclor 1268	ND	16	1	B7J0770	10/25/2017	10/25/17 23:07	
Surrogate: Decachlorobiphenyl	41.9%	18 - 136		B7J0770	10/25/2017	10/25/17 23:07	
Surrogate: Tetrachloro-m-xylene	76.1 %	30 - 130		B7J0770	10/25/2017	10/25/17 23:07	

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
1,1,1-Trichloroethane	ND	4.9	_	B7J0791	10/26/2017	10/26/17 15:48	
1,1,2,2-Tetrachloroethane	N	4.9		B7J0791	10/26/2017	10/26/17 15:48	
1,1,2-Trichloroethane	ND	4.9	_	B7J0791	10/26/2017	10/26/17 15:48	
1,1-Dichloroethane	ND	4.9	_	B7J0791	10/26/2017	10/26/17 15:48	
1,1-Dichloroethene	ND	4.9	_	B7J0791	10/26/2017	10/26/17 15:48	
1,1-Dichloropropene	ND	4.9	_	B7J0791	10/26/2017	10/26/17 15:48	
1,2,3-Trichloropropane	ND	4.9	-	B7J0791	10/26/2017	10/26/17 15:48	
1,2,3-Trichlorobenzene	ND	4.9	_	B7J0791	10/26/2017	10/26/17 15:48	
1,2,4-Trichlorobenzene	ND	4.9	_	B7J0791	10/26/2017	10/26/17 15:48	
1,2,4-Trimethylbenzene	ND	4.9	_	B7J0791	10/26/2017	10/26/17 15:48	
1,2-Dibromo-3-chloropropane	ND	9.7	_	B7J0791	10/26/2017	10/26/17 15:48	
1,2-Dibromoethane	ND	4.9	_	B7J0791	10/26/2017	10/26/17 15:48	
1,2-Dichlorobenzene	ND	4.9	_	B7J0791	10/26/2017	10/26/17 15:48	
1,2-Dichloroethane	N Q	4.9	_	B7J0791	10/26/2017	10/26/17 15:48	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB16-2.5

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

Lab ID: 1703653-08

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
1,2-Dichloropropane	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
1,3,5-Trimethylbenzene	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
1,3-Dichlorobenzene	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
1,3-Dichloropropane	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
1,4-Dichlorobenzene	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
2,2-Dichloropropane	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
2-Chlorotoluene	N	4.9	_	B7J0791	10/26/2017	10/26/17 15:48	
4-Chlorotoluene	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
4-Isopropyltoluene	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
Benzene	N	4.9	_	B7J0791	10/26/2017	10/26/17 15:48	
Bromobenzene	ND	4.9	_	B7J0791	10/26/2017	10/26/17 15:48	
Bromochloromethane	N	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
Bromodichloromethane	N	4.9	_	B7J0791	10/26/2017	10/26/17 15:48	
Bromoform	ND	4.9		B7J0791	10/26/2017	10/26/17 15:48	
Bromomethane	ND	4.9	_	B7J0791	10/26/2017	10/26/17 15:48	
Carbon disulfide	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
Carbon tetrachloride	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
Chlorobenzene	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
Chloroethane	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
Chloroform	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
Chloromethane	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
cis-1,2-Dichloroethene	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
cis-1,3-Dichloropropene	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
Di-isopropyl ether	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
Dibromochloromethane	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
Dibromomethane	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
Dichlorodifluoromethane	ND	4.9	-	B7J0791	10/26/2017	10/26/17 15:48	
Ethyl Acetate	ND	49	П	B7J0791	10/26/2017	10/26/17 15:48	
Ethyl Ether	ND	49	1	B7J0791	10/26/2017	10/26/17 15:48	
Ethyl tert-butyl ether	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
Ethylbenzene	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
Freon-113	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
Hexachlorobutadiene	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
Isopropylbenzene	ND	4.9	_	B7J0791	10/26/2017	10/26/17 15:48	
m,p-Xylene	N	9.7		B7J0791	10/26/2017	10/26/17 15:48	
Methylene chloride	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
MTBE	ND	4.9	-	B7J0791	10/26/2017	10/26/17 15:48	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB16-2.5 Lab ID: 1703653-08

Analyst: AG Volatile Organic Compounds by EPA 5035/EPA 8260B

	 4	iod				Ė	
Analyte	kesuit (ug/kg)	rQL (ug/kg)	Dilution	Batch	Prepared	Date/11me Analyzed	Notes
n-Butylbenzene	ON	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
n-Propylbenzene	ND	4.9	-	B7J0791	10/26/2017	10/26/17 15:48	
Naphthalene	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
o-Xylene	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
sec-Butylbenzene	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
Styrene	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
tert-Amyl methyl ether	ND	4.9	-	B7J0791	10/26/2017	10/26/17 15:48	
tert-Butanol	ND	76	1	B7J0791	10/26/2017	10/26/17 15:48	
tert-Butylbenzene	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
Tetrachloroethene	N	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
Toluene	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
trans-1,2-Dichloroethene	N	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
trans-1,3-Dichloropropene	N	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
Trichloroethene	N	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
Trichlorofluoromethane	N	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
Vinyl acetate	N	49	1	B7J0791	10/26/2017	10/26/17 15:48	
Vinyl chloride	ND	4.9	1	B7J0791	10/26/2017	10/26/17 15:48	
Surrogate: 1,2-Dichloroethane-d4	% 90I	32 - 140		B7J0791	10/26/2017	10/26/17 15:48	
Surrogate: 4-Bromofluorobenzene	103 %	68 - 131		B7J0791	10/26/2017	10/26/17 15:48	
Surrogate: Dibromofluoromethane	%8.96	49 - 134		B7J0791	10/26/2017	10/26/17 15:48	
Surrogate: Toluene-d8	107 %	75 - 132		B7J0791	10/26/2017	10/26/17 15:48	

2
701
as D
ombonna
ווני
N Sa
ر IIIد
200

Semivolatile Organic Compounds by EPA 8270/SIM	s by EPA 8270/SIN	1					Analyst: SP
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
2-Methylnaphthalene	ND	250	50	B7J0764	10/25/2017	10/30/17 11:32	D1
Acenaphthene	ND	250	50	B7J0764	10/25/2017	10/30/17 11:32	D1
Acenaphthylene	ND	250	50	B7J0764	10/25/2017	10/30/17 11:32	D1
Anthracene	ND	250	50	B7J0764	10/25/2017	10/30/17 11:32	D1
Benzo(a)anthracene	ND	250	50	B7J0764	10/25/2017	10/30/17 11:32	D1
Benzo(a)pyrene	ND	250	50	B7J0764	10/25/2017	10/30/17 11:32	D1
Benzo(b)fluoranthene	ND	250	50	B7J0764	10/25/2017	10/30/17 11:32	D1
Benzo(g,h,i)perylene	ND	250	50	B7J0764	10/25/2017	10/30/17 11:32	D1
Benzo(k)fluoranthene	ND	250	50	B7J0764	10/25/2017	10/30/17 11:32	D1
Chrysene	ND	250	50	B7J0764	10/25/2017	10/30/17 11:32	D1
Dibenz(a,h)anthracene	ND	250	50	B7J0764	10/25/2017	10/30/17 11:32	D1

Page 27 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB16-2.5

Semivolatile Organic Compounds by EPA 8270/SIM

Lab ID: 1703653-08

Semivolatile Organic Compounds by EPA 8270/SIM	by EPA 8270/	SIM					Analyst: SP
Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Fluoranthene	ND	250	50	B7J0764	10/25/2017	10/30/17 11:32	DI
Fluorene	ND	250	50	B7J0764	10/25/2017	10/30/17 11:32	D1
Indeno(1,2,3-cd)pyrene	ND	250	50	B7J0764	10/25/2017	10/30/17 11:32	DI
Naphthalene	ND	250	50	B7J0764	10/25/2017	10/30/17 11:32	DI
Phenanthrene	ND	250	50	B7J0764	10/25/2017	10/30/17 11:32	DI
Pyrene	ND	250	50	B7J0764	10/25/2017	10/30/17 11:32	DI
Surrogate: 1,2-Dichlorobenzene-d4	%0	29 - 109		B7J0764	10/25/2017	10/30/17 11:32	S4
Surrogate: 2-Fluorobiphenyl	%0	39 - 108		B7J0764	10/25/2017	10/30/17 11:32	S4
Surrogate: Nitrobenzene-d5	%0	0 - 146		B7J0764	10/25/2017	10/30/17 11:32	
Surrogate: 4-Terphenyl-d14	%0	39 - 123		B7J0764	10/25/2017	10/30/17 11:32	S4

Page 28 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB16-5.0 Lab ID: 1703653-09

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0512	10/18/2017	10/19/17 09:36	
Arsenic	2.4	1.0	1	B7J0512	10/18/2017	10/19/17 09:36	
Barium	9	1.0	1	B7J0512	10/18/2017	10/19/17 09:36	
Beryllium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:36	
Cadmium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:36	
Chromium	7.3	1.0	1	B7J0512	10/18/2017	10/19/17 09:36	
Cobalt	3.7	1.0	1	B7J0512	10/18/2017	10/19/17 09:36	
Copper	12	2.0	1	B7J0512	10/18/2017	10/19/17 09:36	
Lead	4.9	1.0	1	B7J0512	10/18/2017	10/19/17 09:36	
Molybdenum	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:36	
Nickel	6.5	1.0	1	B7J0512	10/18/2017	10/19/17 09:36	
Selenium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:36	
Silver	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:36	
Thallium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:36	
Vanadium	14	1.0	1	B7J0512	10/18/2017	10/19/17 09:36	
Zinc	39	1.0	1	B7J0512	10/18/2017	10/19/17 09:36	

⋖
_
\overline{c}
7471
◀
\mathbf{EPA}
Ξ
Ħ
por
~
>
2
₹
\sim
<u>S</u>
<u>ک</u>
<u>ت</u>
AA (
AA (
<u>ت</u>
AA (

					A	Analyst: KEK
Result	PQL				Date/Time	
mg/kg) ((mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
ND	0.10	1	B7J0517	10/18/2017	10/19/17 12:39	
	ilt (g) (PQL (mg/kg) 0.10	PQL (mg/kg) Dilution 0.10 1	PQL Batch (mg/kg) Dilution Batch 0.10 1 B7J0517	PQL Date/Time (mg/kg) Dilution Batch Prepared Analyzed 0.10 1 B7J0517 10/18/2017 10/19/1712:39

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
	(88)	(88)			I		
Gasoline Range Organics	ND	1.0	1	B7J0337		10/14/2017 10/14/17 12:12	
Surrogate: 4-Bromofluorobenzene 112 %	%	50 - 138		B7J0337	10/14/2017	10/14/17 12:12	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	63	10	10	B7J0525	10/18/2017	10/19/17 05:36	
ORO	130	10	10	B7J0525	10/18/2017	10/19/17 05:36	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB16-5.0 Lab ID: 1703653-09

Diesel Range Organics by EPA 8015B

Analyst: TKT

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: p-Terphenyl 0%		38 - 145		B7J0525	10/18/2017	10/19/17 05:36	S4

ds hy FPA 5035/EPA 8260B

Volatile Organic Compounds by EPA 5035/EPA 8260B	035/EPA 826	0B					Analyst: AG
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
1,1,1-Trichloroethane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
1, 1, 2, 2- Tetrachloroethane	N	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
1,1,2-Trichloroethane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
1,1-Dichloroethane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
1,1-Dichloroethene	N	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
1,1-Dichloropropene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
1,2,3-Trichloropropane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
1,2,3-Trichlorobenzene	N	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
1,2,4-Trichlorobenzene	N	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
1,2,4-Trimethylbenzene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
1,2-Dibromo-3-chloropropane	ND	9.4	1	B7J0791	10/26/2017	10/26/17 16:06	
1,2-Dibromoethane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
1,2-Dichlorobenzene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
1,2-Dichloroethane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
1,2-Dichloropropane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
1,3,5-Trimethylbenzene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
1,3-Dichlorobenzene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
1,3-Dichloropropane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
1,4-Dichlorobenzene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
2,2-Dichloropropane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
2-Chlorotoluene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
4-Chlorotoluene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
4-Isopropyltoluene	ND	4.7	-	B7J0791	10/26/2017	10/26/17 16:06	
Benzene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
Bromobenzene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
Bromochloromethane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
Bromodichloromethane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
Bromoform	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
Bromomethane	N	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
Carbon disulfide	N	4.7	-	B7J0791	10/26/2017	10/26/17 16:06	

Page 30 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB16-5.0 Lab ID: 1703653-09

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Carbon tetrachloride	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
Chlorobenzene	ND	4.7	-	B7J0791	10/26/2017	10/26/17 16:06	
Chloroethane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
Chloroform	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
Chloromethane	ND	4.7		B7J0791	10/26/2017	10/26/17 16:06	
cis-1,2-Dichloroethene	ND	4.7	-	B7J0791	10/26/2017	10/26/17 16:06	
cis-1,3-Dichloropropene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
Di-isopropyl ether	ND	4.7		B7J0791	10/26/2017	10/26/17 16:06	
Dibromochloromethane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
Dibromomethane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
Dichlorodifluoromethane	ND	4.7		B7J0791	10/26/2017	10/26/17 16:06	
Ethyl Acetate	ND	47	_	B7J0791	10/26/2017	10/26/17 16:06	
Ethyl Ether	ND	47		B7J0791	10/26/2017	10/26/17 16:06	
Ethyl tert-butyl ether	ND	4.7		B7J0791	10/26/2017	10/26/17 16:06	
Ethylbenzene	ND	4.7		B7J0791	10/26/2017	10/26/17 16:06	
Freon-113	ND	4.7		B7J0791	10/26/2017	10/26/17 16:06	
Hexachlorobutadiene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
Isopropylbenzene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
m,p-Xylene	ND	9.4	1	B7J0791	10/26/2017	10/26/17 16:06	
Methylene chloride	ND	4.7		B7J0791	10/26/2017	10/26/17 16:06	
MTBE	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
n-Butylbenzene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
n-Propylbenzene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
Naphthalene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
o-Xylene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
sec-Butylbenzene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
Styrene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
tert-Amyl methyl ether	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
tert-Butanol	ND	94	-	B7J0791	10/26/2017	10/26/17 16:06	
tert-Butylbenzene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
Tetrachloroethene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
Toluene	ND	4.7	-	B7J0791	10/26/2017	10/26/17 16:06	
trans-1,2-Dichloroethene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
trans-1,3-Dichloropropene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
Trichloroethene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
Trichlorofluoromethane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:06	
Vinyl acetate	ND	47	1	B7J0791	10/26/2017	10/26/17 16:06	

Page 31 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB16-5.0 Lab ID: 1703653-09

Volatile Organic Compounds by EPA 5035/EPA 8260B

Volatile Organic Compounds by EP	ds by EPA 5035/EPA 8260B	0B					Analyst: AG
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Vinyl chloride	ND	4.7	1	B7J0791	10/26/2017	B7J0791 10/26/2017 10/26/17 16:06	
Surrogate: 1,2-Dichloroethane-d4	103 %	32 - 140		B7J0791	10/26/2017	10/26/17 16:06	
Surrogate: 4-Bromofluorobenzene	102 %	68 - 131		B7J0791	10/26/2017	10/26/17 16:06	
Surrogate: Dibromofluoromethane	% 6.96	49 - 134		B7J0791	10/26/2017	10/26/17 16:06	
Surrogate: Toluene-d8	107 %	75 - 132		B7J0791	10/26/2017	10/26/17 16:06	

Analyst: SP	. Date/Time
Semivolatile Organic Compounds by EPA 8270/SIM	Result PQL

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
2-Methylnaphthalene	ND	250	50	B7J0764	10/25/2017	10/27/17 13:59	D1
Acenaphthene	ND	250	50	B7J0764	10/25/2017	10/27/17 13:59	D1
Acenaphthylene	ND	250	50	B7J0764	10/25/2017	10/27/17 13:59	D1
Anthracene	ND	250	50	B7J0764	10/25/2017	10/27/17 13:59	D1
Benzo(a)anthracene	ND	250	50	B7J0764	10/25/2017	10/27/17 13:59	D1
Benzo(a)pyrene	ND	250	50	B7J0764	10/25/2017	10/27/17 13:59	D1
Benzo(b)fluoranthene	ND	250	50	B7J0764	10/25/2017	10/27/17 13:59	D1
Benzo(g,h,i)perylene	ND	250	50	B7J0764	10/25/2017	10/27/17 13:59	D1
Benzo(k)fluoranthene	ND	250	50	B7J0764	10/25/2017	10/27/17 13:59	D1
Chrysene	ND	250	50	B7J0764	10/25/2017	10/27/17 13:59	D1
Dibenz(a,h)anthracene	ND	250	50	B7J0764	10/25/2017	10/27/17 13:59	D1
Fluoranthene	ND	250	50	B7J0764	10/25/2017	10/27/17 13:59	D1
Fluorene	ND	250	50	B7J0764	10/25/2017	10/27/17 13:59	D1
Indeno(1,2,3-cd)pyrene	ND	250	50	B7J0764	10/25/2017	10/27/17 13:59	D1
Naphthalene	ND	250	50	B7J0764	10/25/2017	10/27/17 13:59	D1
Phenanthrene	ND	250	50	B7J0764	10/25/2017	10/27/17 13:59	D1
Pyrene	ND	250	50	B7J0764	10/25/2017	10/27/17 13:59	D1
Surrogate: 1,2-Dichlorobenzene-d4 09	%0	29 - 109		B7J0764	10/25/2017	10/27/17 13:59	S4
Surrogate: 2-Fluorobiphenyl 03	%0	39 - 108		B7J0764	10/25/2017	10/27/17 13:59	S4
Surrogate: Nitrobenzene-d5 09	%0	0 - 146		B7J0764	10/25/2017	10/27/17 13:59	
Surrogate: 4-Terphenyl-d14	%0	39 - 123		B7J0764	10/25/2017	10/27/17 13:59	S4

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB22-0.5 Lab ID: 1703653-10

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0512	10/18/2017	10/19/17 09:37	
Arsenic	2.3	1.0	1	B7J0512	10/18/2017	10/19/17 09:37	
Barium	20	1.0	1	B7J0512	10/18/2017	10/19/17 09:37	
Beryllium	N	1.0	1	B7J0512	10/18/2017	10/19/17 09:37	
Cadmium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:37	
Chromium	11	1.0	1	B7J0512	10/18/2017	10/19/17 09:37	
Cobalt	5.3	1.0	1	B7J0512	10/18/2017	10/19/17 09:37	
Copper	8.6	2.0	1	B7J0512	10/18/2017	10/19/17 09:37	
Lead	5.5	1.0	1	B7J0512	10/18/2017	10/19/17 09:37	
Molybdenum	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:37	
Nickel	8.7	1.0	1	B7J0512	10/18/2017	10/19/17 09:37	
Selenium	N	1.0	1	B7J0512	10/18/2017	10/19/17 09:37	
Silver	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:37	
Thallium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:37	
Vanadium	19	1.0	1	B7J0512	10/18/2017	10/19/17 09:37	
Zinc	76	1.0	1	B7J0512	10/18/2017	10/19/17 09:37	

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A						,	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0517	10/18/2017	10/19/17 12:41	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0337	10/14/2017	10/14/17 12:30	
Surrogate: 4-Bromofluorobenzene 113	15 %	50 - 138		B7J0337	10/14/2017	10/14/17 12:30	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						T T	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	11	1.0	1	B7J0525	10/18/2017	10/19/17 05:54	
ORO	21	1.0	1	B7J0525	10/18/2017	10/19/17 05:54	

Page 33 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB22-0.5

Lab ID: 1703653-10

Diesel Range Organics by EPA 8015B

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrosate: n-Terphemyl	91.8%	38 - 145		B7J0525	10/18/2017	10/19/17 05:54	

Analyst: TKT

3275 Walnut Avenue, Signal Hill, CA 90755 • Tel: 562-989-4045 • Fax: 562-989-4040 • www.atlglobal.com Page 34 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB22-2.5 Lab ID: 1703653-11

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0512	10/18/2017	10/19/17 09:38	
Arsenic	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:38	
Barium	69	1.0	1	B7J0512	10/18/2017	10/19/17 09:38	
Beryllium	N	1.0	1	B7J0512	10/18/2017	10/19/17 09:38	
Cadmium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:38	
Chromium	15	1.0	1	B7J0512	10/18/2017	10/19/17 09:38	
Cobalt	7.1	1.0	1	B7J0512	10/18/2017	10/19/17 09:38	
Copper	12	2.0	1	B7J0512	10/18/2017	10/19/17 09:38	
Lead	1.3	1.0	1	B7J0512	10/18/2017	10/19/17 09:38	
Molybdenum	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:38	
Nickel	11	1.0	1	B7J0512	10/18/2017	10/19/17 09:38	
Selenium	N	1.0	1	B7J0512	10/18/2017	10/19/17 09:38	
Silver	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:38	
Thallium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:38	
Vanadium	23	1.0	1	B7J0512	10/18/2017	10/19/17 09:38	
Zinc	40	1.0	1	B7J0512	10/18/2017	10/19/17 09:38	

◀
7
7
À
r) EPA 7471A
Ξ
9
Vapor)
>
핕
<u></u>
A (Cold Va
¥
by AA
á
Ę
3
lercury

Mercury by AA (Cold Vapor) EPA 7471A							Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.17	0.10	1	B7J0517	10/18/2017	10/19/17 12:43	

Analyst: VW

Gasoline Range Organics by EPA 8015B (Modified)

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0337	B7J0337 10/14/2017	10/14/17 12:49	
Surrogate: 4-Bromoftuorobenzene	11 %	50 - 138		B7J0337	10/14/2017	10/14/17 12:49	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						1	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	9.8	1.0	1	B7J0525	10/18/2017	10/19/17 03:20	
ORO	10	1.0	1	B7J0525	10/18/2017	10/19/17 03:20	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB22-2.5

Diesel Range Organics by EPA 8015B

Lab ID: 1703653-11

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: p-Terphenyl	133 %	38 - 145		B7J0525	10/18/2017	10/19/17 03:20	

Analyst: TKT

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB22-5.0 Lab ID: 1703653-12

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0512	10/18/2017	10/19/17 09:39	
Arsenic	1.7	1.0	1	B7J0512	10/18/2017	10/19/17 09:39	
Barium	19	1.0	1	B7J0512	10/18/2017	10/19/17 09:39	
Beryllium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:39	
Cadmium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:39	
Chromium	4.1	1.0	1	B7J0512	10/18/2017	10/19/17 09:39	
Cobalt	2.1	1.0	1	B7J0512	10/18/2017	10/19/17 09:39	
Copper	2.5	2.0	1	B7J0512	10/18/2017	10/19/17 09:39	
Lead	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:39	
Molybdenum	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:39	
Nickel	2.9	1.0	1	B7J0512	10/18/2017	10/19/17 09:39	
Selenium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:39	
Silver	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:39	
Thallium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:39	
Vanadium	7.2	1.0	1	B7J0512	10/18/2017	10/19/17 09:39	
Zinc	10	1.0	1	B7J0512	10/18/2017	10/19/17 09:39	

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A						1	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0517	10/18/2017	10/19/17 12:44	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0337	B7J0337 10/14/2017	10/14/17 13:07	
Surrogate: 4-Bromofluorobenzene 107	% 201	50 - 138		B7J0337	10/14/2017	10/14/17 13:07	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	9.6	1.0	1	B7J0525	10/18/2017	10/19/17 01:54	
ORO	9.2	1.0	1	B7J0525	10/18/2017	10/19/17 01:54	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB22-5.0

Lab ID: 1703653-12

Diesel Range Organics by EPA 8015B

Notes 10/19/17 01:54 Date/Time Analyzed 10/18/2017 Prepared B7J0525 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result % 8.06 Surrogate: p-Terphenyl Analyte

Analyst: TKT

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB27-0.5 Lab ID: 1703653-13

Title 22 Metals by ICP-AES EPA 6010B

Analyst: PT

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0914	10/31/2017	11/01/17 13:07	
Arsenic	4.0	1.0	1	B7J0914	10/31/2017	11/01/17 13:07	
Barium	86	1.0	1	B7J0914	10/31/2017	11/01/17 13:07	
Beryllium	ND	1.0	1	B7J0914	10/31/2017	11/01/17 13:07	
Cadmium	N	1.0	1	B7J0914	10/31/2017	11/01/17 13:07	
Chromium	18	1.0	1	B7J0914	10/31/2017	11/01/17 13:07	
Cobalt	8.7	1.0	1	B7J0914	10/31/2017	11/01/17 13:07	
Copper	28	2.0	1	B7J0914	10/31/2017	11/01/17 13:07	
Lead	130	1.0	1	B7J0914	10/31/2017	11/01/17 13:07	
Molybdenum	ND	1.0	1	B7J0914	10/31/2017	11/01/17 13:07	
Nickel	15	1.0	1	B7J0914	10/31/2017	11/01/17 13:07	
Selenium	ND	1.0	1	B7J0914	10/31/2017	11/01/17 13:07	
Silver	ND	1.0	1	B7J0914	10/31/2017	11/01/17 13:07	
Thallium	ND	1.0	1	B7J0914	10/31/2017	11/01/17 13:07	
Vanadium	32	1.0	1	B7J0914	10/31/2017	11/01/17 13:07	
Zinc	120	1.0	-	B7J0914	10/31/2017	11/01/17 13:07	
TCLP Metals by ICP-AES EPA 6010B							Analyst: GO

	Result	PQL				Date/Time	
Analyte	(mg/L)	(mg/L)	Dilution	Batch	Prepared	Analyzed	Notes
Lead	0.33	0.25	5	B7J0818	10/27/2017	10/27/17 17:56	5 D1

STLC Metals by ICP-AES by EPA 6010B

Analyst: GO

	Result	PQL				Date/Time	
Analyte	(mg/L)	(mg/L)	Dilution	Batch	Prepared	Analyzed	Notes
Lead	1.9	1.0	20	B7K0042	11/02/2017	11/02/17 11:37 DI	DI
Mercury by AA (Cold Vapor) EPA 7471A						V	Analyst: KEK

Mercury by AA (Cold Vapor) EPA 7471A

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0517	10/18/2017	10/19/17 12:46	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB27-0.5

Lab ID: 1703653-13

Gasoline Range Organics by EPA 8015B (Modified)	A 8015B (Modified	(
	Result	PQL				Date/Time
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed
Gasoline Range Organics	ND	1.0	1	B7J0337	10/14/2017	B7J0337 10/14/2017 10/14/17 13:26
Surrogate: 4-Bromofluorobenzene	108 %	50 - 138		B7J0337	10/14/2017	10/14/17 13:26

Analyst: VW

Notes

Diesel Range Organics by EPA 8015B						,	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	41	5.0	5	B7J0525	10/18/2017	10/19/17 05:19	
ORO	80	5.0	5	B7J0525	10/18/2017	10/19/17 05:19	
Surrogate: p-Terphenyl	132 %	38 - 145		B7J0525	10/18/2017	10/19/17 05:19	

Page 40 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB27-2.5

Lab ID: 1703653-14

Title 22 Metals by ICP-AES EPA 6010B	8						Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0512	10/18/2017	10/19/17 09:42	
Arsenic	2.1	1.0	1	B7J0512	10/18/2017	10/19/17 09:42	
Barium	43	1.0	1	B7J0512	10/18/2017	10/19/17 09:42	
Beryllium	N	1.0	1	B7J0512	10/18/2017	10/19/17 09:42	
Cadmium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:42	
Chromium	9.4	1.0	-	B7J0512	10/18/2017	10/19/17 09:42	
Cobalt	5.5	1.0	-	B7J0512	10/18/2017	10/19/17 09:42	
Copper	6.5	2.0	-	B7J0512	10/18/2017	10/19/17 09:42	
Lead	N	1.0	1	B7J0512	10/18/2017	10/19/17 09:42	
Molybdenum	N	1.0	1	B7J0512	10/18/2017	10/19/17 09:42	
Nickel	7.1	1.0	1	B7J0512	10/18/2017	10/19/17 09:42	
Selenium	N QN	1.0	1	B7J0512	10/18/2017	10/19/17 09:42	
Silver	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:42	
Thallium	N	1.0	-	B7J0512	10/18/2017	10/19/17 09:42	
Vanadium	16	1.0	1	B7J0512	10/18/2017	10/19/17 09:42	
Zinc	26	1.0	1	B7J0512	10/18/2017	10/19/17 09:42	
Mercury by AA (Cold Vapor) EPA 7471A	V					,	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	-	B7J0517	10/18/2017	10/19/17 12:48	
Gasoline Range Organics by EPA 8015B (Modified)	B (Modified)						Analyst: VW
Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
	(6-6-)	(8-8-)			1		
Gasoline Range Organics	ND	1.0	1	B7J0337	10/14/2017	10/14/17 13:44	
Surrogate: 4-Bromofluorobenzene 112 %	%	50 - 138		B7J0337	10/14/2017	10/14/17 13:44	
Diesel Range Organics by EPA 8015B							Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	9.5	1.0	1	B7J0525	10/18/2017	10/19/17 03:37	
ORO	11	1.0	-	B7J0525	10/18/2017	10/19/17 03:37	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB27-2.5

Lab ID: 1703653-14

Diesel Range Organics by EPA 8015B

Analyst: TKT

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrocate: n-Ternhem!	44 %	38 - 145		B710525	10/18/2017	10/19/17 03-37	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB27-5.0 Lab ID: 1703653-15

Title 22 Metals by ICP-AES EPA 6010B

THE 22 METERS BY ICI TAKES ELEK VOLOB							Allanyst.
	Result	PQL				Date/Time	
Analyte (1	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0512	10/18/2017	10/19/17 09:43	
Arsenic	1:1	1.0	1	B7J0512	10/18/2017	10/19/17 09:43	
Barium	16	1.0	1	B7J0512	10/18/2017	10/19/17 09:43	
Beryllium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:43	
Cadmium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:43	
Chromium	3.8	1.0	1	B7J0512	10/18/2017	10/19/17 09:43	
Cobalt	1.8	1.0	1	B7J0512	10/18/2017	10/19/17 09:43	
Copper	ND	2.0	1	B7J0512	10/18/2017	10/19/17 09:43	
Lead	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:43	
Molybdenum	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:43	
Nickel	2.4	1.0	1	B7J0512	10/18/2017	10/19/17 09:43	
Selenium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:43	
Silver	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:43	
Thallium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:43	
Vanadium	6.7	1.0	1	B7J0512	10/18/2017	10/19/17 09:43	
Zinc	5.6	1.0	1	B7J0512	10/18/2017	10/19/17 09:43	

Mercury by AA (Cold Vapor) EPA 7471A

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	П	B7J0517	10/18/2017	10/19/17 12:50	

Analyst: KEK

Analyst: VW

Gasoline Range Organics by EPA 8015B (Modified)

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0337	B7J0337 10/14/2017	10/14/17 14:02	
Surrogate: 4-Bromofluorobenzene	%	50 - 138		B7J0337	10/14/2017	10/14/17 14:02	

Diesel Range Organics by EPA 8015B

Analyst: TKT

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	8.1	1.0	1	B7J0525	10/18/2017	10/19/17 02:11	
ORO	8.4	1.0	1	B7J0525	10/18/2017	10/19/17 02:11	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB27-5.0

Lab ID: 1703653-15

PA 8015B
y EPA
ganics b
e Or
Diesel Rang

Notes 10/19/17 02:11 Date/Time Analyzed 10/18/2017 Prepared B7J0525 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result % 9II Surrogate: p-Terphenyl Analyte

Analyst: TKT

3275 Walnut Avenue, Signal Hill, CA 90755 • Tel: 562-989-4045 • Fax: 562-989-4040 • www.atlglobal.com Page 44 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB30-0.5 Lab ID: 1703653-16

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0512	10/18/2017	10/19/17 09:44	
Arsenic	1.6	1.0	1	B7J0512	10/18/2017	10/19/17 09:44	
Barium	48	1.0	1	B7J0512	10/18/2017	10/19/17 09:44	
Beryllium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:44	
Cadmium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:44	
Chromium	10	1.0	1	B7J0512	10/18/2017	10/19/17 09:44	
Cobalt	4.6	1.0	1	B7J0512	10/18/2017	10/19/17 09:44	
Copper	8.3	2.0	1	B7J0512	10/18/2017	10/19/17 09:44	
Lead	5.0	1.0	1	B7J0512	10/18/2017	10/19/17 09:44	
Molybdenum	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:44	
Nickel	6.5	1.0	1	B7J0512	10/18/2017	10/19/17 09:44	
Selenium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:44	
Silver	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:44	
Thallium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:44	
Vanadium	18	1.0	1	B7J0512	10/18/2017	10/19/17 09:44	
Zinc	56	1.0	1	B7J0512	10/18/2017	10/19/17 09:44	

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A	1					A	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0517	10/18/2017	10/19/17 12:56	

Gasoline Range Organics by EPA 8015B (Modified)

Gasoline Range Organics by EPA 8	EPA 8015B (Modified)						Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0337	10/14/2017	B7J0337 10/14/2017 10/14/17 14:21	
Surrogate: 4-Bromofluorobenzene	115 %	50 - 138		B7J0337	10/14/2017	10/14/17 14:21	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	32	1.0	1	B7J0525	10/18/2017	10/19/17 04:11	
ORO	36	1.0	1	B7J0525	10/18/2017	10/19/17 04:11	

Page 45 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB30-0.5

Lab ID: 1703653-16

EPA 8015B	
EPA	
ics by 1	
Jrganics	
lange (
iesel R	

	Result	PQL				Date/Time		
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes	
Surrogate: p-Terphenyl	%0%	38 - 145		B7J0525	10/18/2017	10/19/17 04:11		

Analyst: TKT

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB30-2.5 Lab ID: 1703653-17

Title 22 Metals by ICP-AES EPA 6010B	-						Analyst: GO
-	Result	JOH	: :		-	Date/Time	,
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0512	10/18/2017	10/19/17 09:48	
Arsenic	1.6	1.0	1	B7J0512	10/18/2017	10/19/17 09:48	
Barium	83	1.0	1	B7J0512	10/18/2017	10/19/17 09:48	
Beryllium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:48	
Cadmium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:48	
Chromium	16	1.0	1	B7J0512	10/18/2017	10/19/17 09:48	
Cobalt	5.4	1.0	1	B7J0512	10/18/2017	10/19/17 09:48	
Copper	91	2.0	1	B7J0512	10/18/2017	10/19/17 09:48	
Lead	180	1.0	1	B7J0512	10/18/2017	10/19/17 09:48	
Molybdenum	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:48	
Nickel	24	1.0	1	B7J0512	10/18/2017	10/19/17 09:48	
Selenium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:48	
Silver	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:48	
Thallium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:48	
Vanadium	38	1.0	1	B7J0512	10/18/2017	10/19/17 09:48	
Zinc	130	1.0	1	B7J0512	10/18/2017	10/19/17 09:48	
TCLP Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/L)	(mg/L)	Dilution	Batch	Prepared	Analyzed	Notes
Lead	ND	0.25	5	B7J0818	10/27/2017	10/27/17 18:01	DI
STLC Metals by ICP-AES by EPA 6010B	<u>B</u>						Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/L)	(mg/L)	Dilution	Batch	Prepared	Analyzed	Notes
Lead	2.2	1.0	20	B7J0849	10/30/2017	10/30/17 14:32	D1
Mercury by AA (Cold Vapor) EPA 7471A	A					,	Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.25	0.10	-	B7J0517	10/18/2017	10/19/17 12:58	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB30-2.5

Lab ID: 1703653-17

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

	Result	PQL			-	Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0337	10/14/2017	10/14/17 14:39	
Surrogate: 4-Bromofluorobenzene 65	%8%	50 - 138		B7J0337	10/14/2017	10/14/17 14:39	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B							Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	220	5.0	5	B7J0525	10/18/2017	10/19/17 06:28	
ORO	450	5.0	5	B7J0525	10/18/2017	10/19/17 06:28	
Surrogate: p-Terphenyl	138 %	38 - 145		B7J0525	10/18/2017	10/19/17 06:28	

Page 48 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB30-5.0 Lab ID: 1703653-18

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0512	10/18/2017	10/19/17 09:49	
Arsenic	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:49	
Barium	4	1.0	1	B7J0512	10/18/2017	10/19/17 09:49	
Beryllium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:49	
Cadmium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:49	
Chromium	10	1.0	1	B7J0512	10/18/2017	10/19/17 09:49	
Cobalt	7.0	1.0	1	B7J0512	10/18/2017	10/19/17 09:49	
Copper	8.1	2.0	1	B7J0512	10/18/2017	10/19/17 09:49	
Lead	3.0	1.0	1	B7J0512	10/18/2017	10/19/17 09:49	
Molybdenum	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:49	
Nickel	7.4	1.0	1	B7J0512	10/18/2017	10/19/17 09:49	
Selenium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:49	
Silver	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:49	
Thallium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:49	
Vanadium	18	1.0	1	B7J0512	10/18/2017	10/19/17 09:49	
Zinc	29	1.0	1	B7J0512	10/18/2017	10/19/17 09:49	

∢
471
EPA 7471A
(E)
Vapor)
~
AA (Cold Va
۳
' AA (
' by /
fercury

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0517	10/18/2017	10/19/17 12:59	

Analyst: KEK

Analyst: VW

Gasoline Range Organics by EPA 8015B (Modified)

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0337	10/14/2017	10/14/2017 10/14/17 14:58	
Surrogate: 4-Bromoftuorobenzene 10	105 %	50 - 138		B7J0337	10/14/2017	10/14/17 14:58	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						†	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	9.2	1.0	1	B7J0525	10/18/2017	10/19/17 02:28	
ORO	13	1.0	1	B7J0525	10/18/2017	10/19/17 02:28	

Page 49 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB30-5.0

Lab ID: 1703653-18

Diesel Range Organics by EPA 8015B

Notes 10/19/17 02:28 Date/Time Analyzed 10/18/2017 Prepared B7J0525 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result 118 % Surrogate: p-Terphenyl Analyte

Analyst: TKT

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB32-0.5 Lab ID: 1703653-23

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
					•		
Antimony	ND	2.0	1	B7J0512	10/18/2017	10/19/17 09:50	
Arsenic	3.7	1.0	1	B7J0512	10/18/2017	10/19/17 09:50	
Barium	09	1.0	1	B7J0512	10/18/2017	10/19/17 09:50	
Beryllium	N	1.0	1	B7J0512	10/18/2017	10/19/17 09:50	
Cadmium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:50	
Chromium	13	1.0	1	B7J0512	10/18/2017	10/19/17 09:50	
Cobalt	6.1	1.0	1	B7J0512	10/18/2017	10/19/17 09:50	
Copper	29	2.0	1	B7J0512	10/18/2017	10/19/17 09:50	
Lead	7.5	1.0	1	B7J0512	10/18/2017	10/19/17 09:50	
Molybdenum	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:50	
Nickel	11	1.0	1	B7J0512	10/18/2017	10/19/17 09:50	
Selenium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:50	
Silver	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:50	
Thallium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:50	
Vanadium	22	1.0	1	B7J0512	10/18/2017	10/19/17 09:50	
Zinc	48	1.0	-	B7J0512	10/18/2017	10/19/17 09:50	

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A	1					7	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0517	10/18/2017	10/19/17 13:01	

Gasoline Range Organics by EPA 8015B (Modified)

Gasoline Range Organics by EPA 8015	EPA 8015B (Modified)						Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND 1.0	1.0	1	B7J0349	10/14/2017	B7J0349 10/14/2017 10/14/17 17:44	
Surrogate: 4-Bromofluorobenzene	117 %	50 - 138		B7J0349	10/14/2017	B7J0349 10/14/2017 10/14/1717:44	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						1	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	170	25	25	B7J0525	10/18/2017	10/19/17 05:02	
ORO	360	25	25	B7J0525	10/18/2017	10/19/17 05:02	

Page 51 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB32-0.5

Diesel Range Organics by EPA 8015B

Lab ID: 1703653-23

Result PQL (mg/kg) (mg/kg))L /kg) Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: n-Ternhemy 9% 38 - 18	38 - 145	B7J0525	10/18/2017	10/19/17 05:02	S4

Analyst: TKT

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB32-2.5 Lab ID: 1703653-24

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0512	10/18/2017	10/19/17 09:51	
Arsenic	1.6	1.0	1	B7J0512	10/18/2017	10/19/17 09:51	
Barium	28	1.0	1	B7J0512	10/18/2017	10/19/17 09:51	
Beryllium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:51	
Cadmium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:51	
Chromium	5.9	1.0	1	B7J0512	10/18/2017	10/19/17 09:51	
Cobalt	3.0	1.0	1	B7J0512	10/18/2017	10/19/17 09:51	
Copper	3.3	2.0	1	B7J0512	10/18/2017	10/19/17 09:51	
Lead	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:51	
Molybdenum	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:51	
Nickel	4.4	1.0	1	B7J0512	10/18/2017	10/19/17 09:51	
Selenium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:51	
Silver	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:51	
Thallium	ND	1.0	1	B7J0512	10/18/2017	10/19/17 09:51	
Vanadium	10	1.0	1	B7J0512	10/18/2017	10/19/17 09:51	
Zinc	19	1.0	1	B7J0512	10/18/2017	10/19/17 09:51	

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A						1	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0517	10/18/2017	10/19/17 13:03	

Gasoline Range Organics by EPA 8015B (Modified)

Gasoline Range Organics by EPA 8	EPA 8015B (Modified)	(Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0349	B7J0349 10/14/2017	10/14/17 18:02	
Surrogate: 4-Bromofluorobenzene	117 %	50 - 138		B7J0349	10/14/2017	10/14/17 18:02	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						†	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	8.9	1.0	1	B7J0525	10/18/2017	10/19/17 03:54	
ORO	9.5	1.0	1	B7J0525	10/18/2017	10/19/17 03:54	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB32-2.5

Lab ID: 1703653-24

Diesel Range Organics by EPA 8015B

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: p-Terphenyl 12	129 %	38 - 145		B7I0525	10/18/2017	10/19/17 03:54	

Analyst: TKT

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB32-5.0 Lab ID: 1703653-25

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0513	10/18/2017	10/19/17 09:55	
Arsenic	1.7	1.0	1	B7J0513	10/18/2017	10/19/17 09:55	
Barium	63	1.0	1	B7J0513	10/18/2017	10/19/17 09:55	
Beryllium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 09:55	
Cadmium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 09:55	
Chromium	11	1.0	1	B7J0513	10/18/2017	10/19/17 09:55	
Cobalt	9.9	1.0	1	B7J0513	10/18/2017	10/19/17 09:55	
Copper	7.6	2.0	1	B7J0513	10/18/2017	10/19/17 09:55	
Lead	ND	1.0	1	B7J0513	10/18/2017	10/19/17 09:55	
Molybdenum	ND	1.0	1	B7J0513	10/18/2017	10/19/17 09:55	
Nickel	9.1	1.0	1	B7J0513	10/18/2017	10/19/17 09:55	
Selenium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 09:55	
Silver	ND	1.0	1	B7J0513	10/18/2017	10/19/17 09:55	
Thallium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 09:55	
Vanadium	70	1.0	1	B7J0513	10/18/2017	10/19/17 09:55	
Zinc	32	1.0	1	B7J0513	10/18/2017	10/19/17 09:55	

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A	1					F	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0518	B7J0518 10/18/2017	10/19/17 13:09	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0349	B7J0349 10/14/2017	10/14/17 18:21	
Surrogate: 4-Bromofluorobenzene	% 0.68	50 - 138		B7J0349	10/14/2017	10/14/17 18:21	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	13	1.0	1	B7J0547	10/18/2017	10/19/17 11:46	
ORO	12	1.0	1	B7J0547	10/18/2017	10/19/17 11:46	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB32-5.0

Lab ID: 1703653-25

В
A 8015B
by EPA
ganics
ige Or
el Rang
Diese

Notes 10/19/17 11:46 Analyzed Date/Time 10/18/2017 Prepared B7J0547 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result % 6II Surrogate: p-Terphenyl Analyte

Analyst: TKT

3275 Walnut Avenue, Signal Hill, CA 90755 • Tel: 562-989-4045 • Fax: 562-989-4040 • www.adglobal.com Page 56 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB33-0.5 Lab ID: 1703653-26

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0513	10/18/2017	10/19/17 09:58	
Arsenic	1.7	1.0	1	B7J0513	10/18/2017	10/19/17 09:58	
Barium	4	1.0	1	B7J0513	10/18/2017	10/19/17 09:58	
Beryllium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 09:58	
Cadmium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 09:58	
Chromium	13	1.0	1	B7J0513	10/18/2017	10/19/17 09:58	
Cobalt	6.2	1.0	1	B7J0513	10/18/2017	10/19/17 09:58	
Copper	6.1	2.0	1	B7J0513	10/18/2017	10/19/17 09:58	
Lead	1.5	1.0	1	B7J0513	10/18/2017	10/19/17 09:58	
Molybdenum	ND	1.0	1	B7J0513	10/18/2017	10/19/17 09:58	
Nickel	9.3	1.0	1	B7J0513	10/18/2017	10/19/17 09:58	
Selenium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 09:58	
Silver	ND	1.0	1	B7J0513	10/18/2017	10/19/17 09:58	
Thallium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 09:58	
Vanadium	22	1.0	1	B7J0513	10/18/2017	10/19/17 09:58	
Zinc	34	1.0	1	B7J0513	10/18/2017	10/19/17 09:58	

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A						+	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0518	10/18/2017	10/19/17 13:20	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
	(99)	(88)			no malo v		
Gasoline Range Organics	ND	1.0	1	B7J0349	10/14/2017	B7J0349 10/14/2017 10/14/17 18:39	
Surrogate: 4-Bromofluorobenzene	13 %	50 - 138		B7J0349	10/14/2017	10/14/17 18:39	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						f F	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	78	10	10	B7J0547	10/18/2017	10/19/17 15:15	
ORO	160	10	10	B7J0547	10/18/2017	10/19/17 15:15	

Page 57 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB33-0.5

Lab ID: 1703653-26

015B	
∞	
s by EF	
Organic	
Range	
Diesel	

Analyst: TKT

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: p-Terphenyl 0	%(38 - 145		B7J0547	10/18/2017	10/19/17 15:15	S4

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB33-2.5 Lab ID: 1703653-27

Title 22 Metals by ICP-AES EPA 6010B

Analyst: GO

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0513	10/18/2017	10/19/17 10:02	
Arsenic	6.9	1.0	1	B7J0513	10/18/2017	10/19/17 10:02	
Barium	73	1.0	1	B7J0513	10/18/2017	10/19/17 10:02	
Beryllium	N	1.0	1	B7J0513	10/18/2017	10/19/17 10:02	
Cadmium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:02	
Chromium	14	1.0	1	B7J0513	10/18/2017	10/19/17 10:02	
Cobalt	9.0	1.0	1	B7J0513	10/18/2017	10/19/17 10:02	
Copper	230	2.0	1	B7J0513	10/18/2017	10/19/17 10:02	
Lead	110	1.0	1	B7J0513	10/18/2017	10/19/17 10:02	
Molybdenum	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:02	
Nickel	20	1.0	1	B7J0513	10/18/2017	10/19/17 10:02	
Selenium	N	1.0	1	B7J0513	10/18/2017	10/19/17 10:02	
Silver	N	1.0	1	B7J0513	10/18/2017	10/19/17 10:02	
Thallium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:02	
Vanadium	22	1.0	1	B7J0513	10/18/2017	10/19/17 10:02	
Zinc	790	1.0	_	B7J0513	10/18/2017	10/19/17 10:02	
TCLP Metals by ICP-AES EPA 6010B							Analyst: GO
Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes

	Result	PQL				Date/Time	
Analyte	(mg/L)	(mg/L)	Dilution	Batch	Prepared	Analyzed	Notes
Lead	ND	0.25	5	B7J0818	10/27/2017	10/27/17 18:02	DI

STLC Metals by ICP-AES by EPA 6010B

Analyst: GO

	Result	PQL	:			Date/Time	
Analyte	(mg/L)	(mg/L)	Dilution	Batch	Prepared	Analyzed	Notes
Lead	11	1.0	20	B7J0849	10/30/2017	10/30/17 12:27	DI
Mercury by AA (Cold Vapor) EPA 7471A						A	Analyst: KEK

Mercury by AA (Cold Vapor) EPA 7471A

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.23	0.10	1	B7J0518	10/18/2017	10/19/17 13:22	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB33-2.5 Lab ID: 1703653-27

(Modified)	
A 8015B (N	
s by EPA	
)rganic	
Range C	
soline F	

Analyst: VW

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0349	10/14/2017	10/14/17 18:58	
Surrogate: 4-Bromofluorobenzene	% 601	50 - 138		B7J0349	10/14/2017	10/14/17 18:58	
Diesel Range Organics by EPA 8015B	015B					Ì	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	2500	200	100	B7J0547	10/18/2017	10/19/17 16:25	
ORO	0089	200	100	B7J0547	10/18/2017	10/19/17 16:25	
Surrogate: p-Terphenyl	%0	38 - 145		B7J0547	10/18/2017	10/19/17 16:25	S4
Polychlorinated Biphenyls by EP.	by EPA 8082						Analyst: CO/
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Aroclor 1016	ON	32	2	B7J0770	10/25/2017	10/25/17 23:26	
Aroclor 1221	ND	32	2	B7J0770	10/25/2017	10/25/17 23:26	
Aroclor 1232	ND	32	2	B7J0770	10/25/2017	10/25/17 23:26	
Aroclor 1242	ND	32	2	B7J0770	10/25/2017	10/25/17 23:26	
Aroclor 1248	ND	32	2	B7J0770	10/25/2017	10/25/17 23:26	
Aroclor 1254	ND	32	2	B7J0770	10/25/2017	10/25/17 23:26	
Aroclor 1260	ND	32	2	B7J0770	10/25/2017	10/25/17 23:26	
Aroclor 1262	ND	32	2	B7J0770	10/25/2017	10/25/17 23:26	
Aroclor 1268	ND	32	2	B7J0770	10/25/2017	10/25/17 23:26	
Surrogate: Decachlorobiphenyl	29.5 %	18 - 136		B7J0770	10/25/2017	10/25/17 23:26	
Surrogate: Tetrachloro-m-xylene	58.9%	30 - 130		B7J0770	10/25/2017	10/25/17 23:26	
Volatile Organic Compounds by EPA 5035/EPA 8260B	EPA 5035/EPA 820	50B					Analyst: AG
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
1,1,1-Trichloroethane	ND	4.7	-1	B7J0791	10/26/2017	10/26/17 16:25	
1,1,2,2-Tetrachloroethane	NO	4.7	_	B7J0791	10/26/2017	10/26/17 16:25	
1,1,2-Trichloroethane	Q §	7. 4		B7J0791	10/26/2017	10/26/17 16:25	
I, I-Dichloroethane	N	4.7	-	B/10/91	10/26/2017	10/26/17 16:25	

Page 60 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB33-2.5

Lab ID: 1703653-27

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
1,1-Dichloroethene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
1,1-Dichloropropene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
1,2,3-Trichloropropane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
1,2,3-Trichlorobenzene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
1,2,4-Trichlorobenzene	ND	4.7	_	B7J0791	10/26/2017	10/26/17 16:25	
1,2,4-Trimethylbenzene	ND	4.7		B7J0791	10/26/2017	10/26/17 16:25	
1,2-Dibromo-3-chloropropane	ND	9.4	_	B7J0791	10/26/2017	10/26/17 16:25	
1,2-Dibromoethane	ND	4.7	_	B7J0791	10/26/2017	10/26/17 16:25	
1,2-Dichlorobenzene	ND	4.7	-	B7J0791	10/26/2017	10/26/17 16:25	
1,2-Dichloroethane	ND	4.7	_	B7J0791	10/26/2017	10/26/17 16:25	
1,2-Dichloropropane	ND	4.7	-	B7J0791	10/26/2017	10/26/17 16:25	
1,3,5-Trimethylbenzene	ND	4.7	-	B7J0791	10/26/2017	10/26/17 16:25	
1,3-Dichlorobenzene	ND	4.7	_	B7J0791	10/26/2017	10/26/17 16:25	
1,3-Dichloropropane	ND	4.7	_	B7J0791	10/26/2017	10/26/17 16:25	
1,4-Dichlorobenzene	ND	4.7	_	B7J0791	10/26/2017	10/26/17 16:25	
2,2-Dichloropropane	ND	4.7		B7J0791	10/26/2017	10/26/17 16:25	
2-Chlorotoluene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
4-Chlorotoluene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
4-Isopropyltoluene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
Benzene	ND	4.7	-	B7J0791	10/26/2017	10/26/17 16:25	
Bromobenzene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
Bromochloromethane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
Bromodichloromethane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
Bromoform	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
Bromomethane	ND	4.7	_	B7J0791	10/26/2017	10/26/17 16:25	
Carbon disulfide	ND	4.7	_	B7J0791	10/26/2017	10/26/17 16:25	
Carbon tetrachloride	N Q	4.7	-	B7J0791	10/26/2017	10/26/17 16:25	
Chlorobenzene	ND	4.7	П	B7J0791	10/26/2017	10/26/17 16:25	
Chloroethane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
Chloroform	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
Chloromethane	ND	4.7	П	B7J0791	10/26/2017	10/26/17 16:25	
cis-1,2-Dichloroethene	ND	4.7	-	B7J0791	10/26/2017	10/26/17 16:25	
cis-1,3-Dichloropropene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
Di-isopropyl ether	NO	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
Dibromochloromethane	N	4.7		B7J0791	10/26/2017	10/26/17 16:25	
Dibromomethane	N Q	4.7	-	B7J0791	10/26/2017	10/26/17 16:25	
Dichlorodifluoromethane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	

Page 61 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB33-2.5 Lab ID: 1703653-27

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Ethyl Acetate	ND	47	1	B7J0791	10/26/2017	10/26/17 16:25	
Ethyl Ether	ND	47	1	B7J0791	10/26/2017	10/26/17 16:25	
Ethyl tert-butyl ether	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
Ethylbenzene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
Freon-113	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
Hexachlorobutadiene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
Isopropylbenzene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
m,p-Xylene	ND	9.4	1	B7J0791	10/26/2017	10/26/17 16:25	
Methylene chloride	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
MTBE	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
n-Butylbenzene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
n-Propylbenzene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
Naphthalene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
o-Xylene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
sec-Butylbenzene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
Styrene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
tert-Amyl methyl ether	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
tert-Butanol	ND	94	1	B7J0791	10/26/2017	10/26/17 16:25	
tert-Butylbenzene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
Tetrachloroethene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
Toluene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
trans-1,2-Dichloroethene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
trans-1,3-Dichloropropene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
Trichloroethene	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
Trichlorofluoromethane	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
Vinyl acetate	ND	47	1	B7J0791	10/26/2017	10/26/17 16:25	
Vinyl chloride	ND	4.7	1	B7J0791	10/26/2017	10/26/17 16:25	
Surrogate: 1,2-Dichloroethane-d4	103 %	32 - 140		B7J0791	10/26/2017	10/26/17 16:25	
Surrogate: 4-Bromofluorobenzene	104 %	68 - 131		B7J0791	10/26/2017	10/26/17 16:25	
Surrogate: Dibromofluoromethane	94.4%	49 - 134		B7J0791	10/26/2017	10/26/17 16:25	
Surrogate: Toluene-d8	103 %	75 - 132		B7J0791	10/26/2017	10/26/17 16:25	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB33-2.5

Lab ID: 1703653-27

y EPA 8270/SIM
EPA 82
y I
ompounds b
Organic C
Ö
emivolatile
Ø

Analyst: SP

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
2-Methylnaphthalene	ND	1000	200	B7J0764	10/25/2017	10/27/17 14:28	D1
Acenaphthene	N	1000	200	B7J0764	10/25/2017	10/27/17 14:28	D1
Acenaphthylene	ND	1000	200	B7J0764	10/25/2017	10/27/17 14:28	D1
Anthracene	ND	1000	200	B7J0764	10/25/2017	10/27/17 14:28	D1
Benzo(a)anthracene	ND	1000	200	B7J0764	10/25/2017	10/27/17 14:28	D1
Benzo(a)pyrene	ND	1000	200	B7J0764	10/25/2017	10/27/17 14:28	D1
Benzo(b)fluoranthene	ND	1000	200	B7J0764	10/25/2017	10/27/17 14:28	D1
Benzo(g,h,i)perylene	N	1000	200	B7J0764	10/25/2017	10/27/17 14:28	DI
Benzo(k)fluoranthene	NO	1000	200	B7J0764	10/25/2017	10/27/17 14:28	D1
Chrysene	ND	1000	200	B7J0764	10/25/2017	10/27/17 14:28	D1
Dibenz(a,h)anthracene	N	1000	200	B7J0764	10/25/2017	10/27/17 14:28	DI
Fluoranthene	NO	1000	200	B7J0764	10/25/2017	10/27/17 14:28	D1
Fluorene	ND	1000	200	B7J0764	10/25/2017	10/27/17 14:28	D1
Indeno(1,2,3-cd)pyrene	ND	1000	200	B7J0764	10/25/2017	10/27/17 14:28	D1
Naphthalene	ND	1000	200	B7J0764	10/25/2017	10/27/17 14:28	DI
Phenanthrene	ND	1000	200	B7J0764	10/25/2017	10/27/17 14:28	D1
Pyrene	ND	1000	200	B7J0764	10/25/2017	10/27/17 14:28	D1
Surrogate: 1,2-Dichlorobenzene-d4 0%		29 - 109		B7J0764	10/25/2017	10/27/17 14:28	S4
Surrogate: 2-Fluorobiphenyl 0%		39 - 108		B7J0764	10/25/2017	10/27/17 14:28	S4
Surrogate: Nitrobenzene-d5 0%		0 - 146		B7J0764	10/25/2017	10/27/17 14:28	
Surrogate: 4-Terphenyl-d14		39 - 123		B7J0764	10/25/2017	10/27/17 14:28	S4

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB33-5.0 Lab ID: 1703653-28

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0513	10/18/2017	10/19/17 10:03	
Arsenic	2.0	1.0	1	B7J0513	10/18/2017	10/19/17 10:03	
Barium	55	1.0	1	B7J0513	10/18/2017	10/19/17 10:03	
Beryllium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:03	
Cadmium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:03	
Chromium	7.6	1.0	1	B7J0513	10/18/2017	10/19/17 10:03	
Cobalt	6.1	1.0	1	B7J0513	10/18/2017	10/19/17 10:03	
Copper	7.9	2.0	1	B7J0513	10/18/2017	10/19/17 10:03	
Lead	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:03	
Molybdenum	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:03	
Nickel	8.0	1.0	1	B7J0513	10/18/2017	10/19/17 10:03	
Selenium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:03	
Silver	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:03	
Thallium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:03	
Vanadium	19	1.0	1	B7J0513	10/18/2017	10/19/17 10:03	
Zinc	29	1.0	_	B7J0513	10/18/2017	10/19/17 10:03	

Result PQL Date/Time	(mg/kg) (mg/kg) Dilution Batch Prepared Analyzed	ND 0.10 1 B7J0518 10/18/2017 10/19/17 13:24
	Analyte	Mercury

Mercury by AA (Cold Vapor) EPA 7471A

Analyst: KEK

Notes

Mercury	ND	0.10	1	B7J0518	10/18/2017	10/19/17 13:24	
Gasoline Range Organics by EPA 8015B	EPA 8015B (Modified)						Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0349	10/14/2017	B7J0349 10/14/2017 10/14/17 19:16	
Surrogate: 4-Bromofluorobenzene 113 %	%	50 - 138		B7J0349	10/14/2017	10/14/17 19:16	

Diesel Range Organics by EPA 8015B						,	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	9.0	1.0	1	B7J0547	10/18/2017	10/19/17 10:19	
ORO	8.1	1.0	1	B7J0547	B7J0547 10/18/2017	10/19/17 10:19	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB33-5.0 Lab ID: 1703653-28

Diesel Range Organics by EPA 8015B

Analyst: TKT

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: p-Terphenyl	% 201	38 - 145		B7J0547	10/18/2017	91:01 21/61/01	

Volatile Organic Compounds by EPA 5	ds by EPA 5035/EPA 8260B	0B					Analyst: AG
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
1,1,1-Trichloroethane	ND	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
1,1,2,2-Tetrachloroethane	ND	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
1,1,2-Trichloroethane	N	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
1,1-Dichloroethane	N	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
1,1-Dichloroethene	ND	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
1,1-Dichloropropene	N	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
1,2,3-Trichloropropane	ND	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
1,2,3-Trichlorobenzene	ND	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
1,2,4-Trichlorobenzene	N	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
1,2,4-Trimethylbenzene	ND	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
1,2-Dibromo-3-chloropropane	N	10	1	B7J0791	10/26/2017	10/26/17 16:44	
1,2-Dibromoethane	N QN	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
1,2-Dichlorobenzene	N	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
1,2-Dichloroethane	N	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
1,2-Dichloropropane	N	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
1,3,5-Trimethylbenzene	N	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
1,3-Dichlorobenzene	N	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
1,3-Dichloropropane	N	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
1,4-Dichlorobenzene	N	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
2,2-Dichloropropane	N Q	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
2-Chlorotoluene	N Q	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
4-Chlorotoluene	N	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
4-Isopropyltoluene	N	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
Benzene	N Q	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
Bromobenzene	N	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
Bromochloromethane	N	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
Bromodichloromethane	N	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
Bromoform	ND	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
Bromomethane	ND	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
Carbon disulfide	ND	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB33-5.0 Lab ID: 1703653-28

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

)
Amalasta	Result	PQL	Dilution	D 0404	Decomposed	Date/Time	Notos
Analyte	(gy/gn)	(ng/kg)	Dilution	Daten	riepareu	Alialyzeu	Notes
Carbon tetrachloride	ND	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
Chlorobenzene	ND	5.2	-	B7J0791	10/26/2017	10/26/17 16:44	
Chloroethane	ND	5.2	-	B7J0791	10/26/2017	10/26/17 16:44	
Chloroform	ND	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
Chloromethane	ND	5.2	-	B7J0791	10/26/2017	10/26/17 16:44	
cis-1,2-Dichloroethene	ND	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
cis-1,3-Dichloropropene	ND	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
Di-isopropyl ether	ND	5.2	-	B7J0791	10/26/2017	10/26/17 16:44	
Dibromochloromethane	ND	5.2	-	B7J0791	10/26/2017	10/26/17 16:44	
Dibromomethane	ND	5.2	-	B7J0791	10/26/2017	10/26/17 16:44	
Dichlorodifluoromethane	ND	5.2	-	B7J0791	10/26/2017	10/26/17 16:44	
Ethyl Acetate	ND	52	-	B7J0791	10/26/2017	10/26/17 16:44	
Ethyl Ether	ND	52	-	B7J0791	10/26/2017	10/26/17 16:44	
Ethyl tert-butyl ether	ND	5.2	-	B7J0791	10/26/2017	10/26/17 16:44	
Ethylbenzene	ND	5.2	-	B7J0791	10/26/2017	10/26/17 16:44	
Freon-113	ND	5.2	-	B7J0791	10/26/2017	10/26/17 16:44	
Hexachlorobutadiene	ND	5.2	-	B7J0791	10/26/2017	10/26/17 16:44	
Isopropylbenzene	ND	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
m,p-Xylene	ND	10	1	B7J0791	10/26/2017	10/26/17 16:44	
Methylene chloride	ND	5.2	-	B7J0791	10/26/2017	10/26/17 16:44	
MTBE	ND	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
n-Butylbenzene	ND	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
n-Propylbenzene	ND	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
Naphthalene	ND	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
o-Xylene	ND	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
sec-Butylbenzene	ND	5.2	-	B7J0791	10/26/2017	10/26/17 16:44	
Styrene	ND	5.2	-	B7J0791	10/26/2017	10/26/17 16:44	
tert-Amyl methyl ether	ND	5.2	-	B7J0791	10/26/2017	10/26/17 16:44	
tert-Butanol	ND	100	1	B7J0791	10/26/2017	10/26/17 16:44	
tert-Butylbenzene	ND	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
Tetrachloroethene	ND	5.2	-	B7J0791	10/26/2017	10/26/17 16:44	
Toluene	ND	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
trans-1,2-Dichloroethene	ND	5.2	1	B7J0791	10/26/2017	10/26/17 16:44	
trans-1,3-Dichloropropene	ND	5.2	-	B7J0791	10/26/2017	10/26/17 16:44	
Trichloroethene	ND	5.2	-	B7J0791	10/26/2017	10/26/17 16:44	
Trichlorofluoromethane	ND	5.2	-	B7J0791	10/26/2017	10/26/17 16:44	
Vinyl acetate	ND	52	1	B7J0791	10/26/2017	10/26/17 16:44	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB33-5.0 Lab ID: 1703653-28

Volatile Organic Compounds by EPA 5035/EPA 8260B

Volatile Organic Compounds by EF	by EPA 5035/EPA 8260B	50B					Analyst: AG
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Vinyl chloride	ND	5.2	1	B7J0791	B7J0791 10/26/2017	10/26/17 16:44	
Surrogate: 1,2-Dichloroethane-d4	105 %	32 - 140		B7J0791	10/26/2017	10/26/17 16:44	
Surrogate: 4-Bromofluorobenzene	102 %	68 - 131		B7J0791	10/26/2017	10/26/17 16:44	
Surrogate: Dibromofluoromethane	95.3 %	49 - 134		B7J0791	10/26/2017	10/26/17 16:44	
Surrogate: Toluene-d8	107 %	75 - 132		B7J0791	10/26/2017	10/26/17 16:44	

Z
118/0/ 3
EPA 8 2
by E
spunodu
Ē
rganic
0
Semivolatile

Semivolatile Organic Compounds by EPA 8270/SIM	by EPA 8270/SIN	A					Analyst: SP
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
2-Methylnaphthalene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 11:23	
Acenaphthene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 11:23	
Acenaphthylene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 11:23	
Anthracene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 11:23	
Benzo(a)anthracene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 11:23	
Benzo(a)pyrene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 11:23	
Benzo(b)fluoranthene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 11:23	
Benzo(g,h,i)perylene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 11:23	
Benzo(k)fluoranthene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 11:23	
Chrysene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 11:23	
Dibenz(a,h)anthracene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 11:23	
Fluoranthene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 11:23	
Fluorene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 11:23	
Indeno(1,2,3-cd)pyrene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 11:23	
Naphthalene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 11:23	
Phenanthrene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 11:23	
Pyrene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 11:23	
Surrogate: 1,2-Dichlorobenzene-d4	65.8 %	29 - 109		B7J0764	10/25/2017	10/27/17 11:23	
Surrogate: 2-Fluorobiphenyl	98.2 %	39 - 108		B7J0764	10/25/2017	10/27/17 11:23	
Surrogate: Nitrobenzene-d5	68.2 %	0 - 146		B7J0764	10/25/2017	10/27/17 11:23	
Surrogate: 4-Terphenyl-d14	87.3 %	39 - 123		B7J0764	10/25/2017	10/27/17 11:23	

Page 67 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB31-0.5 Lab ID: 1703653-29

Title 22 Metals by ICP-AES EPA 6010B	

Analyst: GO

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0513	10/18/2017	10/19/17 10:04	
Arsenic	4.3	1.0	1	B7J0513	10/18/2017	10/19/17 10:04	
Barium	83	1.0	1	B7J0513	10/18/2017	10/19/17 10:04	
Beryllium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:04	
Cadmium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:04	
Chromium	12	1.0	1	B7J0513	10/18/2017	10/19/17 10:04	
Cobalt	5.2	1.0	1	B7J0513	10/18/2017	10/19/17 10:04	
Copper	110	2.0	1	B7J0513	10/18/2017	10/19/17 10:04	
Lead	110	1.0	1	B7J0513	10/18/2017	10/19/17 10:04	
Molybdenum	N	1.0	1	B7J0513	10/18/2017	10/19/17 10:04	
Nickel	7.6	1.0	1	B7J0513	10/18/2017	10/19/17 10:04	
Selenium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:04	
Silver	N	1.0	1	B7J0513	10/18/2017	10/19/17 10:04	
Thallium	N	1.0	1	B7J0513	10/18/2017	10/19/17 10:04	
Vanadium	21	1.0	1	B7J0513	10/18/2017	10/19/17 10:04	
Zinc	140	1.0	-	B7J0513	10/18/2017	10/19/17 10:04	
TCLP Metals by ICP-AES EPA 6010B							Analyst: GO
Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	0.33	0.25	S	B7J0818	10/27/2017	10/27/17 18:03	DI
STLC Metals by ICP-AES by EPA 6010B	B						Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/L)	(mg/L)	Dilution	Batch	Prepared	Analyzed	Notes
Lead	13	1.0	20	B7J0849	10/30/2017	10/30/17 12:29	DI
Mercury by AA (Cold Vapor) EPA 7471A						7	Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes

							,
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.89	0.10	1	B7J0518	10/18/2017	10/19/17 13:26	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB31-0.5 Lab ID: 1703653-29

Gasoline Range Organics by EPA 8015B (Modified)

Gasoline Range Organics by EPA 8015	EPA 8015B (Modified)						Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0349	10/14/2017	B7J0349 10/14/2017 10/14/17 19:35	
Surrogate: 4-Bromoftuorobenzene	112 %	50 - 138		B7J0349	B7J0349 10/14/2017	10/14/17 19:35	

Analyst: TKT	Date/Time
	PQL
Diesel Range Organics by EPA 8015B	Result

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	230	10	10	B7J0547	10/18/2017	10/19/17 14:57	
ORO	490	10	10	B7J0547	10/18/2017	10/19/17 14:57	
Surrogate: p-Terphenyl 0%		38 - 145		B7J0547	10/18/2017	10/19/17 14:57 S4	S4

Page 69 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB31-2.5 Lab ID: 1703653-30

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Antimony	N ON	2.0	1	B7J0513	10/18/2017	10/19/17 10:05	
Arsenic	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:05	
Barium	13	1.0	1	B7J0513	10/18/2017	10/19/17 10:05	
Beryllium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:05	
Cadmium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:05	
Chromium	3.6	1.0	1	B7J0513	10/18/2017	10/19/17 10:05	
Cobalt	1.8	1.0	1	B7J0513	10/18/2017	10/19/17 10:05	
Copper	2.2	2.0	1	B7J0513	10/18/2017	10/19/17 10:05	
Lead	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:05	
Molybdenum	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:05	
Nickel	2.2	1.0	1	B7J0513	10/18/2017	10/19/17 10:05	
Selenium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:05	
Silver	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:05	
Thallium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:05	
Vanadium	8.9	1.0	1	B7J0513	10/18/2017	10/19/17 10:05	
Zinc	8.3	1.0	1	B7J0513	10/18/2017	10/19/17 10:05	

Mercury by AA (Cold Vapor) EPA 7471A

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0518	10/18/2017	10/19/17 13:28	

Analyst: KEK

Gasoline Range Organics by EPA 8015B (Modified)

Gasoline Range Organics by EPA 80	EPA 8015B (Modified)						Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0362	10/16/2017	B710362 10/16/2017 10/16/17 13:49	
Surrogate: 4-Bromofluorobenzene	% III	50 - 138		B7J0362		10/16/2017 10/16/17 13:49	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						f	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	5.7	1.0	1	B7J0547	10/18/2017	10/19/17 10:36	
ORO	0.9	1.0	1	B7J0547	10/18/2017	10/19/17 10:36	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB31-2.5

Lab ID: 1703653-30

Diesel Range Organics by EPA 8015B

	Notes	
Date/Time	Analyzed	98-01 21/61/01
	Prepared	7102/81/01
	Batch	B7I0547
	Dilution	
PQL	(mg/kg)	38 - 145
Result	(mg/kg)	% 101
	Analyte	Surrogate: n-Ternhenyl

Analyst: TKT

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB31-5.0 Lab ID: 1703653-31

Analyst: GO

Title 22 Metals by ICP-AES EPA 6010B

Notes

Date/Time Analyzed 10/19/17 10:07 10/19/17 10:07 10/19/17 10:07 10/19/17 10:07 10/19/17 10:07 10/19/17 10:07 10/19/17 10:07 10/19/17 10:07 10/19/17 10:07 10/19/17 10:07 10/19/17 10:07 10/19/17 10:07 10/19/17 10:07 10/19/17 10:07 10/19/17 10:07 10/19/17 10:07

	Result	PQL			
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared
Antimony	ND	2.0	1	B7J0513	10/18/2017
Arsenic	1.6	1.0	_	B7J0513	10/18/2017
Barium	53	1.0	_	B7J0513	10/18/2017
Beryllium	ND	1.0	_	B7J0513	10/18/2017
Cadmium	ND	1.0	_	B7J0513	10/18/2017
Chromium	9.6	1.0	1	B7J0513	10/18/2017
Cobalt	8.8	1.0	1	B7J0513	10/18/2017
Copper	8.9	2.0	1	B7J0513	10/18/2017
Lead	ND	1.0	_	B7J0513	10/18/2017
Molybdenum	ND	1.0	_	B7J0513	10/18/2017
Nickel	7.8	1.0	1	B7J0513	10/18/2017
Selenium	ND	1.0	1	B7J0513	10/18/2017

Mercury by AA (Cold Vapor) EPA 7471A						1	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0518	10/18/2017	10/19/17 13:30	

10/18/2017

10/18/2017

10/18/2017 10/18/2017

B7J0513 B7J0513 B7J0513 B7J0513

1.0 1.0 1.0

9 2

17 29

Vanadium Thallium Silver

Zinc

Mercury by AA (Cold Vapor) EPA 7471A

, may to	(9v 8m)	(Sw.Sm)	Change	Date	Toparca	, and y zea	53101
Mercury	ND	0.10	1	B7J0518	B7J0518 10/18/2017	10/19/17 13:30	
Gasoline Range Organics by EPA 8015B (Modified)	(Modified)						Analyst: VW
Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0349	10/14/2017	B7J0349 10/14/2017 10/14/17 20:11	
Surrogate: 4-Bromofluorobenzene	%	50 - 138		B7J0349	B7J0349 10/14/2017	10/14/17 20:11	

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	9.3	1.0	1	B7J0547	10/18/2017	10/19/17 10:54	
ORO	9.4	1.0	1	B7J0547	10/18/2017	10/19/17 10:54	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB31-5.0

Lab ID: 1703653-31

Diesel Range Organics by EPA 8015B

Notes 10/19/17 10:54 Date/Time Analyzed 10/18/2017 Prepared B7J0547 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result 104 % Surrogate: p-Terphenyl Analyte

Analyst: TKT

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB29-0.5 Lab ID: 1703653-32

Analyst: GO

Title 22 Metals by ICP-AES EPA 6010B

Notes

•						
	Result	PQL				Date/Time
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed
Antimony	ND	2.0	1	B7J0513	10/18/2017	10/19/17 10:08
Arsenic	2.4	1.0	1	B7J0513	10/18/2017	10/19/17 10:08
Barium	17	1.0	_	B7J0513	10/18/2017	10/19/17 10:08
Beryllium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:08
Cadmium	ND	1.0	-	B7J0513	10/18/2017	10/19/17 10:08
Chromium	4.1	1.0	1	B7J0513	10/18/2017	10/19/17 10:08
Cobalt	2.2	1.0	-	B7J0513	10/18/2017	10/19/17 10:08
Copper	10	2.0	1	B7J0513	10/18/2017	10/19/17 10:08
Lead	10	1.0	-	B7J0513	10/18/2017	10/19/17 10:08
Molybdenum	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:08
Nickel	4.0	1.0	1	B7J0513	10/18/2017	10/19/17 10:08
Selenium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:08
Silver	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:08
Thallium	N	1.0	1	B7J0513	10/18/2017	10/19/17 10:08
Vanadium	7.6	1.0	1	B7J0513	10/18/2017	10/19/17 10:08
Zinc	43	1.0	1	B7J0513	10/18/2017	10/19/17 10:08

Mercury by AA (Cold Vapor) EPA 7471A	1					₹	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0518	10/18/2017	10/19/17 13:31	

Gasoline Range Organics by EPA 80	EPA 8015B (Modified)						Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0349	10/14/2017	B7J0349 10/14/2017 10/14/17 20:30	
Surrogate: 4-Bromofluorobenzene	114%	50 - 138		B7J0349	B7J0349 10/14/2017	10/14/17 20:30	

Diesel Range Organics by EPA 8015B						1	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	54	10	10	B7J0547	10/18/2017	10/19/17 14:40	
ORO	100	10	10	B7J0547	10/18/2017	10/19/17 14:40	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB29-0.5

Lab ID: 1703653-32

В	
EPA 8015B	
cs by EP	
Organi	
Range	
Diesel	

Notes **S**4 10/19/17 14:40 Date/Time Analyzed 10/18/2017 Prepared B7J0547 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result %0 Surrogate: p-Terphenyl Analyte

Analyst: TKT

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB29-2.5 Lab ID: 1703653-33

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0513	10/18/2017	10/19/17 10:09	
Arsenic	2.1	1.0	1	B7J0513	10/18/2017	10/19/17 10:09	
Barium	18	1.0	1	B7J0513	10/18/2017	10/19/17 10:09	
Beryllium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:09	
Cadmium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:09	
Chromium	5.1	1.0	1	B7J0513	10/18/2017	10/19/17 10:09	
Cobalt	2.3	1.0	1	B7J0513	10/18/2017	10/19/17 10:09	
Copper	2.1	2.0	1	B7J0513	10/18/2017	10/19/17 10:09	
Lead	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:09	
Molybdenum	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:09	
Nickel	3.0	1.0	1	B7J0513	10/18/2017	10/19/17 10:09	
Selenium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:09	
Silver	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:09	
Thallium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:09	
Vanadium	6.6	1.0	1	B7J0513	10/18/2017	10/19/17 10:09	
Zinc	11	1.0	1	B7J0513	10/18/2017	10/19/17 10:09	

1A
747
EPA
Vapor)
Cold C
AA
, by
Mercury

Mercury by AA (Cold Vapor) EPA 7471A	1					,	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0518	10/18/2017	10/19/17 13:33	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0349	B7J0349 10/14/2017	10/14/17 20:48	
Surrogate: 4-Bromofluorobenzene 113	113 %	50 - 138		B7J0349	10/14/2017	10/14/17 20:48	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						1	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	8.8	1.0	1	B7J0547	10/18/2017	10/19/17 11:11	
ORO	8.8	1.0	1	B7J0547	10/18/2017	10/19/17 11:11	

Page 76 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB29-2.5

Lab ID: 1703653-33

Diesel Range Organics by EPA 8015B

Notes II:II 21/61/01 Analyzed Date/Time 10/18/2017 Prepared B7J0547 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result 83.7 % Surrogate: p-Terphenyl Analyte

Analyst: TKT

Page 77 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB29-5.0 Lab ID: 1703653-34

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0513	10/18/2017	10/19/17 10:10	
Arsenic	1.4	1.0	1	B7J0513	10/18/2017	10/19/17 10:10	
Barium	35	1.0	-	B7J0513	10/18/2017	10/19/17 10:10	
Beryllium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:10	
Cadmium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:10	
Chromium	7.0	1.0	1	B7J0513	10/18/2017	10/19/17 10:10	
Cobalt	3.8	1.0	1	B7J0513	10/18/2017	10/19/17 10:10	
Copper	4.4	2.0	1	B7J0513	10/18/2017	10/19/17 10:10	
Lead	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:10	
Molybdenum	ND	1.0	-	B7J0513	10/18/2017	10/19/17 10:10	
Nickel	5.3	1.0	1	B7J0513	10/18/2017	10/19/17 10:10	
Selenium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:10	
Silver	ND	1.0	-	B7J0513	10/18/2017	10/19/17 10:10	
Thallium	ND	1.0	-	B7J0513	10/18/2017	10/19/17 10:10	
Vanadium	12	1.0	-	B7J0513	10/18/2017	10/19/17 10:10	
Zinc	19	1.0	1	B7J0513	10/18/2017	10/19/17 10:10	

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A						7	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0518	10/18/2017	10/19/17 13:35	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0349	B7J0349 10/14/2017	10/14/17 21:07	
Surrogate: 4-Bromofluorobenzene 109 %	%	50 - 138		B7J0349	10/14/2017	10/14/17 21:07	

Diesel Range Organics by EPA 8015B

Analyst: TKT

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	5.4	1.0	1	B7J0547	10/18/2017	10/19/17 11:28	
ORO	9.9	1.0	1	B7J0547	10/18/2017	10/19/17 11:28	

Page 78 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB29-5.0

Lab ID: 1703653-34

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B							Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: n-Ternhemil	8.3 %	38 - 145		B710547	B710547 10/18/2017	86-11 21/61/01	

Page 79 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB28-0.5 Lab ID: 1703653-35

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL	:			Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0513	10/18/2017	10/19/17 10:11	
Arsenic	4.2	1.0	1	B7J0513	10/18/2017	10/19/17 10:11	
Barium	45	1.0	1	B7J0513	10/18/2017	10/19/17 10:11	
Beryllium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:11	
Cadmium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:11	
Chromium	8.3	1.0	1	B7J0513	10/18/2017	10/19/17 10:11	
Cobalt	4.1	1.0	1	B7J0513	10/18/2017	10/19/17 10:11	
Copper	17	2.0	-	B7J0513	10/18/2017	10/19/17 10:11	
Lead	82	1.0	1	B7J0513	10/18/2017	10/19/17 10:11	
Molybdenum	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:11	
Nickel	12	1.0	1	B7J0513	10/18/2017	10/19/17 10:11	
Selenium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:11	
Silver	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:11	
Thallium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:11	
Vanadium	16	1.0	1	B7J0513	10/18/2017	10/19/17 10:11	
Zinc	190	1.0	1	B7J0513	10/18/2017	10/19/17 10:11	

STLC Metals by ICP-AES by EPA 6010B

STLC Metals by ICP-AES by EPA 6010B	8						Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/L)	(mg/L)	Dilution	Batch	Prepared	Analyzed	Notes
Lead	4.8	1.0	20	B7J0849	10/30/2017	10/30/17 12:30 DI	DI

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A							Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0518	10/18/2017	10/19/17 13:41	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0349	10/14/2017	10/14/17 21:25	
Surrogate: 4-Bromoftuorobenzene	% I	50 - 138		B7J0349	10/14/2017	10/14/17 21:25	

Page 80 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB28-0.5 Lab ID: 1703653-35

Diesel Range Organics by EPA 8015B

Analyst: TKT

							•
Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	530	50	90	B7J0547	10/18/2017	10/19/17 15:32	
ORO	930	50	50	B7J0547	10/18/2017	10/19/17 15:32	
Surrogate: p-Terphenyl	9	38 - 145		B7J0547	10/18/2017	10/19/17 15:32 S4	S4

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	5.2	1	B7J0791	10/26/2017	10/26/17 17:02	
1,1,1-Trichloroethane	ND	5.2	-	B7J0791	10/26/2017	10/26/17 17:02	
1,1,2,2-Tetrachloroethane	ND	5.2	-	B7J0791	10/26/2017	10/26/17 17:02	
1,1,2-Trichloroethane	ND	5.2	_	B7J0791	10/26/2017	10/26/17 17:02	
1,1-Dichloroethane	ND	5.2	-	B7J0791	10/26/2017	10/26/17 17:02	
1,1-Dichloroethene	ND	5.2	_	B7J0791	10/26/2017	10/26/17 17:02	
1,1-Dichloropropene	ND	5.2	_	B7J0791	10/26/2017	10/26/17 17:02	
1,2,3-Trichloropropane	ND	5.2		B7J0791	10/26/2017	10/26/17 17:02	
1,2,3-Trichlorobenzene	ND	5.2	_	B7J0791	10/26/2017	10/26/17 17:02	
1,2,4-Trichlorobenzene	ND	5.2	-	B7J0791	10/26/2017	10/26/17 17:02	
1,2,4-Trimethylbenzene	ND	5.2	-	B7J0791	10/26/2017	10/26/17 17:02	
1,2-Dibromo-3-chloropropane	ND	10	_	B7J0791	10/26/2017	10/26/17 17:02	
1,2-Dibromoethane	ND	5.2	-	B7J0791	10/26/2017	10/26/17 17:02	
1,2-Dichlorobenzene	ND	5.2	-	B7J0791	10/26/2017	10/26/17 17:02	
1,2-Dichloroethane	ND	5.2	-	B7J0791	10/26/2017	10/26/17 17:02	
1,2-Dichloropropane	ND	5.2	_	B7J0791	10/26/2017	10/26/17 17:02	
1,3,5-Trimethylbenzene	ND	5.2	_	B7J0791	10/26/2017	10/26/17 17:02	
1,3-Dichlorobenzene	ND	5.2	-	B7J0791	10/26/2017	10/26/17 17:02	
1,3-Dichloropropane	ND	5.2	_	B7J0791	10/26/2017	10/26/17 17:02	
1,4-Dichlorobenzene	ND	5.2	_	B7J0791	10/26/2017	10/26/17 17:02	
2,2-Dichloropropane	ND	5.2	-	B7J0791	10/26/2017	10/26/17 17:02	
2-Chlorotoluene	ND	5.2	-	B7J0791	10/26/2017	10/26/17 17:02	
4-Chlorotoluene	ND	5.2	_	B7J0791	10/26/2017	10/26/17 17:02	
4-Isopropyltoluene	ND	5.2	_	B7J0791	10/26/2017	10/26/17 17:02	
Benzene	ND	5.2	_	B7J0791	10/26/2017	10/26/17 17:02	
Bromobenzene	ND	5.2	_	B7J0791	10/26/2017	10/26/17 17:02	
Bromochloromethane	ND	5.2	-	B7J0791	10/26/2017	10/26/17 17:02	
Bromodichloromethane	ND	5.2	_	B7J0791	10/26/2017	10/26/17 17:02	
Вготобогт	ND	5.2	-	B7J0791	10/26/2017	10/26/17 17:02	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB28-0.5

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

Lab ID: 1703653-35

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Bromomethane	ND	5.2	1	B7J0791	10/26/2017	10/26/17 17:02	
Carbon disulfide	ND	5.2	_	B7J0791	10/26/2017	10/26/17 17:02	
Carbon tetrachloride	ND	5.2	1	B7J0791	10/26/2017	10/26/17 17:02	
Chlorobenzene	ND	5.2	_	B7J0791	10/26/2017	10/26/17 17:02	
Chloroethane	ND	5.2	_	B7J0791	10/26/2017	10/26/17 17:02	
Chloroform	ND	5.2	1	B7J0791	10/26/2017	10/26/17 17:02	
Chloromethane	ND	5.2	П	B7J0791	10/26/2017	10/26/17 17:02	
cis-1,2-Dichloroethene	ND	5.2	1	B7J0791	10/26/2017	10/26/17 17:02	
cis-1,3-Dichloropropene	ND	5.2	1	B7J0791	10/26/2017	10/26/17 17:02	
Di-isopropyl ether	ND	5.2	1	B7J0791	10/26/2017	10/26/17 17:02	
Dibromochloromethane	ND	5.2	_	B7J0791	10/26/2017	10/26/17 17:02	
Dibromomethane	ND	5.2	_	B7J0791	10/26/2017	10/26/17 17:02	
Dichlorodifluoromethane	ND	5.2	1	B7J0791	10/26/2017	10/26/17 17:02	
Ethyl Acetate	ND	52	1	B7J0791	10/26/2017	10/26/17 17:02	
Ethyl Ether	ND	52	1	B7J0791	10/26/2017	10/26/17 17:02	
Ethyl tert-butyl ether	ND	5.2	1	B7J0791	10/26/2017	10/26/17 17:02	
Ethylbenzene	ND	5.2	1	B7J0791	10/26/2017	10/26/17 17:02	
Freon-113	ND	5.2	1	B7J0791	10/26/2017	10/26/17 17:02	
Hexachlorobutadiene	ND	5.2	_	B7J0791	10/26/2017	10/26/17 17:02	
Isopropylbenzene	ND	5.2	1	B7J0791	10/26/2017	10/26/17 17:02	
m,p-Xylene	ND	10	_	B7J0791	10/26/2017	10/26/17 17:02	
Methylene chloride	ND	5.2	1	B7J0791	10/26/2017	10/26/17 17:02	
MTBE	ND	5.2	1	B7J0791	10/26/2017	10/26/17 17:02	
n-Butylbenzene	ND	5.2	1	B7J0791	10/26/2017	10/26/17 17:02	
n-Propylbenzene	ND	5.2	_	B7J0791	10/26/2017	10/26/17 17:02	
Naphthalene	ND	5.2	П	B7J0791	10/26/2017	10/26/17 17:02	
o-Xylene	ND	5.2	1	B7J0791	10/26/2017	10/26/17 17:02	
sec-Butylbenzene	ND	5.2	_	B7J0791	10/26/2017	10/26/17 17:02	
Styrene	ND	5.2	1	B7J0791	10/26/2017	10/26/17 17:02	
tert-Amyl methyl ether	ND	5.2	1	B7J0791	10/26/2017	10/26/17 17:02	
tert-Butanol	ND	100	1	B7J0791	10/26/2017	10/26/17 17:02	
tert-Butylbenzene	ND	5.2	1	B7J0791	10/26/2017	10/26/17 17:02	
Tetrachloroethene	ND	5.2	1	B7J0791	10/26/2017	10/26/17 17:02	
Toluene	ND	5.2	_	B7J0791	10/26/2017	10/26/17 17:02	
trans-1,2-Dichloroethene	ND	5.2	_	B7J0791	10/26/2017	10/26/17 17:02	
trans-1,3-Dichloropropene	ND	5.2	-	B7J0791	10/26/2017	10/26/17 17:02	
Trichloroethene	ND	5.2	1	B7J0791	10/26/2017	10/26/17 17:02	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB28-0.5 Lab ID: 1703653-35

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

Notes 10/26/17 17:02 10/26/17 17:02 10/26/17 17:02 10/26/17 17:02 10/26/17 17:02 10/26/17 17:02 10/26/17 17:02 Date/Time Analyzed 10/26/2017 10/26/2017 10/26/2017 10/26/2017 10/26/2017 10/26/2017 10/26/2017 Prepared B7J0791 B7J0791 B7J0791 B7J0791 B7J0791 B7J0791 B7J0791 Batch Dilution 181 - 89 49 - 134 75 - 132 32 - 140 (ug/kg) PQL 5.2 5.2 52 (ug/kg) Result 2 R 8 95.8 % % *901* % L01 Surrogate: Dibromofluoromethane Surrogate: 1,2-Dichloroethane-d4 Surrogate: 4-Bromofluorobenzene Trichlorofluoromethane Surrogate: Toluene-d8 Vinyl chloride Vinyl acetate Analyte

Semivolatile Organic Compounds by EPA 8270/SIM

Analyst: SP

Result	PQL				Date/Time	
(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
ND	250	50	B7J0764	10/25/2017	10/27/17 14:56	D1
ND	250	50	B7J0764	10/25/2017	10/27/17 14:56	DI
ND	250	50	B7J0764	10/25/2017	10/27/17 14:56	D1
ND	250	50	B7J0764	10/25/2017	10/27/17 14:56	D1
ND	250	50	B7J0764	10/25/2017	10/27/17 14:56	DI
ND	250	50	B7J0764	10/25/2017	10/27/17 14:56	D1
ND	250	50	B7J0764	10/25/2017	10/27/17 14:56	DI
ND	250	50	B7J0764	10/25/2017	10/27/17 14:56	DI
ND	250	50	B7J0764	10/25/2017	10/27/17 14:56	D1
ND	250	50	B7J0764	10/25/2017	10/27/17 14:56	DI
ND	250	50	B7J0764	10/25/2017	10/27/17 14:56	DI
N	250	50	B7J0764	10/25/2017	10/27/17 14:56	D1
ND	250	50	B7J0764	10/25/2017	10/27/17 14:56	D1
ND	250	50	B7J0764	10/25/2017	10/27/17 14:56	D1
ND	250	50	B7J0764	10/25/2017	10/27/17 14:56	DI
ND	250	50	B7J0764	10/25/2017	10/27/17 14:56	D1
ND	250	50	B7J0764	10/25/2017	10/27/17 14:56	DI
%0	29 - 109		B7J0764	10/25/2017	10/27/17 14:56	S4
%0	39 - 108		B7J0764	10/25/2017	10/27/17 14:56	S4
%0	0 - 146		B7J0764	10/25/2017	10/27/17 14:56	
%0	39 - 123		B7J0764	10/25/2017	10/27/17 14:56	S4
	Result (ug/kg) ND ND ND ND ND ND ND ND ND N		PQL (ug/kg) 250 250 250 250 250 250 250 250 250 250	PQL (ug/kg) Dilution 250 250 250 250 250 250 250 250 250 25	PQL Batch 250 50 B710764 39 - 108 B710764 B710764 39 - 123 B710764 B710764 <td>PQL Batch Prepared 250 50 B710764 10/25/2017 250</td>	PQL Batch Prepared 250 50 B710764 10/25/2017 250

Page 83 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB28-2.5 Lab ID: 1703653-36

Title 22 Metals by ICP-AES EPA 6010B	

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	QN	2.0	1	B7J0513	10/18/2017	10/19/17 10:12	
Arsenic	5.0	1.0	1	B7J0513	10/18/2017	10/19/17 10:12	
Barium	83	1.0	1	B7J0513	10/18/2017	10/19/17 10:12	
Beryllium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:12	
Cadmium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:12	
Chromium	13	1.0	1	B7J0513	10/18/2017	10/19/17 10:12	
Cobalt	5.3	1.0	1	B7J0513	10/18/2017	10/19/17 10:12	
Copper	27	2.0	1	B7J0513	10/18/2017	10/19/17 10:12	
Lead	83	1.0	1	B7J0513	10/18/2017	10/19/17 10:12	
Molybdenum	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:12	
Nickel	13	1.0	1	B7J0513	10/18/2017	10/19/17 10:12	
Selenium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:12	
Silver	N	1.0	1	B7J0513	10/18/2017	10/19/17 10:12	
Thallium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:12	
Vanadium	20	1.0	-	B7J0513	10/18/2017	10/19/17 10:12	
Zinc	120	1.0	-	B7J0513	10/18/2017	10/19/17 10:12	

STLC Metals by ICP-AES by EPA 6010B

STLC Metals by ICP-AES by EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/L)	(mg/L)	Dilution	Batch	Prepared	Analyzed	Notes
Lead	1.0	1.0	20	B7J0849	10/30/2017	10/30/17 14:39	DI

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A						7	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0518	10/18/2017	10/19/17 13:43	

Gasoline Range Organics by EPA 8015B (Modified)

Gasoline Range Organics by EPA 80	y EPA 8015B (Modified)						Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0349	B7J0349 10/14/2017	10/14/17 21:44	
Surrogate: 4-Bromofluorobenzene	% 601	50 - 138		B7J0349	10/14/2017	10/14/17 21:44	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB28-2.5 Lab ID: 1703653-36

Diesel Range Organics by EPA 8015B

Analyst: TKT

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	480	50	90	B7J0547	10/18/2017	10/19/17 16:07	
ORO	1000	50	50	B7J0547	10/18/2017	10/19/17 16:07	
Surrogate: p-Terphenyl 0%	\0	38 - 145		B7J0547	10/18/2017	10/19/17 16:07 S4	S4

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
1,1,1-Trichloroethane	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
1,1,2,2-Tetrachloroethane	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
1,1,2-Trichloroethane	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
1,1-Dichloroethane	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
1,1-Dichloroethene	ND	4.9	Π	B7J0791	10/26/2017	10/26/17 17:21	
1,1-Dichloropropene	ND	4.9		B7J0791	10/26/2017	10/26/17 17:21	
1,2,3-Trichloropropane	N	4.9		B7J0791	10/26/2017	10/26/17 17:21	
1,2,3-Trichlorobenzene	N	4.9	-	B7J0791	10/26/2017	10/26/17 17:21	
1,2,4-Trichlorobenzene	ND	4.9	П	B7J0791	10/26/2017	10/26/17 17:21	
1,2,4-Trimethylbenzene	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
1,2-Dibromo-3-chloropropane	ND	8.6	1	B7J0791	10/26/2017	10/26/17 17:21	
1,2-Dibromoethane	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
1,2-Dichlorobenzene	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
1,2-Dichloroethane	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
1,2-Dichloropropane	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
1,3,5-Trimethylbenzene	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
1,3-Dichlorobenzene	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
1,3-Dichloropropane	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
1,4-Dichlorobenzene	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
2,2-Dichloropropane	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
2-Chlorotoluene	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
4-Chlorotoluene	N	4.9	_	B7J0791	10/26/2017	10/26/17 17:21	
4-Isopropyltoluene	N	4.9	-	B7J0791	10/26/2017	10/26/17 17:21	
Benzene	ND	4.9		B7J0791	10/26/2017	10/26/17 17:21	
Bromobenzene	ND	4.9	П	B7J0791	10/26/2017	10/26/17 17:21	
Bromochloromethane	ND	4.9	П	B7J0791	10/26/2017	10/26/17 17:21	
Bromodichloromethane	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
Bromoform	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	

Page 85 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB28-2.5 Lab ID: 1703653-36

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Bromomethane	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
Carbon disulfide	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
Carbon tetrachloride	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
Chlorobenzene	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
Chloroethane	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
Chloroform	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
Chloromethane	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
cis-1,2-Dichloroethene	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
cis-1,3-Dichloropropene	N	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
Di-isopropyl ether	N	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
Dibromochloromethane	N N	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
Dibromomethane	N	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
Dichlorodifluoromethane	N	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
Ethyl Acetate	N	49	1	B7J0791	10/26/2017	10/26/17 17:21	
Ethyl Ether	N	49	1	B7J0791	10/26/2017	10/26/17 17:21	
Ethyl tert-butyl ether	N	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
Ethylbenzene	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
Freon-113	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
Hexachlorobutadiene	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
Isopropylbenzene	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
m,p-Xylene	ND	8.6	1	B7J0791	10/26/2017	10/26/17 17:21	
Methylene chloride	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
MTBE	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
n-Butylbenzene	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
n-Propylbenzene	N	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
Naphthalene	N	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
o-Xylene	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
sec-Butylbenzene	N	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
Styrene	N	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
tert-Amyl methyl ether	N	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
tert-Butanol	N	86	1	B7J0791	10/26/2017	10/26/17 17:21	
tert-Butylbenzene	N	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
Tetrachloroethene	N	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
Toluene	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
trans-1,2-Dichloroethene	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
trans-1,3-Dichloropropene	N	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
Trichloroethene	N	4.9	-1	B7J0791	10/26/2017	10/26/17 17:21	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB28-2.5 Lab ID: 1703653-36

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Trichlorofluoromethane	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
Vinyl acetate	ND	49	_	B7J0791	10/26/2017	10/26/17 17:21	
Vinyl chloride	ND	4.9	1	B7J0791	10/26/2017	10/26/17 17:21	
Surrogate: 1,2-Dichloroethane-d4	% 801	32 - 140		B7J0791	10/26/2017	10/26/17 17:21	
Surrogate: 4-Bromofluorobenzene 97.5	% 6.26	68 - 131		B7J0791	10/26/2017	10/26/17 17:21	
Surrogate: Dibromofluoromethane 96.0	% 0.96	49 - 134		B7J0791	10/26/2017	10/26/17 17:21	
Surrogate: Toluene-d8 107	% 201	75 - 132		B7J0791	10/26/2017	10/26/17 17:21	

Semivolatile Organic Compounds by EPA 8270/SIM

Semivolatile Organic Compounds by EPA 8270/SIM	PA 8270/SIM						Analyst: SP
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
2-Methylnaphthalene	ND	1000	200	B7J0764	10/25/2017	10/27/17 15:25	D1
Acenaphthene	ND	1000	200	B7J0764	10/25/2017	10/27/17 15:25	D1
Acenaphthylene	ND	1000	200	B7J0764	10/25/2017	10/27/17 15:25	DI
Anthracene	NO	1000	200	B7J0764	10/25/2017	10/27/17 15:25	DI
Benzo(a)anthracene	ND	1000	200	B7J0764	10/25/2017	10/27/17 15:25	D1
Benzo(a)pyrene	ND	1000	200	B7J0764	10/25/2017	10/27/17 15:25	DI
Benzo(b)fluoranthene	NO	1000	200	B7J0764	10/25/2017	10/27/17 15:25	DI
Benzo(g,h,i)perylene	ND	1000	200	B7J0764	10/25/2017	10/27/17 15:25	DI
Benzo(k)fluoranthene	ND	1000	200	B7J0764	10/25/2017	10/27/17 15:25	D1
Chrysene	NO	1000	200	B7J0764	10/25/2017	10/27/17 15:25	DI
Dibenz(a,h)anthracene	ND	1000	200	B7J0764	10/25/2017	10/27/17 15:25	DI
Fluoranthene	N	1000	200	B7J0764	10/25/2017	10/27/17 15:25	DI
Fluorene	NO	1000	200	B7J0764	10/25/2017	10/27/17 15:25	DI
Indeno(1,2,3-cd)pyrene	N	1000	200	B7J0764	10/25/2017	10/27/17 15:25	DI
Naphthalene	N	1000	200	B7J0764	10/25/2017	10/27/17 15:25	DI
Phenanthrene	N	1000	200	B7J0764	10/25/2017	10/27/17 15:25	DI
Pyrene	ND	1000	200	B7J0764	10/25/2017	10/27/17 15:25	D1
Surrogate: 1,2-Dichlorobenzene-d4 0%	%	29 - 109		B7J0764	10/25/2017	10/27/17 15:25	S4
Surrogate: 2-Fluorobiphenyl 0%	%	39 - 108		B7J0764	10/25/2017	10/27/17 15:25	S4
Surrogate: Nitrobenzene-d5 0%	<i>%</i>	0 - 146		B7J0764	10/25/2017	10/27/17 15:25	
Surrogate: 4-Terphenyl-d14 0%	%	39 - 123		B7J0764	10/25/2017	10/27/17 15:25	S4

Page 87 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB28-5.0 Lab ID: 1703653-37

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0513	10/18/2017	10/19/17 10:16	
Arsenic	2.5	1.0	1	B7J0513	10/18/2017	10/19/17 10:16	
Barium	81	1.0	1	B7J0513	10/18/2017	10/19/17 10:16	
Beryllium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:16	
Cadmium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:16	
Chromium	19	1.0	1	B7J0513	10/18/2017	10/19/17 10:16	
Cobalt	4.1	1.0	1	B7J0513	10/18/2017	10/19/17 10:16	
Copper	9.2	2.0	1	B7J0513	10/18/2017	10/19/17 10:16	
Lead	4.0	1.0	1	B7J0513	10/18/2017	10/19/17 10:16	
Molybdenum	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:16	
Nickel	Ξ	1.0	1	B7J0513	10/18/2017	10/19/17 10:16	
Selenium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:16	
Silver	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:16	
Thallium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:16	
Vanadium	18	1.0	1	B7J0513	10/18/2017	10/19/17 10:16	
Zinc	20	1.0	1	B7J0513	10/18/2017	10/19/17 10:16	

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A						,	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0518	10/18/2017	10/19/17 13:45	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	400	50	50	B7J0311	10/14/2017	10/14/17 06:07	
Surrogate: 4-Bromofluorobenzene 45.0	45.6%	50 - 138		B7J0311	10/14/2017	10/14/17 06:07	S7

Diesel Range Organics by EPA 8015B						<i>f</i>	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	11000	200	200	B7J0547	10/18/2017	10/19/17 16:42	
ORO	2600	200	200	B7J0547	10/18/2017	10/19/17 16:42	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB28-5.0 Lab ID: 1703653-37

Analyst: TKT Notes **S**4 10/19/17 16:42 Date/Time Analyzed 10/18/2017 Prepared B7J0547 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result %0 Diesel Range Organics by EPA 8015B Surrogate: p-Terphenyl Analyte

Analyst: CO/ Polychlorinated Biphenyls by EPA 8082

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Aroclor 1016	ND	16	1	B7J0724	10/24/2017	10/25/17 17:47	
Aroclor 1221	ND	16	1	B7J0724	10/24/2017	10/25/17 17:47	
Aroclor 1232	ND	16	1	B7J0724	10/24/2017	10/25/17 17:47	
Aroclor 1242	ND	16	1	B7J0724	10/24/2017	10/25/17 17:47	
Aroclor 1248	ND	16	1	B7J0724	10/24/2017	10/25/17 17:47	
Aroclor 1254	ND	16	1	B7J0724	10/24/2017	10/25/17 17:47	
Aroclor 1260	ND	16	1	B7J0724	10/24/2017	10/25/17 17:47	
Aroclor 1262	ND	16	1	B7J0724	10/24/2017	10/25/17 17:47	
Aroclor 1268	ND	16	1	B7J0724	10/24/2017	10/25/17 17:47	
Surrogate: Decachlorobiphenyl	40.3 %	18 - 136		B7J0724	10/24/2017	10/25/17 17:47	
Surrogate: Tetrachloro-m-xylene	50.1%	30 - 130		B7J0724	10/24/2017	10/25/17 17:47	

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
1,1,1-Trichloroethane	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
1,1,2,2-Tetrachloroethane	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
1,1,2-Trichloroethane	ND	5.5	-	B7J0750	10/25/2017	10/25/17 14:37	
1, 1-Dichloroethane	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
1, 1-Dichloroethene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
1,1-Dichloropropene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
1,2,3-Trichloropropane	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
1,2,3-Trichlorobenzene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
1,2,4-Trichlorobenzene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
1,2,4-Trimethylbenzene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
1,2-Dibromo-3-chloropropane	ND	11	1	B7J0750	10/25/2017	10/25/17 14:37	
1,2-Dibromoethane	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
1,2-Dichlorobenzene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
1,2-Dichloroethane	ND	5.5		B7J0750	10/25/2017	10/25/17 14:37	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB28-5.0

	Dilution 1 1 1 1 1 1 1 1 1 1 1 1 1	Batch B710750	Prepared 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017	Analyzed 10/25/17 14:37 10/25/17 14:37 10/25/17 14:37 10/25/17 14:37 10/25/17 14:37	Notes
		B710750	10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017	10/25/17 14:37 10/25/17 14:37 10/25/17 14:37 10/25/17 14:37 10/25/17 14:37 10/25/17 14:37	
		B710750	10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017	10/25/17 14:37 10/25/17 14:37 10/25/17 14:37 10/25/17 14:37 10/25/17 14:37	
		B710750	10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017	10/25/17 14:37 10/25/17 14:37 10/25/17 14:37 10/25/17 14:37	
		B710750	10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017	10/25/17 14:37 10/25/17 14:37 10/25/17 14:37 10/25/17 14:37	
		B710750	10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017	10/25/17 14:37 10/25/17 14:37 10/25/17 14:37	
		B710750 B710750 B710750 B710750 B710750 B710750 B710750 B710750 B710750	10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017	10/25/17 14:37 10/25/17 14:37	
		B710750 B710750 B710750 B710750 B710750 B710750 B710750 B710750	10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017	10/25/17 14:37	
		B710750 B710750 B710750 B710750 B710750 B710750 B710750	10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017		
		B710750 B710750 B710750 B710750 B710750 B710750	10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017	10/25/17 14:37	
		B710750 B710750 B710750 B710750 B710750 B710750	10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017	10/25/17 14:37	
		B710750 B710750 B710750 B710750 B710750	10/25/2017 10/25/2017 10/25/2017 10/25/2017	10/25/17 14:37	
		B7J0750 B7J0750 B7J0750 B7J0750 B7J0750	10/25/2017 10/25/2017 10/25/2017 10/25/2017	10/25/17 14:37	
		B7J0750 B7J0750 B7J0750 B7J0750	10/25/2017 10/25/2017 10/25/2017	10/25/17 14:37	
		B7J0750 B7J0750 B7J0750	10/25/2017	10/25/17 14:37	
		B7J0750 B7J0750	10/25/2017	10/25/17 14:37	
		B7J0750		10/25/17 14:37	
	Ξ,		10/25/2017	10/25/17 14:37	
	•	B7J0750	10/25/2017	10/25/17 14:37	
	_	B7J0750	10/25/2017	10/25/17 14:37	
	1	B7J0750	10/25/2017	10/25/17 14:37	
	1	B7J0750	10/25/2017	10/25/17 14:37	
	1	B7J0750	10/25/2017	10/25/17 14:37	
	1	B7J0750	10/25/2017	10/25/17 14:37	
	-	B7J0750	10/25/2017	10/25/17 14:37	
ND 5.5	-	B7J0750	10/25/2017	10/25/17 14:37	
ND 5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
ND 5.5	-	B7J0750	10/25/2017	10/25/17 14:37	
ND 5.5	-	B7J0750	10/25/2017	10/25/17 14:37	
ND 55	1	B7J0750	10/25/2017	10/25/17 14:37	
ND 55	1	B7J0750	10/25/2017	10/25/17 14:37	
ND 5.5	-	B7J0750	10/25/2017	10/25/17 14:37	
ND 5.5	-	B7J0750	10/25/2017	10/25/17 14:37	
ND 5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
ND 5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
ND 5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
ND 11	1	B7J0750	10/25/2017	10/25/17 14:37	
ND 5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
ND 5.5	П	B7J0750	10/25/2017	10/25/17 14:37	
			B710750 B710750 B710750 B710750 B710750		10/25/2017 10/25/2017 10/25/2017 10/25/2017 10/25/2017

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB28-5.0 Lab ID: 1703653-37

Analyst: AG Volatile Organic Compounds by EPA 5035/EPA 8260B

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
n-Butylbenzene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
n-Propylbenzene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
Naphthalene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
o-Xylene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
sec-Butylbenzene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
Styrene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
tert-Amyl methyl ether	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
tert-Butanol	ND	110	1	B7J0750	10/25/2017	10/25/17 14:37	
tert-Butylbenzene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
Tetrachloroethene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
Toluene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
trans-1,2-Dichloroethene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
trans-1,3-Dichloropropene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
Trichloroethene	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
Trichlorofluoromethane	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
Vinyl acetate	ND	55	1	B7J0750	10/25/2017	10/25/17 14:37	
Vinyl chloride	ND	5.5	1	B7J0750	10/25/2017	10/25/17 14:37	
Surrogate: 1,2-Dichloroethane-d4	% 101	32 - 140		B7J0750	10/25/2017	10/25/17 14:37	
Surrogate: 4-Bromofluorobenzene	107 %	68 - 131		B7J0750	10/25/2017	10/25/17 14:37	
Surrogate: Dibromofluoromethane	95.5 %	49 - 134		B7J0750	10/25/2017	10/25/17 14:37	
Surrogate: Toluene-d8	% 90I	75 - 132		B7J0750	10/25/2017	10/25/17 14:37	

Semivolatile Organic Compounds by EPA 8270/SIM

Semivolatile Organic Compounds by EPA 8270/SIM	y EPA 8270/SIA	1					Analyst: SP
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
2-Methylnaphthalene	7800	100	20	B7J0757	10/25/2017	10/25/17 21:56	
Acenaphthene	ND	100	20	B7J0757	10/25/2017	10/25/17 21:56	
Acenaphthylene	ND	100	20	B7J0757	10/25/2017	10/25/17 21:56	
Anthracene	ND	100	20	B7J0757	10/25/2017	10/25/17 21:56	
Benzo(a)anthracene	ND	100	20	B7J0757	10/25/2017	10/25/17 21:56	
Benzo(a)pyrene	ND	100	20	B7J0757	10/25/2017	10/25/17 21:56	
Benzo(b)fluoranthene	ND	100	20	B7J0757	10/25/2017	10/25/17 21:56	
Benzo(g,h,i)perylene	ND	100	20	B7J0757	10/25/2017	10/25/17 21:56	
Benzo(k)fluoranthene	ND	100	20	B7J0757	10/25/2017	10/25/17 21:56	
Chrysene	ND	100	20	B7J0757	10/25/2017	10/25/17 21:56	
Dibenz(a,h)anthracene	ND	100	20	B7J0757	10/25/2017	10/25/17 21:56	

Page 91 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB28-5.0 Lab ID: 1703653-37

Analyst: SP Semivolatile Organic Compounds by EPA 8270/SIM

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Fluoranthene	ND	100	20	B7J0757	10/25/2017	10/25/17 21:56	
Fluorene	N	100	20	B7J0757	10/25/2017	10/25/17 21:56	
Indeno(1,2,3-cd)pyrene	N	100	20	B7J0757	10/25/2017	10/25/17 21:56	
Naphthalene	N	100	20	B7J0757	10/25/2017	10/25/17 21:56	
Phenanthrene	N	100	20	B7J0757	10/25/2017	10/25/17 21:56	
Pyrene	ND	100	20	B7J0757	10/25/2017	10/25/17 21:56	
Surrogate: 1,2-Dichlorobenzene-d4 0%		29 - 109		B7J0757	10/25/2017	10/25/17 21:56	S4
Surrogate: 2-Fluorobiphenyl		39 - 108		B7J0757	10/25/2017	10/25/17 21:56	S4
Surrogate: Nitrobenzene-d5 0%		0 - 146		B7J0757	10/25/2017	10/25/17 21:56	
Surrogate: 4-Terphenyl-d14 0%		39 - 123		B7J0757	10/25/2017	10/25/17 21:56	S4

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB26-0.5 Lab ID: 1703653-38

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0513	10/18/2017	10/19/17 10:17	
Arsenic	2.2	1.0	1	B7J0513	10/18/2017	10/19/17 10:17	
Barium	13	1.0	1	B7J0513	10/18/2017	10/19/17 10:17	
Beryllium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:17	
Cadmium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:17	
Chromium	4.2	1.0	1	B7J0513	10/18/2017	10/19/17 10:17	
Cobalt	2.1	1.0	1	B7J0513	10/18/2017	10/19/17 10:17	
Copper	2.4	2.0	1	B7J0513	10/18/2017	10/19/17 10:17	
Lead	1.1	1.0	1	B7J0513	10/18/2017	10/19/17 10:17	
Molybdenum	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:17	
Nickel	2.7	1.0	1	B7J0513	10/18/2017	10/19/17 10:17	
Selenium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:17	
Silver	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:17	
Thallium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:17	
Vanadium	8.0	1.0	1	B7J0513	10/18/2017	10/19/17 10:17	
Zinc	11	1.0	-	B7J0513	10/18/2017	10/19/17 10:17	

7471A
EPA
Vapor)
(Cold
AA
y by
Mercur

Mercury by AA (Cold Vapor) EPA 7471A						7	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0518	10/18/2017	10/19/17 13:46	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

	Result	JÒd				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0349	10/14/2017	B7J0349 10/14/2017 10/14/17 22:02	
Surrogate: 4-Bromofluorobenzene 115 %	%	50 - 138		B7J0349	10/14/2017	10/14/17 22:02	

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	11	1.0	1	B7J0547	10/18/2017	10/19/17 13:48	
ORO	14	1.0	1	B7J0547	10/18/2017	10/19/17 13:48	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB26-0.5

Lab ID: 1703653-38

~	
/ EPA 8015B	
EPA	
á	
ganics	
Ö	
Range	
Diesel 1	

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: p-Terphenyl	31 %	38 - 145		B7J0547	10/18/2017	10/19/17 13:48	

Analyst: TKT

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB26-2.5 Lab ID: 1703653-39

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0513	10/18/2017	10/19/17 10:18	
Arsenic	2.0	1.0	1	B7J0513	10/18/2017	10/19/17 10:18	
Barium	23	1.0	1	B7J0513	10/18/2017	10/19/17 10:18	
Beryllium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:18	
Cadmium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:18	
Chromium	5.5	1.0	1	B7J0513	10/18/2017	10/19/17 10:18	
Cobalt	5.6	1.0	1	B7J0513	10/18/2017	10/19/17 10:18	
Copper	2.7	2.0	1	B7J0513	10/18/2017	10/19/17 10:18	
Lead	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:18	
Molybdenum	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:18	
Nickel	3.8	1.0	1	B7J0513	10/18/2017	10/19/17 10:18	
Selenium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:18	
Silver	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:18	
Thallium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:18	
Vanadium	8.8	1.0	1	B7J0513	10/18/2017	10/19/17 10:18	
Zinc	14	1.0	1	B7J0513	10/18/2017	10/19/17 10:18	

IA
+
EFA
vapor) E
old v
_
W.
y O
Tercury
<u>e</u>

Mercury by AA (Cold Vapor) EPA 7471A						1	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0518	10/18/2017	10/19/17 13:48	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0349	B7J0349 10/14/2017	10/14/17 22:20	
Surrogate: 4-Bromofluorobenzene 114	114 %	50 - 138		B7J0349	10/14/2017	10/14/17 22:20	

Diesel Range Organics by EPA 8015B						†	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	12	1.0	1	B7J0547	10/18/2017	10/19/17 12:03	
ORO	12	1.0	1	B7J0547	10/18/2017	10/19/17 12:03	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB26-2.5

Lab ID: 1703653-39

Diesel Range Organics by EPA 8015B

Notes 10/19/17 12:03 Date/Time Analyzed 10/18/2017 Prepared B7J0547 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result 142 % Surrogate: p-Terphenyl Analyte

Analyst: TKT

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB26-5.0 Lab ID: 1703653-40

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0513	10/18/2017	10/19/17 10:19	
Arsenic	1.6	1.0	1	B7J0513	10/18/2017	10/19/17 10:19	
Barium	62	1.0	1	B7J0513	10/18/2017	10/19/17 10:19	
Beryllium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:19	
Cadmium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:19	
Chromium	8.6	1.0	1	B7J0513	10/18/2017	10/19/17 10:19	
Cobalt	2.8	1.0	1	B7J0513	10/18/2017	10/19/17 10:19	
Copper	7.0	2.0	1	B7J0513	10/18/2017	10/19/17 10:19	
Lead	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:19	
Molybdenum	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:19	
Nickel	7.7	1.0	1	B7J0513	10/18/2017	10/19/17 10:19	
Selenium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:19	
Silver	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:19	
Thallium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:19	
Vanadium	18	1.0	1	B7J0513	10/18/2017	10/19/17 10:19	
Zinc	30	1.0	1	B7J0513	10/18/2017	10/19/17 10:19	

A
74717
7
) EPA 7
₹ •
/apor)
[8]
A (Cold Va
رق
ĕ
< □
چ.
II.
Mercury by
¥

Mercury by AA (Cold Vapor) EPA 7471A						,	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0518	10/18/2017	10/19/17 13:50	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0349	10/14/2017	B7J0349 10/14/2017 10/14/17 22:39	
Surrogate: 4-Bromofluorobenzene 112	112 %	50 - 138		B7J0349	10/14/2017	10/14/17 22:39	

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	20	1.0	1	B7J0547	10/18/2017	10/19/17 14:06	
ORO	18	1.0	1	B7J0547	10/18/2017	10/19/17 14:06	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB26-5.0

Diesel Range Organics by EPA 8015B

Lab ID: 1703653-40

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surroante n-Ternhem!	89.3 %	38 - 145		B710547	10/18/2017	10/19/17 14:06	

Analyst: TKT

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB21-0.5 Lab ID: 1703653-41

Fitle 22 Metals by ICP-AES EPA 6010B

Analyst: GO Notes 10/19/17 10:20 10/19/17 10:20 10/19/17 10:20 10/19/17 10:20 10/19/17 10:20 10/19/17 10:20 10/19/17 10:20 10/19/17 10:20 10/19/17 10:20 10/19/17 10:20 10/19/17 10:20 10/19/17 10:20 10/19/17 10:20 10/19/17 10:20 Date/Time Analyzed 10/18/2017 10/18/2017 10/18/2017 10/18/2017 10/18/2017 10/18/2017 10/18/2017 10/18/2017 10/18/2017 10/18/2017 10/18/2017 10/18/2017 10/18/2017 10/18/2017 10/18/2017 Prepared B7J0513 Batch Dilution (mg/kg) PQL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 0.1 1.0 1.0 1.0 (mg/kg) Result B 8 \exists 8 3.8 8 9 8 5.6 2.8 1.3 20 3.1 12 4 Molybdenum Chromium Vanadium Beryllium Antimony Selenium Cadmium Thallium Arsenic Barium Copper Analyte Cobalt Nickel Silver Lead

Mercury by AA (Cold Vapor) EPA 7471A

Zinc

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	П	B7J0518	10/18/2017	10/19/17 13:52	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

Analyst: KEK

10/19/17 10:20

10/18/2017

B7J0513

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0311	10/14/2017	B7J0311 10/14/2017 10/14/17 03:03	
Surrogate: 4-Bromofluorobenzene 114%	%	50 - 138		B7J0311	10/14/2017	10/14/17 03:03	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	9.1	1.0	1	B7J0547	10/18/2017	10/19/17 12:56	
ORO	6.6	1.0	1	B7J0547	10/18/2017	10/19/17 12:56	

Page 99 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB21-0.5

Lab ID: 1703653-41

Diesel Range Organics by EPA 8015B

Notes 10/19/17 12:56 Date/Time Analyzed 10/18/2017 Prepared B7J0547 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result 74.4 % Surrogate: p-Terphenyl Analyte

Analyst: TKT

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB21-2.5 Lab ID: 1703653-42

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0513	10/18/2017	10/19/17 10:21	
Arsenic	2.1	1.0	1	B7J0513	10/18/2017	10/19/17 10:21	
Barium	38	1.0	1	B7J0513	10/18/2017	10/19/17 10:21	
Beryllium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:21	
Cadmium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:21	
Chromium	8.1	1.0	1	B7J0513	10/18/2017	10/19/17 10:21	
Cobalt	4.4	1.0	1	B7J0513	10/18/2017	10/19/17 10:21	
Copper	4.8	2.0	1	B7J0513	10/18/2017	10/19/17 10:21	
Lead	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:21	
Molybdenum	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:21	
Nickel	6.2	1.0	1	B7J0513	10/18/2017	10/19/17 10:21	
Selenium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:21	
Silver	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:21	
Thallium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:21	
Vanadium	14	1.0	1	B7J0513	10/18/2017	10/19/17 10:21	
Zinc	22	1.0	1	B7J0513	10/18/2017	10/19/17 10:21	

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A						1	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0518	10/18/2017	10/19/17 13:54	

Gasoline Range Organics by EPA 8015B (Modified)

Gasoline Range Organics by EPA 8015B	EPA 8015B (Modified)						Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0311	10/14/2017	B7J0311 10/14/2017 10/14/17 03:21	
Surrogate: 4-Bromofluorobenzene 115 %	%	50 - 138		B7J0311	B7J0311 10/14/2017	10/14/17 03:21	

Diesel Range Organics by EPA 8015B						†	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	20	1.0	1	B7J0547	10/18/2017	10/19/17 13:13	
ORO	17	1.0	1	B7J0547	10/18/2017	10/19/17 13:13	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB21-2.5

Lab ID: 1703653-42

Diesel Range Organics by EPA 8015B						,	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: p-Terphenyl	38 %	38 - 145		B7J0547	10/18/2017	10/19/17 13:13	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB21-5.0 Lab ID: 1703653-43

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0513	10/18/2017	10/19/17 10:23	
Arsenic	2.4	1.0	1	B7J0513	10/18/2017	10/19/17 10:23	
Barium	65	1.0	1	B7J0513	10/18/2017	10/19/17 10:23	
Beryllium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:23	
Cadmium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:23	
Chromium	11	1.0	1	B7J0513	10/18/2017	10/19/17 10:23	
Cobalt	6.5	1.0	1	B7J0513	10/18/2017	10/19/17 10:23	
Copper	8.3	2.0	1	B7J0513	10/18/2017	10/19/17 10:23	
Lead	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:23	
Molybdenum	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:23	
Nickel	8.9	1.0	1	B7J0513	10/18/2017	10/19/17 10:23	
Selenium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:23	
Silver	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:23	
Thallium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:23	
Vanadium	19	1.0	1	B7J0513	10/18/2017	10/19/17 10:23	
Zinc	33	1.0	1	B7J0513	10/18/2017	10/19/17 10:23	

Mercury by AA (Cold Vapor) EPA 7471A	.71A Result	PQL				
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	

Analyst: KEK

	Kesuit	rQL				Date/11me	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0518	B7J0518 10/18/2017	10/19/17 13:56	
Gasoline Range Organics by EPA 8015B (Modified)	(Modified)						Analyst: VW

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0311	10/14/2017	B7J0311 10/14/2017 10/14/17 03:40	
Surrogate: 4-Bromofluorobenzene	113 %	50 - 138		B7J0311	B7J0311 10/14/2017	10/14/17 03:40	

Diesel Range Organics by EPA 8015B							Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	7.2	1.0	1	B7J0547	B7J0547 10/18/2017	10/19/17 13:31	
ORO	8.5	1.0	1	B7J0547	10/18/2017	10/19/17 13:31	

Page 103 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB21-5.0

Lab ID: 1703653-43

Diesel Range Organics by EPA 8015B							Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: n_Ternhemil	127 %	38 - 145		B710547	B710547 10/18/2017	10/10/17 13:31	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB15-0.5 Lab ID: 1703653-44

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0513	10/18/2017	10/19/17 10:24	
Arsenic	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:24	
Barium	78	1.0	1	B7J0513	10/18/2017	10/19/17 10:24	
Beryllium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:24	
Cadmium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:24	
Chromium	7.8	1.0	1	B7J0513	10/18/2017	10/19/17 10:24	
Cobalt	3.9	1.0	1	B7J0513	10/18/2017	10/19/17 10:24	
Copper	9.2	2.0	1	B7J0513	10/18/2017	10/19/17 10:24	
Lead	4.5	1.0	1	B7J0513	10/18/2017	10/19/17 10:24	
Molybdenum	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:24	
Nickel	6.4	1.0	1	B7J0513	10/18/2017	10/19/17 10:24	
Selenium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:24	
Silver	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:24	
Thallium	ND	1.0	1	B7J0513	10/18/2017	10/19/17 10:24	
Vanadium	15	1.0	1	B7J0513	10/18/2017	10/19/17 10:24	
Zinc	31	1.0	-	B7J0513	10/18/2017	10/19/17 10:24	

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A						7	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0518	10/18/2017	10/19/17 13:58	

Gasoline Range Organics by EPA 8015B (Modified)

Gasoline Range Organics by EPA 8015	EPA 8015B (Modified)						Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND 1.0	1.0	1	B7J0311	10/14/2017	B7J0311 10/14/2017 10/14/17 03:58	
Surrogate: 4-Bromofluorobenzene	114 %	50 - 138		B7J0311	10/14/2017	B7J0311 10/14/2017 10/14/17 03:58	

Diesel Range Organics by EPA 8015B						†	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	20	1.0	1	B7J0547	10/18/2017	10/19/17 14:23	
ORO	35	1.0	1	B7J0547	10/18/2017	10/19/17 14:23	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB15-0.5

Lab ID: 1703653-44

Diesel Range Organics by EPA 8015B

Analyst: TKT Analyzed Date/Time Prepared Batch Dilution (mg/kg) PQL (mg/kg) Result

Notes 10/19/17 14:23 10/18/2017 B7J0547 38 - 145 73.6 % Surrogate: p-Terphenyl Analyte

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB15-2.5 Lab ID: 1703653-45

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0514	10/18/2017	10/19/17 10:30	
Arsenic	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:30	
Barium	15	1.0	1	B7J0514	10/18/2017	10/19/17 10:30	
Beryllium	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:30	
Cadmium	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:30	
Chromium	2.9	1.0	1	B7J0514	10/18/2017	10/19/17 10:30	
Cobalt	1.8	1.0	1	B7J0514	10/18/2017	10/19/17 10:30	
Copper	2.1	2.0	1	B7J0514	10/18/2017	10/19/17 10:30	
Lead	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:30	
Molybdenum	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:30	
Nickel	2.3	1.0	1	B7J0514	10/18/2017	10/19/17 10:30	
Selenium	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:30	
Silver	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:30	
Thallium	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:30	
Vanadium	9.5	1.0	1	B7J0514	10/18/2017	10/19/17 10:30	
Zinc	8.7	1.0	1	B7J0514	10/18/2017	10/19/17 10:30	

_
$\overline{}$
÷
7471
₹PA
₽.
凶
_
apor
0
2
್ಷ
\geq
등
_0
\Box
$\overline{}$
-
₹,
\rightarrow
Ę,
_
5
Ξ
\mathbf{c}
2
lerc

	10/19/17 11:54	10/18/2017	B7J0519	1	0.10	0.22	Mercury
Notes	Analyzed	Prepared	Batch	Dilution	(mg/kg)	(mg/kg)	Analyte
	Date/Time				PQL	Result	

Analyst: KEK

Analyst: VW

Gasoline Range Organics by EPA 8015B (Modified)

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0311	10/14/2017	B7J0311 10/14/2017 10/14/17 04:17	
Surrogate: 4-Bromofluorobenzene	% 011	50 - 138		B7J0311	10/14/2017	10/14/17 04:17	

Diesel Range Organics by EPA 8015B						,	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	4.0	1.0	1	B7J0581	10/19/2017	10/19/17 17:33	
ORO	4.6	1.0	1	B7J0581	10/19/2017	10/19/17 17:33	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB15-2.5

Lab ID: 1703653-45

Diesel Range Organics by EPA 8015B

Notes 10/19/17 17:33 Analyzed Date/Time 10/19/2017 Prepared B7J0581 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result 135 % Surrogate: p-Terphenyl Analyte

Analyst: TKT

3275 Walnut Avenue, Signal Hill, CA 90755 • Tel: 562-989-4045 • Fax: 562-989-4040 • www.atlglobal.com Page 108 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB15-5.0 Lab ID: 1703653-46

Title 22 Metals by ICP-AES EPA 6010B

Result	PQL				Date/Time	
(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
ND	2.0	1	B7J0514	10/18/2017	10/19/17 10:34	
ND	1.0	_	B7J0514	10/18/2017	10/19/17 10:34	
8.3	1.0	_	B7J0514	10/18/2017	10/19/17 10:34	
ND	1.0	_	B7J0514	10/18/2017	10/19/17 10:34	
ND	1.0	-	B7J0514	10/18/2017	10/19/17 10:34	
1.7	1.0	1	B7J0514	10/18/2017	10/19/17 10:34	
ND	1.0	_	B7J0514	10/18/2017	10/19/17 10:34	
ND	2.0	1	B7J0514	10/18/2017	10/19/17 10:34	
ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:34	
ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:34	
1.2	1.0	1	B7J0514	10/18/2017	10/19/17 10:34	
ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:34	
ND	1.0	-	B7J0514	10/18/2017	10/19/17 10:34	
ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:34	
2.8	1.0	-	B7J0514	10/18/2017	10/19/17 10:34	
9.6	1.0	1	B7J0514	10/18/2017	10/19/17 10:34	
			2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	2.0 1 B7J0514 1.0 1 B7J0514	2.0 1 B710514 10/18/2017 1.0 1 B710514 10/18/2017

Mercury by AA (Cold Vapor) EPA 7471A

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.17	0.10	1	B7J0519	10/18/2017	10/19/17 12:03	

Analyst: KEK

Analyst: VW

Gasoline Range Organics by EPA 8015B (Modified)

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0311	B7J0311 10/14/2017	10/14/17 04:35	
Surrogate: 4-Bromofluorobenzene 112 %	%	50 - 138		B7J0311	10/14/2017	10/14/17 04:35	

Diesel Range Organics by EPA 8015B

Analyst: TKT

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	2.9	1.0	1	B7J0581	10/19/2017	10/19/17 15:59	
ORO	2.5	1.0	1	B7J0581	10/19/2017	10/19/17 15:59	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB15-5.0

Lab ID: 1703653-46

Diesel Range Organics by EPA 8015B

Notes 10/19/17 15:59 Date/Time Analyzed 10/19/2017 Prepared B7J0581 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result 57.7% Surrogate: p-Terphenyl Analyte

Analyst: TKT

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB10-0.5 Lab ID: 1703653-47

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0514	10/18/2017	10/19/17 10:35	
Arsenic	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:35	
Barium	21	1.0	1	B7J0514	10/18/2017	10/19/17 10:35	
Beryllium	N	1.0	1	B7J0514	10/18/2017	10/19/17 10:35	
Cadmium	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:35	
Chromium	3.1	1.0	1	B7J0514	10/18/2017	10/19/17 10:35	
Cobalt	1.6	1.0	1	B7J0514	10/18/2017	10/19/17 10:35	
Copper	5.7	2.0	1	B7J0514	10/18/2017	10/19/17 10:35	
Lead	5.0	1.0	1	B7J0514	10/18/2017	10/19/17 10:35	
Molybdenum	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:35	
Nickel	4.7	1.0	1	B7J0514	10/18/2017	10/19/17 10:35	
Selenium	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:35	
Silver	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:35	
Thallium	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:35	
Vanadium	6.3	1.0	1	B7J0514	10/18/2017	10/19/17 10:35	
Zinc	18	1.0	-	B7J0514	10/18/2017	10/19/17 10:35	

Mercury by AA (Cold Vapor) EPA 7471A

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.21	0.10	1	B7J0519	10/18/2017	10/19/17 12:05	

Analyst: KEK

Analyst: VW

Gasoline Range Organics by EPA 8015B (Modified)

Analyte	Result (mg/kg)	PQL (mo/ko)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
	(9 y 8 m)	(Sw.S)	Timenon	Darci	no malor i	, many zea	50001
Gasoline Range Organics	ND	1.0	1	B7J0311	B7J0311 10/14/2017	10/14/17 04:53	
Surrogate: 4-Bromofluorobenzene	95.5 %	50 - 138		B7J0311	10/14/2017	10/14/17 04:53	

Diesel Range Organics by EPA 8015B						<i>f</i>	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	840	200	100	B7J0581	10/19/2017	10/19/17 21:26	
ORO	3800	200	100	B7J0581	10/19/2017	10/19/17 21:26	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB10-0.5 Lab ID: 1703653-47

Diesel Range Organics by EPA 8015B

Analyst: TKT Notes **S**4 10/19/17 21:26 Date/Time Analyzed 10/19/2017 Prepared B7J0581 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result %0 Surrogate: p-Terphenyl Analyte

Polychlorinated Biphenyls by EPA 8082

Analyst: CO/

Notes Analyzed Date/Time Prepared Batch Dilution (ug/kg) PQL (ug/kg) Result Analyte

	ì						
Aroclor 1016	ND	16	1	B7J0770	10/25/2017	10/25/17 23:44	
Aroclor 1221	ND	16	1	B7J0770	10/25/2017	10/25/17 23:44	
Aroclor 1232	ND	16	1	B7J0770	10/25/2017	10/25/17 23:44	
Aroclor 1242	ND	16	_	B7J0770	10/25/2017	10/25/17 23:44	
Aroclor 1248	ND	16	1	B7J0770	10/25/2017	10/25/17 23:44	
Aroclor 1254	ND	16	1	B7J0770	10/25/2017	10/25/17 23:44	
Aroclor 1260	19	16	_	B7J0770	10/25/2017	10/25/17 23:44	
Aroclor 1262	ND	16	_	B7J0770	10/25/2017	10/25/17 23:44	
Aroclor 1268	ND	16	1	B7J0770	10/25/2017	10/25/17 23:44	
Surrogate: Decachlorobiphenyl 34.7 % Surrogate: Tetrachloro-m-xylene 84.4 %	\o \c	18 - 136		B7J0770 B7I0770	10/25/2017	10/25/17 23:44	
	,					10,000	

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
1,1,1-Trichloroethane	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
1,1,2,2-Tetrachloroethane	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
1,1,2-Trichloroethane	ND	4.8	-	B7J0791	10/26/2017	10/26/17 17:40	
1,1-Dichloroethane	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
1,1-Dichloroethene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
1,1-Dichloropropene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
1,2,3-Trichloropropane	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
1,2,3-Trichlorobenzene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
1,2,4-Trichlorobenzene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
1,2,4-Trimethylbenzene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
1,2-Dibromo-3-chloropropane	ND	7.6	1	B7J0791	10/26/2017	10/26/17 17:40	
1,2-Dibromoethane	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
1,2-Dichlorobenzene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
1,2-Dichloroethane	ND	8.4	1	B7J0791	10/26/2017	10/26/17 17:40	

Page 112 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Reported: 11/02/2017

Client Sample ID LB10-0.5

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
1,2-Dichloropropane	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
1,3,5-Trimethylbenzene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
1,3-Dichlorobenzene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
1,3-Dichloropropane	ND	4.8	-	B7J0791	10/26/2017	10/26/17 17:40	
1,4-Dichlorobenzene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
2,2-Dichloropropane	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
2-Chlorotoluene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
4-Chlorotoluene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
4-Isopropyltoluene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
Benzene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
Bromobenzene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
Bromochloromethane	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
Bromodichloromethane	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
Bromoform	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
Bromomethane	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
Carbon disulfide	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
Carbon tetrachloride	ND	4.8	-	B7J0791	10/26/2017	10/26/17 17:40	
Chlorobenzene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
Chloroethane	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
Chloroform	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
Chloromethane	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
cis-1,2-Dichloroethene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
cis-1,3-Dichloropropene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
Di-isopropyl ether	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
Dibromochloromethane	ND	4.8	-	B7J0791	10/26/2017	10/26/17 17:40	
Dibromomethane	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
Dichlorodifluoromethane	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
Ethyl Acetate	ND	48	1	B7J0791	10/26/2017	10/26/17 17:40	
Ethyl Ether	ND	48	1	B7J0791	10/26/2017	10/26/17 17:40	
Ethyl tert-butyl ether	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
Ethylbenzene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
Freon-113	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
Hexachlorobutadiene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
Isopropylbenzene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
m,p-Xylene	ND	7.6	-	B7J0791	10/26/2017	10/26/17 17:40	
Methylene chloride	ND	8.8	1	B7J0791	10/26/2017	10/26/17 17:40	
MTBE	ND	4.8	_	B7J0791	10/26/2017	10/26/17 17:40	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB10-0.5

Volatile Organic Compounds by EPA 5035/EPA 8260B

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
n-Butylbenzene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
n-Propylbenzene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
Naphthalene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
o-Xylene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
sec-Butylbenzene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
Styrene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
tert-Amyl methyl ether	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
tert-Butanol	ND	76	1	B7J0791	10/26/2017	10/26/17 17:40	
tert-Butylbenzene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
Tetrachloroethene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
Toluene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
trans-1,2-Dichloroethene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
trans-1,3-Dichloropropene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
Trichloroethene	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
Trichlorofluoromethane	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
Vinyl acetate	ND	48	1	B7J0791	10/26/2017	10/26/17 17:40	
Vinyl chloride	ND	4.8	1	B7J0791	10/26/2017	10/26/17 17:40	
Surrogate: 1,2-Dichloroethane-d4	107 %	32 - 140		B7J0791	10/26/2017	10/26/17 17:40	
Surrogate: 4-Bromofluorobenzene	97.1%	68 - 131		B7J0791	10/26/2017	10/26/17 17:40	
Surrogate: Dibromofluoromethane	% 001	49 - 134		B7J0791	10/26/2017	10/26/17 17:40	
Surrogate: Toluene-d8	% 80I	75 - 132		B7J0791	10/26/2017	10/26/17 17:40	

=
₹
2
Ś
<
1
0
1
4
4
>
⊇.
•
2
=
nunoduro
Š
5
٠
Ì
=
ã
_
נו
3
7
5
Ξ
_

Semivolatile Organic Compounds by EPA 8270/SIM	A 8270/SIM						Analyst: SP
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
2-Methylnaphthalene	ND	1000	200	B7J0764	10/25/2017	10/27/17 15:53	D1
Acenaphthene	ND	1000	200	B7J0764	10/25/2017	10/27/17 15:53	DI
Acenaphthylene	N	1000	200	B7J0764	10/25/2017	10/27/17 15:53	D1
Anthracene	ND	1000	200	B7J0764	10/25/2017	10/27/17 15:53	DI
Benzo(a)anthracene	ND	1000	200	B7J0764	10/25/2017	10/27/17 15:53	DI
Benzo(a)pyrene	ND	1000	200	B7J0764	10/25/2017	10/27/17 15:53	DI
Benzo(b)fluoranthene	ND	1000	200	B7J0764	10/25/2017	10/27/17 15:53	DI
Benzo(g,h,i)perylene	ND	1000	200	B7J0764	10/25/2017	10/27/17 15:53	DI
Benzo(k)fluoranthene	ND	1000	200	B7J0764	10/25/2017	10/27/17 15:53	DI
Chrysene	ND	1000	200	B7J0764	10/25/2017	10/27/17 15:53	DI
Dibenz(a,h)anthracene	ND	1000	200	B7J0764	10/25/2017	10/27/17 15:53	D1

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB10-0.5

Semivolatile Organic Compounds by EPA 8270/SIM	y EPA 8270/SIN	1					Analyst: SP
Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Fluoranthene	ND	1000	200	B7J0764	10/25/2017	10/27/17 15:53	DI
Fluorene	ND	1000	200	B7J0764	10/25/2017	10/27/17 15:53	DI
Indeno(1,2,3-cd)pyrene	ND	1000	200	B7J0764	10/25/2017	10/27/17 15:53	DI
Naphthalene	ND	1000	200	B7J0764	10/25/2017	10/27/17 15:53	D1
Phenanthrene	ND	1000	200	B7J0764	10/25/2017	10/27/17 15:53	D1
Pyrene	ND	1000	200	B7J0764	10/25/2017	10/27/17 15:53	D1
Surrogate: 1,2-Dichlorobenzene-d4	%0	29 - 109		B7J0764	10/25/2017	10/27/17 15:53	S4
Surrogate: 2-Fluorobiphenyl	%0	39 - 108		B7J0764	10/25/2017	10/27/17 15:53	S4
Surrogate: Nitrobenzene-d5	%0	0 - 146		B7J0764	10/25/2017	10/27/17 15:53	
Surrogate: 4-Terphenyl-d14	%0	39 - 123		B7J0764	10/25/2017	10/27/17 15:53	S4

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB10-2.5 Lab ID: 1703653-48

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0514	10/18/2017	10/19/17 10:36	
Arsenic	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:36	
Barium	21	1.0	1	B7J0514	10/18/2017	10/19/17 10:36	
Beryllium	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:36	
Cadmium	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:36	
Chromium	3.8	1.0	1	B7J0514	10/18/2017	10/19/17 10:36	
Cobalt	2.2	1.0	1	B7J0514	10/18/2017	10/19/17 10:36	
Copper	2.3	2.0	1	B7J0514	10/18/2017	10/19/17 10:36	
Lead	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:36	
Molybdenum	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:36	
Nickel	3.0	1.0	1	B7J0514	10/18/2017	10/19/17 10:36	
Selenium	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:36	
Silver	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:36	
Thallium	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:36	
Vanadium	6.5	1.0	1	B7J0514	10/18/2017	10/19/17 10:36	
Zinc	=	1.0	_	B7J0514	10/18/2017	10/19/17 10:36	

Mercury by AA (Cold Vapor) EPA 7471A

Analyst: KEK

Analyst: VW

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.51	0.10	1	B7J0519	10/18/2017	10/19/17 12:07	

Gasoline Range Organics by EPA 8015B (Modified)

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0362	B7J0362 10/16/2017	10/16/17 14:07	
Surrogate: 4-Bromofluorobenzene	113 %	50 - 138		B7J0362	10/16/2017	10/16/17 14:07	

Diesel Range Organics by EPA 8015B						A	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	5.2	1.0	1	B7J0581	10/19/2017	10/19/17 18:19	
ORO	7.3	1.0	1	B7J0581	10/19/2017	10/19/17 18:19	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB10-2.5 Lab ID: 1703653-48

Diesel Range Organics by EPA 8015B

Lab ID: 1703653-48

	61:81 21/61/01	10/19/2017	B7J0581		38 - 145	89.5 %	Surrogate: p-Terphenyl
Notes	Analyzed	Prepared	Batch	Dilution	(mg/kg)	(mg/kg)	Analyte
	Date/Time				PQL	Result	

Volatile Organic Compounds by EPA 5035/EPA 8260B

Result

Analyst: AG

Date/Time

Analyst: TKT

10/26/17 17:58 10/26/17 17:58 10/26/17 17:58 10/26/17 17:58 10/26/17 17:58 10/26/17 17:58 10/26/17 17:58 10/26/17 17:58 10/26/17 17:58 10/26/17 17:58 10/26/17 17:58 10/26/17 17:58 10/26/17 17:58 10/26/17 17:58 10/26/17 17:58 10/26/17 17:58 Analyzed 10/26/2017 10/26/2017 10/26/2017 10/26/2017 10/26/2017 10/26/2017 10/26/2017 10/26/2017 10/26/2017 10/26/2017 10/26/2017 10/26/2017 10/26/2017 10/26/2017 10/26/2017 10/26/2017 Prepared B7J0791 Dilution (ug/kg) 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 8.7 4.4 4.4 4.4 4.4 (ug/kg) 2 9 2 Ð 8 2 9 8 2 8 8 $\frac{1}{2}$ 8 8 8 1,2-Dibromo-3-chloropropane 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,2,4-Trimethylbenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,3-Trichloropropane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloropropene 1,2-Dichlorobenzene 1,2-Dichloropropane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dibromoethane 1,2-Dichloroethane

10/26/17 17:58 10/26/17 17:58

10/26/2017

B7J0791 B7J0791

10/26/2017

4.4

1,3,5-Trimethylbenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

10/26/17 17:58

10/26/2017

B7J0791

2,2-Dichloropropane	ND	4.4	-	B7J0791	10/26/2017	10/26/17 17:58
2-Chlorotoluene	ND	4.4	1	B7J0791	10/26/2017	10/26/17 17:58
4-Chlorotoluene	ND	4.4	1	B7J0791	10/26/2017	10/26/17 17:58
4-Isopropyltoluene	ND	4.4	_	B7J0791	10/26/2017	10/26/17 17:58
Benzene	ND	4.4	1	B7J0791	10/26/2017	10/26/17 17:58
Bromobenzene	ND	4.4	_	B7J0791	10/26/2017	10/26/17 17:58
Bromochloromethane	ND	4.4	_	B7J0791	10/26/2017	10/26/17 17:58
Bromodichloromethane	ND	4.4	1	B7J0791	10/26/2017	10/26/17 17:58
Bromoform	ND	4.4	_	B7J0791	10/26/2017	10/26/17 17:58
Bromomethane	ND	4.4	1	B7J0791	10/26/2017	10/26/17 17:58
Carbon disulfide	13	4.4	1	B7J0791	10/26/2017	10/26/17 17:58

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB10-2.5 Lab ID: 1703653-48

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Carbon tetrachloride	ND	4.4	1	B7J0791	10/26/2017	10/26/17 17:58	
Chlorobenzene	N	4.4	_	B7J0791	10/26/2017	10/26/17 17:58	
Chloroethane	ND	4.4	1	B7J0791	10/26/2017	10/26/17 17:58	
Chloroform	ND	4.4	1	B7J0791	10/26/2017	10/26/17 17:58	
Chloromethane	ND	4.4	-	B7J0791	10/26/2017	10/26/17 17:58	
cis-1,2-Dichloroethene	ND	4.4	1	B7J0791	10/26/2017	10/26/17 17:58	
cis-1,3-Dichloropropene	ND	4.4	1	B7J0791	10/26/2017	10/26/17 17:58	
Di-isopropyl ether	ND	4.4	1	B7J0791	10/26/2017	10/26/17 17:58	
Dibromochloromethane	ND	4.4	-	B7J0791	10/26/2017	10/26/17 17:58	
Dibromomethane	ND	4.4	1	B7J0791	10/26/2017	10/26/17 17:58	
Dichlorodifluoromethane	N	4.4	_	B7J0791	10/26/2017	10/26/17 17:58	
Ethyl Acetate	ND	44	-	B7J0791	10/26/2017	10/26/17 17:58	
Ethyl Ether	ND	44	1	B7J0791	10/26/2017	10/26/17 17:58	
Ethyl tert-butyl ether	ND	4.4	1	B7J0791	10/26/2017	10/26/17 17:58	
Ethylbenzene	ND	4.4	_	B7J0791	10/26/2017	10/26/17 17:58	
Freon-113	N	4.4	-	B7J0791	10/26/2017	10/26/17 17:58	
Hexachlorobutadiene	ND	4.4	1	B7J0791	10/26/2017	10/26/17 17:58	
Isopropylbenzene	ND	4.4	1	B7J0791	10/26/2017	10/26/17 17:58	
m,p-Xylene	ND	8.7	1	B7J0791	10/26/2017	10/26/17 17:58	
Methylene chloride	N	4.4	_	B7J0791	10/26/2017	10/26/17 17:58	
MTBE	ND	4.4	1	B7J0791	10/26/2017	10/26/17 17:58	
n-Butylbenzene	ND	4.4	1	B7J0791	10/26/2017	10/26/17 17:58	
n-Propylbenzene	ND	4.4	1	B7J0791	10/26/2017	10/26/17 17:58	
Naphthalene	ND	4.4	-	B7J0791	10/26/2017	10/26/17 17:58	
o-Xylene	ND	4.4	-	B7J0791	10/26/2017	10/26/17 17:58	
sec-Butylbenzene	ND	4.4	1	B7J0791	10/26/2017	10/26/17 17:58	
Styrene	ND	4.4	1	B7J0791	10/26/2017	10/26/17 17:58	
tert-Amyl methyl ether	ND	4.4	1	B7J0791	10/26/2017	10/26/17 17:58	
tert-Butanol	ND	87	-	B7J0791	10/26/2017	10/26/17 17:58	
tert-Butylbenzene	ND	4.4	-	B7J0791	10/26/2017	10/26/17 17:58	
Tetrachloroethene	ND	4.4	1	B7J0791	10/26/2017	10/26/17 17:58	
Toluene	N	4.4	_	B7J0791	10/26/2017	10/26/17 17:58	
trans-1,2-Dichloroethene	ND	4.4	1	B7J0791	10/26/2017	10/26/17 17:58	
trans-1,3-Dichloropropene	N	4.4	1	B7J0791	10/26/2017	10/26/17 17:58	
Trichloroethene	ND	4.4	1	B7J0791	10/26/2017	10/26/17 17:58	
Trichlorofluoromethane	ND	4.4	1	B7J0791	10/26/2017	10/26/17 17:58	
Vinyl acetate	ND	44	-	B7J0791	10/26/2017	10/26/17 17:58	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB10-2.5 Lab ID: 1703653-48

Volatile Organic Compounds by EPA 5035/EPA 8260B

Volatine Organic Compounds by ELA 5055/ELA 6200B	1 A 3033/121 A 620	and					Allalyst: AG
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Vinyl chloride	ND	4.4	1	B7J0791	10/26/2017	B7J0791 10/26/2017 10/26/17 17:58	
Surrogate: 1,2-Dichloroethane-d4	104 %	32 - 140		B7J0791	10/26/2017	10/26/17 17:58	
Surrogate: 4-Bromofluorobenzene	% 101	68 - 131		B7J0791	10/26/2017	10/26/17 17:58	
Surrogate: Dibromofluoromethane	% 9.96	49 - 134		B7J0791	10/26/2017	10/26/17 17:58	
Surrogate: Toluene-d8	% III	75 - 132		B7J0791	10/26/2017	10/26/17 17:58	

Analyst: SP	Date/Time
Semivolatile Organic Compounds by EPA 8270/SIM	Result PQL

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
2-Methylnaphthalene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 11:51	
Acenaphthene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 11:51	
Acenaphthylene	ND	5.0	-	B7J0764	10/25/2017	10/27/17 11:51	
Anthracene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 11:51	
Benzo(a)anthracene	ND	5.0	-	B7J0764	10/25/2017	10/27/17 11:51	
Benzo(a)pyrene	ND	5.0	-	B7J0764	10/25/2017	10/27/17 11:51	
Benzo(b)fluoranthene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 11:51	
Benzo(g,h,i)perylene	ND	5.0		B7J0764	10/25/2017	10/27/17 11:51	
Benzo(k)fluoranthene	ND	5.0	-	B7J0764	10/25/2017	10/27/17 11:51	
Chrysene	ND	5.0	-	B7J0764	10/25/2017	10/27/17 11:51	
Dibenz(a,h)anthracene	ND	5.0		B7J0764	10/25/2017	10/27/17 11:51	
Fluoranthene	ND	5.0		B7J0764	10/25/2017	10/27/17 11:51	
Fluorene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 11:51	
Indeno(1,2,3-cd)pyrene	ND	5.0	-	B7J0764	10/25/2017	10/27/17 11:51	
Naphthalene	ND	5.0	-	B7J0764	10/25/2017	10/27/17 11:51	
Phenanthrene	ND	5.0	-	B7J0764	10/25/2017	10/27/17 11:51	
Pyrene	ND	5.0	1	B7J0764	10/25/2017	10/27/17 11:51	
Surrogate: 1,2-Dichlorobenzene-d4 33.8 %	%	29 - 109		B7J0764	10/25/2017	10/27/17 11:51	
Surrogate: 2-Fluorobiphenyl 60.8 %	%	39 - 108		B7J0764	10/25/2017	10/27/17 11:51	
Surrogate: Nitrobenzene-d5 40.0 %	%	0 - 146		B7J0764	10/25/2017	10/27/17 11:51	
Surrogate: 4-Terphenyl-d14 69.5 %	%:	39 - 123		B7J0764	10/25/2017	10/27/17 11:51	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB10-5.0 Lab ID: 1703653-49

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL .	: :		-	Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0514	10/18/2017	10/19/17 10:37	
Arsenic	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:37	
Barium	11	1.0	1	B7J0514	10/18/2017	10/19/17 10:37	
Beryllium	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:37	
Cadmium	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:37	
Chromium	2.4	1.0	-	B7J0514	10/18/2017	10/19/17 10:37	
Cobalt	1.3	1.0	1	B7J0514	10/18/2017	10/19/17 10:37	
Copper	ND	2.0	1	B7J0514	10/18/2017	10/19/17 10:37	
Lead	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:37	
Molybdenum	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:37	
Nickel	1.6	1.0	-	B7J0514	10/18/2017	10/19/17 10:37	
Selenium	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:37	
Silver	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:37	
Thallium	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:37	
Vanadium	3.8	1.0	1	B7J0514	10/18/2017	10/19/17 10:37	
Zinc	6.4	1.0	-	B7J0514	10/18/2017	10/19/17 10:37	

Mercury by AA (Cold Vapor) EPA 7471A

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.24	0.10	1	B7J0519	10/18/2017	10/19/17 12:09	

Analyst: KEK

Analyst: VW

Gasoline Range Organics by EPA 8015B (Modified)

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0362	10/16/2017	10/16/2017 10/16/17 14:25	
Surrogate: 4-Bromofluorobenzene 104 %	%	50 - 138		B7J0362	10/16/2017	10/16/17 14:25	

Diesel Range Organics by EPA 8015B						<i>f</i>	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	1.3	1.0	1	B7J0581	10/19/2017	10/19/17 17:02	
ORO	1.5	1.0	1	B7J0581	10/19/2017	10/19/17 17:02	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB10-5.0

Lab ID: 1703653-49

Diesel Range Organics by EPA 8015B

Analyst: TKT Notes 10/19/17 17:02 Date/Time Analyzed 10/19/2017 Prepared B7J0581 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result 77.6 % Surrogate: p-Terphenyl Analyte

3275 Walnut Avenue, Signal Hill, CA 90755 • Tel: 562-989-4045 • Fax: 562-989-4040 • www.atlglobal.com Page 121 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB6-0.5 Lab ID: 1703653-50

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0514	10/18/2017	10/19/17 10:38	
Arsenic	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:38	
Barium	12	1.0	1	B7J0514	10/18/2017	10/19/17 10:38	
Beryllium	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:38	
Cadmium	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:38	
Chromium	2.9	1.0	1	B7J0514	10/18/2017	10/19/17 10:38	
Cobalt	1.2	1.0	1	B7J0514	10/18/2017	10/19/17 10:38	
Copper	2.4	2.0	1	B7J0514	10/18/2017	10/19/17 10:38	
Lead	7.3	1.0	1	B7J0514	10/18/2017	10/19/17 10:38	
Molybdenum	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:38	
Nickel	2.1	1.0	1	B7J0514	10/18/2017	10/19/17 10:38	
Selenium	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:38	
Silver	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:38	
Thallium	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:38	
Vanadium	4.9	1.0	1	B7J0514	10/18/2017	10/19/17 10:38	
Zinc	16	1.0		B7J0514	10/18/2017	10/19/17 10:38	

IA
4
EFA
vapor) EFA
Dy AA (
Ş
Iercury
=

Mercury by AA (Cold Vapor) EPA 7471A	_					,	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.16	0.10	1	B7J0519	10/18/2017	10/19/17 12:15	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

7 1	Result	TÒd		r a	ē	Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Frepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0311	B7J0311 10/14/2017	10/14/17 05:12	
Surrogate: 4-Bromofluorobenzene 108 %	%	50 - 138		B7J0311	10/14/2017	10/14/17 05:12	

Diesel Range Organics by EPA 8015B						f F	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	7.1	1.0	1	B7J0581	10/19/2017	10/19/17 20:23	
ORO	16	1.0	1	B7J0581	10/19/2017	10/19/17 20:23	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB6-0.5

Diesel Range Organics by EPA 8015B

Lab ID: 1703653-50

Date/Time	Prepared Analyzed Notes	10/19/2017 10/19/17 20:23
	Batch	B710581
	Dilution	
PQL	(mg/kg)	38 - 145
Result	(mg/kg)	137 %
	Analyte	Surrogate: n-Ternheuyl

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB6-2.5 Lab ID: 1703653-51

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0514	10/18/2017	10/19/17 10:39	
Arsenic	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:39	
Barium	8.6	1.0	1	B7J0514	10/18/2017	10/19/17 10:39	
Beryllium	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:39	
Cadmium	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:39	
Chromium	2.1	1.0	1	B7J0514	10/18/2017	10/19/17 10:39	
Cobalt	1.2	1.0	1	B7J0514	10/18/2017	10/19/17 10:39	
Copper	ND	2.0	1	B7J0514	10/18/2017	10/19/17 10:39	
Lead	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:39	
Molybdenum	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:39	
Nickel	1.6	1.0	1	B7J0514	10/18/2017	10/19/17 10:39	
Selenium	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:39	
Silver	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:39	
Thallium	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:39	
Vanadium	3.7	1.0	-	B7J0514	10/18/2017	10/19/17 10:39	
Zinc	6.7	1.0	1	B7J0514	10/18/2017	10/19/17 10:39	

	IOd
A	D coult
) EPA 7471	
AA (Cold Vapor) EPA 7471A	
by	
Mercury	

	10/19/17 12:17	10/18/2017	B7J0519	1	0.10	0.16	Mercury
Notes	Analyzed	Prepared	Batch	Dilution	(mg/kg)	(mg/kg)	Analyte
	Date/Time				PQL	Result	

Analyst: KEK

Analyst: VW

Gasoline Range Organics by EPA 8015B (Modified)

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0311	B7J0311 10/14/2017	10/14/17 05:30	
Surrogate: 4-Bromofluorobenzene 109 %	%	50 - 138		B7J0311	10/14/2017	10/14/17 05:30	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	8.9	1.0	1	B7J0581	10/19/2017	10/19/17 16:15	
ORO	5.1	1.0	1	B7J0581	10/19/2017	10/19/17 16:15	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB6-2.5

Lab ID: 1703653-51

Diesel Range Organics by EPA 8015B

	Result	PQL				Date/Time		
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes	
Surrogate: p-Terphenyl	84.0 %	38 - 145		B7J0581	10/19/2017	10/19/17 16:15		

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB6-5.0 Lab ID: 1703653-52

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	QN	2.0	1	B7J0514	10/18/2017	10/19/17 10:40	
Arsenic	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:40	
Barium	9.1	1.0	1	B7J0514	10/18/2017	10/19/17 10:40	
Beryllium	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:40	
Cadmium	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:40	
Chromium	1.7	1.0	1	B7J0514	10/18/2017	10/19/17 10:40	
Cobalt	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:40	
Copper	ND	2.0	1	B7J0514	10/18/2017	10/19/17 10:40	
Lead	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:40	
Molybdenum	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:40	
Nickel	1.2	1.0	1	B7J0514	10/18/2017	10/19/17 10:40	
Selenium	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:40	
Silver	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:40	
Thallium	ND	1.0	1	B7J0514	10/18/2017	10/19/17 10:40	
Vanadium	3.0	1.0	1	B7J0514	10/18/2017	10/19/17 10:40	
Zinc	5.3	1.0	1	B7J0514	10/18/2017	10/19/17 10:40	

Mercury by AA (Cold Vapor) EPA 7471A

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.20	0.10	1	B7J0519	10/18/2017	10/19/17 12:19	

Analyst: KEK

Gasoline Range Organics by EPA 8015B (Modified)

Gasoline Range Organics by EPA 80	EPA 8015B (Modified)	(Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0311	10/14/2017	B7J0311 10/14/2017 10/14/17 05:49	
Surrogate: 4-Bromofluorobenzene	% 601	50 - 138		B7J0311		10/14/2017 10/14/17 05:49	

Diesel Range Organics by EPA 8015B

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	1.2	1.0	1	B7J0581	10/19/2017	10/19/17 17:17	
ORO	1.6	1.0	1	B7J0581	10/19/2017	10/19/17 17:17	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB6-5.0

Lab ID: 1703653-52

Diesel Range Organics by EPA 8015B

Notes 71:71 71/61/01 Analyzed Date/Time 10/19/2017 Prepared B7J0581 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result 54.4 % Surrogate: p-Terphenyl Analyte

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB6-GW Lab ID: 1703653-53

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/L)	(mg/L)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	0.010	1	B7J0455	10/17/2017	10/17/17 17:28	
Arsenic	ND	0.010	1	B7J0455	10/17/2017	10/17/17 17:28	
Barium	860.0	0.0030	1	B7J0455	10/17/2017	10/17/17 17:28	
Beryllium	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:28	
Cadmium	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:28	
Chromium	0.0087	0.0030	1	B7J0455	10/17/2017	10/17/17 17:28	
Cobalt	0.0035	0.0030	1	B7J0455	10/17/2017	10/17/17 17:28	
Copper	0.0000	0.0090	1	B7J0455	10/17/2017	10/17/17 17:28	
Lead	ND	0.0050	1	B7J0455	10/17/2017	10/17/17 17:28	
Molybdenum	0.022	0.0050	1	B7J0455	10/17/2017	10/17/17 17:28	
Nickel	0.0067	0.0050	1	B7J0455	10/17/2017	10/17/17 17:28	
Selenium	ND	0.010	1	B7J0455	10/17/2017	10/17/17 17:28	
Silver	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:28	
Thallium	ND	0.015	1	B7J0455	10/17/2017	10/17/17 17:28	
Vanadium	0.018	0.0030	1	B7J0455	10/17/2017	10/17/17 17:28	
Zinc	ND	0.025		B7J0455	10/17/2017	10/17/17 17:28	
Mercury by AA (Cold Vapor) EPA 7470A						7	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(ng/L)	(ng/L)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.20	1	B7J0458	10/17/2017	10/18/17 17:21	

	Result	PQL				Date/Time	
Analyte	(ng/L)	(ng/L)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.20	1	B7J0458	10/17/2017	10/18/17 17:21	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	0.09	0.05	1	B7J0434	B7J0434 10/17/2017	10/17/17 10:13	
Surrogate: 4-Bromofluorobenzene 97.3 %	% 8	70 - 130		B7J0434	10/17/2017	10/17/17 10:13	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						<i>f</i>	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/L)	(mg/L)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	0.47	0.05	1	B7J0338	10/13/2017	10/14/17 11:10	
ORO	0.43	0.05	1	B7J0338	10/13/2017	10/14/17 11:10	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB6-GW Lab ID: 1703653-53

Diesel Range Organics by EPA 8015B

	Result	PQL				Date/Time	
Analyte	(mg/L)	(mg/L)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: p-Terphenyl	128 %	20 - 150		B7J0338	10/13/2017	10/14/17 11:10	

Volatile Organic Compounds by EPA 8260B	4 8260B						Analyst: QP
Analyte	Result (ug/L)	PQL (ug/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
1,1,1-Trichloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
1,1,2,2-Tetrachloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
1,1,2-Trichloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
1,1-Dichloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
1,1-Dichloroethene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
1,1-Dichloropropene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
1,2,3-Trichloropropane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
1,2,3-Trichlorobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
1,2,4-Trichlorobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
1,2,4-Trimethylbenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
1,2-Dibromo-3-chloropropane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
1,2-Dibromoethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
1,2-Dichlorobenzene	N	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
1,2-Dichloroethane	N	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
1,2-Dichloropropane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
1,3,5-Trimethylbenzene	N	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
1,3-Dichlorobenzene	N	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
1,3-Dichloropropane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
1,4-Dichlorobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
2,2-Dichloropropane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
2-Chlorotoluene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
4-Chlorotoluene	N	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
4-Isopropyltoluene	N	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
Benzene	0.81	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
Bromobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
Bromochloromethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
Bromodichloromethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
Bromoform	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
Bromomethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
Carbon disulfide	ND	1.0	1	B7J0319	10/13/2017	10/13/17 17:44	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB6-GW Lab ID: 1703653-53

Analyst: QP Volatile Organic Compounds by EPA 8260B

	Result	PQL				Date/Time	
Analyte	(ng/L)	(ng/L)	Dilution	Batch	Prepared	Analyzed	Notes
Carbon tetrachloride	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
Chlorobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
Chloroethane	ND	0.50	-	B7J0319	10/13/2017	10/13/17 17:44	
Chloroform	N	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
Chloromethane	N	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
cis-1,2-Dichloroethene	8/	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
cis-1,3-Dichloropropene	N	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
Di-isopropyl ether	N	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
Dibromochloromethane	N	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
Dibromomethane	N	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
Dichlorodifluoromethane	N	0.50		B7J0319	10/13/2017	10/13/17 17:44	
Ethyl Acetate	N	10		B7J0319	10/13/2017	10/13/17 17:44	
Ethyl Ether	N	10	-	B7J0319	10/13/2017	10/13/17 17:44	
Ethyl tert-butyl ether	N	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
Ethylbenzene	N	0.50		B7J0319	10/13/2017	10/13/17 17:44	
Freon-113	N	0.50	_	B7J0319	10/13/2017	10/13/17 17:44	
Hexachlorobutadiene	N	0.50		B7J0319	10/13/2017	10/13/17 17:44	
Isopropylbenzene	N	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
m,p-Xylene	N	1.0	1	B7J0319	10/13/2017	10/13/17 17:44	
Methylene chloride	N	1.0	1	B7J0319	10/13/2017	10/13/17 17:44	
MTBE	19	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
n-Butylbenzene	N	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
n-Propylbenzene	N	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
Naphthalene	ND	0.50	_	B7J0319	10/13/2017	10/13/17 17:44	
o-Xylene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
sec-Butylbenzene	ND	0.50	-	B7J0319	10/13/2017	10/13/17 17:44	
Styrene	ND	0.50		B7J0319	10/13/2017	10/13/17 17:44	
tert-Amyl methyl ether	ND	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
tert-Butanol	N	10	1	B7J0319	10/13/2017	10/13/17 17:44	
tert-Butylbenzene	ND	0.50	_	B7J0319	10/13/2017	10/13/17 17:44	
Tetrachloroethene	N	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
Toluene	N	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
trans-1,2-Dichloroethene	33	0.50	_	B7J0319	10/13/2017	10/13/17 17:44	
trans-1,3-Dichloropropene	N	0.50	1	B7J0319	10/13/2017	10/13/17 17:44	
Trichloroethene	ND	0.50	-	B7J0319	10/13/2017	10/13/17 17:44	
Trichlorofluoromethane	ND	0.50	-	B7J0319	10/13/2017	10/13/17 17:44	
Vinyl acetate	ND	10	1	B7J0319	10/13/2017	10/13/17 17:44	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB6-GW Lab ID: 1703653-53

Volatile Organic Compounds by EPA 8260B

Analyst: QP

Analyte	Result (ug/L)	PQL (ug/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Vinyl chloride	43	0.50	1	B7J0319	10/13/2017	B710319 10/13/2017 10/13/17 17:44	
Surrogate: 1,2-Dichloroethane-d4 Surrogate: 4-Bromofluorobenzene Surrogate: Dibromofluoromethane Surrogate: Toluene-d8	100 % 93.1 % 105 % 102 %	70 - 166 88 - 120 80 - 150 87 - 121		B710319 B730319 B730319 B730319	10/13/2017 10/13/2017 10/13/2017 10/13/2017	10/13/17 17:44 10/13/17 17:44 10/13/17 17:44 10/13/17 17:44	

Semivoratine Organic Compounds by EFA 62/0/SHV	A 02 / U/SLIVI						Analyst: SF
	Result	PQL				Date/Time	
Analyte	(ng/L)	(ng/L)	Dilution	Batch	Prepared	Analyzed	Notes

	Result	PQL				Date/Time	
Analyte	(ng/L)	(ng/L)	Dilution	Batch	Prepared	Analyzed	Notes
2-Methylnaphthalene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 15:31	
Acenaphthene	ND	0.20	_	B7J0413	10/16/2017	10/16/17 15:31	
Acenaphthylene	ND	0.20		B7J0413	10/16/2017	10/16/17 15:31	
Anthracene	ND	0.20		B7J0413	10/16/2017	10/16/17 15:31	
Benzo(a)anthracene	ND	0.20	-	B7J0413	10/16/2017	10/16/17 15:31	
Benzo(a)pyrene	ND	0.20	_	B7J0413	10/16/2017	10/16/17 15:31	
Benzo(b)fluoranthene	ND	0.20		B7J0413	10/16/2017	10/16/17 15:31	
Benzo(g,h,i)perylene	ND	0.20	_	B7J0413	10/16/2017	10/16/17 15:31	
Benzo(k)fluoranthene	ND	0.20	_	B7J0413	10/16/2017	10/16/17 15:31	
Chrysene	ND	0.20		B7J0413	10/16/2017	10/16/17 15:31	
Dibenz(a,h)anthracene	ND	0.20	_	B7J0413	10/16/2017	10/16/17 15:31	
Fluoranthene	ND	0.20	_	B7J0413	10/16/2017	10/16/17 15:31	
Fluorene	ND	0.20		B7J0413	10/16/2017	10/16/17 15:31	
Indeno(1,2,3-cd)pyrene	ND	0.20	_	B7J0413	10/16/2017	10/16/17 15:31	
Naphthalene	ND	0.20		B7J0413	10/16/2017	10/16/17 15:31	
Phenanthrene	ND	0.20		B7J0413	10/16/2017	10/16/17 15:31	
Pyrene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 15:31	
Surrogate: 1,2-Dichlorobenzene-d4 63.0 %	%(32 - 99		B7J0413	10/16/2017	10/16/17 15:31	
Surrogate: 2-Fluorobiphenyl 69.6 %	% 5	29 - 105		B7J0413	10/16/2017	10/16/17 15:31	
Surrogate: Nitrobenzene-d5 80.8 %	% 8	17 - 123		B7J0413	10/16/2017	10/16/17 15:31	
Surrogate: 4-Terphenyl-d14 80.6 %	% 5	32 - 119		B7J0413	10/16/2017	10/16/17 15:31	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB27-GW

Lab ID: 1703653-54

	Result	PQL				Date/Time	
Analyte	(mg/L)	(mg/L)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	0.010	1	B7J0455	10/17/2017	10/17/17 17:32	
Arsenic	0.013	0.010	1	B7J0455	10/17/2017	10/17/17 17:32	
Barium	0.31	0.0030	1	B7J0455	10/17/2017	10/17/17 17:32	
Beryllium	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:32	
Cadmium	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:32	
Chromium	0.022	0.0030	1	B7J0455	10/17/2017	10/17/17 17:32	
Cobalt	0.0086	0.0030	1	B7J0455	10/17/2017	10/17/17 17:32	
Copper	0.016	0.0090	1	B7J0455	10/17/2017	10/17/17 17:32	
Lead	ND	0.0050	1	B7J0455	10/17/2017	10/17/17 17:32	
Molybdenum	ND	0.0050	1	B7J0455	10/17/2017	10/17/17 17:32	
Nickel	0.016	0.0050	1	B7J0455	10/17/2017	10/17/17 17:32	
Selenium	ND	0.010	1	B7J0455	10/17/2017	10/17/17 17:32	
Silver	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:32	
Thallium	ND	0.015	1	B7J0455	10/17/2017	10/17/17 17:32	
Vanadium	0.034	0.0030	1	B7J0455	10/17/2017	10/17/17 17:32	
Zinc	0.090	0.025	1	B7J0455	10/17/2017	10/17/17 17:32	
Mercury by AA (Cold Vapor) EPA 7470A	7470A					7	Analyst: KEK
Analyte	Result (ug/L)	PQL (ug/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	ND	0.20	1	B7J0458	10/17/2017	10/18/17 17:23	
Gasoline Range Organics by EPA 8015B (Modified)	8015B (Modified	(Analyst: VW
Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	0.05	1	B7J0434	10/17/2017	10/17/17 10:33	
Surrogate: 4-Bromofluorobenzene	% 101	70 - 130		B7J0434	10/17/2017	10/17/17 10:33	
Diesel Range Organics by EPA 8015B	15B						Analyst: TKT
Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	0.35	0.05		B7J0338	10/13/2017	10/14/17 11:27	
ORO	0.27	0.05	_	B/J0338	10/13/2017	10/14/1/11:2/	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB27-GW Lab ID: 1703653-54

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B							Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/L)	(mg/L)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: p-Terphenyl	132 %	20 - 150		B7J0338	10/13/2017	10/14/17 11:27	

Volatile Organic Compounds by EPA 8260B

Analyst: QP

	Result	PQL				Date/Time	
Analyte	(ng/L)	(ng/L)	Dilution	Batch	Prepared	Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
1,1,1-Trichloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
1, 1, 2, 2-Tetrachloroethane	ND	0.50	_	B7J0319	10/13/2017	10/13/17 18:09	
1,1,2-Trichloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
1,1-Dichloroethane	N Q	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
1, 1-Dichloroethene	N Q	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
1, 1-Dichloropropene	N Q	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
1,2,3-Trichloropropane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
1,2,3-Trichlorobenzene	N Q	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
1,2,4-Trichlorobenzene	N Q	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
1,2,4-Trimethylbenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
1,2-Dibromo-3-chloropropane	N Q	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
1,2-Dibromoethane	N Q	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
1,2-Dichlorobenzene	N Q	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
1,2-Dichloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
1,2-Dichloropropane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
1,3,5-Trimethylbenzene	N Q	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
1,3-Dichlorobenzene	N	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
1,3-Dichloropropane	N	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
1,4-Dichlorobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
2,2-Dichloropropane	N	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
2-Chlorotoluene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
4-Chlorotoluene	N Q	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
4-Isopropyltoluene	NO	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
Benzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
Bromobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
Bromochloromethane	N	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
Bromodichloromethane	ND	0.50	-	B7J0319	10/13/2017	10/13/17 18:09	
Bromoform	ND	0.50	-	B7J0319	10/13/2017	10/13/17 18:09	
Bromomethane	ND	0.50	_	B7J0319	10/13/2017	10/13/17 18:09	
Carbon disulfide	N	1.0	1	B7J0319	10/13/2017	10/13/17 18:09	

Page 133 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB27-GW Lab ID: 1703653-54

Volatile Organic Compounds by EPA 8260B

Analyst: QP

	Result	PQL				Date/Time	
Analyte	(ng/L)	(ng/L)	Dilution	Batch	Prepared	Analyzed	Notes
Carbon tetrachloride	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
Chlorobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
Chloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
Chloroform	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
Chloromethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
cis-1,2-Dichloroethene	N	0.50	_	B7J0319	10/13/2017	10/13/17 18:09	
cis-1,3-Dichloropropene	N	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
Di-isopropyl ether	N	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
Dibromochloromethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
Dibromomethane	N	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
Dichlorodifluoromethane	ND	0.50		B7J0319	10/13/2017	10/13/17 18:09	
Ethyl Acetate	N	10	1	B7J0319	10/13/2017	10/13/17 18:09	
Ethyl Ether	ND	10	-	B7J0319	10/13/2017	10/13/17 18:09	
Ethyl tert-butyl ether	ND	0.50		B7J0319	10/13/2017	10/13/17 18:09	
Ethylbenzene	N	0.50	_	B7J0319	10/13/2017	10/13/17 18:09	
Freon-113	ND	0.50	_	B7J0319	10/13/2017	10/13/17 18:09	
Hexachlorobutadiene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
Isopropylbenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
m,p-Xylene	ND	1.0	1	B7J0319	10/13/2017	10/13/17 18:09	
Methylene chloride	ND	1.0	1	B7J0319	10/13/2017	10/13/17 18:09	
MTBE	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
n-Butylbenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
n-Propylbenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
Naphthalene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
o-Xylene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
sec-Butylbenzene	ND	0.50	_	B7J0319	10/13/2017	10/13/17 18:09	
Styrene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
tert-Amyl methyl ether	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
tert-Butanol	ND	10	1	B7J0319	10/13/2017	10/13/17 18:09	
tert-Butylbenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
Tetrachloroethene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
Toluene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
trans-1,2-Dichloroethene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
trans-1,3-Dichloropropene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
Trichloroethene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:09	
Trichlorofluoromethane	ND	0.50	-	B7J0319	10/13/2017	10/13/17 18:09	
Vinyl acetate	N	10	-	B7J0319	10/13/2017	10/13/17 18:09	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB27-GW Lab ID: 1703653-54

Volatile Organic Compounds by EPA 8260B

Analyst: QP

Analyte	Result (ug/L)	PQL (ug/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Vinyl chloride	ND	0.50	1	B7J0319	B710319 10/13/2017 10/13/17 18:09	10/13/17 18:09	
Surrogate: 1,2-Dichloroethane-d4 Surrogate: 4-Bromofluorobenzene 94.1 % Surrogate: Dibromofluoromethane 102 % Surrogate: Toluene-d8	% % % %	70 - 166 88 - 120 80 - 150 87 - 121		B7J0319 B7J0319 B7J0319 B7J0319	10/13/2017 10/13/2017 10/13/2017 10/13/2017	10/13/17 18:09 10/13/17 18:09 10/13/17 18:09 10/13/17 18:09	

_
_
8270/SI
8
₹
' EPA 8270
_
ð
ğ
q spunoc
00
Comp
2
Ξ.
Ξ
g
Ö
<u>ر</u>
ιti
Semivolatile (
0
Ē
ē

Semivolatile Organic Compounds by EPA 8270/SIM	s by EPA 8270/SI	Л					Analyst: SP
	Result	PQL				Date/Time	
Analyte	(ng/L)	(ng/L)	Dilution	Batch	Prepared	Analyzed	Notes
2-Methylnaphthalene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:00	
Acenaphthene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:00	
Acenaphthylene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:00	
Anthracene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:00	
Benzo(a)anthracene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:00	
Benzo(a)pyrene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:00	
Benzo(b)fluoranthene	N	0.20	1	B7J0413	10/16/2017	10/16/17 16:00	
Benzo(g,h,i)perylene	N	0.20	1	B7J0413	10/16/2017	10/16/17 16:00	
Benzo(k)fluoranthene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:00	
Chrysene	N	0.20	1	B7J0413	10/16/2017	10/16/17 16:00	
Dibenz(a,h)anthracene	N	0.20	1	B7J0413	10/16/2017	10/16/17 16:00	
Fluoranthene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:00	
Fluorene	N	0.20	1	B7J0413	10/16/2017	10/16/17 16:00	
Indeno(1,2,3-cd)pyrene	N	0.20	1	B7J0413	10/16/2017	10/16/17 16:00	
Naphthalene	N	0.20	1	B7J0413	10/16/2017	10/16/17 16:00	
Phenanthrene	N	0.20	1	B7J0413	10/16/2017	10/16/17 16:00	
Pyrene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:00	
Surrogate: 1,2-Dichlorobenzene-d4	54.5 %	32 - 99		B7J0413	10/16/2017	10/16/17 16:00	
Surrogate: 2-Fluorobiphenyl	52.0 %	29 - 105		B7J0413	10/16/2017	10/16/17 16:00	
Surrogate: Nitrobenzene-d5	70.2 %	17 - 123		B7J0413	10/16/2017	10/16/17 16:00	
Surrogate: 4-Terphenyl-d14	63.6 %	32 - 119		B7J0413	10/16/2017	10/16/17 16:00	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB31-GW Lab ID: 1703653-55

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICF-AES EFA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/L)	(mg/L)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	0.010	1	B7J0455	10/17/2017	10/17/17 17:33	
Arsenic	ND	0.010	1	B7J0455	10/17/2017	10/17/17 17:33	
Barium	0.047	0.0030	1	B7J0455	10/17/2017	10/17/17 17:33	
Beryllium	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:33	
Cadmium	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:33	
Chromium	ND	0.0030	_	B7J0455	10/17/2017	10/17/17 17:33	
Cobalt	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:33	
Copper	ND	0.0090	-	B7J0455	10/17/2017	10/17/17 17:33	
Lead	ND	0.0050	1	B7J0455	10/17/2017	10/17/17 17:33	
Molybdenum	0.0059	0.0050	1	B7J0455	10/17/2017	10/17/17 17:33	
Nickel	ND	0.0050	1	B7J0455	10/17/2017	10/17/17 17:33	
Selenium	ND	0.010	1	B7J0455	10/17/2017	10/17/17 17:33	
Silver	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:33	
Thallium	ND	0.015	1	B7J0455	10/17/2017	10/17/17 17:33	
Vanadium	0.0067	0.0030	-	B7J0455	10/17/2017	10/17/17 17:33	
Zinc	ND	0.025	-	B7J0455	10/17/2017	10/17/17 17:33	

Mercury by AA (Cold Vapor) EPA 7470A

Analyte	Result	PQL (119/I)	Dilution	Ratch	Prenared	Date/Time	Notes
, many to	(7/8n)	(n8, n)	Clianon	Date	no malou i	rum y zoa	
Mercury	ND	0.20	1	B7J0458	10/17/2017	10/18/17 17:26	

Analyst: KEK

Gasoline Range Organics by EPA 8015B (Modified)

Gasoline Range Organics by EPA 8015B (Modiffed)	8015B (Modified)						Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/L)	(mg/L)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	ND 0.05	1	B7J0434	10/17/2017	B7J0434 10/17/2017 10/17/17 10:54	
Surrogate: 4-Bromofluorobenzene	99.7%	70 - 130		B7J0434	B7J0434 10/17/2017	10/17/17 10:54	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B	3					1	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/L)	(mg/L)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	0.38	0.05	1	B7J0338	10/13/2017	10/14/17 11:44	
ORO	0.33	0.05	1	B7J0338	10/13/2017	10/14/17 11:44	
Surrogate: p-Terphenyl	% 611	20 - 150		B7J0338	10/13/2017	10/14/17 11:44	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB31-GW Lab ID: 1703653-55

Volatile Organic Compounds by EPA 8260B

Analyst: QP

	Result	PQL				Date/Time	
Analyte	(ng/L)	(ng/L)	Dilution	Batch	Prepared	Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:33	
1,1,1-Trichloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:33	
1,1,2,2-Tetrachloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:33	
1,1,2-Trichloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:33	
1,1-Dichloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:33	
1,1-Dichloroethene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:33	
1,1-Dichloropropene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:33	
1,2,3-Trichloropropane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:33	
1,2,3-Trichlorobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:33	
1,2,4-Trichlorobenzene	ND	0.50		B7J0319	10/13/2017	10/13/17 18:33	
1,2,4-Trimethylbenzene	ND	0.50	_	B7J0319	10/13/2017	10/13/17 18:33	
1,2-Dibromo-3-chloropropane	ND	0.50	_	B7J0319	10/13/2017	10/13/17 18:33	
1,2-Dibromoethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:33	
1,2-Dichlorobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:33	
1,2-Dichloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:33	
1,2-Dichloropropane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:33	
1,3,5-Trimethylbenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:33	
1,3-Dichlorobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:33	
1,3-Dichloropropane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:33	
1,4-Dichlorobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:33	
2,2-Dichloropropane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:33	
2-Chlorotoluene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:33	
4-Chlorotoluene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:33	
4-Isopropyltoluene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:33	
Benzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:33	
Bromobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:33	
Bromochloromethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:33	
Bromodichloromethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:33	
Bromoform	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:33	
Bromomethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:33	
Carbon disulfide	ND	1.0	1	B7J0319	10/13/2017	10/13/17 18:33	
Carbon tetrachloride	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:33	
Chlorobenzene	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:33	
Chloroethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:33	
Chloroform	ND	0.50		B7J0319	10/13/2017	10/13/17 18:33	
Chloromethane	ND	0.50	1	B7J0319	10/13/2017	10/13/17 18:33	
cis-1,2-Dichloroethene	ND	0.50		B7J0319	10/13/2017	10/13/17 18:33	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB31-GW Lab ID: 1703653-55

Volatile Organic Compounds by EPA 8260B

Analyst: QP

Notes 10/13/17 18:33 Date/Time Analyzed 10/13/2017 10/13/2017 10/13/2017 10/13/2017 10/13/2017 0/13/2017 10/13/2017 0/13/2017 10/13/2017 Prepared B7J0319 Batch Dilution (ng/L) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 PQL 0.50 0.50 0.50 0.50 0.500.50 0.500.50 1.0 1.0 0.50 0.500.50 0.500.50 0.50 10 0.5010 10 Result (ng/L) 2 Ð $\frac{1}{2}$ $\frac{1}{2}$ Ð $\frac{1}{2}$ Ð Ð $\frac{1}{2}$ Ð 9 $\frac{1}{2}$ $\frac{1}{2}$ 9 P 9 Ð 8 $\frac{1}{2}$ 8 8 Ð Ð Ð Ð 9 5 trans-1,3-Dichloropropene Dichlorodifluoromethane trans-1,2-Dichloroethene cis-1,3-Dichloropropene Dibromochloromethane tert-Amyl methyl ether Hexachlorobutadiene Ethyl tert-butyl ether Methylene chloride Di-isopropyl ether Tetrachloroethene Isopropylbenzene Dibromomethane sec-Butylbenzene tert-Butylbenzene n-Propylbenzene n-Butylbenzene Trichloroethene Ethyl Acetate Ethylbenzene Naphthalene m,p-Xylene tert-Butanol Ethyl Ether Freon-113 o-Xylene Analyte Styrene Toluene MTBE

10/13/17 18:33

B7J0319

93.4 % 105 % 101 %

Surrogate: 1,2-Dichloroethane-d4
Surrogate: 4-Bromofluorobenzene
Surrogate: Dibromofluoromethane

Surrogate: Toluene-d8

% I0I

991 - 02

0.50

5

10

10/13/17 18:33 10/13/17 18:33 10/13/17 18:33 10/13/17 18:33

10/13/2017

B7J0319

0.50

Trichlorofluoromethane

Vinyl chloride

Vinyl acetate

10/13/2017 10/13/2017 10/13/2017 10/13/2017

B7J0319

B7J0319 B7J0319 10/13/17 18:33

10/13/2017

B7J0319

87 - 121

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB31-GW

Semivolatile Organic Compounds by EPA 8270/SIM

Analyst: SP

Lab ID: 1703653-55

	Result	IOd				Date/Time	
Analyte	(ng/L)	(ng/L)	Dilution	Batch	Prepared	Analyzed	Notes
2-Methylnaphthalene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:29	
Acenaphthene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:29	
Acenaphthylene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:29	
Anthracene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:29	
Benzo(a)anthracene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:29	
Benzo(a)pyrene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:29	
Benzo(b)fluoranthene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:29	
Benzo(g,h,i)perylene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:29	
Benzo(k)fluoranthene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:29	
Chrysene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:29	
Dibenz(a,h)anthracene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:29	
Fluoranthene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:29	
Fluorene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:29	
Indeno(1,2,3-cd)pyrene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:29	
Naphthalene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:29	
Phenanthrene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:29	
Pyrene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:29	
Surrogate: 1,2-Dichlorobenzene-d4	68.4 %	32 - 99		B7J0413	10/16/2017	10/16/17 16:29	
Surrogate: 2-Fluorobiphenyl	68.0 %	29 - 105		B7J0413	10/16/2017	10/16/17 16:29	
Surrogate: Nitrobenzene-d5	84.7%	17 - 123		B7J0413	10/16/2017	10/16/17 16:29	
	80.1 %	32 - 119		B7J0413	10/16/2017	10/16/17 16:29	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

QUALITY CONTROL SECTION

Title 22 Metals by ICP-AES EPA 6010B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/L)	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes

	(mg/L)	PQL (mg/L)	MDL (mg/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD	Notes
Batch B7J0455 - EPA 3010A_W										
Blank (B7J0455-BLK1)					Prepared:	10/17/2017	Prepared: 10/17/2017 Analyzed: 10/17/2017	17/2017		
	ND	0.010	0.0088							
	ND	0.010	0.0078							
	ND	0.0030	0.0026							
	ND	0.0030	0.0016							
	ND	0.0030	0.0024							
	ND	0.0030	0.0020							
	ND	0.0030	0.0016							
	ND	0.0000	0.0038							
	ND	0.0050	0.0047							
Molybdenum	ND	0.0050	0.0030							
	ND	0.0050	0.0046							
	ND	0.010	0.0093							
	ND	0.0030	0.0024							
	ND	0.015	0.0085							
	ND	0.0030	0.0022							
	ND	0.025	0.0057							
LCS (B7J0455-BS1)					Prepared:	10/17/2017	Prepared: 10/17/2017 Analyzed: 10/17/2017	17/2017		
	0.929102	0.010	0.0088	1.00000		92.9	80 - 120			
	0.941062	0.010	0.0078	1.00000		94.1	80 - 120			
	0.969431	0.0030	0.0026	1.00000		6.96	80 - 120			
	0.952237	0.0030	0.0016	1.00000		95.2	80 - 120			
	0.923200	0.0030	0.0024	1.00000		92.3	80 - 120			
	0.964497	0.0030	0.0020	1.00000		96.4	80 - 120			
	0.960800	0.0030	0.0016	1.00000		96.1	80 - 120			
	0.947343	0.0000	0.0038	1.00000		94.7	80 - 120			
	0.953769	0.0050	0.0047	1.00000		95.4	80 - 120			
Molybdenum	0.936200	0.0050	0.0030	1.00000		93.6	80 - 120			
	0.929993	0.0050	0.0046	1.00000		93.0	80 - 120			
	0.907008	0.010	0.0093	1.00000		7.06	80 - 120			
	1.18499	0.0030	0.0024	1.00000		118	80 - 120			
	0.946903	0.015	0.0085	1.00000		94.7	80 - 120			
	0.953132	0.0030	0.0022	1.00000		95.3	80 - 120			
	0.930909	0.025	0.0057	1.00000		93.1	80 - 120			
Matrix Spike (B7J0455-MS1)		Š	Source: 1703640-01	40-01	Prepared:	10/17/2017	Prepared: 10/17/2017 Analyzed: 10/17/2017	17/2017		
	2.45296	0.010	0.0088	2.50000	N	98.1	60 - 130			
	2.51904	0.010	0.0078	2.50000	N	101	69 - 123			
	2.59554	0.0030	0.0026	2.50000	0.106382	9.66	67 - 129			
	2 52702	0.0030	0.0016	2 50000	S	101	74 - 120			

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Title 22 Metals by ICP-AES EPA 6010B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD		
Analyte	(mg/L)	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes	

Batch B7J0455 - EPA 3010A_W (continued)

	onemaca)								
Matrix Spike (B7J0455-MS1) - Continued	ned	So	Source: 1703640-01	40-01	Prepared:	10/17/2017	Prepared: 10/17/2017 Analyzed: 10/17/2017	/2017	
Cadmium	2.37069	0.0030	0.0024	2.50000	ND	94.8	69 - 116		
Chromium	2.49293	0.0030	0.0020	2.50000	0.014934	99.1	74 - 120		
Cobalt	2.43594	0.0030	0.0016	2.50000	0.002840	97.3	70 - 116		
Copper	2.53772	0.0000	0.0038	2.50000	0.01129	101	76 - 123		
Lead	2.42425	0.0050	0.0047	2.50000	N	0.76	69 - 117		
Molybdenum	2.53677	0.0050	0.0030	2.50000	0.026825	100	68 - 120		
Nickel	2.38734	0.0050	0.0046	2.50000	0.011243	95.0	70 - 115		
Selenium	2.39006	0.010	0.0093	2.50000	N	92.6	66 - 120		
Silver	2.66866	0.0030	0.0024	2.50000	N	107	73 - 123		
Thallium	2.34797	0.015	0.0085	2.50000	N	93.9	57 - 124		
Vanadium	2.52252	0.0030	0.0022	2.50000	0.010942	100	72 - 123		
Zinc	2.38635	0.025	0.0057	2.50000	0.023691	94.5	73 - 111		
Matrix Spike Dup (B7J0455-MSD1)		So	Source: 1703640-01	40-01	Prepared:	10/17/2017	Prepared: 10/17/2017 Analyzed: 10/17/2017	/2017	
Antimony	2.42439	0.010	0.0088	2.50000	N	97.0	60 - 130	1.17	20
Arsenic	2.47205	0.010	0.0078	2.50000	N	6.86	69 - 123	1.88	20
Barium	2.56504	0.0030	0.0026	2.50000	0.106382	98.3	67 - 129	1.18	20
Beryllium	2.49000	0.0030	0.0016	2.50000	N	9.66	74 - 120	1.48	20
Cadmium	2.33304	0.0030	0.0024	2.50000	N	93.3	69 - 116	1.60	20
Chromium	2.44862	0.0030	0.0020	2.50000	0.014934	97.3	74 - 120	1.79	20
Cobalt	2.39427	0.0030	0.0016	2.50000	0.002840	7.56	70 - 116	1.73	20
Copper	2.50095	0.0000	0.0038	2.50000	0.01129	9.66	76 - 123	1.46	20
Lead	2.39216	0.0050	0.0047	2.50000	ND	95.7	69 - 117	1.33	20
Molybdenum	2.50298	0.0050	0.0030	2.50000	0.026825	0.66	68 - 120	1.34	20
Nickel	2.35861	0.0050	0.0046	2.50000	0.011243	93.9	70 - 115	1.21	20
Selenium	2.34170	0.010	0.0093	2.50000	ND	93.7	66 - 120	2.04	20
Silver	2.62202	0.0030	0.0024	2.50000	ND	105	73 - 123	1.76	20
Thallium	2.34150	0.015	0.0085	2.50000	ND	93.7	57 - 124	0.276	20
Vanadium	2.48646	0.0030	0.0022	2.50000	0.010942	0.66	72 - 123	1.44	20
Zinc	2.35433	0.025	0.0057	2.50000	0.023691	93.2	73 - 111	1.35	20

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Title 22 Metals by ICP-AES EPA 6010B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0512 - EPA 3050B_S										
Blank (B7J0512-BLK1)					Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	19/2017		
Antimony	N	2.0	0.51							
Arsenic	ND	1.0	0.12							
Barium	ND	1.0	0.12							
Beryllium	ND	1.0	0.03							
Cadmium	N QN	1.0	0.14							
Chromium	NO	1.0	0.26							
Cobalt	ND	1.0	0.07							
Copper	N Q	2.0	0.19							
Lead	N Q	1.0	0.18							
Molybdenum	NO	1.0	0.12							
Nickel	ND	1.0	0.18							
Selenium	N QN	1.0	0.40							
Silver	ND	1.0	0.12							
Thallium	N Q	1.0	0.38							
Vanadium	ND	1.0	90.0							
Zinc	N Q	1.0	0.15							
LCS (B7J0512-BS1)					Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	19/2017		
Antimony	42.8347	2.0	0.51	50.0000		85.7	80 - 120			
Arsenic	41.9015	1.0	0.12	50.0000		83.8	80 - 120			
Barium	44.6627	1.0	0.12	50.0000		89.3	80 - 120			
Beryllium	42.8990	1.0	0.03	50.0000		85.8	80 - 120			
Cadmium	41.2118	1.0	0.14	50.0000		82.4	80 - 120			
Chromium	44.3845	1.0	0.26	50.0000		8.88	80 - 120			
Cobalt	44.1090	1.0	0.07	50.0000		88.2	80 - 120			
Copper	43.9566	2.0	0.19	50.0000		6.78	80 - 120			
Lead	43.4095	1.0	0.18	50.0000		8.98	80 - 120			
Molybdenum	43.5882	1.0	0.12	50.0000		87.2	80 - 120			
Nickel	42.4423	1.0	0.18	50.0000		84.9	80 - 120			
Selenium	40.9294	1.0	0.40	50.0000		81.9	80 - 120			
Silver	44.0698	1.0	0.12	50.0000		88.1	80 - 120			
Thallium	43.6014	1.0	0.38	50.0000		87.2	80 - 120			
Vanadium	43.7901	1.0	90.0	50.0000		9.78	80 - 120			
Zinc	42.7615	1.0	0.15	50.0000		85.5	80 - 120			
Matrix Spike (B7J0512-MS1)		Š	Source: 1703653-01	53-01	Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	19/2017		
Antimony	85.1956	2.0	0.51	125.000	ND	68.2	33 - 98			
Arsenic	96.4253	1.0	0.12	125.000	ND	77.1	48 - 101			
Barium	211.469	1.0	0.12	125.000	112.544	79.1	25 - 131			
Beryllium	96.6163	1.0	0.03	125.000	N	77.3	26 - 97			
Cadmium	88.7228	1.0	0.14	125.000	0.217274	8.02	53 - 94			
Chromium	109.976	1.0	0.26	125.000	12.2492	78.2	45 - 113			

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Title 22 Metals by ICP-AES EPA 6010B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0512 - EPA 3050B_S (continued)

Matrix Spike (B7J0512-MS1) - Continued	nued		Source: 1703653-01	553-01	Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	9/2017		
Cobalt	104.019	1.0	0.07	125.000	11.0846	74.3	51 - 97			
Copper	131.604	2.0	0.19	125.000	27.3024	83.4	51 - 113			
Lead	100.946	1.0	0.18	125.000	15.8065	68.1	33 - 127			
Molybdenum	97.2690	1.0	0.12	125.000	N ON	77.8	54 - 97			
Nickel	102.447	1.0	0.18	125.000	12.2521	72.2	46 - 102			
Selenium	93.8541	1.0	0.40	125.000	N	75.1	52 - 93			
Silver	109.536	1.0	0.12	125.000	N	9.78	58 - 98			
Thallium	82.6166	1.0	0.38	125.000	ND	66.1	46 - 93			
Vanadium	136.896	1.0	90.0	125.000	35.7809	6.08	55 - 104			
Zinc	156.721	1.0	0.15	125.000	71.1020	68.5	26 - 118			
Matrix Spike Dup (B7J0512-MSD1)			Source: 1703653-01	553-01	Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	9/2017		
Antimony	85.7494	2.0	0.51	125.000	N N	9.89	33 - 98	0.648	20	
Arsenic	97.1357	1.0	0.12	125.000	N	7.77	48 - 101	0.734	20	
Barium	201.928	1.0	0.12	125.000	112.544	71.5	25 - 131	4.62	20	
Beryllium	97.1872	1.0	0.03	125.000	N	7.77	26 - 97	0.589	20	
Cadmium	8009.68	1.0	0.14	125.000	0.217274	71.5	53 - 94	0.985	20	
Chromium	109.026	1.0	0.26	125.000	12.2492	77.4	45 - 113	898.0	20	
Cobalt	104.407	1.0	0.07	125.000	11.0846	74.7	51 - 97	0.373	20	
Copper	130.933	2.0	0.19	125.000	27.3024	82.9	51 - 113	0.511	20	
Lead	101.004	1.0	0.18	125.000	15.8065	68.2	33 - 127	0.0567	20	
Molybdenum	98.0695	1.0	0.12	125.000	ND	78.5	54 - 97	0.820	20	
Nickel	102.569	1.0	0.18	125.000	12.2521	72.3	46 - 102	0.119	20	
Selenium	93.9946	1.0	0.40	125.000	ND	75.2	52 - 93	0.150	20	
Silver	109.182	1.0	0.12	125.000	N	87.3	58 - 98	0.323	20	
Thallium	84.1898	1.0	0.38	125.000	ND	67.4	46 - 93	1.89	20	
Vanadium	132.623	1.0	90.0	125.000	35.7809	77.5	55 - 104	3.17	20	
Zinc	153.308	1.0	0.15	125.000	71.1020	65.8	26 - 118	2.20	20	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Title 22 Metals by ICP-AES EPA 6010B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0513 - EPA 3050B_S										
Blank (B7J0513-BLK1)					Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	9/2017		
Antimony	R	2.0	0.51							
Arsenic	N	1.0	0.12							
Barium	<u>N</u>	1.0	0.12							
Beryllium	N QN	1.0	0.03							
Cadmium	ND	1.0	0.14							
Chromium	ND	1.0	0.26							
Cobalt	N Q	1.0	0.07							
Copper	ND	2.0	0.19							
Lead	NO	1.0	0.18							
Molybdenum	N Q	1.0	0.12							
Nickel	ND	1.0	0.18							
Selenium	ND	1.0	0.40							
Silver	N	1.0	0.12							
Thallium	ND ND	1.0	0.38							
Vanadium	N Q	1.0	90.0							
Zinc	ND	1.0	0.15							
LCS (B7J0513-BS1)					Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	9/2017		
Antimony	46.5207	2.0	0.51	50.0000		93.0	80 - 120			
Arsenic	45.4538	1.0	0.12	50.0000		6.06	80 - 120			
Barium	49.9204	1.0	0.12	50.0000		8.66	80 - 120			
Beryllium	46.4558	1.0	0.03	50.0000		92.9	80 - 120			
Cadmium	45.9970	1.0	0.14	50.0000		92.0	80 - 120			
Chromium	49.5866	1.0	0.26	50.0000		99.2	80 - 120			
Cobalt	49.0946	1.0	0.07	50.0000		98.2	80 - 120			
Copper	48.8124	2.0	0.19	50.0000		9.76	80 - 120			
Lead	47.0606	1.0	0.18	50.0000		94.1	80 - 120			
Molybdenum	47.6148	1.0	0.12	50.0000		95.2	80 - 120			
Nickel	47.1630	1.0	0.18	50.0000		94.3	80 - 120			
Selenium	43.8917	1.0	0.40	50.0000		87.8	80 - 120			
Silver	50.0478	1.0	0.12	50.0000		100	80 - 120			
Thallium	47.9518	1.0	0.38	50.0000		62.6	80 - 120			
Vanadium	48.8748	1.0	90.0	50.0000		7.76	80 - 120			
Zinc	47.0921	1.0	0.15	50.0000		94.2	80 - 120			
Matrix Spike (B7J0513-MS1)		So	Source: 1703653-25	53-25	Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	9/2017		
Antimony	86.3357	2.0	0.51	125.000	ND	69.1	33 - 98			
Arsenic	99.3593	1.0	0.12	125.000	1.67277	78.1	48 - 101			
Barium	174.340	1.0	0.12	125.000	63.4571	88.7	25 - 131			
Beryllium	99.5367	1.0	0.03	125.000	N	9.62	26 - 97			
Cadmium	95.0267	1.0	0.14	125.000	ND	0.97	53 - 94			
Chromium	113.848	1.0	0.26	125.000	11.3153	82.0	45 - 113			

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Title 22 Metals by ICP-AES EPA 6010B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0513 - EPA 3050B_S (continued)

												20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
19/2017											19/2017	2.66	2.10	2.86	0.962	0.308	0.259	0.418	0.470	0.196	2.29	0.101	0.773	0.271	1.52	0.372	2.55
Prepared: 10/18/2017 Analyzed: 10/19/2017	51 - 97	51 - 113	33 - 127	54 - 97	46 - 102	52 - 93	58 - 98	46 - 93	55 - 104	26 - 118	Prepared: 10/18/2017 Analyzed: 10/19/2017	33 - 98	48 - 101	25 - 131	56 - 97	53 - 94	45 - 113	51 - 97	51 - 113	33 - 127	54 - 97	46 - 102	52 - 93	58 - 98	46 - 93	55 - 104	26 - 118
: 10/18/201	78.4	87.2	77.5	9.62	76.5	75.8	90.5	70.3	85.0	79.3	: 10/18/2017	6.07	8.62	84.8	80.4	76.3	82.3	78.8	9.78	77.4	81.5	9.9/	76.4	90.3	71.4	84.6	76.7
Prepared	6.56633	9.73521	0.930096	ND	9.07944	ND	ND	ND	20.1248	31.5438	Prepared	ND	1.67277	63.4571	ND	ND	11.3153	6.56633	9.73521	0.930096	ND	9.07944	ND	ND	ND	20.1248	31.5438
653-25	125.000	125.000	125.000	125.000	125.000	125.000	125.000	125.000	125.000	125.000	653-25	125.000	125.000	125.000	125.000	125.000	125.000	125.000	125.000	125.000	125.000	125.000	125.000	125.000	125.000	125.000	125.000
Source: 1703653-25	0.07	0.19	0.18	0.12	0.18	0.40	0.12	0.38	90.0	0.15	Source: 1703653-25	0.51	0.12	0.12	0.03	0.14	0.26	0.07	0.19	0.18	0.12	0.18	0.40	0.12	0.38	90.0	0.15
	1.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		2.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
tinued	104.573	118.700	97.8200	99.5364	104.694	94.7546	113.129	87.8820	126.363	130.724		88.6622	101.471	169.425	100.498	95.3203	114.144	105.011	119.259	97.6286	101.840	104.799	95.4904	112.822	89.2306	125.893	127.428
Matrix Spike (B7J0513-MS1) - Continued	Cobalt	Copper	Lead	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	Matrix Spike Dup (B7J0513-MSD1)	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Title 22 Metals by ICP-AES EPA 6010B - Quality Control

		200			C		3		4		
	Kesult	PQL	MDL	Spike	Source		% Kec		KPD		
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes	

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0514 - EPA 3050B_S										
Blank (B7J0514-BLK1)					Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	9/2017		
Antimony	ND	2.0	0.51							
Arsenic	ND	1.0	0.12							
Barium	ND	1.0	0.12							
Beryllium	ND	1.0	0.03							
Cadmium	ND	1.0	0.14							
Chromium	ND	1.0	0.26							
Cobalt	ND	1.0	0.07							
Copper	N Q	2.0	0.19							
Lead	ND QN	1.0	0.18							
Molybdenum	ND	1.0	0.12							
Nickel	N Q	1.0	0.18							
Selenium	ND	1.0	0.40							
Silver	ND	1.0	0.12							
Thallium	ND	1.0	0.38							
Vanadium	ND	1.0	90.0							
Zinc	ND	1.0	0.15							
LCS (B7J0514-BS1)					Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	9/2017		
Antimony	44.8754	2.0	0.51	50.0000		8.68	80 - 120			
Arsenic	44.0749	1.0	0.12	50.0000		88.1	80 - 120			
Barium	48.6405	1.0	0.12	50.0000		97.3	80 - 120			
Beryllium	44.9154	1.0	0.03	50.0000		8.68	80 - 120			
Cadmium	44.1805	1.0	0.14	50.0000		88.4	80 - 120			
Chromium	48.1236	1.0	0.26	50.0000		96.2	80 - 120			
Cobalt	47.3911	1.0	0.07	50.0000		8.46	80 - 120			
Copper	47.1627	2.0	0.19	50.0000		94.3	80 - 120			
Lead	45.5098	1.0	0.18	50.0000		91.0	80 - 120			
Molybdenum	46.6074	1.0	0.12	50.0000		93.2	80 - 120			
Nickel	45.6339	1.0	0.18	50.0000		91.3	80 - 120			
Selenium	42.6339	1.0	0.40	50.0000		85.3	80 - 120			
Silver	48.5596	1.0	0.12	50.0000		97.1	80 - 120			
Thallium	45.8797	1.0	0.38	50.0000		91.8	80 - 120			
Vanadium	47.2307	1.0	90.0	50.0000		94.5	80 - 120			
Zinc	45.3834	1.0	0.15	50.0000		8.06	80 - 120			
Matrix Spike (B7J0514-MS1)		Š	Source: 1703653-45	53-45	Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	9/2017		
Antimony	99.7452	2.0	0.51	125.000	ND	8.62	33 - 98			
Arsenic	103.717	1.0	0.12	125.000	0.714668	82.4	48 - 101			
Barium	127.717	1.0	0.12	125.000	14.9466	90.2	25 - 131			
Beryllium	107.156	1.0	0.03	125.000	ND	85.7	26 - 97			
Cadmium	103.290	1.0	0.14	125.000	ND	82.6	53 - 94			
Chromium	113.945	1.0	0.26	125.000	2.86796	6.88	45 - 113			

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Reported: 11/02/2017

Title 22 Metals by ICP-AES EPA 6010B - Quality Control (cont'd)

,	Spike Source	20 % 20 %	% Rec	Uad	RPD .	10401
(Sygiii) (Sygiii) (Sygiii)	Level	/0 VCC		7.7		SOLOS

Batch B7J0514 - EPA 3050B S (continued)

	ıtınuea)								
Matrix Spike (B7J0514-MS1) - Continued	per	Sou	Source: 1703653-45	53-45	Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	9/2017	
Cobalt	109.483	1.0	0.07	125.000	1.75757	86.2	51 - 97		
Copper	113.994	2.0	0.19	125.000	2.06066	89.5	51 - 113		
Lead	104.033	1.0	0.18	125.000	0.370006	82.9	33 - 127		
Molybdenum	108.330	1.0	0.12	125.000	N	2.98	54 - 97		
	107.913	1.0	0.18	125.000	2.31202	84.5	46 - 102		
ш	99.8651	1.0	0.40	125.000	ND	6.62	52 - 93		
Silver	117.364	1.0	0.12	125.000	ND	93.9	58 - 98		
Thallium	101.860	1.0	0.38	125.000	ND	81.5	46 - 93		
Vanadium	117.475	1.0	90.0	125.000	5.59419	89.5	55 - 104		
Zinc	113.861	1.0	0.15	125.000	8.67915	84.1	26 - 118		
Matrix Spike Dup (B7J0514-MSD1)		Sou	Source: 1703653-45	53-45	Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	72017	
Antimony	98.7102	2.0	0.51	125.000	N	0.67	33 - 98	1.04	20
Arsenic	103.773	1.0	0.12	125.000	0.714668	82.4	48 - 101	0.0539	20
Barium	135.508	1.0	0.12	125.000	14.9466	96.4	25 - 131	5.92	20
Beryllium	103.603	1.0	0.03	125.000	N	82.9	56 - 97	3.37	20
Cadmium	101.155	1.0	0.14	125.000	N	6.08	53 - 94	2.09	20
Chromium	112.810	1.0	0.26	125.000	2.86796	88.0	45 - 113	1.00	20
Cobalt	107.790	1.0	0.07	125.000	1.75757	84.8	51 - 97	1.56	20
Copper	114.003	2.0	0.19	125.000	2.06066	9.68	51 - 113	0.00790	20
Lead	105.636	1.0	0.18	125.000	0.370006	84.2	33 - 127	1.53	20
	107.204	1.0	0.12	125.000	ND	85.8	54 - 97	1.05	20
Nickel	106.278	1.0	0.18	125.000	2.31202	83.2	46 - 102	1.53	20
Selenium	8268.66	1.0	0.40	125.000	ND	6.62	52 - 93	0.0328	20
Silver	115.381	1.0	0.12	125.000	ND	92.3	58 - 98	1.70	20
Thallium	100.274	1.0	0.38	125.000	ND	80.2	46 - 93	1.57	20
Vanadium	118.562	1.0	90.0	125.000	5.59419	90.4	55 - 104	0.921	20
Zinc	115.503	1.0	0.15	125.000	8.67915	85.5	26 - 118	1.43	20

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Title 22 Metals by ICP-AES EPA 6010B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0914 - EPA 3050B_S										
Blank (B7J0914-BLK1)					Prepared:	10/31/2017	Prepared: 10/31/2017 Analyzed: 11/1/2017	/2017		
Antimony	N	2.0	0.51							
Arsenic	ND	1.0	0.12							
Barium	N	1.0	0.12							
Beryllium	ND	1.0	0.03							
Cadmium	ND	1.0	0.14							
Chromium	ND	1.0	0.26							
Cobalt	ND	1.0	0.07							
Copper	ND	2.0	0.19							
Lead	N Q	1.0	0.18							
Molybdenum	N Q	1.0	0.12							
Nickel	N QN	1.0	0.18							
Selenium	N	1.0	0.40							
Silver	ND	1.0	0.12							
Thallium	ND	1.0	0.38							
Vanadium	ND	1.0	90.0							
Zinc	ND	1.0	0.15							
LCS (B7J0914-BS1)					Prepared:	10/31/2017	Prepared: 10/31/2017 Analyzed: 11/1/2017	/2017		
Antimony	47.2629	2.0	0.51	50.0000		94.5	80 - 120			
Arsenic	46.2836	1.0	0.12	50.0000		97.6	80 - 120			
Barium	50.4184	1.0	0.12	50.0000		101	80 - 120			
Beryllium	47.4649	1.0	0.03	50.0000		94.9	80 - 120			
Cadmium	46.4815	1.0	0.14	50.0000		93.0	80 - 120			
Chromium	50.5600	1.0	0.26	50.0000		101	80 - 120			
Cobalt	47.6976	1.0	0.07	50.0000		95.4	80 - 120			
Copper	50.5507	2.0	0.19	50.0000		101	80 - 120			
Lead	48.3161	1.0	0.18	50.0000		9.96	80 - 120			
Molybdenum	49.0683	1.0	0.12	50.0000		98.1	80 - 120			
Nickel	45.8171	1.0	0.18	50.0000		91.6	80 - 120			
Selenium	43.9757	1.0	0.40	50.0000		88.0	80 - 120			
Silver	51.1884	1.0	0.12	50.0000		102	80 - 120			
Thallium	47.9448	1.0	0.38	50.0000		6.56	80 - 120			
Vanadium	50.3659	1.0	90.0	50.0000		101	80 - 120			
Zinc	46.6677	1.0	0.15	50.0000		93.3	80 - 120			
Matrix Spike (B7J0914-MS1)		S	Source: 1703653-13RE1	53-13RE1	Prepared:	10/31/2017	Prepared: 10/31/2017 Analyzed: 11/1/2017	/2017		
Antimony	74.8246	2.0	0.51	125.000	ND	59.9	33 - 98			
Arsenic	93.0384	1.0	0.12	125.000	4.01457	71.2	48 - 101			
Barium	190.896	1.0	0.12	125.000	98.0676	74.3	25 - 131			
Beryllium	90.4578	1.0	0.03	125.000	N	72.4	26 - 97			
Cadmium	84.1044	1.0	0.14	125.000	0.420542	6.99	53 - 94			
Chromium	109.112	1.0	0.26	125.000	17.7746	73.1	45 - 113			

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Reported: 11/02/2017

Title 22 Metals by ICP-AES EPA 6010B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0914 - EPA 3050B_S (continued)	ontinued)								
Matrix Spike (B7J0914-MS1) - Continued	nued		Source: 1703653-13RE1	653-13RE1	Prepared:	10/31/2017	Prepared: 10/31/2017 Analyzed: 11/1/2017	/2017	
Cobalt	92.1824	1.0	0.07	125.000	8.69976	8.99	51 - 97		
Copper	124.746	2.0	0.19	125.000	27.5392	77.8	51 - 113		
Lead	201.782	1.0	0.18	125.000	133.179	54.9	33 - 127		
Molybdenum	92.0352	1.0	0.12	125.000	ND	73.6	54 - 97		
Nickel	95.9636	1.0	0.18	125.000	15.1979	64.6	46 - 102		
Selenium	84.9134	1.0	0.40	125.000	ND	6.79	52 - 93		
Silver	101.927	1.0	0.12	125.000	ND	81.5	58 - 98		
Thallium	77.2187	1.0	0.38	125.000	ND	8.19	46 - 93		
Vanadium	125.532	1.0	90.0	125.000	32.1264	74.7	55 - 104		
Zinc	208.978	1.0	0.15	125.000	122.398	69.3	26 - 118		
Matrix Spike Dup (B7J0914-MSD1)			Source: 1703653-13RE1	653-13RE1	Prepared:	10/31/2017	Prepared: 10/31/2017 Analyzed: 11/1/2017	/2017	
Antimony	72.8254	2.0	0.51	125.000	N N	58.3	33 - 98	2.71	20
Arsenic	89.9830	1.0	0.12	125.000	4.01457	8.89	48 - 101	3.34	20
Barium	213.836	1.0	0.12	125.000	98.0676	97.6	25 - 131	11.3	20
Beryllium	89.7414	1.0	0.03	125.000	Z	71.8	26 - 97	0.795	20
Cadmium	82.4770	1.0	0.14	125.000	0.420542	9.59	53 - 94	1.95	20
Chromium	108.905	1.0	0.26	125.000	17.7746	72.9	45 - 113	0.190	20
Cobalt	96.2006	1.0	0.07	125.000	9/669.8	70.0	51 - 97	4.27	20
Copper	128.997	2.0	0.19	125.000	27.5392	81.2	51 - 113	3.35	20
Lead	182.650	1.0	0.18	125.000	133.179	39.6	33 - 127	9.95	20
Molybdenum	88.7940	1.0	0.12	125.000	ND	71.0	54 - 97	3.58	20
Nickel	100.557	1.0	0.18	125.000	15.1979	68.3	46 - 102	4.67	20
Selenium	84.1308	1.0	0.40	125.000	ND	67.3	52 - 93	0.926	20
Silver	100.359	1.0	0.12	125.000	ND	80.3	58 - 98	1.55	20
Thallium	73.5252	1.0	0.38	125.000	ND	58.8	46 - 93	4.90	20
Vanadium	128.234	1.0	90.0	125.000	32.1264	6.97	55 - 104	2.13	20
Zinc	218.179	1.0	0.15	125.000	122.398	9.92	26 - 118	4.31	20

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

TCLP Metals by ICP-AES EPA 6010B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/L)	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0818 - EPA 3010A_S										
Blank (B7J0818-BLK1)					Prepared:	10/27/2017	Prepared: 10/27/2017 Analyzed: 10/27/2017	7/2017		
Lead	N	0.050	0.0047							
Blank (B7J0818-BLK2)					Prepared:	10/27/2017	Prepared: 10/27/2017 Analyzed: 10/27/2017	7/2017		
Lead	ND	0.050	0.0047							
LCS (B7J0818-BS1)					Prepared:	10/27/2017	Prepared: 10/27/2017 Analyzed: 10/27/2017	7/2017		
Lead	0.937282	0.050	0.0047	0.0047 1.00000		93.7	80 - 120			
Duplicate (B7J0818-DUP1)		Š	Source: 1703718-01	18-01	Prepared:	10/27/2017	Prepared: 10/27/2017 Analyzed: 10/27/2017	7/2017		
Lead	N	0.50	0.047		0.055943			NR	20	
Duplicate (B7J0818-DUP2)		Š	Source: 1703720-02	20-02	Prepared:	10/27/2017	Prepared: 10/27/2017 Analyzed: 10/27/2017	7/2017		
Lead	0.913033	0.62	0.059		0.821568			10.5	20	
Matrix Spike (B7J0818-MS1)		Š	Source: 1703718-01	18-01	Prepared:	10/27/2017	Prepared: 10/27/2017 Analyzed: 10/27/2017	7/2017		
Lead	2.32879	0.50	0.047	2.50000	0.055943	6.06	78 - 109			
Matrix Spike (B7J0818-MS2)		Š	Source: 1703653-04	53-04	Prepared:	10/27/2017	Prepared: 10/27/2017 Analyzed: 10/27/2017	7/2017		
Lead	11.7478	0.25	0.024	2.50000	0.040223	468	78 - 109			MI
Matrix Spike Dup (B7J0818-MSD1)		Š	Source: 1703718-01	18-01	Prepared:	10/27/2017	Prepared: 10/27/2017 Analyzed: 10/27/2017	7/2017		
Lead	2.28561	0.50	0.047	2.50000	0.055943	89.2	78 - 109	1.87	20	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

STLC Metals by ICP-AES by EPA 6010B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/L)	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0849 - STLC_S Extraction

										20	20
0/2017			0/2017		7,007,0	/ 107/0			0/2017	0.469	3.34
Prepared: 10/30/2017 Analyzed: 10/30/2017			Prepared: 10/30/2017 Analyzed: 10/30/2017	80 - 120	Dranger of 10/30/2017 Angly red 10/30/2017	/ Allatyzea. 10/2	62 - 129	44 - 130	Prepared: 10/30/2017 Analyzed: 10/30/2017	62 - 129	44 - 130
: 10/30/201			: 10/30/201	91.4	. 10/30/201	. 10/20/201	81.8	67.2	: 10/30/201	82.6	77.3
Prepared			Prepared		Denonara	Topaca	2.49998	5.75609	Prepared	2.49998	5.75609
	0.076	0.094		2.00000	Source: 1703641 02	3041-05.1703041-02	2.50000	2.50000	Source: 1703641-02	2.50000	2.50000
	1.0	1.0									
	N	N Q		1.82832			4.54437	7.43540		4.56573	7.68783
Blank (B7J0849-BLK1)	Copper	Lead	LCS (B7J0849-BS1)	Copper Lead	Motrix Caile (B710840 MC1)	Matilia Spine (B/30047-MS1)	Copper	Lead	Matrix Spike Dup (B7J0849-MSD1)	Copper	Lead

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

STLC Metals by ICP-AES by EPA 6010B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/L)	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7K0042 - STLC_S Extraction

							20	20
017		017		017		017	1.42	0.829
Prepared: 11/2/2017 Analyzed: 11/2/2017		Prepared: 11/2/2017 Analyzed: 11/2/2017	80 - 120 80 - 120	Prepared: 11/2/2017 Analyzed: 11/2/2017	62 - 129 44 - 130	Prepared: 11/2/2017 Analyzed: 11/2/2017	62 - 129	44 - 130
: 11/2/2017		: 11/2/2017	95.2 96.7	: 11/2/2017	84.8	: 11/2/2017	83.0	83.3
Prepared		Prepared		Prepared	1.01489	Prepared	1.01489	1.93875
	0.076 0.094		2.00000	Source: 1703653-13RE1	2.50000 2.50000	Source: 1703653-13RE1	2.50000	2.50000
	1.0							
	<u>8</u> 8		1.90442 1.93454		3.13407	01)	3.08973	4.02118
Blank (B7K0042-BLK1)	Copper Lead	LCS (B7K0042-BS1)	Copper Lead	Matrix Spike (B7K0042-MS1)	Copper Lead	Matrix Spike Dup (B7K0042-MSD1	Copper	Lead

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Mercury by AA (Cold Vapor) EPA 7470A - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ng/L)	(ng/L)	(ng/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0458 - EPA 245.1/7470_W

18/2017		18/2017		18/2017		18/2017	4.23 20	18/2017	
Prepared: 10/17/2017 Analyzed: 10/18/2017		Prepared: 10/17/2017 Analyzed: 10/18/2017	80 - 120	Prepared: 10/17/2017 Analyzed: 10/18/2017	0.066603 97.6 70 - 130	Prepared: 10/17/2017 Analyzed: 10/18/2017	70 - 130	Prepared: 10/17/2017 Analyzed: 10/18/2017	0.066603 97.6 85 - 115
: 10/17/20		: 10/17/20	95.5	: 10/17/20	9.76	: 10/17/20	102	: 10/17/20	97.6
Prepared		Prepared		Prepared	0.066603	Prepared	0.066603 102	Prepared	
			10.0000	3640-01	0.05 10.0000	3640-01	0.05 10.0000	3640-01	5.00000
	0.05		0.05	Source: 1703640-01		Source: 1703640-01	0.05	Source: 1703640-01	
	0.20		0.20		0.20		0.20		
	ND		9.54958		9.82494		10.2498		4.94797
Blank (B7J0458-BLK1)		LCS (B7J0458-BS1)		Matrix Spike (B7J0458-MS1)		Matrix Spike Dup (B7J0458-MSD1)		Post Spike (B7J0458-PS1)	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Mercury by AA (Cold Vapor) EPA 7471A - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg) Level	Result	Result % Rec	Limits	RPD	Limit Notes	Notes
Batch B7J0517 - EPA 7471_S										
Blank (B7J0517-BLK1)					Prepared	Prepared: 10/18/2017 Analyzed: 10/19/2017	Analyzed: 10/1	19/2017		
Mercury	ND	0.10	0.005							
LCS (B7J0517-BS1)					Prepared	Prepared: 10/18/2017 Analyzed: 10/19/2017	Analyzed: 10/1	19/2017		
Mercury	0.709973	0.10	0.005	0.833333		85.2	80 - 120			
Matrix Spike (B7J0517-MS1)		So	Source: 1703653-01	53-01	Prepared	Prepared: 10/18/2017 Analyzed: 10/19/2017	Analyzed: 10/1	19/2017		

20

2.13

70 - 130

83.5

0.086615

0.833333

0.10

0.782249

Matrix Spike Dup (B7J0517-MSD1)

Source: 1703653-01

Prepared: 10/18/2017 Analyzed: 10/19/2017

85 - 115

102

0.001039

5.00000E-3

0.006157

Post Spike (B7J0517-PS1)

Mercury

Mercury

Source: 1703653-01 0.005

Prepared: 10/18/2017 Analyzed: 10/19/2017

70 - 130

85.5

0.086615

0.833333

0.005

0.10

0.799106

Mercury

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Mercury by AA (Cold Vapor) EPA 7471A - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0518 - EPA 7471_S										
Blank (B7J0518-BLK1)					Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	9/2017		
Mercury	ND	0.10	0.005							
LCS (B7J0518-BS1)					Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	9/2017		
Mercury	0.787788	0.10	0.005	0.833333		94.5	80 - 120			
Matrix Spike (B7J0518-MS1)		Š	Source: 1703653-25	53-25	Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	9/2017		
Mercury	0.877261	0.10	0.005	0.005 0.833333	0.026099 102		70 - 130			
Matrix Spike Dup (B7J0518-MSD1)		Š	Source: 1703653-25	53-25	Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	9/2017		
Mercury	0.862597	0.10	0.005	0.005 0.833333	0.026099 100		70 - 130	1.69	20	

Prepared: 10/18/2017 Analyzed: 10/19/2017

85 - 115

110

3.132E-4

5.00000E-3

0.005830

Post Spike (B7J0518-PS1)

Mercury

Source: 1703653-25

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Mercury by AA (Cold Vapor) EPA 7471A - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0519 - EPA 7471_S										
Blank (B7J0519-BLK1)					Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	9/2017		
Mercury	ND	0.10	0.005							
LCS (B7J0519-BS1)					Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	9/2017		
Mercury	0.795421	0.10	0.005	0.005 0.833333		95.5	80 - 120			
Matrix Spike (B7J0519-MS1)		Š	Source: 1703653-45	53-45	Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	9/2017		
Mercury	1.06796	0.10	0.005	0.005 0.833333	0.215105	102	70 - 130			
Matrix Spike Dup (B7J0519-MSD1)		Š	Source: 1703653-45	53-45	Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	9/2017		
Mercury	0.996882	0.10	0.005	0.005 0.833333	0.215105	93.8	70 - 130	68.9	20	
Post Spike (B7J0519-PS1)		Š	Source: 1703653-45	53-45	Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	9/2017		
Mercury	8.6043E-3			5.00000E-3	0.002581 120	120	85 - 115			M1

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

STLC Mercury by AA (Cold Vapor) EPA 7470A - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ng/L)	(ng/L)	(ng/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0854 - EPA 245.1/7470_S

Prepared: 10/30/2017 Analyzed: 10/30/2017		Prepared: 10/30/2017 Analyzed: 10/30/2017	100 80 - 120	Prepared: 10/30/2017 Analyzed: 10/30/2017	ND 97.1 70-130	Prepared: 10/30/2017 Analyzed: 10/30/2017	ND 97.6 70 - 130 0.509 20	Prepared: 10/30/2017 Analyzed: 10/30/2017	-0.002775 103 85 - 115
	0.05		0.05 10.0000	Source: 1703653-04	0.23 50.0000	Source: 1703653-04	0.23 50.0000	Source: 1703653-04	5.00000
	0.20		0.20	Source	1.0	Sourc	1.0	Source	50
Blank (B7J0854-BLK1)	Mercury	LCS (B7J0854-BS1)	Mercury 9.99994	Matrix Spike (B7J0854-MS1)	Mercury 48.5370	Matrix Spike Dup (B7J0854-MSD1)	Mercury 48.7846	Post Spike (B7J0854-PS1)	Mercury 5.14350

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

TCLP Mercury by AA (Cold Vapor) by EPA 7470A - Quality Control

		Result	PQL	MDL	Spike	Source		% Rec		RPD	
(ug/L) (ug/L) Level Result % Rec Limits RPD Limit N	Analyte	(ng/L)	(ng/L)	(ng/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0833 - EPA 245.1/7470_S

							20		
30/2017		30/2017		30/2017		30/2017	0.849	30/2017	
Prepared: 10/27/2017 Analyzed: 10/30/2017		Prepared: 10/27/2017 Analyzed: 10/30/2017	80 - 120	Prepared: 10/27/2017 Analyzed: 10/30/2017	70 - 130	Prepared: 10/27/2017 Analyzed: 10/30/2017	70 - 130	Prepared: 10/27/2017 Analyzed: 10/30/2017	85 - 115
: 10/27/2017		: 10/27/2017	100	: 10/27/2017	0.080743 98.8	: 10/27/2017	0.080743 97.9	: 10/27/2017	8.96
Prepared		Prepared		Prepared	0.080743	Prepared	0.080743	Prepared	0.080743 96.8
			10.0000	53-04	0.05 10.0000	53-04	0.05 10.0000	53-04	5.00000
	0.05		0.05	Source: 1703653-04	0.05	Source: 1703653-04	0.05	Source: 1703653-04	
	0.20		0.20	•1	0.20	•2	0.20	•2	
	ND		10.0418		9.95622		9.87210		4.91872
Blank (B7J0833-BLK1)	Mercury	LCS (B7J0833-BS1)	Mercury	Matrix Spike (B7J0833-MS1)	Mercury	Matrix Spike Dup (B7J0833-MSD1)	Mercury	Post Spike (B7J0833-PS1)	Mercury

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Gasoline Range Organics by EPA 8015B (Modified) - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0311 - GCVOA_S

Blank (B7J0311-BLK1)					Prepared	: 10/14/2017	Prepared: 10/14/2017 Analyzed: 10/14/2017	2017	
Gasoline Range Organics	ND	1.0	0.20						
Surrogate: 4-Bromofluorobenzene	0.2162			0.200000		801	50 - 138		
LCS (B7J0311-BS1)					Prepared	: 10/14/2017	Prepared: 10/14/2017 Analyzed: 10/14/2017	2017	
Gasoline Range Organics	4.43100	1.0	0.20	0.20 5.00000		9.88	70 - 130		
Surrogate: 4-Bromofluorobenzene	0.2087			0.200000		104	50 - 138		
Matrix Spike (B7J0311-MS1)			Source: 1703658-01	558-01	Prepared	: 10/14/2017	Prepared: 10/14/2017 Analyzed: 10/14/2017	2017	
Gasoline Range Organics	3.83600	1.0	0.20	0.20 5.00000	ND	76.7	17 - 141		
Surrogate: 4-Bromofluorobenzene	0.2319			0.200000		911	50 - 138		
Matrix Spike Dup (B7J0311-MSD1)			Source: 1703658-01	558-01	Prepared	: 10/14/2017	Prepared: 10/14/2017 Analyzed: 10/14/2017	2017	
Gasoline Range Organics	3.65500	1.0	0.20	5.00000	ND	73.1	17 - 141	4.83	20
Surrogate: 4-Bromofluorobenzene	0.2203			0.200000		0II	50 - 138		

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Gasoline Range Organics by EPA 8015B (Modified) - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0337 - GCVOA_S

Blank (B7J0337-BLK1)					Prepared:	: 10/14/2017	Prepared: 10/14/2017 Analyzed: 10/14/2017	/2017	
Gasoline Range Organics	ND	1.0	0.20						
Surrogate: 4-Bromofluorobenzene	0.2175			0.200000		601	50 - 138		
LCS (B7J0337-BS1)					Prepared:	: 10/14/2017	Prepared: 10/14/2017 Analyzed: 10/14/2017	/2017	
Gasoline Range Organics	4.75300	1.0	0.20	5.00000		95.1	70 - 130		
Surrogate: 4-Bromofluorobenzene	0.2192			0.200000		0II	50 - 138		
Matrix Spike (B7J0337-MS1)			Source: 1703653-01	553-01	Prepared:	: 10/14/2017	Prepared: 10/14/2017 Analyzed: 10/14/2017	/2017	
Gasoline Range Organics	3.29800	1.0	0.20	0.20 5.00000	ND	0.99	17 - 141		
Surrogate: 4-Bromofluorobenzene	0.2209			0.200000		0II	50 - 138		
Matrix Spike Dup (B7J0337-MSD1)			Source: 1703653-01	553-01	Prepared:	: 10/14/2017	Prepared: 10/14/2017 Analyzed: 10/14/2017	/2017	
Gasoline Range Organics	3.45900	1.0	0.20	5.00000	ND	69.2	17 - 141	4.77	20
Surrogate: 4-Bromofluorobenzene	0.2225			0.200000		III	50 - 138		

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Gasoline Range Organics by EPA 8015B (Modified) - Quality Control

Result P	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte (mg/kg) (m	mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0349 - GCVOA_S

Blank (B7J0349-BLK1)					Prepared	10/14/2017	Prepared: 10/14/2017 Analyzed: 10/14/2017	17	
Gasoline Range Organics	ND	1.0	0.20						
Surrogate: 4-Bromofluorobenzene	0.2160			0.200000		108	50 - 138		
LCS (B7J0349-BS1)					Prepared	: 10/14/2017	Prepared: 10/14/2017 Analyzed: 10/14/2017	17	
Gasoline Range Organics	4.44400	1.0	0.20	0.20 5.00000		6.88	70 - 130		
Surrogate: 4-Bromofluorobenzene	0.2107			0.200000		105	50 - 138		
Matrix Spike (B7J0349-MS1)			Source: 1703653-23	653-23	Prepared	10/14/2017	Prepared: 10/14/2017 Analyzed: 10/14/2017	17	
Gasoline Range Organics	3.81800	1.0	0.20	5.00000	ND	76.4	17 - 141		
Surrogate: 4-Bromofluorobenzene	0.2287			0.200000		114	50 - 138		
Matrix Spike Dup (B7J0349-MSD1)			Source: 1703653-23	653-23	Prepared	10/14/2017	Prepared: 10/14/2017 Analyzed: 10/14/2017	17	
Gasoline Range Organics	3.42900	1.0	0.20	0.20 5.00000	ND	9.89	17 - 141	10.7	20
Surrogate: 4-Bromosluorobenzene	0.2234			0.200000		112	50 - 138		

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Gasoline Range Organics by EPA 8015B (Modified) - Quality Control

Result P	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte (mg/kg) (m	mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0362 - GCVOA_S

Blank (B7J0362-BLK1)					Prepared	: 10/16/2017	Prepared: 10/16/2017 Analyzed: 10/16/2017	2017	
Gasoline Range Organics	ND	1.0	0.20						
Surrogate: 4-Bromofluorobenzene	0.2112			0.400000		52.8	50 - 138		
LCS (B7J0362-BS1)					Prepared	: 10/16/2017	Prepared: 10/16/2017 Analyzed: 10/16/2017	017	
Gasoline Range Organics	4.55900	1.0	0.20	5.00000		91.2	70 - 130		
Surrogate: 4-Bromofluorobenzene	0.2227			0.400000		55.7	50 - 138		
Duplicate (B7J0362-DUP1)			Source: 1703671-02	571-02	Prepared	: 10/16/2017	Prepared: 10/16/2017 Analyzed: 10/16/2017	017	
Gasoline Range Organics	ND	1.0	0.20		ND			NR	20
Surrogate: 4-Bromofluorobenzene	0.2124			0.400000		53.1	50 - 138		
Matrix Spike (B7J0362-MS1)			Source: 1703671-02	571-02	Prepared	: 10/16/2017	Prepared: 10/16/2017 Analyzed: 10/16/2017	017	
Gasoline Range Organics	3.95500	1.0	0.20	5.00000	ND	79.1	17 - 141		
Surrogate: 4-Bromofluorobenzene	0.2115			0.400000		52.9	50 - 138		
Matrix Spike Dup (B7J0362-MSD1)			Source: 1703671-02	571-02	Prepared	: 10/16/2017	Prepared: 10/16/2017 Analyzed: 10/16/2017	2017	
Gasoline Range Organics	3.51900	1.0	0.20	5.00000	ND	70.4	17 - 141	11.7	20
Surrogate: 4-Bromofluorobenzene	0.2040			0.400000		5I.0	50 - 138		

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Gasoline Range Organics by EPA 8015B (Modified) - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/L)	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0434 - GCVOA_W

Blank (B7J0434-BLK1)					Prepared: 10/17/2017	Prepared: 10/17/2017 Analyzed: 10/17/2017	
Gasoline Range Organics	ND	0.05	0.05				
Surrogate: 4-Bromofluorobenzene	0.1009			0.100000	101	101 70 - 130	
LCS (B7J0434-BS1)					Prepared: 10/17/2017	Prepared: 10/17/2017 Analyzed: 10/17/2017	
Gasoline Range Organics	0.736000 0.05	0.05	0.05	0.05 1.00000	73.6	73.6 70 - 130	
Surrogate: 4-Bromofluorobenzene	9101.0			0.100000	102	70 - 130	
LCS Dup (B7J0434-BSD1)					Prepared: 10/17/2017	Prepared: 10/17/2017 Analyzed: 10/17/2017	
Gasoline Range Organics	0.848000	0.05	0.05	0.05 1.00000	84.8	84.8 70 - 130 14.1	20
Surrogate: 4-Bromofluorobenzene	0.1029			0.100000	103	70 - 130	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Diesel Range Organics by EPA 8015B - Quality Control

Analyte (mg/L) (mg/L) (mg/L) Level Result % Rec Limits RPD Limit Note		Result	PQL	MDL	Spike	Source		% Rec		RPD	
	Analyte	(mg/L)	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0338 - GCSEMI_DRO_W	m -0							
Blank (B7J0338-BLK1)					Prepared: 10/13/2017 Analyzed: 10/14/2017	7 Analyzed: 10/14/20	017	
DRO	ND	0.05	0.05					
ORO	ND	0.05	0.05					
Surrogate: p-Terphenyl	0.1079			8.00000E-2	135	20 - 150		
LCS (B7J0338-BS1)					Prepared: 10/13/2017 Analyzed: 10/14/2017	7 Analyzed: 10/14/20	017	
DRO	0.547070 0.05	0.05	0.05	0.05 1.00000	54.7	42 - 142		
Surrogate: p-Terphenyl	0.1020			8.00000E-2	128	20 - 150		
LCS Dup (B7J0338-BSD1)					Prepared: 10/13/2017 Analyzed: 10/14/2017	7 Analyzed: 10/14/20	017	
DRO	0.504190 0.05	0.05	0.05	0.05 1.00000	50.4	50.4 42 - 142	8.16	20
Surrogate: p-Terphenyl	0.1056			8.00000E-2	132	20 - 150		

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Diesel Range Organics by EPA 8015B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0525 - GCSEMI_DRO_LL_S

Blank (B7J0525-BLK1)					Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	17	
DRO	N QN	1.0	1.0						
ORO	ND	1.0	1.0						
Surrogate: p-Terphenyl	3.572			2.66667		134	38 - 145		
LCS (B7J0525-BS1)					Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	17	
DRO	31.1437	1.0	1.0	33.3333		93.4	33 - 143		
Surrogate: p-Terphenyl	3.401			2.66667		128	38 - 145		
Matrix Spike (B7J0525-MS1)		9 2	Source: 1703653-16	653-16	Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	17	
DRO	37.2963	1.0	1.0	1.0 33.3333	32.4327 14.6	14.6	20 - 159		M1
Surrogate: p-Terphenyl	3.647			2.66667		137	38 - 145		
Matrix Spike Dup (B7J0525-MSD1)		9 2	Source: 1703653-16	653-16	Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	17	
DRO	41.7943	1.0	1.0	33.3333	32.4327	28.1	20 - 159	11.4	20
Surrogate: p-Terphenyl	3.867			5.33333		72.5	38 - 145		

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Diesel Range Organics by EPA 8015B - Quality Control

		Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte (mg/kg) (mg/kg) (mg/kg) Level Result %Rec Limits RPD Limit Notes	Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0547 - GCSEMI_DRO_LL_S

	2								
Blank (B7J0547-BLK1)					Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	2017	
DRO	ND	1.0	1.0						
ORO	ND	1.0	1.0						
Surrogate: p-Terphenyl	4.911			5.33333		92.1	38 - 145		
LCS (B7J0547-BS1)					Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	2017	
DRO	43.0820	1.0	1.0	33.3333		129	33 - 143		
Surrogate: p-Terphenyl	5.111			5.33333		95.8	38 - 145		
Matrix Spike (B7J0547-MS1)			Source: 1703653-39	653-39	Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	2017	
DRO	42.8017	1.0	1.0	1.0 33.3333	12.4963	6.06	20 - 159		
Surrogate: p-Terphenyl	4.301			5.33333		9.08	38 - 145		
Matrix Spike Dup (B7J0547-MSD1)			Source: 1703653-39	653-39	Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	2017	
DRO	40.4547	1.0	1.0	33.3333	12.4963	83.9	20 - 159	5.64	20
Surrogate: p-Terphenyl	4.121			5.33333		77.3	38 - 145		

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Diesel Range Organics by EPA 8015B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0581 - GCSEMI_DRO_LL_S

Blank (B7J0581-BLK1) DRO ORO Surrogate: p-Terphenyl LCS (B7J0581-BS1) DRO Surrogate: p-Terphenyl Matrix Spike (B7J0581-MS1) DRO Surrogate: p-Terphenyl Matrix Spike (B7J0581-MS1)	ND ND 3.053 33.9177 3.107 31.4457	0.1 0.1 0.1 0.1	1.0 2.666 1.0 33.33 1.0 33.33 1.0 33.33 2.666 Source: 1703653-45 2.666 Source: 1703653-45	1.0 2.66667 1.0 33.3333 2.66667 ee: 1703653-45 ee: 1703653-45	Prepared: Prepared: 3.99100 Prepared:	d: 10/19/2017 114 d: 10/19/2017 117 d: 10/19/2017 d: 10/19/2017	Prepared: 10/19/2017 Analyzed: 10/19/2017 114 38 - 145 102 33 - 145 102 33 - 145 117 38 - 145 117 38 - 145 117 38 - 145 117 38 - 145 119/2017 Analyzed: 10/19/2017 119 119 119 119 119 119 119 119 119 119 119 119 119 119 119 119 119 119 119 119 119 119 119 119 119 11	2017	
	29.1940	1.0	1.0	1.0 33.3333	3.99100 75.6	75.6	20 - 159	7.43	20
Surrogate: p-Terphenyl	1.957			2.66667		73.4	38 - 145		

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Polychlorinated Biphenyls by EPA 8082 - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Dotok D710724 CCSEMI DCD/D	S ESTATE									
7.	E21_2									
Blank (B7J0724-BLK2)					Prepared	: 10/24/2017	Prepared: 10/24/2017 Analyzed: 10/25/2017	:5/2017		
Aroclor 1016	ND	16	4.6							
Aroclor 1221	ND	16	4.6							
Aroclor 1232	ND	16	4.6							
Aroclor 1242	ND	16	4.6							
Aroclor 1248	N N	16	4.6							
Aroclor 1254	R	16	4.6							
Aroclor 1260	R	16	4.6							
Aroclor 1262	N	16	4.6							
Aroclor 1268	ND	16	4.6							
Surrogate: Decachlorobiphenyl	13.23			16.6667		79.4	18 - 136			
Surrogate: Tetrachloro-m-xylene	14.64			16.6667		87.8	30 - 130			
LCS (B7J0724-BS2)					Prepared	: 10/24/2017	Prepared: 10/24/2017 Analyzed: 10/25/2017	5/2017		
Aroclor 1016	149.223	16	4.6	166.667		89.5	73 - 111			
Aroclor 1260	155.316	16	4.6	166.667		93.2	75 - 125			
Surrogate: Decachlorobiphenyl	13.98			16.6667		83.9	18 - 136			
Surrogate: Tetrachloro-m-xylene	15.23			16.6667		91.4	30 - 130			
Matrix Spike (B7J0724-MS3)		Ø	Source: 1703770-02	770-02	Prepared	: 10/24/2017	Prepared: 10/24/2017 Analyzed: 10/25/2017	5/2017		
Aroclor 1016	77,6048	16	4.6	166.667	QN.	46.6	36 - 127			
Aroclor 1260	86.5117	16	4.6	166.667	N	51.9	31 - 142			
Surrogate: Decachlorohinhenvl	7.514			16.6667		45.1	18 - 136			
Surrogate: Tetrachloro-m-xylene	6.630			16.6667		39.8	30 - 130			
Matrix Spike (B7J0724-MS4)		S 2	Source: 1703770-03	770-03	Prepared	: 10/24/2017	Prepared: 10/24/2017 Analyzed: 10/25/2017	5/2017		
Araclar 1016	89 5710	16	46	166 667	N C	53.7	36-127			
Aroclor 1260	95.6437	16	4.6	166.667	2 2	57.4	31 - 142			
Surrogate: Decachlorobiphenyl	8.150			16.6667		48.9	18 - 136			
Surrogate: Tetrachloro-m-xylene	8.857			16.6667		53.1	30 - 130			
Matrix Spike Dup (B7J0724-MSD3)		S	Source: 1703770-02	770-02	Prepared	: 10/24/2017	Prepared: 10/24/2017 Analyzed: 10/25/2017	5/2017		
Aroclor 1016	87.3318	16	4.6	166.667	N	52.4	36 - 127	11.8	20	
Aroclor 1260	82.0210	16	4.6	166.667	ND	49.2	31 - 142	5.33	20	
Surrogate: Decachlorobiphenyl	156.9			16.6667		41.7	18 - 136			
Surrogate: Tetrachloro-m-xylene	6.484			16.6667		38.9	30 - 130			
Matrix Spike Dup (B7J0724-MSD4)		S 2	Source: 1703770-03	770-03	Prepared	: 10/24/2017	Prepared: 10/24/2017 Analyzed: 10/25/2017	5/2017		
Aroclor 1016	100.878	16	4.6	166.667	N	60.5	36 - 127	11.9	20	
Aroclor 1260	102.184	16	4.6	166.667	ND	61.3	31 - 142	6.61	20	
Surrogate: Decachlorobiphenyl	9.008			16.6667		54.0	18 - 136			
Surrogate: Tetrachloro-m-xylene	9.429			16.6667		9.99	30 - 130			

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Polychlorinated Biphenyls by EPA 8082 - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD		
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes	

Batch B7J0770 - GCSEMI_PCB/PEST_S

	Prepared: 10/25/2017 Analyzed: 10/25/2017										55.6 18 - 136	87.1 30 - 130	Prepared: 10/25/2017 Analyzed: 10/25/2017	92.6 73 - 111	92.2 75 - 125	61.9 18 - 136	94.4 30 - 130	Prepared: 10/25/2017 Analyzed: 10/25/2017	ND 98.2 36-127	19.3135 74.4 31 - 142	41.5 18 - 136	78.7 30 - I30	Prepared: 10/25/2017 Analyzed: 10/25/2017	ND 87.3 36-127 11.8 20	19.3135 71.2 31 - 142 3.73 20	39.8 18 - 136	
	Ь										16.6667	16.6667	d	166.667	166.667	16.6667	16.6667		166.667	166.667 19	16.6667	16.6667		166.667	166.667 19	16.6667	
		16 4.6	16 4.6	16 4.6	16 4.6	16 4.6	16 4.6	16 4.6	16 4.6	16 4.6				16 4.6	16 4.6			Source: 1703653-47	16 4.6	16 4.6			Source: 1703653-47	16 4.6	16 4.6		
ı		NON	N	N	N	N	ND	ND	ND	ND	9.262	14.52		154.310	153.660	10.31	15.73		163.694	143.278	116.9	13.12		145.422	138.026	6.632	
I	Blank (B7J0770-BLK1)	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Aroclor 1262	Aroclor 1268	Surrogate: Decachlorobiphenyl	Surrogate: Tetrachloro-m-xylene	LCS (B7J0770-BS1)	Aroclor 1016	Aroclor 1260	Surrogate: Decachlorobiphenyl	Surrogate: Tetrachloro-m-xylene	Matrix Spike (B7J0770-MS1)	Aroclor 1016	Aroclor 1260	Surrogate: Decachlorobiphenyl	Surrogate: Tetrachloro-m-xylene	Matrix Spike Dup (B7J0770-MSD1)	Aroclor 1016	Aroclor 1260	Surrogate: Decachlorobiphenyl	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Volatile Organic Compounds by EPA 8260B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD		
Analyte	(ng/L)	(ng/L)	(ng/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes	

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ng/L)	(ng/L)	(ng/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0319 - MSVOA_LL_W										
Blank (B7J0319-BLK1)					Prepared	Prepared: 10/13/2017 Analyzed: 10/13/2017	nalyzed: 10/1.	3/2017		
1,1,1,2-Tetrachloroethane	N	0.50	0.13							
1,1,1-Trichloroethane	ND	0.50	0.38							
1,1,2,2-Tetrachloroethane	ND	0.50	0.20							
1,1,2-Trichloroethane	ND	0.50	0.19							
1,1-Dichloroethane	ND	0.50	0.20							
1,1-Dichloroethene	ND	0.50	0.28							
1,1-Dichloropropene	ND	0.50	0.36							
1,2,3-Trichloropropane	ND	0.50	0.16							
1,2,3-Trichlorobenzene	ND	0.50	90.0							
1,2,4-Trichlorobenzene	ND	0.50	0.07							
1,2,4-Trimethylbenzene	ND	0.50	0.09							
1,2-Dibromo-3-chloropropane	ND	0.50	0.20							
1,2-Dibromoethane	ND	0.50	0.13							
1,2-Dichlorobenzene	ND	0.50	0.12							
1,2-Dichloroethane	ND	0.50	0.39							
1,2-Dichloropropane	ND	0.50	0.47							
1,3,5-Trimethylbenzene	ND	0.50	80.0							
1,3-Dichlorobenzene	ND	0.50	0.13							
1,3-Dichloropropane	ND	0.50	0.08							
1,4-Dichlorobenzene	ND	0.50	0.18							
2,2-Dichloropropane	ND	0.50	0.23							
2-Chlorotoluene	ND	0.50	0.12							
4-Chlorotoluene	ND	0.50	0.11							
4-Isopropyltoluene	ND	0.50	0.12							
Benzene	N	0.50	0.21							
Bromobenzene	N	0.50	0.12							
Bromochloromethane	N	0.50	0.10							
Bromodichloromethane	N	0.50	0.32							
Bromoform	ND	0.50	0.14							
Bromomethane	N	0.50	0.22							
Carbon disulfide	ND	1.0	0.21							
Carbon tetrachloride	ND	0.50	0.31							
Chlorobenzene	N	0.50	0.16							
Chloroethane	N	0.50	0.29							
Chloroform	ND	0.50	0.16							
Chloromethane	ND	0.50	0.19							
cis-1,2-Dichloroethene	ND	0.50	0.39							
cis-1,3-Dichloropropene	ND	0.50	0.08							
Di-isopropyl ether	N	0.50	0.14							
Dibromochloromethane	N	0.50	0.11							
Dibromomethane	N	0.50	60.0							

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Volatile Organic Compounds by EPA 8260B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ng/L)	(ng/L)	(ng/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ng/L)	(ng/L)	(ng/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Described 10210 MCVOA 11 W										
Batch B/JUSIS - MSV OA_LL_W	_w (conunued)									
Blank (B7J0319-BLK1) - Continued					Prepared	: 10/13/2017	Prepared: 10/13/2017 Analyzed: 10/13/2017	13/2017		
Dichlorodifluoromethane	N	0.50	0.31							
Ethyl Acetate	ND	10	1.1							
Ethyl Ether	ND	10	1.4							
Ethyl tert-butyl ether	ND	0.50	0.08							
Ethylbenzene	ND	0.50	0.08							
Freon-113	ND	0.50	0.34							
Hexachlorobutadiene	ND	0.50	0.22							
Isopropylbenzene	ND	0.50	0.10							
m,p-Xylene	N	1.0	0.18							
Methylene chloride	N	1.0	0.26							
MTBE	N	0.50	0.09							
n-Butylbenzene	ND	0.50	0.15							
n-Propylbenzene	N	0.50	0.14							
Naphthalene	ND	0.50	0.09							
o-Xylene	ND	0.50	0.04							
sec-Butylbenzene	ND	0.50	0.15							
Styrene	ND	0.50	0.05							
tert-Amyl methyl ether	N	0.50	0.10							
tert-Butanol	ND	10	3.0							
tert-Butylbenzene	ND	0.50	0.11							
Tetrachloroethene	ND	0.50	0.18							
Toluene	ND	0.50	0.14							
trans-1,2-Dichloroethene	ND	0.50	0.15							
trans-1,3-Dichloropropene	ND	0.50	0.09							
Trichloroethene	ND	0.50	0.15							
Trichlorofluoromethane	ND	0.50	0.33							
Vinyl acetate	ND	10	1.9							
Vinyl chloride	ND	0.50	0.25							
Surrogate: 1,2-Dichloroethane-d4	24.67			25.0000		2.86	991 - 02			
Surrogate: 4-Bromofluorobenzene	23.05			25.0000		92.2	88 - 120			
Surrogate: Dibromofluoromethan	25.32			25.0000		I0I	80 - 150			
Surrogate: Toluene-d8	25.18			25.0000		I0I	87 - 121			
LCS (B7J0319-BS1)					Prepared	: 10/13/2017	Prepared: 10/13/2017 Analyzed: 10/13/2017	13/2017		
1,1,1,2-Tetrachloroethane	7.43000	0.50	0.13	10.0000		74.3	73 - 136			
1,1,1-Trichloroethane	9.16000	0.50	0.38	10.0000		91.6	73 - 143			
1,1,2,2-Tetrachloroethane	9.50000	0.50	0.20	10.0000		95.0	62 - 127			
1,1,2-Trichloroethane	10.3500	0.50	0.19	10.0000		104	72 - 122			
1,1-Dichloroethane	10.0700	0.50	0.20	10.0000		101	73 - 138			
1,1-Dichloroethene	00066.6	0.50	0.28	10.0000		6.66	74 - 132			
1,1-Dichloropropene	13.1800	0.50	0.36	10.0000		132	70 - 143			

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Volatile Organic Compounds by EPA 8260B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ng/L)	(ng/L)	(ng/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes

		Prepared: 10/13/2017 103 102 101 102 62.4 104 105 106 106 106 106 107 101 101	Prepared: 10/13/2017 Analyzed: 10/13/2017 103 66 - 119 102 70 - 131 101 70 - 128 102 74 - 142 62.4 56 - 118 104 73 - 122 105 75 - 128 134 70 - 131 107 69 - 124 103 73 - 144 106 75 - 131 106 75 - 131 106 75 - 131 107 69 - 124 103 73 - 144 100 75 - 131 100 75 - 131	47	
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50		Prepared: 10/13/2017 103 102 101 102 62.4 104 107 106 106 106 106 106 107 107	7 Analyzed: 10/13/2017 66 - 119 70 - 131 70 - 128 74 - 142 56 - 118 73 - 122 75 - 128 70 - 131 69 - 124 73 - 144 75 - 131 70 - 122 75 - 131 70 - 122 75 - 131	77	
		Prepared: 10/13/2017 103 102 101 102 62.4 104 105 106 106 106 106 107 107 107 107 107 107 107 107 107 107	7 Analyzed: 10/13/2017 66 - 119 70 - 131 70 - 128 74 - 142 56 - 118 73 - 122 75 - 128 70 - 131 69 - 124 73 - 144 75 - 131 70 - 122 75 - 131 70 - 122 75 - 131 70 - 122 75 - 131	47	
		103 102 101 104 62.4 105 1105 1106 1106 1106 1107 1107 1107 1107 1107	66 - 119 70 - 131 70 - 131 70 - 128 74 - 142 56 - 118 73 - 122 75 - 128 70 - 131 70 - 122 75 - 131 70 - 122 75 - 131 72 - 140	41	
		102 101 102 62.4 104 105 107 106 106 106 107 107 108 106 107	70 - 131 70 - 128 74 - 142 56 - 118 73 - 122 75 - 128 70 - 131 69 - 124 73 - 144 75 - 131 70 - 122 75 - 131 70 - 122 75 - 134	47	
		101 102 62.4 104 107 107 106 106 106 107 107 107 107 107 107	70 - 128 74 - 142 56 - 118 73 - 122 75 - 128 70 - 131 69 - 124 73 - 144 75 - 131 70 - 122 75 - 131 70 - 122 75 - 134 72 - 138	47	
		102 62.4 104 105 1103 106 106 106 107 107 108 107 107	74 - 142 56 - 118 73 - 122 70 - 131 69 - 124 73 - 144 75 - 131 70 - 122 75 - 131 70 - 122 75 - 131 72 - 138	47	
		62.4 104 105 1134 1103 1106 1106 1102 1102 1101	56 - 118 73 - 122 75 - 128 70 - 131 69 - 124 73 - 144 75 - 131 70 - 122 75 - 137 72 - 140	47	
		104 105 134 107 106 106 105 82.0 102 101	73 - 122 75 - 128 70 - 131 69 - 124 73 - 144 75 - 131 70 - 122 75 - 127 68 - 151 72 - 138	47	
		105 134 107 106 106 105 82.0 102 101	75 - 128 70 - 131 69 - 124 73 - 144 75 - 131 70 - 122 75 - 127 68 - 151 72 - 138	4	
		134 107 106 106 105 82.0 102 101	70 - 131 69 - 124 73 - 144 75 - 131 70 - 122 75 - 127 68 - 151 72 - 138	47	
		107 103 106 106 105 82.0 101 101	69 - 124 73 - 144 75 - 131 70 - 122 75 - 127 68 - 151 72 - 138 72 - 140		
		103 106 105 82.0 102 101	73 - 144 75 - 131 70 - 122 75 - 127 68 - 151 72 - 138 72 - 140		
		106 105 105 82.0 102 101	75 - 131 70 - 122 75 - 127 68 - 151 72 - 138 72 - 140		
		106 105 82.0 102 101	70 - 122 75 - 127 68 - 151 72 - 138 72 - 140		
		105 82.0 102 101 104	75 - 127 68 - 151 72 - 138 72 - 140		
		82.0 102 101 104	68 - 151 72 - 138 72 - 140		
		102 101 104	72 - 138		
		101	72 - 140		
		104	1 1 1 0		
		101	74 - 17/		
			71 130		
		001	6/ - 138		
		105	73 - 127		
		101	74 - 123		
	10.0000	84.0	74 - 129		
0.50 0.14	10.0000	61.2	63 - 131	174	
	10.0000	163	57 - 216		
		102	81 - 147		
		7 70	77 - 151		
		7.4.7	12. 12.		
		102	/3 - 125		
		112	54 - 154		
0.50 0.16	10.0000	103	77 - 132		
0.50 0.19	10.0000	56.4	57 - 142	17	
0.50 0.39	10.0000	9.86	73 - 126		
		82.8	76 - 120		
		0 06	54 - 147		
		7.07	71 176		
		1.21	77 - 120		
		100	/3 - 121		
0.50 0.31	10.0000	9.98	48 - 152		
1.1	100.000	95.9	50 - 144		
		94.4	67 - 140		
		8.98	58 - 137		
		105	72 134		
		201	151 151		
-		114	/5 - 15/		
		102	72 - 139		
		104	73 - 146		
			104 105 101 101 102 103 103 103 103 104 104 105 106 107 108 108 108 108 109 109 109 109 109 109 109 109 109 109	2	67 - 138 73 - 127 74 - 123 63 - 131 57 - 216 81 - 147 77 - 151 73 - 125 54 - 142 76 - 120 54 - 147 71 - 126 76 - 120 58 - 137 72 - 134 72 - 139 73 - 140 73 - 151 73 - 151 74 - 152 75 - 157 76 - 139 77 - 139

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Volatile Organic Compounds by EPA 8260B - Quality Control (cont'd)

Analyte (ug/L) (ug/L) (ug/L) Level Result %Rec Limits RPD Limit Notes		Result	PQL	MDL	Spike	Source		% Rec		RPD	
	Analyte	(ng/L)	(ng/L)	(ng/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes

20 (2000)	((- 0)	(-0-)					
Batch B7J0319 - MSVOA_LL_W	_W (continued)							
LCS (B7J0319-BS1) - Continued					Prepared: 10/13/2017 Analyzed: 10/13/2017	/ Analyzed: 10/1.	3/2017	
m,p-Xylene	20.3800	1.0	0.18	20.0000	102	75 - 138		
Methylene chloride	9.38000	1.0	0.26	10.0000	93.8	52 - 154		
MTBE	8.97000	0.50	0.09	10.0000	2.68	62 - 129		
n-Butylbenzene	10.7000	0.50	0.15	10.0000	107	72 - 151		
n-Propylbenzene	10.7300	0.50	0.14	10.0000	107	69 - 149		
Naphthalene	10.2600	0.50	0.09	10.0000	103	61 - 122		
o-Xylene	20.4900	0.50	0.04	20.0000	102	66 - 147		
sec-Butylbenzene	10.6400	0.50	0.15	10.0000	106	72 - 148		
Styrene	9.95000	0.50	0.05	10.0000	99.5	72 - 138		
tert-Amyl methyl ether	8.61000	0.50	0.10	10.0000	86.1	53 - 122		
tert-Butanol	35.6900	10	3.0	50.0000	71.4	21 - 149		
tert-Butylbenzene	10.3600	0.50	0.11	10.0000	104	70 - 145		
Tetrachloroethene	10.4100	0.50	0.18	10.0000	104	61 - 145		
Toluene	21.3400	0.50	0.14	20.0000	107	70 - 140		
trans-1,2-Dichloroethene	10.1800	0.50	0.15	10.0000	102	73 - 130		
trans-1,3-Dichloropropene	7.14000	0.50	0.09	10.0000	71.4	72 - 129		L4
Trichloroethene	10.5000	0.50	0.15	10.0000	105	69 - 126		
Trichlorofluoromethane	11.2000	0.50	0.33	10.0000	112	70 - 159		
Vinyl acetate	80.0100	10	1.9	100.000	80.0	69 - 170		
Vinyl chloride	9.61000	0.50	0.25	10.0000	96.1	56 - 151		
Surrogate: 1,2-Dichloroethane-d4	24.98			25.0000	6.66	991 - 02		
Surrogate: 4-Bromofluorobenzene	24.03			25.0000	1.96	88 - 120		
Surrogate: Dibromofluoromethan	25.30			25.0000	101	80 - 150		
Surrogate: Toluene-d8	24.91			25.0000	9.66	87 - 121		
LCS Dup (B7J0319-BSD1)					Prepared: 10/13/2017 Analyzed: 10/13/2017	Analyzed: 10/1.	3/2017	
1,1,1,2-Tetrachloroethane	7.41000	0.50	0.13	10.0000	74.1	73 - 136	0.270	20
1,1,1-Trichloroethane	9.63000	0.50	0.38	10.0000	96.3	73 - 143	5.00	20
1, 1, 2, 2-Tetrachloroethane	9.37000	0.50	0.20	10.0000	93.7	62 - 127	1.38	20
1,1,2-Trichloroethane	10.4100	0.50	0.19	10.0000	104	72 - 122	0.578	20
1,1-Dichloroethane	10.3600	0.50	0.20	10.0000	104	73 - 138	2.84	20
1,1-Dichloroethene	10.3300	0.50	0.28	10.0000	103	74 - 132	3.35	20
1,1-Dichloropropene	13.5800	0.50	0.36	10.0000	136	70 - 143	2.99	20
1,2,3-Trichloropropane	10.1300	0.50	0.16	10.0000	101	66 - 119	1.86	20
1,2,3-Trichlorobenzene	10.1500	0.50	90.0	10.0000	102	70 - 131	0.0985	20
1,2,4-Trichlorobenzene	00066.6	0.50	0.07	10.0000	6.66	70 - 128	1.49	20
1,2,4-Trimethylbenzene	10.2100	0.50	0.09	10.0000	102	74 - 142	0.293	20
1,2-Dibromo-3-chloropropane	6.13000	0.50	0.20	10.0000	61.3	56 - 118	1.78	20
1,2-Dibromoethane	10.2900	0.50	0.13	10.0000	103	73 - 122	1.16	20
1,2-Dichlorobenzene	10.5000	0.50	0.12	10.0000	105	75 - 128	0.0953	20
1,2-Dichloroethane	12.8400	0.50	0.39	10.0000	128	70 - 131	4.04	20

Leighton Consulting, Inc.
17781 Cowan Street

Irvine, CA 92614

Project Number: POLA Berth 191-193, 11618.005

Report To: Brynn McCulloch

Reported: 11/02/2017

Volatile Organic Compounds by EPA 8260B - Quality Control (cont'd)

Re	tesult	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte (Ug	(ng/L)	(ng/L)	(ng/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0319 - MSVOA_LL_W (continued)

J CS D (D710219 DSD1) Confine	(commune)				Drongood: 10/12/2017 A makenad: 10/12/2017	7 A molymod: 10/13	2/2017		
- (170cg-	.				riepaieu. 10/13/201	Allalyzeu. 10/1.	3/201/		
1,2-Dichloropropane	10.7400	0.50	0.47	10.0000	107	69 - 124	0.467	20	
1,3,5-Trimethylbenzene	10.2400	0.50	0.08	10.0000	102	73 - 144	0.584	20	
1,3-Dichlorobenzene	10.5500	0.50	0.13	10.0000	106	75 - 131	0.00	20	
1,3-Dichloropropane	10.5400	0.50	80.0	10.0000	105	70 - 122	0.473	20	
1,4-Dichlorobenzene	10.4100	0.50	0.18	10.0000	104	75 - 127	1.05	20	
2,2-Dichloropropane	8.14000	0.50	0.23	10.0000	81.4	68 - 151	0.734	20	
2-Chlorotoluene	10.1800	0.50	0.12	10.0000	102	72 - 138	0.294	20	
4-Chlorotoluene	10.1200	0.50	0.11	10.0000	101	72 - 140	0.396	20	
4-Isopropyltoluene	10.3200	0.50	0.12	10.0000	103	74 - 149	0.964	20	
Benzene	28.3500	0.50	0.21	20.0000	142	67 - 138	4.40	20	17
Bromobenzene	10.4600	0.50	0.12	10.0000	105	73 - 127	0.286	20	
Bromochloromethane	10.1700	0.50	0.10	10.0000	102	74 - 123	0.790	20	
Bromodichloromethane	8.68000	0.50	0.32	10.0000	8.98	74 - 129	3.28	20	
Bromoform	6.11000	0.50	0.14	10.0000	61.1	63 - 131	0.164	20	174
Bromomethane	16.9000	0.50	0.22	10.0000	169	57 - 216	3.43	20	
Carbon disulfide	10.6700	1.0	0.21	10.0000	107	81 - 147	4.21	20	
Carbon tetrachloride	00089.6	0.50	0.31	10.0000	8.96	77 - 151	2.19	20	
Chlorobenzene	10.2200	0.50	0.16	10.0000	102	73 - 125	0.392	20	
Chloroethane	11.5100	0.50	0.29	10.0000	115	54 - 154	2.73	20	
Chloroform	10.6300	0.50	0.16	10.0000	106	77 - 132	2.96	20	
Chloromethane	5.59000	0.50	0.19	10.0000	55.9	57 - 142	0.890	20	17
cis-1,2-Dichloroethene	10.1300	0.50	0.39	10.0000	101	73 - 126	2.70	20	
cis-1,3-Dichloropropene	8.26000	0.50	0.08	10.0000	82.6	76 - 120	0.242	20	
Di-isopropyl ether	9.44000	0.50	0.14	10.0000	94.4	54 - 147	4.77	20	
Dibromochloromethane	7.14000	0.50	0.11	10.0000	71.4	71 - 126	1.80	20	
Dibromomethane	10.3200	0.50	0.09	10.0000	103	73 - 121	3.15	20	
Dichlorodifluoromethane	8.66000	0.50	0.31	10.0000	9.98	48 - 152	0.00	20	
Ethyl Acetate	0009.76	10	1.1	100.000	9.76	50 - 144	1.78	20	
Ethyl Ether	96.4500	10	1.4	100.000	96.4	67 - 140	2.20	20	
Ethyl tert-butyl ether	8.98000	0.50	0.08	10.0000	8.68	58 - 137	3.40	20	
Ethylbenzene	21.1400	0.50	0.08	20.0000	106	72 - 134	0.903	20	
Freon-113	11.5900	0.50	0.34	10.0000	116	75 - 157	1.74	20	
Hexachlorobutadiene	10.1700	0.50	0.22	10.0000	102	72 - 139	0.196	20	
Isopropylbenzene	10.3400	0.50	0.10	10.0000	103	73 - 146	0.962	20	
m,p-Xylene	20.4300	1.0	0.18	20.0000	102	75 - 138	0.245	20	
Methylene chloride	9.82000	1.0	0.26	10.0000	98.2	52 - 154	4.58	20	
MTBE	9.11000	0.50	0.09	10.0000	91.1	62 - 129	1.55	20	
n-Butylbenzene	10.6000	0.50	0.15	10.0000	106	72 - 151	0.939	20	
n-Propylbenzene	10.6800	0.50	0.14	10.0000	107	69 - 149	0.467	20	
Naphthalene	9.85000	0.50	0.09	10.0000	98.5	61 - 122	4.08	20	
o-Xylene	20.2200	0.50	0.04	20.0000	101	66 - 147	1.33	20	
sec-Butylbenzene	10.6700	0.50	0.15	10.0000	107	72 - 148	0.282	20	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Volatile Organic Compounds by EPA 8260B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ng/L)	(ng/L)	(ng/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
or france	(202)	(- 4-)	(- An)							

Batch B7J0319 - MSVOA_LL_W (continued)

LCS Dup (B7J0319-BSD1) - Continu	led				Prepared: 10/13/2017 Analyzed: 10/13/2017	7 Analyzed: 10/1.	3/2017			
Styrene	00096.6	0.50	0.05	10.0000	9.66	72 - 138	0.100	20		
tert-Amyl methyl ether	8.70000	0.50	0.10	10.0000	87.0	53 - 122	1.04	20		
tert-Butanol	36.6800	10	3.0	50.0000	73.4	21 - 149	2.74	20		
tert-Butylbenzene	10.4400	0.50	0.11	10.0000	104	70 - 145	0.769	20		
Tetrachloroethene	10.4900	0.50	0.18	10.0000	105	61 - 145	992.0	20		
Toluene	21.5800	0.50	0.14	20.0000	108	70 - 140	1.12	20		
trans-1,2-Dichloroethene	10.3700	0.50	0.15	10.0000	104	73 - 130	1.85	20		
trans-1,3-Dichloropropene	7.17000	0.50	0.09	10.0000	71.7	72 - 129	0.419	20	1.4	
Trichloroethene	10.7200	0.50	0.15	10.0000	107	69 - 126	2.07	20		
Trichlorofluoromethane	11.4800	0.50	0.33	10.0000	115	70 - 159	2.47	20		
Vinyl acetate	77.8800	10	1.9	100.000	6.77	69 - 170	2.70	20		
Vinyl chloride	9.76000	0.50	0.25	10.0000	9.76	56 - 151	1.55	20		
Surrogate: 1,2-Dichloroethane-d4	25.28			25.0000	101	991 - 02				
Surrogate: 4-Bromofluorobenzene	24.08			25.0000	96.3	88 - 120				
Surrogate: Dibromofluoromethan	25.78			25.0000	103	80 - 150				
Surrogate: Toluene-d8	24.72			25.0000	6.86	87 - 121				

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD		
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes	

Analyte	(ug/kg)	(ug/kg)	(ng/kg)	Level	Result	% Rec	Limits	RPD	Limit	No
	6	6	0							
Batch B7J0750 - MSVOA_S										
Blank (B7J0750-BLK1)					Prepared	Prepared: 10/25/2017 Analyzed: 10/25/2017	Analyzed: 10/2	5/2017		
1,1,1,2-Tetrachloroethane	N	5.0	96.0							
1,1,1-Trichloroethane	N	5.0	1.1							
1,1,2,2-Tetrachloroethane	ND	5.0	0.62							
1,1,2-Trichloroethane	ND	5.0	1.6							
1,1-Dichloroethane	ND	5.0	0.81							
1,1-Dichloroethene	ND	5.0	2.6							
1,1-Dichloropropene	ND	5.0	2.3							
1,2,3-Trichloropropane	ND	5.0	0.54							
1,2,3-Trichlorobenzene	ND	5.0	1.2							
1,2,4-Trichlorobenzene	ND	5.0	1.1							
1,2,4-Trimethylbenzene	ND	5.0	1.5							
1,2-Dibromo-3-chloropropane	ND	10	1.6							
1,2-Dibromoethane	ND	5.0	3.2							
1,2-Dichlorobenzene	ND	5.0	1.1							
1,2-Dichloroethane	ND	5.0	1.2							
1,2-Dichloropropane	ND	5.0	1.8							
1,3,5-Trimethylbenzene	ND	5.0	1.7							
1,3-Dichlorobenzene	ND	5.0	1.3							
1,3-Dichloropropane	ND	5.0	1.1							
1,4-Dichlorobenzene	ND	5.0	1.2							
2,2-Dichloropropane	ND	5.0	1.2							
2-Chlorotoluene	ND	5.0	1.6							
4-Chlorotoluene	ND	5.0	1.5							
4-Isopropyltoluene	ND	5.0	2.3							
Benzene	ND	5.0	0.64							
Bromobenzene	ND	5.0	1.1							
Bromochloromethane	ND	5.0	0.64							
Bromodichloromethane	ND	5.0	1.2							
Bromoform	ND	5.0	0.80							
Bromomethane	ND	5.0	2.5							
Carbon disulfide	ND	5.0	3.5							
Carbon tetrachloride	ND	5.0	1.2							
Chlorobenzene	ND	5.0	1.0							
Chloroethane	ND	5.0	1.1							
Chloroform	ND	5.0	0.82							
Chloromethane	ND	5.0	1.4							
cis-1,2-Dichloroethene	ND	5.0	0.67							
cis-1,3-Dichloropropene	ND	5.0	1.9							
Di-isopropyl ether	ND	5.0	0.55							
Dibromochloromethane	ND	5.0	1.0							
Dibromomethane	ND	5.0	1.6							

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

	(0-0-)	(00)	(0-0-)			
	i					
Batch B7J0750 - MSVOA_S (cont	(continued)					
Blank (B7J0750-BLK1) - Continued				Pre	spared: 10/25/2017	Prepared: 10/25/2017 Analyzed: 10/25/2017
Dichlorodifluoromethane	ND	5.0	2.2			
Ethyl Acetate	ND	50	8.1			
Ethyl Ether	ND	50	6.1			
Ethyl tert-butyl ether	ND	5.0	0.67			
Ethylbenzene	ND	5.0	0.91			
Freon-113	ND	5.0	2.8			
Hexachlorobutadiene	ND	5.0	2.5			
Isopropylbenzene	ND	5.0	1.8			
m,p-Xylene	N QN	10	1.5			
Methylene chloride	N QN	5.0	2.3			
MTBE	N QN	5.0	0.63			
n-Butylbenzene	ND	5.0	2.4			
n-Propylbenzene	ND	5.0	2.2			
Naphthalene	NO	5.0	0.97			
o-Xylene	ND	5.0	0.87			
sec-Butylbenzene	N QN	5.0	2.3			
Styrene	N QN	5.0	1.5			
tert-Amyl methyl ether	ND	5.0	0.59			
tert-Butanol	ND	100	19			
tert-Butylbenzene	N QN	5.0	2.0			
Tetrachloroethene	N	5.0	1.6			
Toluene	ND	5.0	0.94			
trans-1,2-Dichloroethene	ND	5.0	0.59			
trans-1,3-Dichloropropene	ND	5.0	2.1			
Trichloroethene	ND	5.0	3.1			
Trichlorofluoromethane	ND	5.0	1.4			
Vinyl acetate	ND	50	8.6			
Vinyl chloride	ND	5.0	1.7			
Surrogate: 1,2-Dichloroethane-d4	42.17			50.0000	84.3	32 - 140
Surrogate: 4-Bromofluorobenzene	50.38			50.0000	I0I	68 - 131
Surrogate: Dibromofluoromethan	43.07			50.0000	86.1	49 - 134
Surrogate: Toluene-d8	49.82			50.0000	9.66	75 - 132
LCS (B7J0750-BS1)				Pre	epared: 10/25/2017	Prepared: 10/25/2017 Analyzed: 10/25/2017
1,1,1,2-Tetrachloroethane	45.3800	5.0	96.0	50.0000	8.06	80 - 117
1,1,1-Trichloroethane	46.3500	5.0	1.1	50.0000	92.7	70 - 122
1,1,2,2-Tetrachloroethane	47.1400	5.0	0.62	50.0000	94.3	69 - 115
1,1,2-Trichloroethane	48.3600	5.0	1.6	50.0000	2.96	74 - 120
1,1-Dichloroethane	47.7700	5.0	0.81	50.0000	95.5	72 - 118
1,1-Dichloroethene	48.1100	5.0	2.6	50.0000	96.2	61 - 124
1,1-Dichloropropene	48.2400	5.0	2.3	50.0000	96.5	74 - 128

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Analvzed: 10/25/2017		67 - 116	86 - 127	88 - 137	78 - 125	70 - 134	73 - 127	85 - 116	65 - 120	81 - 114	76 - 125	83 - 117	79 - 119	84 - 115	72 - 121	76 - 120	77 - 122	77 - 131	78 - 115	79 - 113	66 - 123	79 - 112	67 - 125	49 - 150	61 - 146	65 - 133	82 - 113	46 - 146	73 - 116	46 - 158	72 - 121	79 - 123	67 - 125	79 - 116	72 - 117	38 - 168	55 - 144	52 - 133	68 - 126	79 - 116	66 - 134	84 - 133	67 - 134
Prenared: 10/25/2017 Analyzed: 10/25/2017		89.0	91.5	95.4	98.1	94.2	93.9	95.3	94.6	97.2	9.76	95.2	8.96	97.5	95.2	95.0	97.1	100	95.1	92.2	88.2	91.4	0.06	134	104	92.7	94.5	109	91.3	103	94.2	94.6	97.3	92.5	93.3	105	105	95.0	99.1	95.8	99.5	94.7	0.96
		50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	100.000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	500.000	500.000	50.0000	100.000	50.0000	50.0000	50.0000
		0.54	1.2	<u> </u>	1.5	1.6	3.2	1.1	1.2	1.8	1.7	1.3	1.1	1.2	1.2	1.6	1.5	2.3	0.64	1.1	0.64	1.2	0.80	2.5	3.5	1.2	1.0	1.1	0.82	1.4	0.67	1.9	0.55	1.0	1.6	2.2	8.1	6.1	0.67	0.91	2.8	2.5	1.8
	1	5.0	5.0	5.0	5.0	10	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	50	50	5.0	5.0	5.0	5.0	5.0
_s (continued)		44.5200	45.7500	47.7100	49.0700	47.0900	46.9600	47.6300	47.2900	48.6000	48.7800	47.6100	48.4200	48.7500	47.6000	47.5000	48.5700	50.1100	95.0900	46.0900	44.1200	45.6800	45.0000	66.9100	52.1500	46.3700	47.2400	54.5300	45.6600	51.3500	47.0800	47.3000	48.6600	46.2500	46.6700	52.6200	526.690	475.190	49.5600	95.7800	49.7500	47.3300	48.0100
LCS (BZ10750-BS1) - Continued		1,2,3-Trichloropropane	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,2-Dibromo-3-chloropropane	1,2-Dibromoethane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane	1,4-Dichlorobenzene	2,2-Dichloropropane	2-Chlorotoluene	4-Chlorotoluene	4-Isopropyltoluene	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Di-isopropyl ether	Dibromochloromethane	Dibromomethane	Dichlorodifluoromethane	Ethyl Acetate	Ethyl Ether	Ethyl tert-butyl ether	Ethylbenzene	Freon-113	Hexachlorobutadiene	Isopropylbenzene

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ng/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0750 - MSVOA_S (con	(continued)							
LCS (B7J0750-BS1) - Continued					Prepared: 10/25/2017 Analyzed: 10/25/2017	' Analyzed: 10/25	//2017	
m,p-Xylene	00/9.66	10	1.5	100.000	7.66	78 - 126		
Methylene chloride	49.8300	5.0	2.3	50.0000	7.66	31 - 148		
MTBE	46.4700	5.0	0.63	50.0000	92.9	59 - 131		
n-Butylbenzene	50.8900	5.0	2.4	50.0000	102	75 - 141		
n-Propylbenzene	48.5700	5.0	2.2	50.0000	97.1	73 - 127		
Naphthalene	47.2300	5.0	0.97	50.0000	94.5	78 - 129		
o-Xylene	91.8500	5.0	0.87	100.000	91.8	81 - 113		
sec-Butylbenzene	48.9100	5.0	2.3	50.0000	8.76	73 - 129		
Styrene	50.1800	5.0	1.5	50.0000	100	88 - 118		
tert-Amyl methyl ether	47.2700	5.0	0.59	50.0000	94.5	62 - 122		
tert-Butanol	235.130	100	19	250.000	94.1	36 - 142		
tert-Butylbenzene	48.3000	5.0	2.0	50.0000	9.96	74 - 126		
Tetrachloroethene	47.3700	5.0	1.6	50.0000	94.7	74 - 127		
Toluene	96.5300	5.0	0.94	100.000	96.5	79 - 119		
trans-1,2-Dichloroethene	39.2100	5.0	0.59	50.0000	78.4	61 - 128		
trans-1,3-Dichloropropene	48.4800	5.0	2.1	50.0000	97.0	75 - 116		
Trichloroethene	46.7000	5.0	3.1	50.0000	93.4	76 - 123		
Trichlorofluoromethane	50.2600	5.0	1.4	50.0000	101	58 - 134		
Vinyl acetate	526.560	50	8.6	500.000	105	63 - 143		
Vinyl chloride	53.9100	5.0	1.7	50.0000	108	51 - 145		
Surrogate: 1,2-Dichloroethane-d4	52.52			50.0000	105	32 - 140		
Surrogate: 4-Bromofluorobenzene	49.88			50.0000	8.66	68 - 131		
Surrogate: Dibromofluoromethan	49.24			50.0000	98.5	49 - 134		
Surrogate: Toluene-d8	52.12			50.0000	104	75 - 132		
LCS Dup (B7J0750-BSD1)					Prepared: 10/25/2017 Analyzed: 10/25/2017	' Analyzed: 10/25	/2017	
1,1,1,2-Tetrachloroethane	45.1500	5.0	96.0	50.0000	90.3	80 - 117	0.508	20
1,1,1-Trichloroethane	44.5900	5.0	1.1	50.0000	89.2	70 - 122	3.87	20
1,1,2,2-Tetrachloroethane	45.8800	5.0	0.62	50.0000	91.8	69 - 115	2.71	20
1,1,2-Trichloroethane	46.7000	5.0	1.6	50.0000	93.4	74 - 120	3.49	20
1,1-Dichloroethane	45.7000	5.0	0.81	50.0000	91.4	72 - 118	4.43	20
1,1-Dichloroethene	44.3500	5.0	5.6	50.0000	88.7	61 - 124	8.13	20
1,1-Dichloropropene	45.6500	5.0	2.3	50.0000	91.3	74 - 128	5.52	20
1,2,3-Trichloropropane	42.5900	5.0	0.54	50.0000	85.2	67 - 116	4.43	20
1,2,3-Trichlorobenzene	47.6400	5.0	1.2	50.0000	95.3	86 - 127	4.05	20
1,2,4-Trichlorobenzene	50.2200	5.0	1.1	50.0000	100	88 - 137	5.13	20
1,2,4-Trimethylbenzene	48.2600	5.0	1.5	50.0000	96.5	78 - 125	1.66	20
1,2-Dibromo-3-chloropropane	52.0400	10	1.6	50.0000	104	70 - 134	66.6	20
1,2-Dibromoethane	50.4600	5.0	3.2	50.0000	101	73 - 127	7.19	20
1,2-Dichlorobenzene	47.6800	5.0	1.1	50.0000	95.4	85 - 116	0.105	20
1,2-Dichloroethane	48.0600	5.0	1.2	50.0000	96.1	65 - 120	1.62	20

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

I CS D.m. (P710750 PSD1) Co.	Continuod				Drangrad: 10/25/201	7 Analyzad 10/7	5/2017		
- (1/JSQ-	ınınea				riepaieu. 10/23/2017 Alialyzeu. 10/23/2017	/ Allalyzeu. 10/2.	3/2017		
1,2-Dichloropropane	47.9800	5.0	1.8	50.0000	0.96	81 - 114	1.28	20	
1,3,5-Trimethylbenzene	47.8300	5.0	1.7	50.0000	7:56	76 - 125	1.97	20	
1,3-Dichlorobenzene	47.3400	5.0	1.3	50.0000	94.7	83 - 117	0.569	20	
1,3-Dichloropropane	47.8600	5.0	1.1	50.0000	7:56	79 - 119	1.16	20	
I,4-Dichlorobenzene	47.8100	5.0	1.2	50.0000	92.6	84 - 115	1.95	20	
2,2-Dichloropropane	45.3600	5.0	1.2	50.0000	7.06	72 - 121	4.82	20	
2-Chlorotoluene	46.8100	5.0	1.6	50.0000	93.6	76 - 120	1.46	20	
4-Chlorotoluene	46.8400	5.0	1.5	50.0000	93.7	77 - 122	3.63	20	
4-Isopropyltoluene	48.8600	5.0	2.3	50.0000	7.79	77 - 131	2.53	20	
	92.7300	5.0	0.64	100.000	92.7	78 - 115	2.51	20	
Bromobenzene	45.4600	5.0	1.1	50.0000	6.06	79 - 113	1.38	20	
Bromochloromethane	43.8600	5.0	0.64	50.0000	7.78	66 - 123	0.591	20	
Bromodichloromethane	45.2700	5.0	1.2	50.0000	90.5	79 - 112	0.902	20	
	45.1200	5.0	0.80	50.0000	90.2	67 - 125	0.266	20	
Bromomethane	61.8300	5.0	2.5	50.0000	124	49 - 150	7.89	20	
Carbon disulfide	48.8400	5.0	3.5	50.0000	7.76	61 - 146	9.56	20	
Carbon tetrachloride	44.7600	5.0	1.2	50.0000	89.5	65 - 133	3.53	20	
Chlorobenzene	46.6700	5.0	1.0	50.0000	93.3	82 - 113	1.21	20	
Chloroethane	54.5900	5.0	1.1	50.0000	109	46 - 146	0.110	20	
	44.7800	5.0	0.82	50.0000	9.68	73 - 116	1.95	20	
Chloromethane	49.2800	5.0	1.4	50.0000	9.86	46 - 158	4.11	20	
cis-1,2-Dichloroethene	46.4800	5.0	0.67	50.0000	93.0	72 - 121	1.28	20	
cis-1,3-Dichloropropene	48.6300	5.0	1.9	50.0000	97.3	79 - 123	2.77	20	
Di-isopropyl ether	47.0800	5.0	0.55	50.0000	94.2	67 - 125	3.30	20	
Dibromochloromethane	45.0900	5.0	1.0	50.0000	90.2	79 - 116	2.54	20	
Dibromomethane	46.6500	5.0	1.6	50.0000	93.3	72 - 117	0.0429	20	
Dichlorodifluoromethane	48.9500	5.0	2.2	50.0000	6.79	38 - 168	7.23	20	
	520.010	50	8.1	500.000	104	55 - 144	1.28	20	
	450.520	50	6.1	500.000	90.1	52 - 133	5.33	20	
Ethyl tert-butyl ether	47.9700	5.0	0.67	50.0000	6:56	68 - 126	3.26	20	
	93.3400	5.0	0.91	100.000	93.3	79 - 116	2.58	20	
	46.9800	5.0	2.8	50.0000	94.0	66 - 134	5.73	20	
Hexachlorobutadiene	49.9500	5.0	2.5	50.0000	6.66	84 - 133	5.39	20	
Isopropylbenzene	46.5300	5.0	1.8	50.0000	93.1	67 - 134	3.13	20	
	98.2100	10	1.5	100.000	98.2	78 - 126	1.48	20	
Methylene chloride	63.3200	5.0	2.3	50.0000	127	31 - 148	23.8	20 I	R
	46.3500	5.0	0.63	50.0000	92.7	59 - 131	0.259	20	
n-Butylbenzene	50.1400	5.0	2.4	50.0000	100	75 - 141	1.48	20	
n-Propylbenzene	46.8400	5.0	2.2	50.0000	93.7	73 - 127	3.63	20	
	47.9900	5.0	0.97	50.0000	0.96	78 - 129	1.60	20	
	91.2700	5.0	0.87	100.000	91.3	81 - 113	0.633	20	
. A		•		4					

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control (cont'd)

Composition of the control of the co	Source	% Rec	RPD	
Analyte (ug/kg) (ug/kg) (ug/kg) Level Result	Result % Rec	Limits RPD	Limit	Notes

LCS Dup (B7J0750-BSD1) - Continu	led				Prepared: 10/25/2017 Analyzed: 10/25/2017	7 Analyzed: 10/2	5/2017		
Styrene	49.8200	5.0	1.5	50.0000	9.66	88 - 118	0.720	20	
tert-Amyl methyl ether	45.3500	5.0	0.59	50.0000	7.06	62 - 122	4.15	20	
tert-Butanol	224.480	100	19	250.000	8.68	36 - 142	4.63	20	
tert-Butylbenzene	46.7200	5.0	2.0	50.0000	93.4	74 - 126	3.33	20	
Tetrachloroethene	45.8800	5.0	1.6	50.0000	91.8	74 - 127	3.20	20	
Toluene	94.2800	5.0	0.94	100.000	94.3	79 - 119	2.36	20	
trans-1,2-Dichloroethene	44.9700	5.0	0.59	50.0000	6.68	61 - 128	13.7	20	
trans-1,3-Dichloropropene	48.0700	5.0	2.1	50.0000	96.1	75 - 116	0.849	20	
Trichloroethene	46.3600	5.0	3.1	50.0000	92.7	76 - 123	0.731	20	
Trichlorofluoromethane	44.9000	5.0	1.4	50.0000	8.68	58 - 134	11.3	20	
Vinyl acetate	493.040	50	8.6	500.000	9.86	63 - 143	6.58	20	
Vinyl chloride	50.5400	5.0	1.7	50.0000	101	51 - 145	6.45	20	
Surrogate: 1,2-Dichloroethane-d4	51.52			50.0000	103	32 - 140			
Surrogate: 4-Bromofluorobenzene	50.20			50.0000	100	68 - 131			
Surrogate: Dibromofluoromethan	47.79			50.0000	95.6	49 - 134			
Surrogate: Toluene-d8	51.39			50.0000	103	75 - 132			

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD		
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes	

Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	ž
Batch B7J0791 - MSVOA S										
					,	9				
Blank (B7J0791-BLK1)					Prepared	: 10/26/2017	Prepared: 10/26/2017 Analyzed: 10/26/2017	/ 107/97		
1,1,1,2-Tetrachloroethane	N	5.0	96.0							
1,1,1-Trichloroethane	ND	5.0	1.1							
1,1,2,2-Tetrachloroethane	ND	5.0	0.62							
1,1,2-Trichloroethane	ND	5.0	1.6							
1,1-Dichloroethane	ND	5.0	0.81							
1,1-Dichloroethene	N	5.0	2.6							
1,1-Dichloropropene	ND	5.0	2.3							
1,2,3-Trichloropropane	ND	5.0	0.54							
1,2,3-Trichlorobenzene	ND	5.0	1.2							
1,2,4-Trichlorobenzene	ND	5.0	1.1							
1,2,4-Trimethylbenzene	ND	5.0	1.5							
1,2-Dibromo-3-chloropropane	ND	10	1.6							
1,2-Dibromoethane	ND	5.0	3.2							
1,2-Dichlorobenzene	ND	5.0	1.1							
1,2-Dichloroethane	ND	5.0	1.2							
1,2-Dichloropropane	ND	5.0	1.8							
1,3,5-Trimethylbenzene	ND	5.0	1.7							
1,3-Dichlorobenzene	ND	5.0	1.3							
1,3-Dichloropropane	ND	5.0	1.1							
1,4-Dichlorobenzene	ND	5.0	1.2							
2,2-Dichloropropane	ND	5.0	1.2							
2-Chlorotoluene	ND	5.0	1.6							
4-Chlorotoluene	ND	5.0	1.5							
4-Isopropyltoluene	ND	5.0	2.3							
Benzene	ND	5.0	0.64							
Bromobenzene	ND	5.0	1.1							
Bromochloromethane	ND	5.0	0.64							
Bromodichloromethane	Q	5.0	1.2							
Bromoform	Q	5.0	0.80							
Bromomethane	Ω	5.0	2.5							
Carbon disulfide	ND	5.0	3.5							
Carbon tetrachloride	ND	5.0	1.2							
Chlorobenzene	ND	5.0	1.0							
Chloroethane	ND	5.0	1.1							
Chloroform	ND	5.0	0.82							
Chloromethane	ND	5.0	1.4							
cis-1,2-Dichloroethene	ND	5.0	0.67							
cis-1,3-Dichloropropene	ND	5.0	1.9							
Di-isopropyl ether	ND	5.0	0.55							
Dibromochloromethane	ND	5.0	1.0							
Dibromomethane	N	5.0	1.6							

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

OF A CANONA POPOLEM 1-1-M						
	(communed)					
Blank (B7J0791-BLK1) - Continued					Prepared: 10/26/201	Prepared: 10/26/2017 Analyzed: 10/26/2017
Dichlorodifluoromethane	ND	5.0	2.2			
Ethyl Acetate	ND	20	8.1			
Ethyl Ether	ND	20	6.1			
Ethyl tert-butyl ether	ND	5.0	0.67			
Ethylbenzene	ND	5.0	0.91			
Freon-113	ND	5.0	2.8			
Hexachlorobutadiene	ND	5.0	2.5			
Isopropylbenzene	ND	5.0	1.8			
m,p-Xylene	N	10	1.5			
Methylene chloride	N	5.0	2.3			
MTBE	N	5.0	0.63			
n-Butylbenzene	N	5.0	2.4			
n-Propylbenzene	N	5.0	2.2			
Naphthalene	N	5.0	0.97			
o-Xylene	ND	5.0	0.87			
sec-Butylbenzene	N	5.0	2.3			
Styrene	N	5.0	1.5			
tert-Amyl methyl ether	N	5.0	0.59			
tert-Butanol	N	100	19			
tert-Butylbenzene	N ON	5.0	2.0			
Tetrachloroethene	N	5.0	1.6			
Toluene	ND	5.0	0.94			
trans-1,2-Dichloroethene	ND	5.0	0.59			
trans-1,3-Dichloropropene	ND	5.0	2.1			
Trichloroethene	ND	5.0	3.1			
Trichlorofluoromethane	ND	5.0	1.4			
Vinyl acetate	ND	20	8.6			
Vinyl chloride	ND	5.0	1.7			
Surrogate: 1,2-Dichloroethane-d4	44.11			50.0000	88.2	32 - 140
Surrogate: 4-Bromofluorobenzene	51.26			50.0000	103	68 - 131
Surrogate: Dibromofluoromethan	44.50			50.0000	89.0	49 - 134
Surrogate: Toluene-d8	53.12			50.0000	901	75 - 132
LCS (B7J0791-BS1)					Prepared: 10/26/201	Prepared: 10/26/2017 Analyzed: 10/26/2017
1,1,1,2-Tetrachloroethane	46.2700	5.0	96:0	50.0000	92.5	80 - 117
1,1,1-Trichloroethane	46.2800	5.0	1.1	50.0000	92.6	70 - 122
1,1,2,2-Tetrachloroethane	47.7800	5.0	0.62	50.0000	92.6	69 - 115
1,1,2-Trichloroethane	47.8100	5.0	1.6	50.0000	9.56	74 - 120
1,1-Dichloroethane	46.5900	5.0	0.81	50.0000	93.2	72 - 118
1,1-Dichloroethene	47.1800	5.0	2.6	50.0000	94.4	61 - 124
1,1-Dichloropropene	49.3200	5.0	2.3	50.0000	9.86	74 - 128

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control (cont'd)

	Recult	POI	IdM	Snike	Source		0% R ec		RPD	
	Incom	1 45	TAIN!	abide	2000		201.0/		N P	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Prepared: 10/26/2017 Analyzed: 10/26/2017	67 - 116	86 - 127	88 - 137	78 - 125	70 - 134	73 - 127	85 - 116	65 - 120	81 - 114	76 - 125	83 - 117	79 - 119	84 - 115	72 - 121	76 - 120	77 - 122	77 - 131	78 - 115	79 - 113	66 - 123	79 - 112	67 - 125	49 - 150	61 - 146	65 - 133	82 - 113	46 - 146	73 - 116	46 - 158	72 - 121	79 - 123	67 - 125	79 - 116	72 - 117	38 - 168	55 - 144	52 - 133	68 - 126	79 - 116	66 - 134	84 - 133	67 - 134
Prepared: 10/26/2017	7.68	93.1	9.76	9.86	2.66	101	2.96	98.3	7.86	9.66	94.7	9.56	8.96	93.3	95.4	7.76	102	7.76	92.2	9.68	95.4	91.5	135	105	9.96	94.6	108	90.1	103	92.9	8.76	92.7	92.0	93.9	102	104	6.06	94.0	97.5	102	8.66	97.0
	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	100.000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	500.000	500.000	50.0000	100.000	50.0000	50.0000	50.0000
	0.54	1.2	1.1	1.5	1.6	3.2	1.1	1.2	1.8	1.7	1.3	1.1	1.2	1.2	1.6	1.5	2.3	0.64	1.1	0.64	1.2	08.0	2.5	3.5	1.2	1.0	1.1	0.82	1.4	0.67	1.9	0.55	1.0	1.6	2.2	8.1	6.1	0.67	0.91	2.8	2.5	1.8
	5.0	5.0	5.0	5.0	10	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	50	50	5.0	5.0	5.0	5.0	5.0
(44.8500	46.5600	48.8200	49.2800	49.8700	50.4200	48.3700	49.1400	49.3600	49.7900	47.3600	47.8100	48.3900	46.6600	47.7000	48.8500	51.0500	97.7300	46.0900	44.8100	47.7100	45.7700	67.6100	52.3000	48.2900	47.3100	54.1500	45.0400	51.6100	46.4300	48.8800	46.3600	45.9800	46.9700	51.2400	518.680	454.710	47.0200	97.4800	51.0600	49.8900	48.5000
LCS (B7J0791-BS1) - Continued	1,2,3-Trichloropropane	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,2-Dibromo-3-chloropropane	1,2-Dibromoethane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane	1,4-Dichlorobenzene	2,2-Dichloropropane	2-Chlorotoluene	4-Chlorotoluene	4-Isopropyltoluene	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Di-isopropyl ether	Dibromochloromethane	Dibromomethane	Dichlorodifluoromethane	Ethyl Acetate	Ethyl Ether	Ethyl tert-butyl ether	Ethylbenzene	Freon-113	Hexachlorobutadiene	Isopropylbenzene

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

LCS (B/J0/91-BS1) - Continued m n-Xvlene	100 910	01	-	100 000	Prepared	: 10/26/201.	Prepared: 10/26/201/ Analyzed: 10/26/201/ 101 78 - 126	
-	100.910	10	1.5	100.000		101	78 - 126	
Methylene chloride	56.2200	5.0	2.3	50.0000		112	31 - 148	
	45.0500	0.0	0.63	50,000		104	59 - 131	
II-Butytbenzene	78.8500	0.0	4. C	20.0000		104	73 - 177	
)	47.0200	5.0	0.97	50.000		94.0	78 - 129	
	93.1300	5.0	0.87	100.000		93.1	81 - 113	
sec-Butylbenzene	49.4300	5.0	2.3	50.0000		6.86	73 - 129	
	50.3300	5.0	1.5	50.0000		101	88 - 118	
tert-Amyl methyl ether	44.7800	5.0	0.59	50.0000		9.68	62 - 122	
	179.230	100	19	250.000		71.7	36 - 142	
tert-Butylbenzene	48.5900	5.0	2.0	50.0000		97.2	74 - 126	
Tetrachloroethene	47.8000	5.0	1.6	50.0000		92.6	74 - 127	
	99.9100	5.0	0.94	100.000		6.66	79 - 119	
trans-1,2-Dichloroethene	45.0600	5.0	0.59	50.0000		90.1	61 - 128	
trans-1,3-Dichloropropene	50.9500	5.0	2.1	50.0000		102	75 - 116	
Trichloroethene	48.1800	5.0	3.1	50.0000		96.4	76 - 123	
Trichlorofluoromethane	48.4500	5.0	1.4	50.0000		6.96	58 - 134	
	509.770	50	8.6	500.000		102	63 - 143	
	52.9700	5.0	1.7	50.0000		106	51 - 145	
Surrogate: 1,2-Dichloroethane-d4	51.99			50.0000		104	32 - 140	
Surrogate: 4-Bromofluorobenzene	50.93			50.0000		102	68 - 131	
Surrogate: Dibromofluoromethan	48.42			50.0000		8.96	49 - 134	
Surrogate: Toluene-d8	54.85			50.0000		011	75 - 132	
Matrix Spike (B7J0791-MS1)		3 2	Source: 1703807-01	807-01	Prepared	: 10/26/2017	Prepared: 10/26/2017 Analyzed: 10/26/2017	
1,1,1,2-Tetrachloroethane	43.6600	5.0	96.0	50.0000	ND	87.3	27 - 130	
1,1,1-Trichloroethane	44.9500	5.0	1.1	50.0000	ND	6.68	32 - 135	
1,1,2,2-Tetrachloroethane	46.0600	5.0	0.62	50.0000	ND	92.1	17 - 135	
l,1,2-Trichloroethane	44.9300	5.0	1.6	50.0000	ND	6.68	31 - 129	
1,1-Dichloroethane	44.0100	5.0	0.81	50.0000	ND	0.88	37 - 130	
1,1-Dichloroethene	47.1500	5.0	2.6	50.0000	ND	94.3	41 - 125	
l, 1-Dichloropropene	48.6400	5.0	2.3	50.0000	ND	97.3	33 - 138	
1,2,3-Trichloropropane	44.3300	5.0	0.54	50.0000	ND	88.7	20 - 137	
1,2,3-Trichlorobenzene	41.5100	5.0	1.2	50.0000	ND	83.0	0 - 147	
,2,4-Trichlorobenzene	44.0400	5.0	1.1	50.0000	ND	88.1	0 - 156	
,2,4-Trimethylbenzene	47.2300	5.0	1.5	50.0000	ND	94.5	10 - 139	
,2-Dibromo-3-chloropropane	46.3300	10	1.6	50.0000	ND	92.7	17 - 145	
1,2-Dibromoethane	48.5400	5.0	3.2	50.0000	ND	97.1	25 - 136	
,2-Dichlorobenzene	45.3600	5.0	1.1	50.0000	ND	7.06	8 - 134	
7.1.1	0000	4	-	0000	!			

Leighton Consulting, Inc.
17781 Cowan Street

Report To: Brynn McCulloch

Project Number: POLA Berth 191-193, 11618.005

Irvine, CA 92614

Reported: 11/02/2017

Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Prepared: 10/26/2017 Analyzed: 10/26/2017	38 - 123	10 - 139	8 - 134	34 - 130	10 - 134	36 - 133	15 - 133	13 - 135	2 - 146	40 - 123	18 - 132	32 - 130	33 - 122	20 - 134	35 - 140	32 - 143	23 - 144	24 - 128	35 - 135	36 - 126	36 - 146	31 - 136	28 - 130	32 - 133	30 - 129	28 - 126	23 - 162	0 - 156	33 - 128	33 - 138	22 - 132	31 - 140	0 - 150	15 - 144	19 - 138	9 - 145	31 - 136	0 - 153	12 - 141	0 - 145	20 - 129	4 - 143
: 10/26/2017	8.06	95.5	91.2	0.06	89.4	91.9	92.1	94.6	96.4	91.7	8.88	2.98	8.88	88.0	123	102	92.9	0.06	100	87.0	99.2	88.7	91.8	6.06	6.98	6.98	103	93.8	6.98	90.3	92.4	8.76	85.3	93.7	96.4	116	84.6	7.76	94.6	85.6	88.3	94.6
Prepared	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N	N	ND	ND	ND	R	ND	R	ND	ND	ND	N	ND	ND	<u>N</u>	R	N Q
107-01	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	100.000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	500.000	500.000	50.0000	100.000	50.0000	50.0000	50.0000	100.000	50.0000	50.0000	50.0000	50.0000	50.0000	100.000	50.0000
Source: 1703807-01	1.8	1.7	1.3	1.1	1.2	1.2	1.6	1.5	2.3	0.64	1.1	0.64	1.2	0.80	2.5	3.5	1.2	1.0	1.1	0.82	1.4	0.67	1.9	0.55	1.0	1.6	2.2	8.1	6.1	0.67	0.91	2.8	2.5	1.8	1.5	2.3	0.63	2.4	2.2	0.97	0.87	2.3
S	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	50	50	5.0	5.0	5.0	5.0	5.0	10	5.0	5.0	5.0	5.0	5.0	5.0	5.0
- Continued	45.4000	47.7500	45.6100	45.0100	44.7000	45.9600	46.0600	47.2900	48.2000	91.6800	44.4100	43.3600	44.3900	43.9800	61.3600	51.2400	46.4400	44.9900	50.0100	43.5100	49.6000	44.3600	45.9200	45.4500	43.4600	43.4700	51.6300	468.760	434.390	45.1600	92.3500	48.9100	42.6400	46.8600	96.3900	57.9700	42.3000	48.8600	47.2900	42.8200	88.2800	47.3100
Matrix Spike (B7J0791-MS1) - Continued	1,2-Dichloropropane	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane	1,4-Dichlorobenzene	2,2-Dichloropropane	2-Chlorotoluene	4-Chlorotoluene	4-Isopropyltoluene	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Di-isopropyl ether	Dibromochloromethane	Dibromomethane	Dichlorodifluoromethane	Ethyl Acetate	Ethyl Ether	Ethyl tert-butyl ether	Ethylbenzene	Freon-113	Hexachlorobutadiene	Isopropylbenzene	m,p-Xylene	Methylene chloride	MTBE	n-Butylbenzene	n-Propylbenzene	Naphthalene	o-Xylene	sec-Butylbenzene

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control (cont'd)

Result	PQL	MDL	Spike	Source		% Rec		RPD	
nalyte (ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

tether (47.880) 5.0 1.5 50,0000 ND 85.8 19-136 e (46.3700 5.0 2.9 50,0000 ND 86.3 30-128 e (46.3700 5.0 1.6 50,0000 ND 86.3 30-128 e (46.3700 5.0 1.6 50,0000 ND 92.2 18-143 e (46.3700 5.0 2.0 50,0000 ND 92.2 18-143 e (46.300 5.0 2.0 31 50,0000 ND 92.2 18-143 rochame (47.4000 5.0 1.4 50,0000 ND 92.2 18-143 conditionschame-d4 5.13 conclusion (47.400 5.0 1.4 50,0000 ND 93.4 36-133 conclusion (44.500 5.0 1.4 50,0000 ND 93.4 36-133 conclusion (44.500 5.0 1.4 50,0000 ND 93.4 36-133 conclusion (44.500 5.0 1.1 50,0000 ND 93.4 36-133 conclusion (44.500 5.0 1.1 50,0000 ND 93.4 37-135 conclusion (44.500 5.0 1.1 50,0000 ND 87.8 37-130 conclusion (44.500 5.0 1.1 50,0000 ND 97.9 17-145 conclusion (44.500 5.0 1	Matrix Spike (B7J0791-MS1) - Cont	Continued	9 2	Source: 1703807-01	807-01	Prepared	1: 10/26/2017	Prepared: 10/26/2017 Analyzed: 10/26/2017	6/2017		
431500	rene	47.8800	5.0	1.5	50.0000	N	95.8	19 - 136			
187.070 100 19 250.000 ND 74.8 22-146 46.13700 5.0 2.0 50.0000 ND 92.7 19-140 46.13700 5.0 0.94 100.0000 ND 92.2 18-143 46.6800 5.0 0.94 100.000 ND 94.5 30-134 46.6800 5.0 0.94 100.000 ND 94.5 30-134 46.6800 5.0 0.94 100.000 ND 94.5 30-134 46.6800 5.0 1.4 50.0000 ND 94.5 32-140 46.8000 5.0 1.7 50.0000 ND 94.5 32-140 48.200 5.0 1.7 50.0000 ND 94.5 32-140 44.8000 5.0 1.1 50.0000 ND 87.8 37-130 44.8000 5.0 1.6 50.0000 ND 87.8 37-130 44.8000 5.0 1.2 50.0000 ND 87.8 37-130 44.8000 5.0 1.2 50.0000 ND 87.8 37-130 44.8000 5.0 1.2 50.0000 ND 94.6 37-136 45.3000 5.0 1.1 50.0000 ND 94.6 37-136 45.3000 5.0 1.1 50.0000 ND 97.8 45.3000 5.0 1.1 50.0000 ND 87.8 45	-Amyl methyl ether	43.1500	5.0	0.59	50.0000	N	86.3	30 - 128			
46.3700 5.0 2.0 50,0000 ND 92.7 9-140 46.1200 5.0 1.6 \$0,0000 ND 92.2 18-143 46.1200 5.0 1.6 \$0,0000 ND 94.5 30-134 45.6300 5.0 2.1 \$0,0000 ND 95.0 23-127 45.6600 5.0 3.1 \$0,0000 ND 95.0 23-127 45.6600 5.0 3.1 \$0,0000 ND 93.4 36-137 36.020 5.0 1.7 \$0,0000 ND 93.4 36-140 45.600 5.0 1.7 \$0,0000 ND 93.4 36-140 46.020 5.0 1.7 \$0,0000 ND 93.4 36-140 46.020 5.0 1.7 \$0,0000 ND 95.4 49-131 48.20 5.0 1.1 \$0,0000 ND 95.4 49-134 48.200 5.0 1.1 \$0,0000	-Butanol	187.070	100	19	250.000	N	74.8	22 - 146			
46.1200 5.0 1.6 50,0000 ND 92.2 18-143 94.5800 5.0 0.94 100,000 ND 94.6 30-132 45.6800 5.0 0.59 100,000 ND 94.6 30-134 47.4900 5.0 2.1 50,0000 ND 97.3 32-134 45.6800 5.0 1.4 50,0000 ND 93.4 36-135 46.6800 5.0 1.4 50,0000 ND 93.4 36-136 46.6800 5.0 1.4 50,0000 ND 93.4 36-136 46.6800 5.0 1.7 50,0000 ND 93.4 36-136 46.6800 5.0 1.7 50,0000 ND 93.7 14-0 45.23800 5.0 1.6 50,0000 ND 93.7 13-136 47.4800 5.0 1.6 50,0000 ND 93.7 11-136 44.4300 5.0 1.6 50,0000<	-Butylbenzene	46.3700	5.0	2.0	50.0000	ND	92.7	9 - 140			
94.800 5.0 0.94 100.000 ND 94.6 30 -132 43.6300 5.0 0.59 50.0000 ND 87.3 32 -134 45.6000 5.0 3.1 50.0000 ND 91.3 17-128 45.6000 5.0 3.1 50.0000 ND 91.3 17-128 46.6800 5.0 1.4 50.0000 ND 91.3 17-128 396.020 5.0 1.4 50.0000 ND 91.3 17-158 396.020 5.0 1.7 50.0000 ND 92.4 36 -135 396.020 5.0 1.7 50.0000 ND 92.7 68 -131 396.020 5.0 1.7 50.0000 ND 88.9 10-154 32.800 5.0 0.06 50.0000 ND 87.8 27-130 44.8500 5.0 1.1 50.0000 ND 88.9 17-135 44.8500 5.0 1.2 50.0000 ND 88.9 17-135 44.8500 5.0 1.5 50.0000 ND 88.9 17-135 45.3000 5.0 1.5 50.0000 ND 88.9 17-135 45.3000 5.0 1.5 50.0000 ND 88.9 17-135 45.3000 5.0 1.5 50.0000 ND 88.9 17-145 41.0900 5.0 1.5 50.0000 ND 87.8 8-134 45.300 5.0 1.5 50.0000 ND 87.8 8-134 45.300 5.0 1.2 50.0000 ND 87.8 8-134 45.300 5.0 1.2 50.0000 ND 87.9 10-139	rachloroethene	46.1200	5.0	1.6	50.0000	ND	92.2	18 - 143			
43.6300 5.0 0.59 5.00000 ND 87.3 32-134 47.4900 5.0 1.1 5.00000 ND 95.0 23-127 46.6800 5.0 3.1 5.00000 ND 93.4 36-135 396.020 5.0 1.4 50.0000 ND 93.4 36-135 396.020 5.0 1.7 50.0000 ND 93.4 36-135 396.020 5.0 1.7 50.0000 ND 105 38-140 benzene 49.85 5.0 1.7 50.0000 ND 105 38-140 methan 48.20 5.0 1.7 50.0000 ND 89.7 68-131 791-MSD1	nene	94.5800	5.0	0.94	100.000	N	94.6	30 - 132			
47,490 5.0 2.1 50,0000 ND 95.0 23-127 45,6600 5.0 3.1 50,0000 ND 93.4 36-135 96,600 5.0 3.1 50,0000 ND 93.4 36-135 196,020 5.0 9.8 50,0000 ND 104 32-140 benzene 49.85 5.0000 ND 99.7 68-131 methan 48.20 5.0000 ND 99.7 68-131 methan 48.20 5.0000 ND 99.7 68-131 43.8800 5.0 5.0000 ND 99.7 5.136 44.5500 5.0 6.0 5.0000 ND 89.7 31-136 44.4500 5.0 1.1 50,0000 ND 89.1 17-136 44.4500 5.0 0.62 50,0000 ND 89.1 17-136 44.5500 5.0 0.62 50,0000 ND 89.4 17-145 <tr< td=""><td>1s-1,2-Dichloroethene</td><td>43.6300</td><td>5.0</td><td>0.59</td><td>50.0000</td><td>ND</td><td>87.3</td><td>32 - 134</td><td></td><td></td><td></td></tr<>	1s-1,2-Dichloroethene	43.6300	5.0	0.59	50.0000	ND	87.3	32 - 134			
45.6600 5.0 3.1 \$0,0000 ND 91.3 17-158 46.6800 5.0 1.4 \$0,0000 ND 93.4 36-135 46.6800 5.0 1.7 \$0,0000 ND 93.4 36-135 98.0200 5.0 1.7 \$0,0000 ND 99.7 68-131 prometham 48.20 5.0 1.7 \$0,0000 ND 99.7 68-131 normetham 48.20 5.0 1.0 \$0,000 ND 99.7 68-131 normetham 48.20 5.0 0.96 \$0,000 ND 99.7 68-131 normetham 48.20 5.0 0.96 \$0,000 ND 99.7 49-134 normetham 48.20 5.0 0.98 \$0,000 ND 87.8 27-130 normetham 48.200 5.0 0.98 \$0,000 ND 87.9 17-135 normetham 44.43000 5.0 1.1 \$0,000 </td <td>ls-1,3-Dichloropropene</td> <td>47.4900</td> <td>5.0</td> <td>2.1</td> <td>50.0000</td> <td>N</td> <td>95.0</td> <td>23 - 127</td> <td></td> <td></td> <td></td>	ls-1,3-Dichloropropene	47.4900	5.0	2.1	50.0000	N	95.0	23 - 127			
46,6800 5.0 1.4 50,0000 ND 93.4 36-135 396,020 5.0 1.7 50,0000 ND 79.2 0-154 52,3800 5.0 1.7 50,0000 ND 104 32-140 probenzene 49,85 50,0000 96,4 49-131 probenzene 48,20 50,0000 96,4 49-131 promethan 48,20 50 50,000 96,4 49-131 pee 44,550 5.0 1.1 50,000 ND 87,8 27-130 pee 44,550 5.0 1.1 50,000 ND 87,8 27-132 pee 44,430 5.0 0.62 50,000 ND 87,8 37-136 pee 44,4300 5.0 0.62 50,000 ND 87,8 37-136 pee 44,800 5.0 0.62 50,000 ND 89,7 37-136 42,3000 5.0 1.1 50	chloroethene	45.6600	5.0	3.1	50.0000	N	91.3	17 - 158			
396,020 50 9.8 500,000 ND 79.2 0-154 forcerhame-d4 \$1,81 \$1,81 \$0,0000 ND 104 32-140 fluorobenzene \$1,81 \$0,0000 \$0,000 \$0,7 \$8-131 fluorobenzene \$4,820 \$0,0000 \$0,000 \$0,4 \$9-134 fluorobenzene \$4,820 \$0,0000 \$0,0000 \$0,4 \$9-134 fluorobenzene \$2,03 \$0,0000 ND \$9-7 \$8-131 fluoropenzene \$4,200 \$0 \$0,0000 ND \$9-7 \$9-134 fluoropenzene \$4,500 \$0	chlorofluoromethane	46.6800	5.0	1.4	50.0000	R	93.4	36 - 135			
52,380 5.0 1.7 \$60,000 ND 105 38-140 fluoromenham 49,85 30,000 104 32-140 fluoromenham 48,20 50,000 99,7 68-131 fluoromenham 48,20 50,000 99,7 68-131 fluoromenham 48,20 50,000 Poppered: 10,26/20 68-131 fluoromenham 43,800 5.0 6.96 50,000 ND 99,7 68-131 fluoromenham 43,800 5.0 0.96 50,000 ND 89,1 7-132 hame 44,550 5.0 1.1 50,000 ND 89,2 27-130 c 44,550 5.0 1.5 50,000 ND 89,3 37-130 ne 44,560 5.0 1.6 50,000 ND 87,8 37-136 ne 45,300 5.0 1.2 50,000 ND 87,9 1.1 ne 45,300 5.0 1.1	yl acetate	396.020	50	8.6	500.000	R	79.2	0 - 154			
Managementary 51.81 S0.0000 104 32-140 Minorobenzene 49.85 S0.0000 99.7 68-131 Minorobenzene 49.85 S0.0000 99.7 68-131 Minorobenzene 49.85 S0.0000 104 32-140 Minorobenzene 49.85 S0.0000 104 75-132 Managementary 43.800 5.0 0.96 S0.0000 ND 87.8 27-130 Managementary 44.8500 5.0 0.62 S0.0000 ND 87.8 27-130 Managementary 44.8500 5.0 0.62 S0.0000 ND 88.9 17-135 Managementary 44.8600 5.0 0.62 S0.0000 ND 89.7 31-129 Managementary 44.8600 5.0 0.54 S0.0000 ND 84.6 20-137 Managementary 42.3000 5.0 0.54 S0.0000 ND 84.6 20-137 Managementary 43.900 5.0 1.1 S0.0000 ND 84.6 20-137 Managementary 45.300 5.0 1.2 S0.0000 ND 94.9 31-123 Managementary 45.300 5.0 1.1 S0.0000 ND 97.9 17-145 Managementary 45.300 5.0 1.1 S0.0000 ND 97.9 17-145 Managementary 45.300 5.0 1.1 S0.0000 ND 99.7 34-130 Managementary 45.300 5.0 1.1 S0.0000 ND 87.6 8-134 Managementary 45.300 5.0 1.1 S0.0000 ND 87.7 8-134 Managementary 44.8600 5.0 1.1 S0.0000 ND 88.6 10-134 Managementary 44.8600 5.0 1.1 S0.0000 ND 88.6 10-134 Managementary 44.8600 5.0 1.1 S0.0000 ND 88.9 15-133 Managementary 44.8600 5.0 1.1 S0.0000 ND 88.9 15-133 Managementary 44.8600 5.0 1.2 S0.0000 ND 89.7 34-130 Managementary 44.8600 5.0 1.2 S0.0000 ND 91.9 Managementary 44.8600 5.0 1.2 S0.0000 ND 91.9 Managementary 44.8600 5.0 1.2 S0.0000 ND 91.9 Managementary 44.8600 5.0 1.2 S0.00	yl chloride	52.3800	5.0	1.7	50.0000	N	105	38 - 140			
Honorobenzene 49.85 Source: 170800 99.7 68-131 Hiltorometham 48.20 Source: 170807-01 Prepared: 1026/2017 Analyzed: 1026/20 R7J0791-MSD1 Source: 1703807-01 Prepared: 1026/2017 Analyzed: 1026/20 B7J0791-MSD1 Source: 1703807-01 Prepared: 1026/2017 Analyzed: 1026/20 iname 44.5500 5.0 0.56 50.0000 ND 87.8 27-130 iname 44.4300 5.0 0.62 50.0000 ND 87.8 27-130 iname 44.4300 5.0 0.62 50.0000 ND 87.8 37-130 iname 44.4300 5.0 0.62 50.0000 ND 89.7 37-130 iname 44.4300 5.0 0.81 50.0000 ND 89.7 37-136 ine 42.2900 5.0 0.24 50.0000 ND 94.9 37-136 ine 45.3000 5.0 1.1 50.0000 ND 94.9 17-145 ppropare 4	rrogate: 1,2-Dichloroethane-d4	51.81			50.0000		104	32 - 140			
Managementlant 48.20 52.03 50.0000 104 75-132 Managementlant 48.20 50.0000 104 75-132 Managementlant 44.5500 5.0 0.96 5.00000 ND 87.8 27-130 Managementlant 44.4500 5.0 0.96 5.00000 ND 88.9 17-135 Managementlant 44.4500 5.0 0.62 5.00000 ND 88.9 17-135 Managementlant 44.4500 5.0 0.63 5.00000 ND 88.9 17-135 Managementlant 44.4500 5.0 0.64 5.00000 ND 87.8 37-130 Managementlant 44.4500 5.0 0.54 50.0000 ND 87.8 37-130 Managementlant 45.3000 5.0 0.54 50.0000 ND 84.6 20-137 Managementlant 45.3000 5.0 0.54 50.0000 ND 84.6 20-137 Managementlant 45.3000 5.0 0.147 50.0000 ND 87.6 8-134 Managementlant 45.3000 5.0 1.1 50.0000 ND 87.7 8-134 Managementlant 45.3000 5.0 1.1 50.0000 ND 88.9 15-133 Managementlant 45.3000 5.0 1.1 5.00000 ND 88.9 15-133 Managementlant 45.3000 5.0 1.1 5.00000 ND 88.9 15-133 Managementlant 45.3000 5.0 1.1 5.00000 ND 88.9 15-133 Managementlant 45.3000 5.0 1.1 5.00	rrogate: 4-Bromosluorobenzene	49.85			50.0000		7.66	68 - 131			
85 52.03 Source: 1703807-01 Prepared: 10/26/2017 Analyzed: 10	rrogate: Dibromofluoromethan	48.20			50.0000		96.4	49 - 134			
BAJ0791-MSD1) Source: 1703807-01 Prepared: 10/26/2017 Analyzed: 10/26/2017 Ana	rrogate: Toluene-d8	52.03			50.0000		104	75 - 132			
name 43.8800 5.0 0.96 50,0000 ND 87.8 27-130 name 44.5500 5.0 1.1 50,0000 ND 89.1 32-135 name 44.500 5.0 0.62 50,0000 ND 89.7 31-129 4.8600 5.0 1.6 50,0000 ND 89.7 31-129 4.39000 5.0 0.81 50,0000 ND 87.8 37-130 45.3000 5.0 2.5 50,0000 ND 87.9 41-125 ne 42.2900 5.0 1.2 50,0000 ND 84.9 31-135 ne 42.2900 5.0 1.1 50,0000 ND 84.6 20-137 ne 42.2900 5.0 1.1 50,0000 ND 84.6 20-137 ne 45.300 5.0 1.1 50,0000 ND 97.9 17-145 ppropane 48.9400 1.0 1.2 50,0000	atrix Spike Dup (B7J0791-MSD1)		92	ource: 1703	807-01	Prepared	1: 10/26/2017	7 Analyzed: 10/2	6/2017		
thane 44,5500 5.0 1.1 50,0000 ND 89.1 32-135 thane 44,4300 5.0 0.62 50,0000 ND 88.9 17-135 thane 44,4300 5.0 1.6 50,0000 ND 89.7 31-129 thane 43,9000 5.0 1.6 50,0000 ND 89.7 31-129 the 43,9000 5.0 2.6 50,0000 ND 87.8 37-130 the 47,4600 5.0 2.3 50,0000 ND 94.9 31-125 the 42,2900 5.0 1.2 50,0000 ND 84.6 20-137 ne 42,2900 5.0 1.1 50,0000 ND 91.9 10-139 ppropane 45,9300 5.0 1.1 50,0000 ND 97.9 17-145 ppropane 48,9400 1.0 1.6 50,0000 ND 97.9 17-145 q 45,350	1,2-Tetrachloroethane	43.8800	5.0	96.0	50.0000	R	87.8	27 - 130	0.503	20	
hane 44,4300 5.0 0,62 50,0000 ND 88.9 17-135 43,9000 5.0 1.6 50,0000 ND 87.8 37-130 43,9000 5.0 0.81 50,0000 ND 87.8 37-130 44,5000 5.0 0.84 50,0000 ND 94.9 33-138 he 42,2900 5.0 0.54 50,0000 ND 84.6 20-137 he 42,0900 5.0 1.2 50,0000 ND 82.2 0-137 he 45,9300 5.0 1.1 50,0000 ND 82.2 0-156 he 45,9300 5.0 1.5 50,0000 ND 87.6 8-134 45,1500 5.0 1.5 50,0000 ND 87.6 8-134 45,3500 5.0 1.1 50,0000 ND 87.6 8-134 45,3500 5.0 1.2 50,0000 ND 87.6 8-134 45,3500 5.0 1.2 50,0000 ND 87.6 8-134 45,3500 5.0 1.2 50,0000 ND 87.6 8-134 44,3000 5.0 1.7 50,0000 ND 87.7 8-134 44,8600 5.0 1.7 50,0000 ND 88.6 10-139 44,4500 5.0 1.2 50,0000 ND 88.6 10-134 45,5400 5.0 1.2 50,0000 ND 88.6 10-134 45,5400 5.0 1.2 50,0000 ND 88.6 10-134 45,5400 5.0 1.2 50,0000 ND 88.9 15-133 45,7800 5.0 1.5 50,0000 ND 88.9 15-133	1-Trichloroethane	44.5500	5.0	1.1	50.0000	N	89.1	32 - 135	0.894	20	
HA8600 5.0 1.6 50,0000 ND 89.7 31-129 43,9000 5.0 0.81 50,0000 ND 87.8 37-130 45,3000 5.0 2.6 50,0000 ND 94.9 37-130 ne 47,4600 5.0 2.3 50,0000 ND 94.9 33-138 ne 42,2900 5.0 1.2 50,0000 ND 94.9 33-138 ne 41,0900 5.0 1.1 50,0000 ND 94.9 33-138 ne 45,9300 5.0 1.1 50,0000 ND 91.9 10-139 appropane 48,9400 10 1.6 50,0000 ND 97.9 17-145 appropane 48,9400 10 1.6 50,0000 ND 97.9 17-145 appropane 48,9400 10 1.6 50,0000 ND 97.9 17-145 appropane 45,3000 5.0 1.1 5	2,2-Tetrachloroethane	44.4300	5.0	0.62	50.0000	N	6.88	17 - 135	3.60	20	
43,9000 5.0 0.81 50,0000 ND 87.8 37-130 45,3000 5.0 2.6 50,0000 ND 90.6 41-125 47,4600 5.0 2.3 50,0000 ND 94.9 33-138 ne 42,2900 5.0 1.2 50,0000 ND 84.6 20-137 ne 42,2900 5.0 1.2 50,0000 ND 84.6 20-137 ne 41,0900 5.0 1.1 50,0000 ND 91.9 10-139 spropane 48,9400 10 1.6 50,0000 ND 90.3 25-136 spropane 48,9400 5.0 1.1 50,0000 ND 90.3 25-136 45,3500 5.0 1.2 50,0000 ND 90.6 38-123 ne 45,550 5.0 1.7 50,0000 ND 90.6 38-134 44,860 5.0 1.7 50,0000 ND 91.9	2-Trichloroethane	44.8600	5.0	1.6	50.0000	N	89.7	31 - 129	0.156	20	
45.3000 5.0 2.6 50.0000 ND 90.6 41-125 47.4600 5.0 2.3 50.0000 ND 94.9 33-138 ne 42.2900 5.0 1.2 50.0000 ND 84.6 20-137 ne 41.0900 5.0 1.1 50.0000 ND 84.6 20-137 ne 45.9300 5.0 1.1 50.0000 ND 82.2 0-147 ne 45.9300 5.0 1.1 50.0000 ND 91.9 10-139 ppropane 48.9400 1.0 1.6 50.0000 ND 91.9 17-145 ppropane 48.9400 5.0 1.1 50.0000 ND 97.9 17-145 ppropane 48.1500 5.0 1.1 50.0000 ND 90.3 25-136 45.3500 5.0 1.2 50.0000 ND 91.9 10-139 ne 45.5400 5.0 1.7 50.0000 </td <td>Dichloroethane</td> <td>43.9000</td> <td>5.0</td> <td>0.81</td> <td>50.0000</td> <td>ND</td> <td>87.8</td> <td>37 - 130</td> <td>0.250</td> <td>20</td> <td></td>	Dichloroethane	43.9000	5.0	0.81	50.0000	ND	87.8	37 - 130	0.250	20	
47.4600 5.0 2.3 50.0000 ND 94.9 33-138 ne 42.2900 5.0 0.54 50.0000 ND 84.6 20-137 ne 42.2900 5.0 1.2 50.0000 ND 76.7 0-147 ne 41.0900 5.0 1.1 50.0000 ND 76.7 0-147 ne 45.9300 5.0 1.1 50.0000 ND 91.9 10-139 spropane 48.9400 10 1.6 50.0000 ND 97.9 17-145 spropane 48.9400 5.0 1.1 50.0000 ND 97.9 17-145 spropane 45.3500 5.0 1.1 50.0000 ND 90.3 25-136 d-5.3500 5.0 1.2 50.0000 ND 91.9 10-139 ne 45.3600 5.0 1.7 50.0000 ND 91.9 10-134 d-4.3000 5.0 1.2 50.0000<	Dichloroethene	45.3000	5.0	2.6	50.0000	N	9.06	41 - 125	4.00	20	
ne 38.3500 5.0 1.2 50,0000 ND 84.6 20-137 ne 42.2900 5.0 1.2 50,0000 ND 76.7 0-147 ne 42.9300 5.0 1.1 50,0000 ND 82.2 0-156 ne 45.9300 5.0 1.1 50,0000 ND 91.9 10-139 pyropane 48.9400 10 1.6 50,0000 ND 97.9 17-145 45.1500 5.0 1.1 50,0000 ND 97.9 17-145 45.3500 5.0 1.1 50,0000 ND 87.6 8-134 45.3500 5.0 1.1 50,0000 ND 87.6 8-134 45.3500 5.0 1.2 50,0000 ND 90.7 31-123 ne 45.9500 5.0 1.7 50,0000 ND 87.7 8-134 44.8600 5.0 1.1 50,0000 ND 88.6 10-139 44.4500 5.0 1.2 50,0000 ND 88.6 10-134 45.5400 5.0 1.2 50,0000 ND 88.9 15-133 45.7800 5.0 1.5 50,0000 ND 88.9 15-133	Dichloropropene	47.4600	5.0	2.3	50.0000	N	94.9	33 - 138	2.46	20	
ne 43.350 5.0 1.2 50.0000 ND 76.7 0-147 ne 42.9300 5.0 1.1 50.0000 ND 82.2 0-156 ppropane 48.9400 10 1.5 50.0000 ND 91.9 10-139 ppropane 48.3400 5.0 1.1 50.0000 ND 97.9 17-145 45.3500 5.0 1.1 50.0000 ND 90.3 25-136 45.3500 5.0 1.1 50.0000 ND 87.6 8-134 45.3500 5.0 1.2 50.0000 ND 90.7 31-123 45.300 5.0 1.7 50.0000 ND 90.6 38-123 ne 45.9500 5.0 1.7 50.0000 ND 87.7 8-134 44.8600 5.0 1.1 50.0000 ND 89.7 34-130 44.4500 5.0 1.2 50.0000 ND 88.6 10-134 45.5400 5.0 1.2 50.0000 ND 88.9 15-133 45.7800 5.0 1.5 50.0000 ND 88.9 15-133	3-Trichloropropane	42.2900	5.0	0.54	50.0000	N	84.6	20 - 137	4.71	20	
ne 41.0900 5.0 1.1 50.0000 ND 82.2 0-156 45.9300 5.0 1.5 50.0000 ND 91.9 10-139 ppropane 48.9400 10 1.6 50.0000 ND 97.9 17-145 45.1500 5.0 3.2 50.0000 ND 90.3 25-136 45.3500 5.0 1.1 50.0000 ND 87.6 8-134 45.3500 5.0 1.2 50.0000 ND 90.7 31-123 45.3600 5.0 1.7 50.0000 ND 90.7 31-123 and 45.9500 5.0 1.7 50.0000 ND 87.7 8-134 44.8600 5.0 1.1 50.0000 ND 89.7 8-134 44.4500 5.0 1.2 50.0000 ND 88.6 10-134 45.5400 5.0 1.2 50.0000 ND 88.9 15-133 45.7800 5.0 1.5 50.0000 ND 88.9 15-133	3-Trichlorobenzene	38.3500	5.0	1.2	50.0000	N	7.97	0 - 147	7.91	20	
ne 45,9300 5.0 1.5 50,0000 ND 91.9 10-139 ppropane 48,9400 10 1.6 50,0000 ND 97.9 17-145 17-1	L-Trichlorobenzene	41.0900	5.0	1.1	50.0000	N	82.2	0 - 156	6.93	20	
appropane 48,9400 10 1.6 50,0000 ND 97.9 17-145 45,1500 5.0 3.2 50,0000 ND 90.3 25-136 45,1500 5.0 1.1 50,0000 ND 87.6 8-134 45,3500 5.0 1.2 50,0000 ND 90.7 31-123 ne 45,9500 5.0 1.7 50,0000 ND 91.9 10-139 43,8400 5.0 1.3 50,0000 ND 87.7 8-134 44,8600 5.0 1.1 50,0000 ND 88.6 10-134 44,3000 5.0 1.2 50,0000 ND 88.6 10-134 44,4500 5.0 1.6 50,0000 ND 91.6 13-135 45,7800 5.0 1.5 50,0000 ND 91.6 13-135	4-Trimethylbenzene	45.9300	5.0	1.5	50.0000	N	91.9	10 - 139	2.79	20	
45.1500 5.0 3.2 50.0000 ND 90.3 25-136 43.7800 5.0 1.1 50.0000 ND 87.6 8-134 45.3500 5.0 1.2 50.0000 ND 90.7 31-123 45.3500 5.0 1.8 50.0000 ND 90.6 38-123 45.9500 5.0 1.7 50.0000 ND 87.7 8-134 44.8600 5.0 1.1 50.0000 ND 89.7 34-130 44.3000 5.0 1.2 50.0000 ND 91.1 36-133 44.4500 5.0 1.6 50.0000 ND 91.1 36-133 45.7800 5.0 1.5 50.0000 ND 91.6 13-135	Dibromo-3-chloropropane	48.9400	10	1.6	50.0000	N	6.76	17 - 145	5.48	20	
43.7800 5.0 1.1 50.0000 ND 87.6 8-134 45.3500 5.0 1.2 50.0000 ND 90.7 31-123 45.3600 5.0 1.8 50.0000 ND 90.6 38-123 45.9500 5.0 1.7 50.0000 ND 91.9 10-139 43.8400 5.0 1.1 50.0000 ND 87.7 8-134 44.8600 5.0 1.1 50.0000 ND 88.6 10-134 45.5400 5.0 1.2 50.0000 ND 91.1 36-133 44.4500 5.0 1.6 50.0000 ND 91.6 13-135	Dibromoethane	45.1500	5.0	3.2	50.0000	N	90.3	25 - 136	7.24	20	
45.3500 5.0 1.2 50.0000 ND 90.7 31-123 45.3000 5.0 1.8 50.0000 ND 90.6 38-123 45.9500 5.0 1.7 50.0000 ND 91.9 10-139 43.8400 5.0 1.3 50.0000 ND 87.7 8-134 44.8600 5.0 1.1 50.0000 ND 88.7 34-130 45.5400 5.0 1.2 50.0000 ND 91.1 36-133 45.7800 5.0 1.5 50.0000 ND 91.6 13-135	Dichlorobenzene	43.7800	5.0	1.1	50.0000	N	9.78	8 - 134	3.54	20	
45,3000 5.0 1.8 50,0000 ND 90.6 38-123 45,9500 5.0 1.7 50,0000 ND 91.9 10-139 43,8400 5.0 1.3 50,0000 ND 87.7 8-134 44,8600 5.0 1.1 50,0000 ND 89.7 34-130 44,3000 5.0 1.2 50,0000 ND 91.1 36-133 44,4500 5.0 1.6 50,0000 ND 91.6 13-135 45,7800 5.0 1.5 50,0000 ND 91.6 13-135	Dichloroethane	45.3500	5.0	1.2	50.0000	N	7.06	31 - 123	2.20	20	
ne 45,9500 5.0 1.7 50,0000 ND 91.9 10-139 43.8400 5.0 1.3 50,0000 ND 87.7 8-134 44.8600 5.0 1.1 50,0000 ND 89.7 34-130 44.3000 5.0 1.2 50,0000 ND 88.6 10-134 45.5400 5.0 1.2 50,0000 ND 91.1 36-133 45.7800 5.0 1.5 50,0000 ND 91.6 13-135	Dichloropropane	45.3000	5.0	1.8	50.0000	ND	9.06	38 - 123	0.221	20	
43.8400 5.0 1.3 50.0000 ND 87.7 8-134 44.8600 5.0 1.1 50.0000 ND 89.7 34-130 44.3000 5.0 1.2 50.0000 ND 88.6 10-134 45.5400 5.0 1.2 50.0000 ND 91.1 36-133 44.4500 5.0 1.6 50.0000 ND 91.6 13-135	5-Trimethylbenzene	45.9500	5.0	1.7	50.0000	ND	91.9	10 - 139	3.84	20	
44.8600 5.0 1.1 50.0000 ND 89.7 34-130 44.3000 5.0 1.2 50.0000 ND 88.6 10-134 45.5400 5.0 1.2 50.0000 ND 91.1 36-133 44.4500 5.0 1.6 50.0000 ND 88.9 15-133 45.7800 5.0 1.5 50.0000 ND 91.6 13-135	Dichlorobenzene	43.8400	5.0	1.3	50.0000	ND	87.7	8 - 134	3.96	20	
44,3000 5.0 1.2 50,0000 ND 88.6 10-134 45,5400 5.0 1.2 50,0000 ND 91.1 36-133 44,4500 5.0 1.6 50,0000 ND 88.9 15-133 45,7800 5.0 1.5 50,0000 ND 91.6 13-135	Dichloropropane	44.8600	5.0	1.1	50.0000	ND	89.7	34 - 130	0.334	20	
45.5400 5.0 1.2 50.0000 ND 91.1 36-133 44.4500 5.0 1.6 50.0000 ND 88.9 15-133 45.7800 5.0 1.5 50.0000 ND 91.6 13-135	Dichlorobenzene	44.3000	5.0	1.2	50.0000	ND	9.88	10 - 134	0.899	20	
44.4500 5.0 1.6 50.0000 ND 88.9 15-133 45.7800 5.0 1.5 50.0000 ND 91.6 13-135	Dichloropropane	45.5400	5.0	1.2	50.0000	N	91.1	36 - 133	0.918	20	
45.7800 5.0 1.5 50.0000 ND 91.6 13-135	nlorotoluene	44.4500	5.0	1.6	50.0000	N	6.88	15 - 133	3.56	20	
CCT CT 0:17 QVI 0000:00 C:1 0:0	4-Chlorotoluene	45.7800	5.0	1.5	50.0000	N	91.6	13 - 135	3.24	20	

Leighton Consulting, Inc. 17781 Cowan Street

Report To: Brynn McCulloch

Project Number: POLA Berth 191-193, 11618.005

Irvine, CA 92614

Reported: 11/02/2017

Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

	,								
4-Isopropyltoluene	46.4500	5.0	2.3	50.0000	N N	92.9	2 - 146	3.70	20
	90.3300	5.0	0.64	100.000	N	90.3	40 - 123	1.48	20
Bromobenzene	43.1000	5.0	1.1	50.0000	N N	86.2	18 - 132	2.99	20
Bromochloromethane	41.6700	5.0	0.64	50.0000	N N	83.3	32 - 130	3.98	20
Bromodichloromethane	44.5600	5.0	1.2	50.0000	ND	89.1	33 - 122	0.382	20
	42.8100	5.0	0.80	50.0000	N	85.6	20 - 134	2.70	20
Bromomethane	59.7800	5.0	2.5	50.0000	ND	120	35 - 140	2.61	20
Carbon disulfide	48.5900	5.0	3.5	50.0000	ND	97.2	32 - 143	5.31	20
Carbon tetrachloride	46.1000	5.0	1.2	50.0000	N	92.2	23 - 144	0.735	20
Chlorobenzene	44.3800	5.0	1.0	50.0000	ND	8.88	24 - 128	1.37	20
	50.3700	5.0	1.1	50.0000	ND	101	35 - 135	0.717	20
	42.8000	5.0	0.82	50.0000	ND	85.6	36 - 126	1.65	20
Chloromethane	48.7200	5.0	1.4	50.0000	ND	97.4	36 - 146	1.79	20
cis-1,2-Dichloroethene	43.5300	5.0	0.67	50.0000	ND	87.1	31 - 136	1.89	20
cis-1,3-Dichloropropene	44.8800	5.0	1.9	50.0000	N	8.68	28 - 130	2.29	20
Di-isopropyl ether	44.5100	5.0	0.55	50.0000	ND	0.68	32 - 133	2.09	20
Dibromochloromethane	43.2100	5.0	1.0	50.0000	N	86.4	30 - 129	0.577	20
Dibromomethane	43.4400	5.0	1.6	50.0000	ND	6.98	28 - 126	0.0690	20
Dichlorodifluoromethane	50.6200	5.0	2.2	50.0000	N N	101	23 - 162	1.98	20
	411.500	50	8.1	500.000	ND	82.3	0 - 156	13.0	20
	426.920	50	6.1	500.000	N	85.4	33 - 128	1.73	20
Ethyl tert-butyl ether	44.7600	5.0	0.67	50.0000	N	89.5	33 - 138	0.890	20
	91.0200	5.0	0.91	100.000	N	91.0	22 - 132	1.45	20
	46.2000	5.0	2.8	50.0000	ND	92.4	31 - 140	5.70	20
Hexachlorobutadiene	40.0000	5.0	2.5	50.0000	ND	0.08	0 - 150	6:36	20
Isopropylbenzene	46.0300	5.0	1.8	50.0000	ND	92.1	15 - 144	1.79	20
	95.0000	10	1.5	100.000	ND	95.0	19 - 138	1.45	20
Methylene chloride	51.6100	5.0	2.3	50.0000	N	103	9 - 145	11.6	20
	42.2300	5.0	0.63	50.0000	N	84.5	31 - 136	0.166	20
n-Butylbenzene	46.1800	5.0	2.4	50.0000	N	92.4	0 - 153	5.64	20
n-Propylbenzene	45.7800	5.0	2.2	50.0000	ND	91.6	12 - 141	3.24	20
	41.3800	5.0	0.97	50.0000	ND	82.8	0 - 145	3.42	20
	87.1900	5.0	0.87	100.000	ND	87.2	20 - 129	1.24	20
sec-Butylbenzene	45.5500	5.0	2.3	50.0000	ND	91.1	4 - 143	3.79	20
	46.4500	5.0	1.5	50.0000	N	92.9	19 - 136	3.03	20
tert-Amyl methyl ether	42.3600	5.0	0.59	50.0000	ND	84.7	30 - 128	1.85	20
	170.160	100	19	250.000	N	68.1	22 - 146	9.47	20
tert-Butylbenzene	45.1300	5.0	2.0	50.0000	N	90.3	9 - 140	2.71	20
Tetrachloroethene	44.8700	5.0	1.6	50.0000	ND	2.68	18 - 143	2.75	20
	93.3000	5.0	0.94	100.000	ND	93.3	30 - 132	1.36	20
trans-1,2-Dichloroethene	42.7000	5.0	0.59	50.0000	ND	85.4	32 - 134	2.15	20
, Dist.	007.5.77	0 4	,	20 0000					

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Í	•										
Matrix Spike Dup (B7J0791-MSD1) - Continue	- Continued		Source: 1703807-01	807-01	Prepared	: 10/26/2017	repared: 10/26/2017 Analyzed: 10/26/2017	5/2017			
Trichloroethene	44.1500	5.0	3.1	50.0000	ND	88.3	17 - 158	3.36	20		
Trichlorofluoromethane	47.2400	5.0	1.4	50.0000	ND	94.5	36 - 135	1.19	20		
Vinyl acetate	270.060	50	8.6	500.000	ND	54.0	0 - 154	37.8	20	R	
Vinyl chloride	51.4300	5.0	1.7	50.0000	ND	103	38 - 140	1.83	20		- 1
Surrogate: 1,2-Dichloroethane-d4	52.II			50.0000		104	32 - 140				1
Surrogate: 4-Bromofluorobenzene	48.53			50.0000		1.76	68 - 131				
Surrogate: Dibromofluoromethan	46.15			50.0000		92.3	49 - 134				
Surrogate: Toluene-d8	50.44			50.0000		I0I	75 - 132				

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Semivolatile Organic Compounds by EPA 8270/SIM - Quality Control

1											
	Notes	Limit	RPD	Limits	% Rec	Result	Level	(ng/L)	(ng/L)	(ng/L)	Analyte
		RPD		% Rec		Source	Spike	MDL	PQL	Result	

Analyte	(ng/L)	(ng/L)	(ng/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0413 - MSSEMI_W										
Blank (B7J0413-BLK1)					Prepared	: 10/16/2017	Prepared: 10/16/2017 Analyzed: 10/16/2017	6/2017		
2-Methylnaphthalene	2	0.20	0.02							
Acenaphthene	N	0.20	0.02							
Acenaphthylene	ND	0.20	0.02							
Anthracene	ND	0.20	0.01							
Benzo(a)anthracene	ND	0.20	0.01							
Benzo(a)pyrene	ND	0.20	0.01							
Benzo(b)fluoranthene	ND	0.20	90.0							
Benzo(g,h,i)perylene	ND	0.20	0.05							
Benzo(k)fluoranthene	ND	0.20	0.05							
Chrysene	ND	0.20	0.05							
Dibenz(a,h)anthracene	ND	0.20	0.05							
Fluoranthene	ND	0.20	0.02							
Fluorene	ND	0.20	0.05							
Indeno(1,2,3-cd)pyrene	ND	0.20	0.02							
Naphthalene	ND	0.20	0.05							
Phenanthrene	ND	0.20	0.05							
Pyrene	ND	0.20	0.02							
Surrogate: 1,2-Dichlorobenzene-d	0.7723			1.00000		77.2	32 - 99			
Surrogate: 2-Fluorobiphenyl	0.8111			I.00000		81.1	29 - 105			
Surrogate: Nitrobenzene-d5	0.9341			1.00000		93.4	17 - 123			
Surrogate: 4-Terphenyl-d14	1.165			I.00000		117	32 - 119			
LCS (B7J0413-BS1)					Prepared	: 10/16/2017	Prepared: 10/16/2017 Analyzed: 10/16/2017	6/2017		
2-Methylnaphthalene	0.594950	0.20	0.05	1.00000		59.5	38 - 137			
Acenaphthene	0.670340	0.20	0.02	1.00000		67.0	38 - 103			
Acenaphthylene	0.682710	0.20	0.02	1.00000		68.3	41 - 102			
Anthracene	0.707100	0.20	0.01	1.00000		70.7	37 - 118			
Benzo(a)anthracene	0.778780	0.20	0.01	1.00000		6.77	42 - 118			
Benzo(a)pyrene	0.712580	0.20	0.01	1.00000		71.3	17 - 148			
Benzo(b)fluoranthene	0.800210	0.20	90.0	1.00000		0.08	33 - 126			
Benzo(g,h,i)perylene	0.716580	0.20	0.05	1.00000		71.7	33 - 123			
Benzo(k)fluoranthene	0.803040	0.20	0.05	1.00000		80.3	20 - 131			
Chrysene	0.747150	0.20	0.05	1.00000		74.7	44 - 127			
Dibenz(a,h)anthracene	0.796090	0.20	0.05	1.00000		9.62	31 - 122			
Fluoranthene	0.761460	0.20	0.05	1.00000		76.1	48 - 113			
Fluorene	0.740860	0.20	0.02	1.00000		74.1	46 - 100			
Indeno(1,2,3-cd)pyrene	0.750140	0.20	0.05	1.00000		75.0	35 - 123			
Naphthalene	0.706850	0.20	0.02	1.00000		70.7	35 - 115			
Phenanthrene	0.708600	0.20	0.02	1.00000		70.9	43 - 112			
Pyrene	0.762180	0.20	0.02	1.00000		76.2	47 - 116			
Surrogate: 1,2-Dichlorobenzene-d	0.7505			1.00000		75.1	32 - 99			

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Semivolatile Organic Compounds by EPA 8270/SIM - Quality Control (cont'd)

Result PQL Spike	Source		% Rec		RPD	
Analyte (ug/L) (ug/L) Level	l Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0413 - MSSEMI_W (continued)

					20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20				
5/2017				5/2017	1.13	2.66	2.00	1.22	1.67	2.33	1.40	269.0	1.10	0.261	0.461	1.38	0.437	1.61	0.359	0.803	1.29				
Prepared: 10/16/2017 Analyzed: 10/16/2017	29 - 105	17 - 123	32 - 119	Prepared: 10/16/2017 Analyzed: 10/16/2017	38 - 137	38 - 103	41 - 102	37 - 118	42 - 118	17 - 148	33 - 126	33 - 123	20 - 131	44 - 127	31 - 122	48 - 113	46 - 100	35 - 123	35 - 115	43 - 112	47 - 116	32 - 99	29 - 105	17 - 123	32 - 119
ed: 10/16/2017	86.2	89.3	2.66	ed: 10/16/2017	58.8	8.89	2.69	6.69	79.2	9.69	81.2	72.2	79.4	74.5	79.2	77.2	73.8	76.2	70.4	70.3	77.2	73.3	85.2	87.0	99.2
Prepare				Prepare																					
	1.00000	1.00000	I.00000		1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	I.000000	I.00000	I.00000	1.00000
					0.02	0.02	0.02	0.01	0.01	0.01	90.0	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02				
					0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20				
	0.8615	0.8931	0.9966		0.588280	0.688400	0.696510	0.698560	0.791900	0.696140	0.811500	0.721590	0.794240	0.745200	0.792430	0.772070	0.737630	0.762320	0.704320	0.702930	0.772110	0.7333	0.852I	0.8699	0.9920
LCS (B7J0413-BS1) - Continued	Surrogate: 2-Fluorobiphenyl	Surrogate: Nitrobenzene-d5	Surrogate: 4-Terphenyl-d14	LCS Dup (B7J0413-BSD1)	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene	Surrogate: 1,2-Dichlorobenzene-d	Surrogate: 2-Fluorobiphenyl	Surrogate: Nitrobenzene-d5	Surrogate: 4-Terphenyl-d14

Page 191 of 210

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Semivolatile Organic Compounds by EPA 8270/SIM - Quality Control

	Result	POL	MDI	Snike	Source		% Rec		RPD	
	5	· ·	5	-		á				
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Kesult	% Kec	Limits	KPD	Limit	Notes

33.333 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33					
### Application of the properties of the propert					
sphthalenee ND 5.0 0.60 ene ND 5.0 0.41 ylene ND 5.0 0.41 vere ND 5.0 0.41 vere ND 5.0 0.45 vere ND 5.0 0.56 vere ND 5.0 0.66 specylene ND 5.0 0.69 non-translene ND 5.0 0.60 panthracene ND 5.0 0.61 non-translene ND 5.0 0.45 non-translene ND 5.0 0.45 non-translene ND 5.0 0.45 non-translene ND 5.0 0.45 non-translene 17.05 33.333 ylene 17.05 5.0 0.41 33.333 ylene 18.347 5.0 0.46 33.333 ylene 18.347 5.0 0.56 33.333 ylene <td></td> <td>Prepared: 10/25/20</td> <td>Prepared: 10/25/2017 Analyzed: 10/25/2017</td> <td>7</td> <td></td>		Prepared: 10/25/20	Prepared: 10/25/2017 Analyzed: 10/25/2017	7	
ene ND 5.0 0.41 ylene ND 5.0 0.41 nthracene ND 5.0 0.66 yoranthene ND 5.0 0.69 yoranthene ND 5.0 0.61 yoranthene ND 5.0 0.64 yoranthene ND 5.0 0.64 yoranthene ND 5.0 0.64 yoranthene ND 5.0 0.64 yoranthene 17.72 yoranthene 17.9283 yorane 17.9283 yorane 24.4347 5.0 0.69 yoranthene 22.44347 5.0 0.69 yoranthene 22.0456 5.0 0.69 yoranthene 23.0450 5.0 0.69 yoranthene					
ylene ND 5.0 0.41 with tracene ND 5.0 0.56 woranthene ND 5.0 0.56 woranthene ND 5.0 0.69 woranthene ND 5.0 0.69 woranthene ND 5.0 0.69 woranthene ND 5.0 0.69 woranthene ND 5.0 0.61 woranthene ND 5.0 0.61 woranthene ND 5.0 0.61 woranthene ND 5.0 0.61 woranthene ND 5.0 0.63					
be threene ND 5.0 0.56 outside the ND 5.0 0.56 outside the ND 5.0 0.56 outside the ND 5.0 0.69 outside the ND 5.0 0.69 outside the ND 5.0 0.70 0.70 outside the ND 5.0 0.70 0.70 outside the ND 5.0 0.70 0.70 outside the ND 5.0 0.64 outside the ND 5.0 0.45 outside the ND 5.0 0.44 outside the ND 5.0 0.41 outside the ND 5.0 0.44 outside the ND 5					
yrene ND 5.0 0.56 yrene ND 5.0 0.69 yrene ND 5.0 0.69 uoranthene ND 5.0 0.70 uoranthene ND 5.0 0.70 Janthracene ND 5.0 0.45 A-cd)pyrene ND 5.0 0.45 ne ND 5.0 0.45 ne ND 5.0 0.45 ne ND 5.0 0.45 ND 5.0 0.45 ne ND 5.0 0.45 ND 5.0 0.41 33.333 : NIrrobenzene-d5 17.05 3.3.333 3.3.333 : Nirrobenzene-d5 17.05 3.3.333 3.3.333 ylene 15.4713 5.0 0.60 33.333 ylene 15.4347 5.0 0.66 33.333 ylene 17.9283 5.0 0.41 33.333 ylene					
yeree ND 5:0 0.69 uoranthene ND 5:0 2.2 uoranthene ND 5:0 0.80 uoranthene ND 5:0 0.70 sunthracene ND 5:0 0.70 sunthracene ND 5:0 0.45 sunthracene ND 5:0 0.35 sunthracene ND 5:0 0.34 sunthracene 17.72 sunthracene 17.72 sunthracene 17.72 sunthracene 24.437 sunthracene 24.4347 sunthracene 28.0460 sunthracene 27.74 sunthracene 28.0460 sunthracene 27.74 sunthracene 27.74 sunthracene 27.74 sunthracene 27.74 sunthracene 27.74 sunthracene 30.3893 sunthracene 30.3893 sunthracene 30.3893 sunthracene 27.74 sunthracene 30.3893 sunthr					
uoranthene ND 5.0 2.2 uoranthene ND 5.0 0.80 uoranthene ND 5.0 0.80 non-canthene ND 5.0 0.61 non-canthene ND 5.0 0.45 non-canthene ND 5.0 0.45 non-canthene ND 5.0 0.45 non-canthene ND 5.0 0.45 non-canthene ND 5.0 0.56 non-canthene 17.05 33.333 ene 17.05 5.0 0.41 33.333 ene 17.283 5.0 0.41 33.333 vene 17.9283 5.0 0.41 33.333 ene 17.9283 5.0 0.41 33.333 yene 17.9283 5.0 0.56 33.333 yene 17.9283 5.0 0.41 33.333 yene 17.9283 5.0 0.56 33.333 o					
Operation of the contraction					
uoranthene ND 5.0 0.70 nondinacene ND 5.0 0.61 none ND 5.0 0.62 3-ed)pyrene ND 5.0 0.45 ne ND 5.0 0.45 ne ND 5.0 0.45 ne ND 5.0 0.56 ne ND 5.0 0.54 ND 5.0 0.51 33.333 : L2-Dichlorobenzene-d 21.72 33.333 : Almobenzene-d 21.72 33.333 : Alzephenyl-dl4 31.30 33.333 : Alzephenyl-dl4 31.30 33.333 e 17.9283 5.0 0.41 33.333 ylene 18.3447 5.0 0.56 33.333 vene 24.4347 5.0 0.56 33.333 ylene 24.4347 5.0 0.69 33.333 uoranthene 24.4347 5.0 0.69 33.333 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
ND 5.0 0.61 name ND 5.0 0.88 ne ND 5.0 0.45 nD 5.0 0.45 nD 5.0 0.35 3-cd)pyrene ND 5.0 0.82 ne ND 5.0 0.34 ne ND 5.0 0.34 ND 5.0 0.34 ND 5.0 0.34 ND 5.0 0.34 ND 5.0 0.31 ND 5.0 0.51 ND 5.0 0.51 ND 5.0 0.41 33.333 : A-Terphenyl-dl4 31.30 33.333 33.333 : A-Terphenyl-dl4 31.30 5.0 0.41 33.333 splene 10.9567 5.0 0.60 33.333 ylene 24.4347 5.0 0.66 33.333 vene 21.8650 5.0 0.60 33.333					
nanthracene ND 5.0 0.88 ne ND 5.0 0.45 ne ND 5.0 0.35 3,3-ed)pyrene ND 5.0 0.50 ne ND 5.0 0.56 ne ND 5.0 0.54 ND 5.0 0.34 33.333 ne ND 5.0 0.51 33.333 : J-2-Dichlorobenzene-d 21.72 33.333 33.333 : ATerphenyl-d14 31.30 31.30 33.333 in thiracene-d5 17.9283 5.0 0.41 33.333 sene 17.9283 5.0 0.41 33.333 ylene 18.3447 5.0 0.41 33.333 ylene 18.3447 5.0 0.41 33.333 ylene 18.3447 5.0 0.41 33.333 yene 21.9567 5.0 0.41 33.333 uoranthene 28.0496 5.0 0.89 <					
ne ND 5.0 0.45 ND 5.0 0.35 -3-cd)pyrene ND 5.0 0.82 ne ND 5.0 0.34 ND 5.0 0.34 ND 5.0 0.34 ND 5.0 0.34 ND 5.0 0.31 Store of the control of the contr					
3-cd/pyrene ND 5.0 0.35 1-3-cd/pyrene ND 5.0 0.66 ne ND 5.0 0.56 ne ND 5.0 0.56 ne ND 5.0 0.54 ND 5.0 0.51 33.333 c. 1-2-Dichlorobenzene-d 21.72 33.333 c. 2-Fluorobiphemyl 26.50 33.333 c. 2-Fluorobiphemyl 26.50 33.333 c. 4-Terphemyl-d14 31.30 33.333 c. 4-Terphemyl-d14 31.333 33.333 c. 4-Terphemyl-d14 31.3333 33.333 c. 4-Terphemyl-d14 31.3333 33.333 c. 4-Terphemyl-d14 31.3333 33.333 c. 4-Terphemyl-d14 31.3333 32.243 5.0 0.60 33.3333 <td></td> <td></td> <td></td> <td></td> <td></td>					
3-cd)pyrene ND 5.0 0.82 ne ND 5.0 0.56 nn 5.0 0.51 ND 5.0 0.51 ND 5.0 0.51 ND 5.0 0.51 1.2-Dichlorobenzene-d 21.72 1.2-Stuorobiphenyl 26.50 1.2-Stuorobiphenyl 33.333 1.3-30 1.2-Stuorobiphenyl 26.50 1.2-Stuorobiphenyl 33.333 1.2-Stuorobiphenyl 26.50 1.2-Stuorobiphenyl 33.333 1.2-Stuorobiphenyl 26.50 1.2-Stuorobiphenyl 33.333 ylene 15.4713 5.0 0.60 1.2-Stuorobiphenyl 33.333 ylene 16.2-4347 5.0 0.69 1.2-Stuorobiphenyl 33.333 ylene 17.9283 5.0 0.69 1.2-Stuorobiphenyl 33.333 ylene 17.9283 5.0 0.69 1.2-Stuorobiphenyl 33.333 ylene 24.4347 5.0 0.69 1.2-Stuorobiphenyl 33.333 ylene 24.347 5.0 0.69 1.3-3333 ouranthene 28.6290 5.0 0.80 1.3-3333 ouranthene 28.6390 5.0 0.80 1.3-3333 ouranthene 23.243 5.0 0.65 1.3-3333 ouranthracene 23.243 5.0 0.85 1.3-3333 ouranthracene 28.1337 5.0 0.85 1.3-3333 ouranthracene 29.3483 5.0 0.34 1.3-3333 ouranthracene 29.3483 5.0 0.34 1.3-3333					
ne ND 5.0 0.56 nb ND 5.0 0.34 ND 5.0 0.34 ND 5.0 0.51 1,2-Dichlorobenzene-d 21.72 1,2-Dichlorobiphenyl 26.50 1,7-Dichlorobiphenyl 26.50 1,2-Stuorobiphenyl 26.50 1,2-Stuorobiphenyl 26.50 1,2-Stuorobiphenyl 26.50 1,2-Stuorobiphenyl 26.50 1,2-Stuorobiphenyl 31.333 1,1-Stable 31.30 aphthalene 15.4713 5.0 0.60 33.333 ene 17.9283 5.0 0.41 33.333 ene 17.9283 5.0 0.41 33.333 aphthalene 24.4347 5.0 0.69 33.333 uoranthene 28.0460 5.0 0.69 33.333 uoranthene 28.0460 5.0 0.69 33.333 uoranthene 28.0450 5.0 0.61 33.333 uoranthene 23.0450 5.0 0.61 33.333 ne 20.2763 5.0 0.45 33.333 ne 20.2763 5.0 0.85 33.333 ne 20.2763 5.0 0.85 33.333 ne 20.2763 5.0 0.85 33.333 ne 20.2763 5.0 0.84 33.3333 ne 20.3483 5.0 0.51 33.333 ne 20.3483 5.0 0.51 33.333					
nnb 5.0 0.34 ND 5.0 0.51 ND 5.0 0.51 3.1.72 33.333 1.2-Dichlorobenzene-d5 17.05 33.333 1.2-Fluorobiphenyl 26.50 33.333 1.7.05 31.30 33.333 1.7.105 31.30 33.333 1.7.105 31.30 33.333 1.7.105 31.30 31.333 aphthalene 15.4713 5.0 0.60 33.333 aphthalene 15.4713 5.0 0.41 33.333 aphthalene 15.4713 5.0 0.41 33.333 ylene 18.3447 5.0 0.41 33.333 ylene 24.4347 5.0 0.66 33.333 yrene 28.0460 5.0 0.69 33.333 yrene 28.6290 5.0 0.70 33.333 ne 23.0450 5.0 0.45 33.333 ne 20.2763 5.0					
ND 5.0 0.51 : 1.2-Dichlorobenzene-d 21.72 33.333 :: 2-Fluorobiphemyl 26.50 33.333 :: 2-Fluorobiphemyl 26.50 33.333 :: Nitrobenzene-d5 17.05 33.333 :: Nitrobenzene-d5 17.05 33.333 :: Nitrobenzene-d5 17.05 33.333 10757-BS1) 31.30 33.333 aphthalene 15.4713 5.0 0.60 33.333 ene 17.9283 5.0 0.41 33.333 ene 18.3447 5.0 0.41 33.333 sene 19.9567 5.0 0.41 33.333 ylene 24.4347 5.0 0.56 33.333 uoranthene 28.0460 5.0 0.69 33.333 uoranthene 28.0450 5.0 0.61 33.333 uoranthene 23.0450 5.0 0.45 33.333 ne 23.2743 5.0 0.45 33.333 ne					
: 1,2-Dichlorobenzene-d 21.72 33.333 :: 2-Fluorobiphenyl 26.50 33.333 :: 2-Fluorobiphenyl 26.50 33.333 :: Vitrobenzene-d5 17.05 33.333 :: 4-Terphenyl-d14 31.30 33.333 : 4-Terphenyl-d14 31.30 33.333 10757-BS1) 6 6 33.333 aphthalene 15.4713 5.0 0.60 33.333 ene 17.9283 5.0 0.41 33.333 ene 17.9283 5.0 0.41 33.333 ylene 24.4347 5.0 0.41 33.333 yrene 24.4347 5.0 0.56 33.333 yrene 28.0460 5.0 0.69 33.333 uoranthene 28.6290 5.0 0.69 33.333 uoranthene 23.0450 5.0 0.61 33.333 ne 22.0450 5.0 0.45 33.333 ne 22.2743 5.0 0.45					
### Solution of the product of the p	33.333.	65.2	29 - 109		
17.05 33.333 10757-BS1) 33.333 10757-BS1) 31.30 33.333 aphthalene 15.4713 5.0 0.60 33.333 ene 17.9283 5.0 0.41 33.333 ene 17.9283 5.0 0.41 33.333 ylene 18.3447 5.0 0.41 33.333 se 19.9567 5.0 0.41 33.333 stene 24.4347 5.0 0.41 33.333 yrene 24.4347 5.0 0.69 33.333 yrene 28.0460 5.0 0.69 33.333 uoranthene 28.6290 5.0 0.80 33.333 uoranthene 22.0450 5.0 0.70 33.333 ne 21.9727 5.0 0.45 33.333 ne 22.2743 5.0 0.45 33.333 ne 20.2763 5.0 0.82 33.333 ne 22.9497 5.0 <td>33.333.</td> <td>79.5</td> <td>39 - 108</td> <td></td> <td></td>	33.333.	79.5	39 - 108		
10757-BS1) 31.30 33.333 aphthalene 15.4713 5.0 0.60 33.333 aphthalene 17.9283 5.0 0.41 33.333 ene 17.9283 5.0 0.41 33.333 ylene 18.347 5.0 0.41 33.333 ylene 18.347 5.0 0.41 33.333 thracene 24.4347 5.0 0.41 33.333 yrene 24.4347 5.0 0.56 33.333 uoranthene 28.0460 5.0 0.80 33.333 uoranthene 28.6290 5.0 0.80 33.333 uoranthene 22.0450 5.0 0.70 33.333 ne 21.977 5.0 0.45 33.333 ne 22.2743 5.0 0.45 33.333 ne 20.2763 5.0 0.45 33.333 ne 20.3483 5.0 0.56 33.333 ne 20.3483 <	33.333.	51.1	0 - 146		
aphthalene 15.4713 5.0 0.60 33.333 ene 17.9283 5.0 0.41 33.333 ene 17.9283 5.0 0.41 33.333 ene 18.347 5.0 0.66 33.333 sylene 19.9567 5.0 0.56 33.333 syrene 24.4347 5.0 0.56 33.333 vrene 22.4347 5.0 0.69 33.333 vrene 28.0460 5.0 0.69 33.333 onoranthene 28.0200 5.0 0.80 33.333 onoranthene 23.0450 5.0 0.61 33.333 ene 23.2743 5.0 0.45 33.333 ene 23.2743 5.0 0.85 33.333 ene 23.2743 5.0 0.85 33.333 ene 22.9497 5.0 0.51 33.333 ene 22.9497 5.0 0.51 33.333	33.333.		39 - 123		
aphthalene 15.4713 5.0 0.60 ene 17.9283 5.0 0.41 ylene 18.3447 5.0 0.41 e 19.9567 5.0 0.41 rthracene 24.4347 5.0 0.56 yrene 21.8650 5.0 0.69 uoranthene 28.0460 5.0 2.2 i)perylene 23.0450 5.0 0.80 uoranthene 23.0450 5.0 0.80 anthracene 30.3893 5.0 0.45 ne 23.2743 5.0 0.45 ne 23.2743 5.0 0.45 ne 23.2743 5.0 0.45 ne 23.2743 5.0 0.45 ne 20.3483 5.0 0.35		Prepared: 10/25/20	Prepared: 10/25/2017 Analyzed: 10/25/2017	7	
rene 17.9283 5.0 0.41 ylene 18.3447 5.0 0.41 e 19.9567 5.0 0.41 wrene 24.4347 5.0 0.56 rithracene 24.4347 5.0 0.56 woranthene 28.0460 5.0 2.2 i)perylene 28.6290 5.0 0.80 uoranthene 23.0450 5.0 0.45 ne 23.2743 5.0 0.45 ne 23.2743 5.0 0.45 ne 23.2743 5.0 0.45 ne 20.3483 5.0 0.35 22.9497 5.0 0.51	0.60	46,4	23 - 127		
ylene 18.3447 5.0 0.41 e 19.9567 5.0 0.56 rithracene 24.4347 5.0 0.56 yrene 21.8650 5.0 0.69 uoranthene 28.0460 5.0 0.69 uoranthene 28.6290 5.0 0.70 uoranthene 23.0450 5.0 0.70 uoranthene 21.9727 5.0 0.61 name 23.2743 5.0 0.45 ne 22.2743 5.0 0.35 ne 20.3483 5.0 0.56 ne 20.3483 5.0 0.51 22.9497 5.0 0.51	0.41		35 - 91		
thracene 19,9567 5.0 0.56 thracene 24.4347 5.0 0.56 yrene 21.8650 5.0 0.69 uoranthene 28.6290 5.0 0.60 uoranthene 23.0450 5.0 0.70 21.9727 5.0 0.61 21.9727 5.0 0.61 21.9727 5.0 0.61 21.9727 5.0 0.61 21.9727 5.0 0.61 21.9727 5.0 0.61 22.2743 5.0 0.35 3-cd)pyrene 23.2743 5.0 0.35 3-cd)pyrene 23.2743 5.0 0.35 and 22.9497 5.0 0.51	0.41		35 - 92		
rithracene 24.4347 5.0 0.56 yrene 21.8650 5.0 0.69 uoranthene 28.0460 5.0 2.2 i)perylene 28.6290 5.0 0.69 uoranthene 23.0450 5.0 0.70 uoranthene 21.9727 5.0 0.45 ne 23.2743 5.0 0.45 ne 20.2763 5.0 0.82 ne 20.2763 5.0 0.82 ne 20.3483 5.0 0.56 ne 22.9497 5.0 0.51	0.56		43 - 109		
yrene 21.8650 5.0 0.69 uoranthene 28.0460 5.0 2.2 i)perylene 28.6290 5.0 0.80 uoranthene 23.0450 5.0 0.70 uoranthracene 30.3893 5.0 0.61 ne 23.2743 5.0 0.45 ne 20.2763 5.0 0.35 s-cd)pyrene 28.1337 5.0 0.82 ne 20.3483 5.0 0.56 ne 22.9497 5.0 0.51	0.56	73.3	46 - 121		
uoranthene 28.0460 5.0 2.2 .j)perylene 28.6290 5.0 0.80 uoranthene 23.0450 5.0 0.70 .janthracene 30.3893 5.0 0.61 .janthracene 23.2743 5.0 0.45 ne 20.2763 5.0 0.35 .j-cd)pyrene 28.1337 5.0 0.82 ne 20.3483 5.0 0.56 ne 22.9497 5.0 0.51	69.0		49 - 126		
1)perylene 28.6290 5.0 0.80 uoranthene 23.0450 5.0 0.70 1)anthracene 30.3893 5.0 0.61 1)anthracene 23.2743 5.0 0.45 ne 23.2743 5.0 0.35 3-cd)pyrene 28.1337 5.0 0.82 1e 21.1413 5.0 0.56 ne 22.9497 5.0 0.51	2.2		34 - 137		
uoranthene 23.0450 5.0 0.70 21.9727 5.0 0.61 nathracene 30.3893 5.0 0.88 ne 23.2743 5.0 0.45 20.2763 5.0 0.35 3-cd)pyrene 28.1337 5.0 0.82 ne 20.3483 5.0 0.56 ne 22.9497 5.0 0.51	0.80		40 - 124		
21.9727 5.0 0.61 30.3893 5.0 0.88 ne 23.2743 5.0 0.45 ne 20.2763 5.0 0.35 ,3-cd)pyrene 28.1337 5.0 0.35 ne 20.3483 5.0 0.56 ne 20.3483 5.0 0.51 22.9497 5.0 0.51	0.70		21 - 132		
h)anthracene 30.3893 5.0 0.88 ene 23.2743 5.0 0.45 20.2763 5.0 0.35 2,3-cd)pyrene 28.1337 5.0 0.82 ene 20.3483 5.0 0.56 ene 22.9497 5.0 0.51	0.61		51 - 124		
23.2743 5.0 0.45 20.2763 5.0 0.35 2,3-cd)pyrene 28.1337 5.0 0.82 ne 20.3483 5.0 0.56 ene 20.3483 5.0 0.34 22.9497 5.0 0.51	0.88		38 - 123		
20.2763 5.0 0.35 2,3-cd)pyrene 28.1337 5.0 0.82 ne 20.3483 5.0 0.56 ene 20.3483 5.0 0.34 22.9497 5.0 0.51	0.45	8.69	47 - 105		
2,3-cd)pyrene 28.1337 5.0 0.82 ne 21.1413 5.0 0.56 ene 20.3483 5.0 0.34 22.9497 5.0 0.51	0.35	8.09	34 - 95		
alene 21.1413 5.0 0.56 threne 20.3483 5.0 0.34 22.9497 5.0 0.51	0.82	84.4	45 - 124		
threne 20.3483 5.0 0.34 22.9497 5.0 0.51	0.56	63.4	26 - 110		
22.9497 5.0 0.51	0.34	61.0	39 - 108		
	0.51	8.89	47 - 107		
Surrogate: 1,2-Dichlorobenzene-d 21.74 33.333	33.333.	65.2	29 - 109		

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Semivolatile Organic Compounds by EPA 8270/SIM - Quality Control (cont'd)

	Result	PQL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0757 - MSSEMI_S (continued)

LCS (B7J0757-BS1) - Continued					Prepared:	10/25/2017	Prepared: 10/25/2017 Analyzed: 10/25/2017	:5/2017		
Surrogate: 2-Fluorohinhenyl	25 54			33 3333		9 92	30 - 108			
Surrogate: Nitrobenzene-d5	17.26			33.3333		51.8	0 - 146			
Surrogate: 4-Terphenyl-d14	30.92			33.3333		92.8	39 - 123			
Matrix Spike (B7J0757-MS1)			Source: 1703641-33	641-33	Prepared:	10/25/2017	Prepared: 10/25/2017 Analyzed: 10/25/2017	:5/2017		
2-Methylnaphthalene	16.0677	5.0	09.0	33.3333	ND	48.2	30 - 141			
Acenaphthene	18.3313	5.0	0.41	33.3333	NO	55.0	9 - 155			
Acenaphthylene	19.1713	5.0	0.41	33.3333	N	57.5	43 - 110			
Anthracene	19.6413	5.0	0.56	33.3333	N	58.9	33 - 146			
Benzo(a)anthracene	24.1603	5.0	0.56	33.3333	0.886000	8.69	49 - 130			
Benzo(a)pyrene	22.4533	5.0	69.0	33.3333	0.972000	4.49	36 - 134			
Benzo(b)fluoranthene	28.1877	5.0	2.2	33.3333	ND	84.6	26 - 148			
Benzo(g,h,i)perylene	27.3003	5.0	0.80	33.3333	1.07733	78.7	16 - 156			
Benzo(k)fluoranthene	21.5640	5.0	0.70	33.3333	ND	64.7	29 - 132			
Chrysene	21.7687	5.0	0.61	33.3333	0.950333	62.5	0 - 184			
Dibenz(a,h)anthracene	26.4073	5.0	0.88	33.3333	ND	79.2	29 - 149			
Fluoranthene	24.6230	5.0	0.45	33.3333	1.39000	2.69	14 - 162			
Fluorene	20.6440	5.0	0.35	33.3333	NO	61.9	48 - 111			
Indeno(1,2,3-cd)pyrene	26.3657	5.0	0.82	33.3333	N	79.1	37 - 135			
Naphthalene	21.3907	5.0	0.56	33.3333	ND	64.2	34 - 126			
Phenanthrene	21.0370	5.0	0.34	33.3333	0.683333	61.1	19 - 155			
Pyrene	24.2550	5.0	0.51	33.3333	1.37100	68.7	13 - 162			
Surrogate: 1,2-Dichlorobenzene-d	20.75			33.3333		62.3	29 - 109			
Surrogate: 2-Fluorobiphenyl	26.44			33.3333		79.3	39 - 108			
Surrogate: Nitrobenzene-d5	17.07			33.3333		51.2	0 - 146			
Surrogate: 4-Terphenyl-d14	26.58			33.3333		7.67	39 - 123			
Matrix Spike Dup (B7J0757-MSD1)			Source: 1703641-33	641-33	Prepared:	10/25/2017	Prepared: 10/25/2017 Analyzed: 10/25/2017	5/2017		
2-Methylnaphthalene	14.5860	5.0	09.0	33.3333	N	43.8	30 - 141	6.67	20	
Acenaphthene	17.5750	5.0	0.41	33.3333	ND	52.7	9 - 155	4.21	20	
Acenaphthylene	18.6233	5.0	0.41	33.3333	ND	6.55	43 - 110	2.90	20	
Anthracene	18.6273	5.0	0.56	33.3333	ND	6.55	33 - 146	5.30	20	
Benzo(a)anthracene	22.8487	5.0	0.56	33.3333	0.886000	6.59	49 - 130	5.58	20	
Benzo(a)pyrene	20.7357	5.0	69.0	33.3333	0.972000	59.3	36 - 134	7.95	20	
Benzo(b)fluoranthene	24.9090	5.0	2.2	33.3333	N	74.7	26 - 148	12.3	20	
Benzo(g,h,i)perylene	25.5220	5.0	0.80	33.3333	1.07733	73.3	16 - 156	6.73	20	
Benzo(k)fluoranthene	21.3153	5.0	0.70	33.3333	R	63.9	29 - 132	1.16	20	
Chrysene	20.3623	5.0	0.61	33.3333	0.950333	58.2	0 - 184	89.9	20	
Dibenz(a,h)anthracene	25.4717	5.0	0.88	33.3333	ND	76.4	29 - 149	3.61	20	
Fluoranthene	23.2487	5.0	0.45	33.3333	1.39000	9.59	14 - 162	5.74	20	
Fluorene	19.7670	5.0	0.35	33.3333	ND	59.3	48 - 111	4.34	20	
Indeno(1,2,3-cd)pyrene	25.2027	5.0	0.82	33.3333	N	75.6	37 - 135	4.51	20	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Semivolatile Organic Compounds by EPA 8270/SIM - Quality Control (cont'd)

(ug/kg) Level Result % Rec Limits RPD Limit		Result	PQL	MDL	Spike	Source		% Rec		RPD	
	Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0757 - MSSEMI_S (continued)

Matrix Spike Dup (B7J0757-MSD1)	01) - Continued		Source: 1703641-33	641-33	Prepared:	10/25/2017	Prepared: 10/25/2017 Analyzed: 10/25/2017	5/2017		
Naphthalene	19.5670	5.0	0.56	33.3333	ND	58.7	34 - 126	8.91	20	
Phenanthrene	19.8897	5.0	0.34	33.3333	0.683333	57.6	19 - 155	5.61	20	
Pyrene	22.3383	5.0	0.51	33.3333	1.37100	67.9	13 - 162	8.23	20	
Surrogate: 1,2-Dichlorobenzene-d	18.94			33.3333		56.8	29 - 109			
Surrogate: 2-Fluorobiphenyl	25.06			33.3333		75.2	39 - 108			
Surrogate: Nitrobenzene-d5	16.15			33.3333		48.5	0 - 146			
Surrogate: 4-Terphenyl-d14	25.38			33.3333		76.1	39 - 123			

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Semivolatile Organic Compounds by EPA 8270/SIM - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

	Result	PQL	MDL	Spike	Source		% Kec		KPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0764 - MSSEMI S										
						1	•	1		
Blank (B7J0764-BLK1)					Prepared	: 10/25/2017	Prepared: 10/25/2017 Analyzed: 10/27/2017	7/2017		
2-Methylnaphthalene	ND	5.0	09.0							
Acenaphthene	ND	5.0	0.41							
Acenaphthylene	ND	5.0	0.41							
Anthracene	ND	5.0	0.56							
Benzo(a)anthracene	ND	5.0	0.56							
Benzo(a)pyrene	ND	5.0	69.0							
Benzo(b)fluoranthene	ND	5.0	2.2							
Benzo(g,h,i)perylene	ND	5.0	0.80							
Benzo(k)fluoranthene	ND	5.0	0.70							
Chrysene	ND	5.0	0.61							
Dibenz(a,h)anthracene	ND	5.0	0.88							
Fluoranthene	ND	5.0	0.45							
Fluorene	ND	5.0	0.35							
Indeno(1,2,3-cd)pyrene	ND	5.0	0.82							
Naphthalene	ND	5.0	0.56							
Phenanthrene	N ON	5.0	0.34							
Pyrene	N N	5.0	0.51							
Surrogate: 1,2-Dichlorobenzene-d	19.60			33.3333		58.8	29 - 109			
Surrogate: 2-Fluorobiphenyl	24.66			33.3333		74.0	39 - 108			
Surrogate: Nitrobenzene-d5	16.98			33.3333		50.9	0 - 146			
Surrogate: 4-Terphenyl-d14	31.42			33.3333		94.3	39 - 123			
LCS (B7J0764-BS1)					Prepared	: 10/25/2017	Prepared: 10/25/2017 Analyzed: 10/27/2017	7/2017		
2-Methylnanhthalene	15 0823	5.0	09 0	33 3333		45.2	23 - 127			
Acenaphthene	18,0693	5.0	0.41	33.3333		54.2	35 - 91			
Acenaphthylene	18.6617	5.0	0.41	33.3333		56.0	35 - 92			
Anthracene	20.9190	5.0	0.56	33.3333		62.8	43 - 109			
Benzo(a)anthracene	27.2840	5.0	0.56	33.3333		81.9	46 - 121			
Benzo(a)pyrene	23.5467	5.0	69.0	33.3333		9.07	49 - 126			
Benzo(b)fluoranthene	29.1363	5.0	2.2	33.3333		87.4	34 - 137			
Benzo(g,h,i)perylene	27.5213	5.0	0.80	33.3333		82.6	40 - 124			
Benzo(k)fluoranthene	26.2540	5.0	0.70	33.3333		78.8	21 - 132			
Chrysene	23.6643	5.0	0.61	33.3333		71.0	51 - 124			
Dibenz(a,h)anthracene	31.0690	5.0	0.88	33.3333		93.2	38 - 123			
Fluoranthene	26.6863	5.0	0.45	33.3333		80.1	47 - 105			
Fluorene	21.3673	5.0	0.35	33.3333		64.1	34 - 95			
Indeno(1,2,3-cd)pyrene	28.5763	5.0	0.82	33.3333		85.7	45 - 124			
Naphthalene	20.6280	5.0	0.56	33.3333		61.9	26 - 110			
Phenanthrene	20.7853	5.0	0.34	33.3333		62.4	39 - 108			
Pyrene	26.7290	5.0	0.51	33.3333		80.2	47 - 107			
Surrogate: 1,2-Dichlorobenzene-d	21.02			33.3333		63.1	29 - 109			

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Semivolatile Organic Compounds by EPA 8270/SIM - Quality Control (cont'd)

	Result	PQL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0764 - MSSEMI_S (continued)

LCS (B7J0764-BS1) - Continued					Prepared	: 10/25/2017	Prepared: 10/25/2017 Analyzed: 10/27/2017	7/2017		
Surrogate: 2-Fluorobiphenyl	27.09			33.3333		81.3	39 - 108			
Surrogate: Nitrobenzene-d5	19.42			33.3333		58.3	0 - 146			
Surrogate: 4-Terphenyl-d14	33.78			33.3333		I0I	39 - 123			
Matrix Spike (B7J0764-MS1)			Source: 1703653-05	553-05	Prepared	: 10/25/2017	Prepared: 10/25/2017 Analyzed: 10/27/2017	7/2017		
2-Methylnaphthalene	18.5430 5	5.0	09.0	33.3333	ND	55.6	30 - 141			
Acenaphthene	22.2650 5	5.0	0.41	33.3333	ND	8.99	9 - 155			
Acenaphthylene	23.3520 5	5.0	0.41	33.3333	ND	70.1	43 - 110			
Anthracene	22.5330 5	5.0	0.56	33.3333	ND	9.79	33 - 146			
Benzo(a)anthracene		5.0	0.56	33.3333	ND	78.4	49 - 130			
Benzo(a)pyrene	21.7163 5	5.0	69.0	33.3333	ND	65.1	36 - 134			
Benzo(b)fluoranthene	26.9497 5	5.0	2.2	33.3333	ND	8.08	26 - 148			
Benzo(g,h,i)perylene	27.4387 5	5.0	0.80	33.3333	N	82.3	16 - 156			
Benzo(k)fluoranthene	24.8680 5	5.0	0.70	33.3333	N	74.6	29 - 132			
Chrysene	22.6383 5	5.0	0.61	33.3333	N	6.79	0 - 184			
Dibenz(a,h)anthracene	30.5330 5	5.0	0.88	33.3333	ND	91.6	29 - 149			
Fluoranthene	25.7453 5	5.0	0.45	33.3333	ND	77.2	14 - 162			
Fluorene	26.1010 5	5.0	0.35	33.3333	N	78.3	48 - 111			
Indeno(1,2,3-cd)pyrene	28.4403 5	5.0	0.82	33.3333	ND	85.3	37 - 135			
Naphthalene	25.1890 5	5.0	0.56	33.3333	ND	75.6	34 - 126			
Phenanthrene		5.0	0.34	33.3333	ND	70.4	19 - 155			
Pyrene	25.7883 5	5.0	0.51	33.3333	ND	77.4	13 - 162			
Surrogate: 1,2-Dichlorobenzene-d	24.36			33.3333		73.1	29 - 109			
Surrogate: 2-Fluorobiphenyl	33.10			33.3333		99.3	39 - 108			
Surrogate: Nitrobenzene-d5	23.15			33.3333		69.5	0 - 146			
Surrogate: 4-Terphenyl-d14	31.93			33.3333		95.8	39 - 123			
Matrix Spike Dup (B7J0764-MSD1)			Source: 1703653-05	553-05	Prepared	: 10/25/2017	Prepared: 10/25/2017 Analyzed: 10/27/2017	7/2017		
2-Methylnaphthalene	19.4837 5	5.0	09.0	33.3333	ND	58.5	30 - 141	4.95	20	
Acenaphthene	23.8603 5	5.0	0.41	33.3333	ND	71.6	9 - 155	6.92	20	
Acenaphthylene	24.6297	5.0	0.41	33.3333	ND	73.9	43 - 110	5.33	20	
Anthracene	23.0803 5	5.0	0.56	33.3333	ND	69.2	33 - 146	2.40	20	
Benzo(a)anthracene	27.2810 5	5.0	0.56	33.3333	ND	81.8	49 - 130	4.34	20	
Benzo(a)pyrene	22.3620 5	5.0	69.0	33.3333	N	67.1	36 - 134	2.93	20	
Benzo(b)fluoranthene	28.8073 5	5.0	2.2	33.3333	N	86.4	26 - 148	99.9	20	
Benzo(g,h,i)perylene	27.7343 5	5.0	08.0	33.3333	ND	83.2	16 - 156	1.07	20	
Benzo(k)fluoranthene		5.0	0.70	33.3333	N	9.08	29 - 132	7.70	20	
Chrysene		5.0	0.61	33.3333	N	70.2	0 - 184	3.37	20	
Dibenz(a,h)anthracene		5.0	0.88	33.3333	ND	94.5	29 - 149	3.08	20	
Fluoranthene		5.0	0.45	33.3333	N	82.5	14 - 162	09.9	20	
Fluorene		5.0	0.35	33.3333	ND	82.8	48 - 111	5.64	20	
Indeno(1,2,3-cd)pyrene	28.8430 5	5.0	0.82	33.3333	N	86.5	37 - 135	1.41	20	

Project Number: POLA Berth 191-193, 11618.005 Report To: Brynn McCulloch Reported: 11/02/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Semivolatile Organic Compounds by EPA 8270/SIM - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD		
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes	

Batch B7J0764 - MSSEMI_S (continued)

Matrix Spike Dup (B7J0764-MSD1) -)1) - Continued		Source: 1703653-05	653-05	Prepared	: 10/25/2017	repared: 10/25/2017 Analyzed: 10/27/2017	7/2017	
Naphthalene	26.1093	5.0	0.56	33.3333	ND	78.3	34 - 126	3.59	20
Phenanthrene	24.4000	5.0	0.34	33.3333	ND	73.2	19 - 155	3.90	20
Pyrene	26.8027	5.0	0.51	33.3333	N	80.4	13 - 162	3.86	20
Surrogate: 1,2-Dichlorobenzene-d	24.79			33.3333		74.4	29 - 109		
Surrogate: 2-Fluorobiphenyl	33.94			33.3333		102	39 - 108		
Surrogate: Nitrobenzene-d5	23.95			33.3333		71.8	0 - 146		
Surrogate: 4-Terphenyl-d14	33.84			33.3333		102	39 - 123		

Project Number: POLA Berth 191-193, 11618.005 Leighton Consulting, Inc.

Report To: Brynn McCulloch 17781 Cowan Street

11/02/2017 Reported: Irvine, CA 92614

Notes and Definitions

Surrogate recovery was outside of laboratory acceptance limit. Chromatogram shows high concentration of heavy hydrocarbons. S_7

Surrogate was diluted out. 5

RPD value outside acceptance criteria. Calculation is based on raw values. \approx

Matrix spike recovery outside of acceptance limit. The analytical batch was validated by the laboratory control sample. \overline{M}

Laboratory Control Sample outside of control limit but within Marginal Exceedance (ME) limit. 7

Sample required dilution due to possible matrix interference D

Analyte is not detected at or above the Practical Quantitation Limit (PQL). When client requests quantitation against MDL, \mathbb{R}

analyte is not detected at or above the Method Detection Limit (MDL)

Practical Quantitation Limit PQL

Method Detection Limit MDL

Not Reported K,

Relative Percent Difference RPD

CA-ELAP (CDPH) CA2 OR-NELAP (OSPHL) OR1

Notes:

- (1) The reported MDL and PQL are based on prep ratio variation and analytical dilution.

 (2) The suffix [2C] of specific analytes signifies that the reported result is taken from the instrument's second column.

 (3) Results are wet unless otherwise specified.

Page 198 of 210

LABORATORIES

3275 Walnut Ave., Signal Hill, CA 90755 Tel: (562) 989-4045 • Fax: (562) 989-4040

CHAIN OF CUSTODY RECORD

Page ____ of __6

Instruction: Complete all shaded areas.

		For Laboratory Us	e Only		ATLCOC Ver: 2	0130	715
	- 6 Tue 11 - 11	Sar	nple Cor	ditio	ns Upon Receipt		
ivietnoa	of Transport	Condition	Υ	2,	Condition	Υ	N
☐ Client	.DATL	1. CHILLED	Z		5. # OF SAMPLES MATCH COC		
☐ FedEx	☐ OnTrac	2. HEADSPACE (VOA)		Л	6. PRESERVED	, let	
☐ GSO		3. CONTAINER INTACT	1		7. COOLER TEMP, deg C:		
Other:		4. SEALED		7	T9 10 1	nd ,—Ar	2

		(302) 303-4043 - 1 a			201001111111111111111111111111111111111	i <u>on</u> . Comple					<u> </u>		enerale.	T. SERE	eritarian de		نلک	<u> </u>	<u> </u>	-10
	Com	pany: Leigh	Ton Consulting SEND REPORT TO: Culloch BMcCull	Hc.		Address: City:	17	7 % l	Cow	ine ine	Sta	ate: C	A I	Zip: q 7	6)4 F	el: qu ex:	<u> 19 -</u>	2.5	<u>13-9</u>	<u>836</u>
ER	Attna	•	SEND REPORT TO:	Email: 🔨 .			Attn:	2.525.53		na jest (1966)		SEND IN	VOICE	TO:	ail:		me as	SEND	REPO	RT TO
CUSTOMER		3 WHH WOO	Lulloch BMcCull	or moleigh	htongr	o up. con	Company	tcf-	Paya	<u>ble</u>										
UST			SAMe.	esse esse y	y		Address:		, ,	HH	no							Eleray Tourne		
0	Addre	ess:	OHILL						C) [] V	'W									
	City:			State:	Zip:		City:								Sta	te:		Zip:		
П	Proje	ect Name:	Quote No:	Special Instruc	ctions/Comn	nents:			Encircle or W	/rite Request	ed Analy	rsis		Encircle	Sample Ma	ıtrix	С	ontaine	r dC	QA/Q0
	Po	ola Berth 191 ect No.:	1-193	HOLL	// (A				(se)								SOURCE AND A STATE OF THE STATE	int;	etal 12504; 4	□ Routir □ Caltra
	Proje	ect No.:	PO #:	5035			iles)	، ا ا	Pesticides Metals)					lGE	ROUND		100000000000000000000000000000000000000	ter; 4=F	c; 3=Mc	© Legal
	Sam	618.005 pler:		for 8	260 V	OC >	t (Volatile	atiles)	22 ne					IT / SŁUC FILTER	(0 1 9)	TAT	-	DA; 3=L Canister	Z=Plast Cl; 2=HN	Level I
	K	(CH		at n li	ater do	re	624 (lov-in	rganochlori CBs) 7000(Title					IIMENT VIPE/ F	TORM / WA			be; 2=V	Ve: 1=H	S 6=NaCr
	ITEM	Lab No.	Sample	e Description	***************************************		60 / 15(GR	70(Ser						SOIC SEDIMEN SOLIDS / WIPE/	WATER - DR WATER - STC AQUEOUS./			e: 1≖Tul ï; 6=Teα	terial:	5=Zn ((Ac)2; 6: REMARKS
LES	E	Lato 190.	Sample ID / Location		Date	Time	8260	8270(8081(8082(6010 /					Sour	W WA		#	Type: 5=Jar;	Mater	REI
AMP	1	1703653-01	LB7-0.5		10/17/17	-	X X	$\downarrow \downarrow$						\mathbb{N}			14			
1 S /	2	-02	187-2.5	***************************************		728											1			
JE C	3	-03	LB7-510			730											11			
PROJ	4	- 04	LB11-0.5			750											\bot			
	5	-c5	LB11-2.5			757											Щ			
	6	~06	LB11-510	W. C.		754											4		ener-sond	
	7	-07	LB16-0.5			810							44					11		
	8	-08	LB16-2.5	**************************************		718		44					 - -				4	***		
	9	- 0 9	LB16-5.0			814											4	11		
	10	~10	LB22-0.5			878	LV							M		1	4	<u>/</u>		
	2. Sarr	mples Submitted AFTER 3:00 PM, are of e following turnaround time condition	PPM Monday - Friday; Saturday 8:00 AM to 12:00 PM. considered received the following Business day at 8:00 AM. is apply:	samples will be dispo 7. Electronic records m 8. Hard copy reports w	osed of after 14 calend naintained for five (5) will be disposed of after	years from report date	2.				1 1				nt of the ervices f				* 1, 1, 1, 1, 1	The second second
I S		TAT = 0:300% Surcharge SAME B' TAT = 1:100% Surcharge NEXT BU TAT = 2:50% Surcharge 2ND BUSI TAT = 3:30% Surcharge 3RD BUSI	NESS DAY (COB \$:00 PM)		Fees: ples: Complimentary st or hold is requested.	orage for forty-fi ve (4	IS) calendar da	ys from re	eceipt of samples; \$	52/sample/month					ment as			SHOW	i apo	ve allu
Page	A Wa	IAI = 3 : 30% Surcharge 3KD BUSH TAT = 4 : 20% Surcharge 4TH BUSH TAT = 5 : NO SURCHARGE 5th BUS Bekend, holidav, after-hours work - ask	NESS DAY (COB 5:00 PM) BINESS DAY (COB 5:00 PM)	requested.	limentary storage for t enerated reports/EDD:						age is	K.Ha		Λ	Len (Al	A.	1		
ge 1	5. Sub	bcontract TAT is 10 - 15 business days	. Projects requiring shorter TATs will incur a surcharge	\$35 per reprocesse 10. Rush TCLP/STLC sar 11. Unanalyzed sample	d EDD. mples: add 2 days to a	nalysis TAT for extract							ушихихоносециих	Print Na			&A.Z.		ature	
199 (l L	quished by Signature Sind P	inted Narge	Date:	hala	Time: 500	Receive	ed by: (Signature and P	rinted Name)		F00	۵-ایی:	1	/	Date:	10/1	2/17	Ti	ime:
of 210	Relino	quished by: (Signature and Pr	inted Name)	Date:	12/17	Timle:	Receive	ed by: (Signature and P	rinted Name)	М	TL 1	W	bit	Olerono Octobrillo Primore Control	Date:	0/12	19	N Ti	ime: 5 /54/
ō}	Relino	quished by: (Signature and Pr	inted Name)	Date:		Time:	Receive	ed by: (Signature and P	rinted Name)		1,- (1	4//			Date:			T	ime:

Page 2 of 6

	For Laboratory Use	e Only		ATLCOC Ver: 2	0130	715
A	San	nple Con	ditio	ns Upon Receipt		
Method of Transport	Condition	Y	N	Condition	Υ	N
☐ Client ☑ ATL	1. CHILLED	ve		5. # OF SAMPLES MATCH COC		
☐ FedEx ☐ OnTrac	2. HEADSPACE (VOA)			6. PRESERVED	Z	
□ GSO	3. CONTAINER INTACT	7		7. COOLER TEMP, deg C:	-	
Other:	4. SEALED		P	5-9 6.0 5	.8	7

3275 Walnut Ave., Signal Hill, CA 90755 Tel: (562) 989-4045 • Fax: (562) 989-4040

Instruction: Complete all shaded areas.

	Tel: ((362) 989-4043 • F a	x. (302) 909-4040	<u>Instructi</u>	<u>on</u> : complete	e an snauea areas.	AND DESCRIPTION OF THE PROPERTY OF THE PROPERT	4. SEALED		16.C > 8
	Comp	oany: Leigh	ron Consulting SEND REPORT TO Culloch Braculfing	He.	Address: City:	1778 (owan	, State: сд	Tel: Zip: 976/9 Fax:	949-753	-9836
~		<u> </u>	SEND REPORT TO	2 (3 (2 (2 (3 (2 (2 (2 (3 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2			SEND INVO	DICE TO:	same as SEND R	EPORT TO
M	Attn:	BMNH MC	Cullach Braculta	haleightowar	oun larh	tn: Aect. (Pavuble	Email:		
10	Comp	any:	- 6 00	7 7	Co	ompany:	$^{\prime}$			
CUSTOMER	Addre	SS	\ D YYIQ.		Ad	ddress:	14110 -			
	City:		<i>J</i> 111	State: Zip:	Cit	υ l ty:	<u>J 17 J 20</u>	State:	Zip:	
	City.									
		ct Name:		ecial Instructions/Comm	nents:	Encircle or Write Re	equested Analysis	Encircle Sample Matrix	Container	QA/QC
	Po	la Berth 191	- 193	5035 Kits		des)			int;	Routine Caltran
					es)	Halon And And And And And And And And And An		UDGE R GROUND ASTE - OIL	er; 4=P	ာ် ဥ ု Legal
	Same	. 18.005	PO #:		olatil	Hes) rine F		SLUDG TER // GRO //ASTE	TAT TATE AN 3 = Lit Plastic	RWQCI
	Samp	KCH KCH			V (V	volatile		AENT / SLU PE/ FILTER INKING / G DRM / WAS LAYERED -	2=V0/ ;; 7 = C slass; 2	NaOH;
	-		Sample De	scription	67	8015(ERG) 7(M) 8015(ERG) 7(M) 8015(ERG) 7(M) 8270(Semi-volatiles) 8081(Organochlorine 8082(PCBs) 6010 / 7000(Title 22 TO-15		/Wi - DR: US /	1=Tube; 6=Tedlar ial: 1=0	rvative Ac/2: 6= ARKS
ES	ITEM	Lab No.	Sample ID / Location	Date	Time &	80154 80154 8270(8081(6010 /		SOLIDS / W WATER - DI WATER - ST AQUEOUS,	# Type: 1=7 5=Jar; 6=T Material	Preservativ 5=Zn ((Ac)2:6 REMARKS
1 P L	1	1703653-11	LB22-1.5	10/17/17	828		COLUMN CONTROL DE SERVICE DE SERV		54	
SAMPLES	2	1703653-11	LB22-5,0	111	830		CONTRACTOR OF THE PROPERTY OF			
PROJECT S.	3	-13	LB27-0.5		856					
	4	* 1 G	LB27-2.5		858					
	5	~ (S	LB27-510		900					
	6	-16	LB30-0.5	and the state of t	930					
	7	- (7	LB30-2.5		932					
	8	-146	LB30-5.0		934					
	9	-19	LB32-6.5		950					
	10	-20	LB32-2.5		952	<u> </u>				
П	2 Sam	inles Suhmitted AFTER 3:00 PM, are i	PM Monday - Friday; Saturday 8:00 AM to 12:00 PM. onsidered received the following Business day at 8:00 AM.	samples will be disposed of after 14 calend Electronic records maintained for fi ve (5) y	years from report date.			horized agent of the co		
15	3. The	following turnaround time condition TAT = 0: 300% Surcharge SAME B TAT = 1: 100% Surcharge NEXT BU TAT = 2: 50% Surcharge 2ND BUSI	SINESS DAY (COB 5:00 PM)	Hard copy reports will be disposed of after Storage and Report Fees: - Liquid & solid samples: Complimentary st		eport date. calendar days from receipt of samples; \$2/sample		aboratory services from arantee payment as quo	oted .	
₽		TAT = 3 : 30% Surcharge 2ND BUSI TAT = 3 : 30% Surcharge 3RD BUSI TAT = 4 : 20% Surcharge 4TH BUSI TAT = 5 : NO SURCHARGE 5th BUS	NESS DAY (COB 5:00 PM) NESS DAY (COB 5:00 PM)	extended storage or hold is requested. - Air samples: Complimentary storage for treduested.	en (10) calendar days froi	om receipt of samples; \$20/ sample/week if exten	ded storage is	Ye	Mein ()	ALM
Page	5. Subi	ekend, holiday, after-hours work - asl contract TAT is 10 - 15 business days	for quote. Projects requiring shorter TATs will incur a surcharge	 Hard copy and regenerated reports/EDDs \$35 per reprocessed EDD. 		eport requested; \$50.00 per regenerated/reforma	and the second s	A H	Signati	CADO
N	6. Liqu		of after 45 calendar days from receipt of samples; air	Rush TCLP/STLC samples: add 2 days to a Unanalyzed samples will incur a disposal	fee of \$7 per sample.			ter Print Name		
00	Reling	uished by: (Signature and r	Mad Name) (. Mall)	Date: /12/17	1500	1	Diws of		ite: hala	Time:
21	Reling	uished by: (Signature and Pr	inted Name)	Date: 19/12/17	Time:	Received by: (Signature and Printed N	MITE C	Di Da	ite:/0(1211)	(Zime:/
의	Reling	uished by: (Signature and Pr		Date:	Time:	Received by: (Signature and Printed N	lame)	Da	ate:	Time:

Page <u>3</u> of <u>6</u>

Method	of Transport	
☐ Client	. ☑ ATL	1. CHI
□ FedEx	☐ OnTrac	2. HE/
□ GSO		3 (0)

Other: ___

Sample Conditions Upon Receipt Condition Condition 5. # OF SAMPLES MATCH COC 🖂 🖂 IŁLED ADSPACE (VOA) ☐ 6. PRESERVED 3. CONTAINER INTACT 7. COOLER TEMP, deg C: 0 2 60 6.0

ATLCOC Ver: 20130715

For Laboratory Use Only

3275 Walnut Ave., Signal Hill, CA 90755 Tal: (562) 080 4045 • Fax: (562) 989-4040

	Tel: ((562) 989-4045 • Fa	x: (562) 989-4040		<u>Instructi</u>	<u>ion</u> : Comple	ete all sh	aded ar	eas.		□ Other:		4. SEALEI		J	1 (.9) <u>(</u>
	Comp	any:	7			Address:	17	78(Conqu					Tel	949	~7ぢ ?	<u>3-93</u>	36
		Leighton	MAN HING IN	C ,		City:		14	vive		State: CA		lip:	Fax				
E N	Attn:		SEND REPORT TO:	Email: ,			Attn:			AL.	SEND IN	VOICE T	ГО: Ema	il:	□ same	as SEND	REPORT	10
CUSTOMER		Bry HA M	CONSUlting IN SENDREPORT TO: CCUILOCH BMCC	ulloch Dle	eightomr	roup.c	6m	1.	Lect.									
J S T	Compa	any:	$c \wedge m_0$				34,50 K (15)			SAY	no							
2	Addre	ss:	- CAME				Address:			ノリナリ	16							
	City:			State:	Zip:		City:							State	30	Zip:		
				Special Instruc	Hone/Comm	opto		***************************************					I		1 1	<u> </u>	TO T	***************************************
	Proje	ct Name:	Quote No:			ients.			ncircle or Write	e Requested A	nalysis	TT	Encircle S	ample Mati		Container		QA/QC Routine
	Proje	IA Berth lo		5035 N	(its		4	icides	als)					<u> </u>		4=Pint;	5 11 11	Caltran
	111	618.005	PO #:				tiles)	P Pest	2 Met				DGE	GROUND ASTE OIL		Liter;		: Legal :: RWQCE
	Samp	oler:					Volatil	atiles	itle 2				r / SLL	/ WA	TAT	/OA; 3: - Canisi	; 2=Pla HCl; 2= H; 7=N	ı Level IV
		KCH				PROCESS OF THE PROCES	4 8	ni-vol	CBs) 7000(Title 22 Metals)				SEDIMENT / SLUDGE 5 / WIPE/ FILTER	STORM / WASTE S / LAYERED - OII		be; 2=\ dlar; 7	1=Glass IVE: 1= 6=NaO	s
	Σ		Sampl	e Description			8260 / 62 8015(6R0)	8270(Semi-volatiles) 8081(Organochlorine Pesticides)					SED V	WALER - DRINKING / GRO WATER - STORM / WASTE AQUEOUS / LAYERED - OIL		2: 1=Tu 7: 6=Te	Material: Preservati 5=Zn ((Ac)2;	REMARKS
ES	ITEM	Lab No.	Sample ID / Location	n	Date	075al	801	827	8082(P 6010 / TO-15					WAI		# Typ	Mat Pre: 5=Zr	E E
SAMPLES	1	1703653-21	LB22-2.5	HEROLOGIC RECORD TO THE CONTRACT OF THE CONTRA	10/12/17	458	(X		X				MI		151			
SA	2	1 -22	LB72-5.0			BAS SW												
CT	3	- 2 3	LB32-0.5	oempunsuuskuuskooste aman siinet on noontaatee et on in no		950												WINDOWS CONTROL OF THE PROPERTY OF THE PROPERT
PROJECT	4	- 74	LB32-2.5	CONTRACTOR OF THE STATE OF THE		957					1				П			
9	5	- 2 5	LB32-5.0			955												
	6	-76	LB33 - 0.5	CONTRACTOR DE CONTRACTOR D		1006												
	7	-27	LB33-25			1008												
	8	- 28	LB33 - 5.0			1010												
	9	- 29	LB31-0.5			1038												
	10	- 30	UB31- 2.5		4	1040		<u> И І </u>	V				MI		NI	7		
	1. Sam 2. Sam	ple receiving hours: 7:30 AM to 7:30 ples Submitted AFTER 3:00 PM, are of	DPM Monday - Friday; Saturday 8:00 AM to 12:00 PM. considered received the following Business day at 8:00 AM.	7. Electronic records ma	osed of after 14 calenc aintained for fi ve (5)	vears from report dat	e.				11.			nt of the	and the solid to	100000000000000000000000000000000000000	The real to have	1.000
1.5	3. The	TAT = 1: 100% Surcharge NEXT BU	USINESS DAY if received by 9:00 AM JSINESS DAY (COB 5:00 PM)	8. Hard copy reports wi 9. Storage and Report F - Liquid & solid samp				ıys from recei	ipt of samples; \$2/s	ample/month if	11.		and the first of the first	rvices fro nent as c		is showi	n above	and
		TAT = 2 : 50% Surcharge 2ND BUSI TAT = 3 : 30% Surcharge 3RO BUSI TAT = 4 : 20% Surcharge 4TH BUSI	NESS DAY (COB 5:00 PM) NESS DAY (COB 5:00 PM)	extended storage or	r hold is requested. imentary storage for t								tee pay.			, 11	1.11	
	5. Suba	TAT = 5 : NO SURCHARGE 5th BUS ekend, holiday, after-hours work - ask contract TAT is 10 - 15 business days	k for quote. s. Projects requiring shorter TATs will incur a surcharge	- Hard copy and rege \$35 per reprocesses	nerated reports/EDDs d EDD.				per regenerated/re	forma? ed report;	K.H			STORESCHED STORES	Uss C		2011 ature	
3	6. Liqu		d of after 45 calendar days from receipt of samples; air	10. Rush TCLP/STLC sar 11. Unanalyzed sample	s will incur a disposal	fee of \$7 per sample.					Sub	muter F	Print Nar	ue	Date			
<u> </u>	1 1 1	quished by: (Signature and P		Date:	/11/11	1500			nature and Print	F	100 mm	9 , ~	K	na qualegra a sea anna de de cantacta d		Inte-		(50\$
ء کاک		quished by: (Signature and Pr	FPO(W)		3/12/17	Time: /54/			nature and Print	- P	FR C	V///	<u>t </u>			12/5	Time /5	
ЪБ	Reling	uished by: (Signature and Pr	rinted Name)	Date:		Time:	Receiv	ed by: (Sig	nature and Print	ed Name)	ě	r			Date:		Tim	e:

Page 4 of 6

		For Laboratory Us	e Only		ATLCOC Ver: 2	0130	715
		Sai	nple Cor	ditio	ns Upon Receipt		
Method	of Transport	Condition	Y	~	Condition	Υ	Ν
☐ Client	Z ATL	1. CHILLED	Z		5. # OF SAMPLES MATCH COC		
□ FedEx	☐ OnTrac	2. HEADSPACE (VOA)			6. PRESERVED	Z	
(C) GSO		3. CONTAINER INTACT	Ø		7. COOLER TEMP, deg C:		
Other:		4. SEALED		Q'	(a ()	-	- V

3275 Walnut Ave., Signal Hill, CA 90755 Tel: (562) 989-4045 • Fax: (562) 989-4040

Instruction: Complete all shaded areas.

	Tel: ((562) 989-4045 • Fa	X: (302) 989-4040		instructio	<u>on</u> : complet	e an sna	aea area	15.	<u>L</u>			7. 3050			14	<u>- </u>	
П	Comp	pany:				Address:	1779	bl (OWA)	911A			Tel:	949-	-753	-983	i 6
		Leinh	tan Consultino	Mc.		City:	1-4	NC			State:	CA	Zip:	Fax				
α			SEND REPORT TO:	BERGE STEEL NOW LETTER AND		Nepada (1.100 de 1011 f)	ergen Lates V.	2,72,707,000		Elet Albini (11)	SEN	D INVOIC			□ same	as SEND	REPOR	T TO
1E	Attn:	a	C II. I	mail:			\ttn:	Merl	Ph				Ema	ail:				
0	Comp	Dry HU I	ton Consulting SEND REPORT TO:	CROLLOCK DI	erdness	groop	Ompany:	our	-, <u>) </u>	YNOIN								
CUSTOMER	Comp	idily, 7	CD 1000			A STATE OF THE STA					1/1/	N	Δ					
[2]	Addre	ess:	\ HIX			· · · · · · · · · · · · · · · · · · ·	Address:				SIT	17	\mathbf{C}					
	City:		<u> </u>	State:	Zip:	(lity:				<i>J</i>			State		Zip:		annere: Väik YAT
	City														134.5%		<u>NASS S</u>	
	Proje	ect Name:	Quote No:	Special Instruct	ions/Comm	ents:		Enci	rcle or Write	Requested	Analysis		Encircle :	Sample Matri		Containe	er 😲	QA/QC
			1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、				T		TIT		TÍT				1	T.T	24; 4	□ Routin
	Proje	la Be-14 191 ect No.:	<u> </u>	5035	Kith .		-5	icide	als)							t=Pint	Metal 3=H2S	□ Caltrar
	N	ectivo	PO #:				S 20	Pesti	Met				J. J	OUN H		iter; 4	ic; 3≈ NO3; 3 25203	□ Legal □ RWQC
	Same	. 18.055					The San	iles) rine	e 22				SLUC	DRINKING / GRO STORM / WASTE JS / LAYERED - OII	TAT	λ; 3=L aniste	=Plast ; 2=HI 7=NA.	□ Level I
	Danik	KCH					SIL	olat ochic	E				E/ FIL	IKING RM / AYER		2=V0,	ass; 7 1=HC laOH;	<u> </u>
	77.75.70V.SU.5						6 8 9	emi- rgan rgan	2000				DIMEN WIPE/	DRINKING / GROUND STORM / WASTE US / LAYERED - OIL		Tube; Fedlar;	1: 1=G affive: 12; 6=P	SS
	ITEM	Lab No.	Sample	Description			09 0	8270(Semi-volatiles) 8081(Organochlorine Pesticides)	10 /					WATER - WATER - AQUEOL		ir, 6=	Material Preserva 5=2n ((Ac)	REMARKS
ES		Lab No.	Sample ID / Location		Date	Time	8260 8015µ 8015µ	8270(6 6 6				South	w w A		Type: S=Jar;	Ma Pre 5=2	器
SAMPLES	1	1703653-31	LB31-5.0		10/12/11	SHOT									5	4		
5	2	-32	LB29-0.5	AND THE CONTRACT OF THE CONTRA		1120									Ш			THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS O
ECT	3	- 3.3	1829-2.5	THE RESERVE OF THE PROPERTY OF		1122												-
ROJ	4	- 34	1829-5.0	www.com.com.com.com.com.com.com.com.com.com		1124										Ш		THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED AND ADDRESS
Р	5	- 35	LB78-0.5			1146												
	6	- 34	LB28-2.5			SYII												
	7	-37	L428-5.0			1150									Ш			Sensor Commence
W. COMPOSITION OF THE PERSON O	8	-38	LB26-0,5			5051			Ш.									
	9	- 39	LB26-2.5	NATIONAL MERCONAL CONTRACTOR OF THE PROPERTY O		1204												
	10	-40	LB76-5.0		l v	1706	V	111	<u>NLL</u>				M		M	<u> </u>		
-	1. Sam	mple receiving hours: 7:30 AM to 7:30	0 PM Monday - Friday; Saturday 8:00 AM to 12:00 PM. considered received the following Business day at 8:00 AM.	samples will be dispos 7. Electronic records mai							As t	he auth	orized age	nt of the c	ompar	y above	e, I here	₽by
	3. The	e following turnaround time condition	ns apply: RUSINESS DAV if received by 9:00 AM	Hard copy reports will Storage and Report Fe	be disposed of after	45 calendar days from	report date.						ooratory s			as show	vn abov	e and
1 S	li	TAT = 1 : 100% Surcharge NEXT BU TAT = 2 : 50% Surcharge 2ND BUS TAT = 3 : 30% Surcharge 3RD BUS	USINESS DAY (COB 5:00 PM)	extended storage or	hold is requested.	orage for forty-fi ve (4					1 1	eby guar	antee pay	ment as q	uoted.			
맜		TAT = 4 : 20% Surcharge 4TH BUSI TAT = 5 : NO SURCHARGE 5th BUSI	INESS DAY (COB 5:00 PM) SINESS DAY (COB 5:00 PM)	requested		en (10) calendar days i					is	RIHI	. 1	/	the.	ń f.1	1100	1
Page	5 Sub	ekend, holiday, after-hours work - as begetract TAT is 10 - 15 business day:	k for quote. s. Projects requiring shorter TATs will incur a surcharge	 Hard copy and regen \$3S per reprocessed Rush TCLP/STLC sam 	EDD.	: \$17.50 per hard copy			r regenerated/re	ormar eu report			<u>u II.</u> er Print Na		* <u>SZ</u>	•	nature	
202	ress 6. Liqu	pective to the subcontract lab — ask juid and solid samples will be disposa	for grote. Id of after 4S calendar days from receipt of samples; air	11. Unanalyzed samples	will incur a disposal f	fee of \$7 per sample.						Subilitu	rimi Na			9	to the second	
2 2 2	Relino	quished by: (Signature and P	rinted Narfie). (OOU)	Date: /	12/17	Tip500		,		from y	-	\mathscr{L}		CONSTRUCTOR CONTRACTOR VIII A SE	Date: //2	1117		(ZC∤ we:
Į,	Relino	quished by: (Signature and Pi	rinted Name)	Date:	Inko	Time: 1541	Receive	d by: (Signa	iture and Print	ed Name)	MI	A (M		Date: /(0/12/9		me:
ðŀ.		11-11-75	(interest Name)	Date:		Time:	Receive	d bv: (Signa	ture and Print	ed Name)		·····	7		Date:			me:

Page <u>5</u> of <u>6</u>

		For Laboratory Use	e Only		ATLCOC Ver: 2	0130	715
		San	nple Con	ditio	ns Upon Receipt		
Method	of Transport	Condition	Y	N	Condition	Y	2
() Client	ATL ATL	1. CHILLED	Z		5. # OF SAMPLES MATCH COC		
☐ FedEx	☐ OnTrac	2. HEADSPACE (VOA)			6. PRESERVED		
□ GSO		3. CONTAINER INTACT	Z		7. COOLER TEMP, deg C:	,	
Other:		4. SEALED		9	5.9 6.0	5	·Y

3275 Walnut Ave., Signal Hill, CA 90755

	Tel: ((562) 989-4045 • F	ax: (562) 989-4040		<u>Instructi</u>	<u>on</u> : Complet			_	L		· · · · · · · · · · · · · · · · · · ·	4. SEALED			1}	· . ~ 6	05.
П	Comp	pany:				Address:	177	3/ C	Owa	N						1753	3-18	3b_
		Leight	on Consulting 1	ис.		City:	0-5-45	1-yi-) (State: A	Zip:	. 144. b 114.bb	Fax		oc CENII	D REPOR	T TO
E R	Attn:		SEND REPORT TO:	Email:	35-70 January	A	ttn:	N		L. ii	SEND INV	OICE TO:	Emai	5 (33) (3		as seive	JAEFOR	110
0	Comp	phylog	McCulloch Breco	loch ob leigh	Hengr	oup. Uoh	n Ompany:	1400	. H. V	Pyable	&					<u>Carley Sy</u> Wasing S		
CUSTOMER)			ddress:		(/A	100	A							
U	Addre	ess:	/HV						$\mathcal{A}\mathcal{H}$	-11/U	<u> </u>							
	City:			State:	Zip:	C	ity:							State		Zip:		
	Proie	ect Name:	Quote No:	Special Instruc	ctions/Comm	ents:	Merchanica considerativa ever-re-	Encir	cle or W rite	e Requested A	Analysis	En	circle Sa	ımple Matı	ix	Contain	er Ö	QA/QC
		OJA Berth 1	91-193					(S)								ţ;	al 504; 4	□ Routine □ Caltran
	Proje	ect No.:		50351	KITS		(Se	atiles) Iorine Pesticides	Metals)			3	QND			ır; 4=Pi	3=Met 33, 3=H, 203	□ Legal
	1	1618.005	PO #:				S S S S S S S S S S S S S S S S S S S	les)	22 N			SULING	/ GRO	VASTE D - OII	TAT	; 3=Lite	=Plastic, 2=HNC 7=NA2S	□ RWQCI □ Level I\
	Samp	1618.005 pler: KCH					4 (Vol	volati ochlo)(Title			/ TAR	WIPE/ FILTER DRINKING / GROUND	STORM / WASTE S / LAYERED - OII		2=VOA ; 7 = G	slass; 2 : 1=HCl NaOH;	
		The manufacture of the second	Sampl	e Description			7 62 BRG1 62	Semi- Organ PCBs)	/ 700			SFDIM	1 ~ 1			1=Tube; 5=Tedlar	iaf: 1=0 vative 4c)2; 6=	ARKS
E S	ITEM	Lab No.	Sample ID / Location	The second secon	Date	Time	8250 8015(8270(Semi-vola 8081(Organoch 8082(PCBs)	6010, TO-15			nos	SOLIDS	WATER	· ·	Type: S=Jar; l	Material Preserva 5=2n ((Ac)	REMARKS
	1	1703653-41	LB21-0,5		10/12/17	na	XX		X				1 1		15	4		
SAMPL	2	1 -42	LB21-2.5	ender von Meister der von der		1224	Till		ħĦ				1			1		
ECT	3	-43	LB21-510		THE RESERVE THE PROPERTY AND ADDRESS OF THE PARTY ADDRESS OF THE PARTY AND ADDRESS OF THE PARTY	1226	1111		HHT				11		Π			
OJE	4	-44	LB15-0.5	anne ann an Aireann		1240												
PR	5	~ 45°	LB15-2.5	POTTO TOTAL PROPERTY CONTRACTOR OF THE POTTO TOTAL PROPER		1245								111				
Section of the second	6	-16	LB15-510	CHOCOCOCA STATE OF THE STATE OF		1399			HH									
Will de la constant d	7	~ H ~	LB10-0.5			1256									1/1			
-	8	L L &	LB10-2.5	AND THE PROPERTY OF THE PROPER		1258												
-	9	-49	1610-510			1300												
-	10	-50	LB6-0.5			1315	W					T N	/		W	U		
1	1. San	mple receiving hours: 7:30 AM to 7:	30 PM Monday - Friday; Saturday 8:00 AM to 12:00 PM. e considered received the following Business day at 8:00 AM.	samples will be disp	posed of after 14 calend	ar days after receipt of	f samples.	······································			As the au	thorized	l agen	t of the	compan	y abov	e, I here	eby
S	2. San 3. The	a following turnaround time conditi	ons apply: BUSINESS DAY if received by 9:00 AM	8. Hard copy reports w 9. Storage and Report	vill be disposed of after Fees:	45 calendar days from	report date.	f			purchase					as shov	vn abov	e and
埥		TAT = 2 : 50% Surcharge 2ND BU TAT = 3 : 30% Surcharge 3RD BU TAT = 4 : 20% Surcharge 4TH BU	SINESS DAY (COB 5:00 PM) SINESS DAY (COB 5:00 PM)	extended storage of - Air samples: Comp	ples: Complimentary st or hold is requested. slimentary storage for t						hereby g		e payn	nent as c	juotea.			
Page	4. We	TAT = S : NO SURCHARGE 5th 89 eekend, holiday, after-hours work - a	USINESS DAY (COB 5:00 PM)	\$35 per reprocesse	enerated reports/EDDs ed EDD.				regenerated/re	forma? ed report;	K.r	****			ACCESSIONNESS			
e 203	res _l 6. Liqi	spective to the subcontract lab — as quid and solid samples will be dispos	k for quote. ed of after 45 calendar days from receipt of samples; air	 Rush TCLP/STLC sa 	amples: add 2 days to a les will incur a disposal	nalysis TAT for extraction fee of \$7 per sample.					Subm	itter Prii	nt Nan	ne		Sigr	nature	
)3 <u> -</u> of <u> -</u>	Relino	quished by: (Signature and	March Name (Mall)	Date:	2/17	Time: 1560				, O' ~ V	<u>J.</u>		*****************		Date: 人なノロン	117	Tir 	ne: 1508
24	Relino	quished by: (Signature and	Printed Name)	Date	lizlia	Time:	Received	by: (Signat	ture and Print	ed Name) M	2 1/1	W_			Date: /0/	120		me: Y/
ဝြ	Reline	quished by: (Signature and		Date:		Time:	Received	by: (Signat	ture and Print	ed Name)	- 0				Date:		Tir	me:

Page <u>6</u> of <u>6</u>

For Laboratory Use Only ATLCOC Ver: 20130715 Sample Conditions Upon Receipt Method of Transport Condition Condition □ 5. # OF SAMPLES MATCH COC □ □ . ⊒ATL 1. CHILLED ☐ Client ☐ ☐ 6. PRESERVED ☐ FedEx ☐ OnTrac 2. HEADSPACE (VOA) ☐ GSO 7. COOLER TEMP, deg C: 3. CONTAINER INTACT ☐ Other:

3275 Walnut Ave., Signal Hill, CA 90755 Tel: (562) 989-4045 • Fax: (562) 989-4040

Instruction: Complete all shaded areas

	I CI.	(302) 303-4043 - 110/	1. (302) 303-4040	mstructio	<u>Jii</u> . Comple	te un snaue	u ureus.	L.		14. 31	ACED		<u>Z</u>	<u></u>	النفا الم	
	Comp	oany:	ton Consulting Inc			17781	Cone	24	TC	(1) T	Tel: Fax:		<u>1-2</u>	53	9336	
		201911			City:	\ <u>\</u>	v:ne	23 . S	State: CA	Zip:	KINDS MILES BURSE	AT COUNTY	20.05	END D	EPORT TO	
CUSTOMER	Attn:		SEND REPORT TO: Email:			Attn:			SEND INVO	SICE TO.	mail:	<u> </u>	e as s	END K	PORTIO	King Vali
5 T O	Comp	eany:	0 0 0			Company:	,	MIA								
C U §	Addre	PSS:	CAYNL			Address:		AM	0,							10 to
	City:		State:	Zip:		City:					State			Zip:		
						**************************************			***************************************				a		16 1	
	Proje	ect Name:	Quote No: Special Instr	uctions/Comm Kits Cor	ents:			Vrite Requested	Analysis	Encircl	e Sample Matri		Con	ntainer	81 c+ 1	/QC utin
	Proje	ola Berth 1 ect No.: 1618,005 pler:			> 0 /	ূ্ৰ	ganochlorine Pesticides) 8s) 000(Title 22 Metals)	Sim PAAT			æ			4=Pint;	Ca ≘ 3:3=H2SC □ Le	ltrar gal
		618,605	PO #:			Volatiles PHO PHO	ine Per 22 Mr	[8]		LUDGE	ASTE	TAT	Shellow .	3=Liter; iister Plastic; 3	HNO HA2S2 □ RV	VQCi vel I\
	Sam	KCH .				Volenii	ochlor)(Title	3		EDIMENT / SEL	DRINKING / GEOSTORM / WASTE			2=VOA; 7 = Can lass; 2=P	1=HCI;	
	_		Sample Description			8250 / 524 (Volat 8015(GRO) T P P 8015(GRO) T P P 8270(Semi-volatiles)				8 8				1=Tube; 5=Tedlar ial: 1=G	rvative	ARKS
ES	ITEM	Lab No.	Sample ID / Location	Date	Time	826C 8015 8015 8770	8081(Or 8082(PC 6010 / 7	100		as (Hos)	WATER WATER AQUEO		#	Type: 1=1 S=lar; 6=1 Material	Preser 5=Zn ((REMARKS
MPL	1	1703653-51	LB6-2.5	10/12/17	1317	XX	HM	one control of the second control of the second	an Armenan (namenana) andaran (namenana)	TM		5	y			
SA	2	-52	LB6-510	TV.	1319	XX				IN		5	4			*********
ECT	3	A LANGUAGE BURGER COMMUNICATION OF COLOR TO CONTROL OF COLOR TO CO						AND THE PROPERTY OF THE PROPER								
ROJ	4	1703653 -53	LB6-GW	10/11/17	1377	XXX		X				5	9			etion to to common
В	5	-54	LB6-GW LB27-GW		50P	XXX		MLL				5	9			
	6	- 5 5	LB31-9W		1044	XXX						5	9			SACHED QUINCHNUM
	7	SECONOCIO REGIONAZIO MAZERI SPERIO PER COMPONINI MININI REGIONALI PARI PARI PARI PARI PARI PARI PARI PAR		14									Ш			
	8			1 4 Kr	\											THOMAS CONTRACTOR IN
	9															-
	10	AND THE RESIDENCE OF THE PROPERTY OF THE PROPE		4												B-MOCCOSTPON
	1. Sam 2. Sam 3. The	iple receiving hours: 7:30 AM to 7:30 F iples Submitted AFTER 3:00 PM, are co following turnaround time conditions TAT = 0:300% Surcharge SAMEBU	insidered received the following Business day at 8:00 AM. 7. Clostonia record	lisposed of after 14 calenda Is maintained for fi ve (5) ye s will be disposed of after 4	ears from report date	· •.			1 1 1 2 2 3 35 7 7 3		ent of the co				The state of the first	
N S		TAT = 0: 300% Surcharge SAME BU TAT = 1: 100% Surcharge NEXT BUS TAT = 2: 50% Surcharge 2ND BUSIN TAT = 3: 30% Surcharge 3RD BUSIN	INESS DAY (COB 5:00 PM) ESS DAY (COB 5:00 PM) - Liquid & solid sa				m receipt of samples;	\$2/sample/month if	 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		services fro yment as qu			IOWIT	above an	u
Pa	4 Wer	TAT = 4 : 20% Surcharge 4TH BUSINI TAT = 5 : NO SURCHARGE 5th BUSIN ekend, holiday, after-hours work - ask t	SSS DAY (COB 5:00 PM)	mplimentary storage for ter egenerated reports/EDDs:					1	11						
age 2	S. Sub- resp 6. Liqu	contract TAT is 10 - 15 business days. I pective to the subcontract lab ask fo uid and solid samples will be disposed	Projects requiring shorter TATs will incur a surcharge \$35 per reproce	ssed EDD. Csamples: add 2 days to an oples will incur a disposal fe	alvsis TAT for extract				companion construction and an arrangement of the construction of t	tter Print N	ame		•	Signatu	ıre	
204	ł L	uished by: (Signature and Prin	. 0.0	111	Time: 1500	Received b	y: (Signature and P	Printed Name)	1		/0	Date:	117		Time:	8
of 21		uished by: (Signature and Prin		5/12/17	Time:	Received b	y: (Signature and F		the do	M		Date: /o Date:	/12	14	Time:	
⊡ [Relino	uished by: (Signature and Prir			Time:	Received b	y: (Signature and F	Printed Name)		Beff.	[Jate:	T	***************************************	Time:)

From:

Brynn McCulloch [bmcculloch@leightongroup.com]

Sent:

Monday, October 23, 2017 9:27 PM

To:

Dominic Mata

Subject:

RE: Results - POLA Berth 191-193, 11618.005 (ATL# 1703641)

Hi Dominic,

For the groundwater 8260, I'm fine with waiting as long as hold times are met.

For the soil samples, we need the following additional analyses for the samples listed below. If we need to sub out the soil samples for 8260 to meet hold times, please do.

VOCs (8260B) and PAHs (8270SIM)

LB2-0.5, LB2-2.5

LB4-0.5, LB4-2.5

LB5-0.5, LB5-2.5

LB9-0.5, LB9-2.5

LB13-0.5, LB13-2.5

LB17-0.5, LB17-2.5

LB28-5.0

PCBs (8082)

LB2-0.5

LB4-0.5

LB5-0.5

LB9-0.5

LB13-0.5

LB17-0.5

LB28-5.0

Dioxins/Furans

LB17-0.5

Please run the above analyses on normal turnaround time.

The list below is the potential samples requiring STLC and TCLP, I will confirm tomorrow if we need to proceed with these tests, but I wanted to give you a heads up in case we have limited sample recovery.

STLCs

LB2-0.5 - Lead and Copper

LB4-0.5 - Lead

LB4-3.5 - Copper

LB5-2.5 - Lead

LB11-0.5 - Lead, Copper, and Mercury

LB17-0.5 - Lead

LB27-0.5 - Lead

LB28-0.5 - Lead

LB28-2.5 - Lead

LB30-2.5 - Lead

LB31-0.5 - Lead

From: Brynn McCulloch [bmcculloch@leightongroup.com]

Sent: Tuesday, October 24, 2017 6:16 PM

To: Dominic Mata

Subject: RE: Partial Results - POLA Berth 191-193, 11618.005 (ATL# 1703653)

Dominic,

We need the following additional analyses for the samples listed below.

VOCs (8260B) and PAHs (8270SIM)

LB10-0.5, LB10-2.5 LB11-0.5, LB11-2.5

LB16-2.5, LB16-5.0

LB28-0.5, LB28-2.5, LB28-5.0

LB33-2.5, LB33-5.0

PCBs (8082)

LB10-0.5

LB11-0.5

LB16-2.5

LB28-5.0

LB33-2.5

Thank you!

Brynn McCulloch, PG 8798

Associate Geologist 17781 Cowan Irvine, Ca 92614 Cell – 949.394.2306 Office – 949.681.4287 Fax – 949.250.1114

Leighton

Solutions You Can Build On

The information accompanying this email transmission may contain confidential or legally privileged information that is intended only for the use of the individual or entity named in this message. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution or reliance upon the contents of this email is strictly prohibited. If you receive this email in error, please immediately notify the sender by reply e-mail and destroy all copies of the communication and any attachments

Please don't print this e-mail unless you really need to.

From: Dominic Mata [mailto:dominic@atlglobal.com]

Sent: Tuesday, October 24, 2017 4:58 PM

To: Brynn McCulloch

Cc: customer.relations@atlglobal.com

Subject: Partial Results - POLA Berth 191-193, 11618.005 (ATL# 1703653)

Hi Brynn,

From: Brynn McCulloch [bmcculloch@leightongroup.com]

Sent: Tuesday, October 24, 2017 4:50 PM

To: Dominic Mata

Cc: customer.relations@atlglobal.com

Subject: RE: Results - POLA Berth 191-193, 11618.005 (ATL# 1703641)

Hi Dominic,

Please run the STLC and TCLP tests as shown below.

Thank you!

Brynn McCulloch, PG 8798

Associate Geologist 17781 Cowan Irvine, Ca 92614 Cell – 949.394.2306 Office – 949.681.4287 Fax – 949.250.1114

Leighton

Solutions You Can Build On

The information accompanying this email transmission may contain confidential or legally privileged information that is intended only for the use of the individual or entity named in this message. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution or reliance upon the contents of this email is strictly prohibited. If you receive this email in error, please immediately notify the sender by reply e-mail and destroy all copies of the communication and any attachments

Please don't print this e-mail unless you really need to.

From: Dominic Mata [mailto:dominic@atlglobal.com]

Sent: Tuesday, October 24, 2017 10:48 AM

To: Brynn McCulloch

Cc: customer.relations@atlglobal.com

Subject: RE: Results - POLA Berth 191-193, 11618.005 (ATL# 1703641)

Good morning Brynn,

I received your request for additional analyses below. There are no delays with soils so they will not need to be subbed out. Also, we will make sure the groundwater sample gets ran before the hold time is up. It has 14 days from the sampled date giving us until Friday but we plan to run before that. If I can further assist, please let me know.

Thanks, Dominic

From: Brynn McCulloch [mailto:bmcculloch@leightongroup.com]

Sent: Monday, October 23, 2017 9:27 PM

To: Dominic Mata

Subject: RE: Results - POLA Berth 191-193, 11618.005 (ATL# 1703641)

Hi Dominic,

For the groundwater 8260, I'm fine with waiting as long as hold times are met.

For the soil samples, we need the following additional analyses for the samples listed below. If we need to sub out the soil samples for 8260 to meet hold times, please do.

VOCs (8260B) and PAHs (8270SIM)

LB2-0.5, LB2-2.5

LB4-0.5, LB4-2.5

LB5-0.5, LB5-2.5

LB9-0.5, LB9-2.5

LB13-0.5, LB13-2.5

LB17-0.5, LB17-2.5

LB28-5.0

PCBs (8082)

LB2-0.5

LB4-0.5

LB5-0.5

LB9-0.5

LB13-0.5

LB17-0.5

LB28-5.0

Dioxins/Furans

LB17-0.5

Please run the above analyses on normal turnaround time.

The list below is the potential samples requiring STLC and TCLP, I will confirm tomorrow if we need to proceed with these tests, but I wanted to give you a heads up in case we have limited sample recovery.

STLCs

LB2-0.5 - Lead and Copper

LB4-0.5 - Lead

LB4-3.5 - Copper

LB5-2.5 - Lead

LB11-0.5 - Lead, Copper, and Mercury >

LB17-0.5 - Lead

LB27-0.5 - Lead -

LB28-0.5 - Lead ·

LB28-2.5 - Lead

LB30-2.5 - Lead

LB31-0.5 - Lead

LB33-2.5 - Lead

TCLPs

LB2-0.5 - Lead

LB4-0.5 - Lead

LB11-0.5 - Lead and Mercury .

LB27-0.5 - Lead

LB30-2.5 - Lead

LB31-0.5 - Lead LB33-2.5 - Lead

Thank you!

Brynn McCulloch, PG 8798

Associate Geologist 17781 Cowan Irvine, Ca 92614 Cell – 949.394.2306 Office – 949.681.4287 Fax – 949.250.1114

Leighton

Solutions You Can Build On

The information accompanying this email transmission may contain confidential or legally privileged information that is intended only for the use of the individual or entity named in this message. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution or reliance upon the contents of this email is strictly prohibited. If you receive this email in error, please immediately notify the sender by reply e-mail and destroy all copies of the communication and any attachments

Please don't print this e-mail unless you really need to.

From: Dominic Mata [mailto:dominic@atlglobal.com]

Sent: Monday, October 23, 2017 4:16 PM

To: Brynn McCulloch

Cc: customer.relations@atlglobal.com

Subject: RE: Results - POLA Berth 191-193, 11618.005 (ATL# 1703641)

Good afternoon Brynn,

Here's an update for your two work orders due today:

- DRO in 1703653 will be done tomorrow
- 8260 water sample our instrument has been down for several days and is now running but due to the back log, samples with hold times expiring are being prioritized. Would you like to have this sample sub contracted out or keep it in house and looking to have it run Wed (10/25) or Thurs (10/26)? Also, I can provided an updated partial report that includes the DRO for this work order.

Thanks, Dominic

From: Brynn McCulloch [mailto:bmcculloch@leightongroup.com]

Sent: Monday, October 23, 2017 11:47 AM

To: Dominic Mata

Cc: customer.relations@atlglobal.com

Subject: RE: Results - POLA Berth 191-193, 11618.005 (ATL# 1703641)

Any partial results would be helpful, thank you!

Brynn McCulloch, PG 8798

From: Brynn McCulloch [bmcculloch@leightongroup.com]

Sent: Tuesday, October 31, 2017 3:18 PM

To: Dominic Mata

Cc: customer.relations@atlglobal.com

Subject: RE: Partial Results - POLA Berth 191-193, 11618.005 (ATL# 1703653)

Thank you, Dominic.

Can you please run LB11-0.5 for the Copper TCLP?

Thanks again!

Brynn McCulloch, PG 8798

Associate Geologist 17781 Cowan Irvine, Ca 92614 Cell – 949.394.2306 Office – 949.681.4287 Fax – 949.250.1114

Leighton

Solutions You Can Build On

The information accompanying this email transmission may contain confidential or legally privileged information that is intended only for the use of the individual or entity named in this message. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution or reliance upon the contents of this email is strictly prohibited. If you receive this email in error, please immediately notify the sender by reply e-mail and destroy all copies of the communication and any attachments

Please don't print this e-mail unless you really need to.

From: Dominic Mata [mailto:dominic@atlglobal.com]

Sent: Tuesday, October 31, 2017 2:52 PM

To: Brynn McCulloch

Cc: customer.relations@atlglobal.com

Subject: Partial Results - POLA Berth 191-193, 11618.005 (ATL# 1703653)

Hi Brynn,

Please find your partial 3 results that include the added 8260, PAHs, STLCs and TCLPs for the above project attached. The final report is now pending the additional analyses of 8082 and one STLC result being re-extracted (1703653-13). If I can further assist, please let me know.

Thanks,

Dominic Mata | Project Coordinator ADVANCED TECHNOLOGY LABORATORIES 3275 Walnut Avenue, Signal Hill CA 90755 O: 562.989.4045 ext. 238 | http://www.atlglobal.com

November 03, 2017

Brynn McCulloch Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Tel: (949) 394-2306 Fax:(949) 250-1114 ELAP No.: 1838 CSDLAC No.: 10196 ORELAP No.: CA300003

Re: ATL Work Order Number: 1703672

Client Reference: POLA Berth 191-193, 11618-005

Enclosed are the results for sample(s) received on October 13, 2017 by Advanced Technology Laboratories. The sample(s) are tested for the parameters as indicated on the enclosed chain of custody in accordance with applicable laboratory certifications. The laboratory results contained in this report specifically pertains to the sample(s) submitted.

Thank you for the opportunity to serve the needs of your company. If you have any questions, please feel free to contact me or your Project Manager.

Sincerely,

Eddie Rodriguez

Laboratory Director

The cover letter and the case narrative are an integral part of this analytical report and its absence renders the report invalid. Test results contained within this data package meet the requirements of applicable state-specific certification programs. The report cannot be reproduced without written permission from the client and Advanced Technology Laboratories.

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

SUMMARY OF SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LB35-0.5	1703672-01	Soil	10/13/17 8:37	10/13/17 11:46
LB35-2.5	1703672-02	Soil	10/13/17 8:39	10/13/17 11:46
LB35-5.0	1703672-03	Soil	10/13/17 8:41	10/13/17 11:46
LB34-0.5	1703672-04	Soil	10/13/17 9:17	10/13/17 11:46
LB34-2.5	1703672-05	Soil	10/13/17 9:20	10/13/17 11:46
LB34-5.0	1703672-06	Soil	10/13/17 9:22	10/13/17 11:46
LB34-GW	1703672-07	Groundwater	10/13/17 9:25	10/13/17 11:46

CASE NARRATIVE

The ground water sample for VOCs (EPA 8260) analysis was subcontracted to AETL with ELAP Cert.# 1541.

EPA 8260 analyses was performed using 5035 preservation requirements. Any high level dilutions were performed on a preserved methanol sample unless otherwise noted.

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB35-0.5 Lab ID: 1703672-01

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0521	10/18/2017	10/19/17 11:28	
Arsenic	ND	1.0	1	B7J0521	10/18/2017	10/19/17 11:28	
Barium	71	1.0	1	B7J0521	10/18/2017	10/19/17 11:28	
Beryllium	ND	1.0	1	B7J0521	10/18/2017	10/19/17 11:28	
Cadmium	ND	1.0	1	B7J0521	10/18/2017	10/19/17 11:28	
Chromium	6.7	1.0	1	B7J0521	10/18/2017	10/19/17 11:28	
Cobalt	4.6	1.0	1	B7J0521	10/18/2017	10/19/17 11:28	
Copper	8.1	2.0	1	B7J0521	10/18/2017	10/19/17 11:28	
Lead	4.1	1.0	1	B7J0521	10/18/2017	10/19/17 11:28	
Molybdenum	ND	1.0	1	B7J0521	10/18/2017	10/19/17 11:28	
Nickel	15	1.0	1	B7J0521	10/18/2017	10/19/17 11:28	
Selenium	ND	1.0	1	B7J0521	10/18/2017	10/19/17 11:28	
Silver	ND	1.0	1	B7J0521	10/18/2017	10/19/17 11:28	
Thallium	ND	1.0	1	B7J0521	10/18/2017	10/19/17 11:28	

_
717
4
EPA
\equiv
apor
7
S
∀
by A
Ę
ercu
ĭ

Mercury by AA (Cold Vapor) EPA 7471A						1	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0523	10/18/2017	10/19/17 16:13	

10/19/17 11:28 10/19/17 11:28

B7J0521 B7J0521

1.0

30

Vanadium Zinc

10/18/2017 10/18/2017

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0362	10/16/2017	10/16/2017 10/16/17 11:58	
Surrogate: 4-Bromofluorobenzene	57.7%	50 - 138		B7J0362	10/16/2017	10/16/17 11:58	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						<i>f</i>	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	2400	200	100	B7J0583	10/19/2017	10/19/17 22:00	
ORO	7800	200	100	B7J0583	10/19/2017	10/19/17 22:00	

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB35-0.5 Lab ID: 1703672-01

Analyst: TKT Notes **S**4 10/19/17 22:00 Date/Time Analyzed 10/19/2017 Prepared B7J0583 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result %0 Diesel Range Organics by EPA 8015B Surrogate: p-Terphenyl Analyte

Polychlorinated Biphenyls by EPA 8082

Analyst: CO

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Aroclor 1016	ND	160	10	B7J0837	10/27/2017	11/01/17 17:31	D1
Aroclor 1221	ND	160	10	B7J0837	10/27/2017	11/01/17 17:31	DI
Aroclor 1232	ND	160	10	B7J0837	10/27/2017	11/01/17 17:31	DI
Aroclor 1242	ND	160	10	B7J0837	10/27/2017	11/01/17 17:31	DI
Aroclor 1248	ND	160	10	B7J0837	10/27/2017	11/01/17 17:31	DI
Aroclor 1254	ND	160	10	B7J0837	10/27/2017	11/01/17 17:31	DI
Aroclor 1260	ND	160	10	B7J0837	10/27/2017	11/01/17 17:31	DI
Aroclor 1262	ND	160	10	B7J0837	10/27/2017	11/01/17 17:31	DI
Aroclor 1268	ND	160	10	B7J0837	10/27/2017	11/01/17 17:31	DI
Surrogate: Decachlorobiphenyl	45.2 %	18 - 136		B7J0837	10/27/2017	11/01/17 17:31	
Surrogate: Tetrachloro-m-xylene	42.6%	30 - 130		B710837	10/27/2017	11/01/17 17:31	

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

	Result	POL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
1,1,1-Trichloroethane	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
1,1,2,2-Tetrachloroethane	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
1,1,2-Trichloroethane	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
1,1-Dichloroethane	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
1,1-Dichloroethene	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
1,1-Dichloropropene	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
1,2,3-Trichloropropane	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
1,2,3-Trichlorobenzene	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
1,2,4-Trichlorobenzene	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
1,2,4-Trimethylbenzene	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
1,2-Dibromo-3-chloropropane	ND	13	1	B7J0504	10/18/2017	10/18/17 12:09	
1,2-Dibromoethane	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
1,2-Dichlorobenzene	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
1,2-Dichloroethane	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB35-0.5 Lab ID: 1703672-01

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
1,2-Dichloropropane	ND	6.3	_	B7J0504	10/18/2017	10/18/17 12:09	
1,3,5-Trimethylbenzene	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
1,3-Dichlorobenzene	N	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
1,3-Dichloropropane	ND	6.3	-	B7J0504	10/18/2017	10/18/17 12:09	
1,4-Dichlorobenzene	N	6.3	-	B7J0504	10/18/2017	10/18/17 12:09	
2,2-Dichloropropane	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
2-Chlorotoluene	ND	6.3	-	B7J0504	10/18/2017	10/18/17 12:09	
4-Chlorotoluene	N	6.3	-	B7J0504	10/18/2017	10/18/17 12:09	
4-Isopropyltoluene	ND	6.3	_	B7J0504	10/18/2017	10/18/17 12:09	
Benzene	N	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
Bromobenzene	N	6.3	-	B7J0504	10/18/2017	10/18/17 12:09	
Bromochloromethane	N	6.3	-	B7J0504	10/18/2017	10/18/17 12:09	
Bromodichloromethane	ND	6.3	-	B7J0504	10/18/2017	10/18/17 12:09	
Bromoform	ND	6.3	-	B7J0504	10/18/2017	10/18/17 12:09	
Bromomethane	ND	6.3	-	B7J0504	10/18/2017	10/18/17 12:09	
Carbon disulfide	ND	6.3	-	B7J0504	10/18/2017	10/18/17 12:09	
Carbon tetrachloride	ND	6.3	-	B7J0504	10/18/2017	10/18/17 12:09	
Chlorobenzene	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
Chloroethane	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
Chloroform	ND	6.3	-	B7J0504	10/18/2017	10/18/17 12:09	
Chloromethane	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
cis-1,2-Dichloroethene	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
cis-1,3-Dichloropropene	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
Di-isopropyl ether	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
Dibromochloromethane	ND	6.3	-	B7J0504	10/18/2017	10/18/17 12:09	
Dibromomethane	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
Dichlorodifluoromethane	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
Ethyl Acetate	ND	63	-	B7J0504	10/18/2017	10/18/17 12:09	
Ethyl Ether	ND	63	1	B7J0504	10/18/2017	10/18/17 12:09	
Ethyl tert-butyl ether	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
Ethylbenzene	ND	6.3	-	B7J0504	10/18/2017	10/18/17 12:09	
Freon-113	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
Hexachlorobutadiene	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
Isopropylbenzene	ND	6.3	-	B7J0504	10/18/2017	10/18/17 12:09	
m,p-Xylene	ND	13	-	B7J0504	10/18/2017	10/18/17 12:09	
Methylene chloride	ND	6.3	-	B7J0504	10/18/2017	10/18/17 12:09	
MTBE	ND	6.3	-	B7J0504	10/18/2017	10/18/17 12:09	

Page 5 of 72

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB35-0.5

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

Lab ID: 1703672-01

	Result	JÒd				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
n-Butylbenzene	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
n-Propylbenzene	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
Naphthalene	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
o-Xylene	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
sec-Butylbenzene	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
Styrene	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
tert-Amyl methyl ether	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
tert-Butanol	ND	130	1	B7J0504	10/18/2017	10/18/17 12:09	
tert-Butylbenzene	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
Tetrachloroethene	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
Toluene	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
trans-1,2-Dichloroethene	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
trans-1,3-Dichloropropene	ND	6.3	-	B7J0504	10/18/2017	10/18/17 12:09	
Trichloroethene	ND	6.3	-	B7J0504	10/18/2017	10/18/17 12:09	
Trichlorofluoromethane	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
Vinyl acetate	ND	63	1	B7J0504	10/18/2017	10/18/17 12:09	
Vinyl chloride	ND	6.3	1	B7J0504	10/18/2017	10/18/17 12:09	
Surrogate: 1,2-Dichloroethane-d4	94.0%	32 - 140		B7J0504	10/18/2017	10/18/17 12:09	
Surrogate: 4-Bromofluorobenzene	86.4%	68 - 131		B7J0504	10/18/2017	10/18/17 12:09	
Surrogate: Dibromosluoromethane	% 00I	49 - 134		B7J0504	10/18/2017	10/18/17 12:09	
Surrogate: Toluene-d8	104 %	75 - 132		B7J0504	10/18/2017	10/18/17 12:09	
Semivolatile Organic Compounds by EPA 8270/SIM	ls by EPA 8270/SIN	Ţ					Analyst: SP
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
2-Methylnaphthalene	ND	2500	200	B7J0832	10/27/2017	11/02/17 13:42	D1
Acenaphthene	ND	2500	200	B7J0832	10/27/2017	11/02/17 13:42	DI
Acenaphthylene	ND	2500	200	B7J0832	10/27/2017	11/02/17 13:42	DI
Anthracene	ND	2500	200	B7J0832	10/27/2017	11/02/17 13:42	DI
Benzo(a)anthracene	ND	2500	200	B7J0832	10/27/2017	11/02/17 13:42	D1
í	!	4					ì

							,
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
2-Methylnaphthalene	ND	2500	200	B7J0832	10/27/2017	11/02/17 13:42	D1
Acenaphthene	ND	2500	200	B7J0832	10/27/2017	11/02/17 13:42	DI
Acenaphthylene	ND	2500	200	B7J0832	10/27/2017	11/02/17 13:42	DI
Anthracene	ND	2500	200	B7J0832	10/27/2017	11/02/17 13:42	DI
Benzo(a)anthracene	ND	2500	200	B7J0832	10/27/2017	11/02/17 13:42	DI
Benzo(a)pyrene	ND	2500	200	B7J0832	10/27/2017	11/02/17 13:42	DI
Benzo(b)fluoranthene	ND	2500	200	B7J0832	10/27/2017	11/02/17 13:42	DI
Benzo(g,h,i)perylene	ND	2500	200	B7J0832	10/27/2017	11/02/17 13:42	DI
Benzo(k)fluoranthene	ND	2500	200	B7J0832	10/27/2017	11/02/17 13:42	DI
Chrysene	ND	2500	200	B7J0832	10/27/2017	11/02/17 13:42	DI
Dibenz(a,h)anthracene	ND	2500	200	B7J0832	10/27/2017	11/02/17 13:42	D1

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB35-0.5 Lab ID: 1703672-01

Semivolatile Organic Compounds by EPA 8270/SIM

Analyst: SP

Notes \overline{D} D DI DI D \Box \$4 **S**4 \$ 11/02/17 13:42 11/02/17 13:42 11/02/17 13:42 11/02/17 13:42 11/02/17 13:42 11/02/17 13:42 11/02/17 13:42 11/02/17 13:42 11/02/17 13:42 11/02/17 13:42 Date/Time Analyzed 10/27/2017 10/27/2017 10/27/2017 10/27/2017 10/27/2017 10/27/2017 10/27/2017 10/27/2017 710/27/2017 10/27/2017 Prepared B7J0832 B7J0832 B7J0832 B7J0832 B7J0832 B7J0832 B7J0832 B7J0832 B7J0832 Batch Dilution 200 200 200 200 200 29 - 109 39 - 108 39 - 123 0 - 146(ug/kg) 2500 2500 2500 2500 2500 2500 PQL (ug/kg) Result 9 B R R 2 8 %0 %0 Surrogate: 1,2-Dichlorobenzene-d4 Surrogate: 2-Fluorobiphenyl Surrogate: Nitrobenzene-d5 Surrogate: 4-Terphenyl-d14 Indeno(1,2,3-cd)pyrene Phenanthrene Fluoranthene Naphthalene Fluorene Analyte Pyrene

Page 7 of 72

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB35-2.5 Lab ID: 1703672-02

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0521	10/18/2017	10/19/17 11:30	
Arsenic	ND	1.0	1	B7J0521	10/18/2017	10/19/17 11:30	
Barium	29	1.0	1	B7J0521	10/18/2017	10/19/17 11:30	
Beryllium	ND	1.0	1	B7J0521	10/18/2017	10/19/17 11:30	
Cadmium	ND	1.0	1	B7J0521	10/18/2017	10/19/17 11:30	
Chromium	6.1	1.0	1	B7J0521	10/18/2017	10/19/17 11:30	
Cobalt	3.7	1.0	1	B7J0521	10/18/2017	10/19/17 11:30	
Copper	5.3	2.0	1	B7J0521	10/18/2017	10/19/17 11:30	
Lead	1.1	1.0	1	B7J0521	10/18/2017	10/19/17 11:30	
Molybdenum	ND	1.0	1	B7J0521	10/18/2017	10/19/17 11:30	
Nickel	13	1.0	1	B7J0521	10/18/2017	10/19/17 11:30	
Selenium	ND	1.0	1	B7J0521	10/18/2017	10/19/17 11:30	
Silver	ND	1.0	1	B7J0521	10/18/2017	10/19/17 11:30	
Thallium	ND	1.0	1	B7J0521	10/18/2017	10/19/17 11:30	
Vanadium	19	1.0	1	B7J0521	10/18/2017	10/19/17 11:30	
Zinc	74	1.0	1	B7J0521	10/18/2017	10/19/17 11:30	

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A						7	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0523	10/18/2017	10/19/17 16:15	

Gasoline Range Organics by EPA 8015B (Modified)

Gasoline Range Organics by EPA	EPA 8015B (Modified)	(Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0362	10/16/2017	B7J0362 10/16/2017 10/16/17 12:16	
Surrogate: 4-Bromofluorobenzene	86.6%	50 - 138		B7J0362	10/16/2017	10/16/17 12:16	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						f F	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	1800	200	100	B7J0583	10/19/2017	10/19/17 22:17	
ORO	7400	200	100	B7J0583	10/19/2017	10/19/17 22:17	

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB35-2.5 Lab ID: 1703672-02

Diesel Range Organics by EPA 8015B

Analyst: TKT

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: p-Terphenyl	%0	38 - 145		B7J0583	10/19/2017	10/19/17 22:17	S4

ds hy FPA 5035/EPA 8260B

Volatile Organic Compounds by EPA 5035/EPA 8260B)35/EPA 826	0B					Analyst: AG
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
1,1,1-Trichloroethane	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
1, 1, 2, 2- Tetrachloroethane	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
1,1,2-Trichloroethane	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
1,1-Dichloroethane	N	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
1,1-Dichloroethene	NO	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
1,1-Dichloropropene	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
1,2,3-Trichloropropane	N	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
1,2,3-Trichlorobenzene	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
1,2,4-Trichlorobenzene	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
1,2,4-Trimethylbenzene	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
1,2-Dibromo-3-chloropropane	ND	13	1	B7J0504	10/18/2017	10/18/17 12:27	
1,2-Dibromoethane	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
1,2-Dichlorobenzene	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
1,2-Dichloroethane	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
1,2-Dichloropropane	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
1,3,5-Trimethylbenzene	NO	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
1,3-Dichlorobenzene	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
1,3-Dichloropropane	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
1,4-Dichlorobenzene	NO	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
2,2-Dichloropropane	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
2-Chlorotoluene	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
4-Chlorotoluene	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
4-Isopropyltoluene	N	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
Benzene	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
Bromobenzene	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
Bromochloromethane	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
Bromodichloromethane	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
Bromoform	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
Bromomethane	N	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
Carbon disulfide	N	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	

Page 9 of 72

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB35-2.5 Lab ID: 1703672-02

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

Analyte	Result (119/kg)	PQL (119/kg)	Dilution	Batch	Prenared	Date/Time Analyzed	Notes
	(9x,8n)	(Sw An)		Tamer	no mdor r	nor frame	
Carbon tetrachloride	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
Chlorobenzene	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
Chloroethane	N	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
Chloroform	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
Chloromethane	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
cis-1,2-Dichloroethene	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
cis-1,3-Dichloropropene	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
Di-isopropyl ether	N	6.4	-	B7J0504	10/18/2017	10/18/17 12:27	
Dibromochloromethane	ND	6.4		B7J0504	10/18/2017	10/18/17 12:27	
Dibromomethane	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
Dichlorodifluoromethane	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
Ethyl Acetate	ND	64		B7J0504	10/18/2017	10/18/17 12:27	
Ethyl Ether	N	64	1	B7J0504	10/18/2017	10/18/17 12:27	
Ethyl tert-butyl ether	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
Ethylbenzene	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
Freon-113	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
Hexachlorobutadiene	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
Isopropylbenzene	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
m,p-Xylene	ND	13	1	B7J0504	10/18/2017	10/18/17 12:27	
Methylene chloride	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
MTBE	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
n-Butylbenzene	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
n-Propylbenzene	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
Naphthalene	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
o-Xylene	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
sec-Butylbenzene	N	6.4	-	B7J0504	10/18/2017	10/18/17 12:27	
Styrene	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
tert-Amyl methyl ether	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
tert-Butanol	ND	130	1	B7J0504	10/18/2017	10/18/17 12:27	
tert-Butylbenzene	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
Tetrachloroethene	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
Toluene	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
trans-1,2-Dichloroethene	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
trans-1,3-Dichloropropene	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
Trichloroethene	ND	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
Trichlorofluoromethane	N	6.4	1	B7J0504	10/18/2017	10/18/17 12:27	
Vinyl acetate	ND	64	-	B7J0504	10/18/2017	10/18/17 12:27	

Page 10 of 72

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB35-2.5 Lab ID: 1703672-02

Volatile Organic Compounds by EPA 5035/EPA 8260B	' EPA 5035/EPA 820	50 B					Analyst: AG
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Vinyl chloride	ND	6.4	1	B7J0504	10/18/2017	B7J0504 10/18/2017 10/18/17 12:27	
Surrogate: 1,2-Dichloroethane-d4	93.1 %	32 - 140		B7J0504	10/18/2017	10/18/17 12:27	
Surrogate: 4-Bromofluorobenzene	85.3 %	68 - 131		B7J0504	10/18/2017	10/18/17 12:27	
Surrogate: Dibromofluoromethane	% 9.66	49 - 134		B7J0504	10/18/2017	10/18/17 12:27	
Surrogate: Toluene-d8	104 %	75 - 132		B7J0504	10/18/2017	10/18/17 12:27	

Semivolatile Organic Compounds by EPA 8270/SIM	/SIM						Analyst: SP
Result	lt PQL	Т				Date/Time	
Analyte (ug/kg)	g) (ug/kg)		Dilution	Batch	Prepared	Analyzed	Notes

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
2-Methylnaphthalene	ND	5000	500	B7J0832	10/27/2017	11/01/17 22:23	D1
Acenaphthene	ND	5000	200	B7J0832	10/27/2017	11/01/17 22:23	D1
Acenaphthylene	ND	5000	200	B7J0832	10/27/2017	11/01/17 22:23	D1
Anthracene	ND	5000	200	B7J0832	10/27/2017	11/01/17 22:23	D1
Benzo(a)anthracene	ND	5000	200	B7J0832	10/27/2017	11/01/17 22:23	D1
Benzo(a)pyrene	ND	5000	200	B7J0832	10/27/2017	11/01/17 22:23	D1
Benzo(b)fluoranthene	ND	5000	200	B7J0832	10/27/2017	11/01/17 22:23	D1
Benzo(g,h,i)perylene	ND	5000	200	B7J0832	10/27/2017	11/01/17 22:23	D1
Benzo(k)fluoranthene	ND	5000	200	B7J0832	10/27/2017	11/01/17 22:23	D1
Chrysene	ND	5000	200	B7J0832	10/27/2017	11/01/17 22:23	D1
Dibenz(a,h)anthracene	ND	5000	200	B7J0832	10/27/2017	11/01/17 22:23	D1
Fluoranthene	ND	5000	200	B7J0832	10/27/2017	11/01/17 22:23	D1
Fluorene	ND	5000	200	B7J0832	10/27/2017	11/01/17 22:23	D1
Indeno(1,2,3-cd)pyrene	ND	2000	200	B7J0832	10/27/2017	11/01/17 22:23	D1
Naphthalene	ND	5000	200	B7J0832	10/27/2017	11/01/17 22:23	D1
Phenanthrene	ND	5000	200	B7J0832	10/27/2017	11/01/17 22:23	D1
Pyrene	ND	5000	500	B7J0832	10/27/2017	11/01/17 22:23	D1
Surrogate: 1,2-Dichlorobenzene-d4 09	%0	29 - 109		B7J0832	10/27/2017	11/01/17 22:23	S4
Surrogate: 2-Fluorobiphenyl 09	%0	39 - 108		B7J0832	10/27/2017	11/01/17 22:23	S4
Surrogate: Nitrobenzene-d5 09	%0	0 - 146		B7J0832	10/27/2017	11/01/17 22:23	
Surrogate: 4-Terphenyl-d14	%0	39 - 123		B7J0832	10/27/2017	11/01/17 22:23	S4

Page 11 of 72

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB35-5.0 Lab ID: 1703672-03

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
) ,))			•		
Antimony	ND	2.0	1	B7J0521	10/18/2017	10/19/17 11:31	
Arsenic	ND	1.0	1	B7J0521	10/18/2017	10/19/17 11:31	
Barium	39	1.0	1	B7J0521	10/18/2017	10/19/17 11:31	
Beryllium	ND	1.0	1	B7J0521	10/18/2017	10/19/17 11:31	
Cadmium	ND	1.0	1	B7J0521	10/18/2017	10/19/17 11:31	
Chromium	6.7	1.0	_	B7J0521	10/18/2017	10/19/17 11:31	
Cobalt	3.2	1.0	1	B7J0521	10/18/2017	10/19/17 11:31	
Copper	5.1	2.0	_	B7J0521	10/18/2017	10/19/17 11:31	
Lead	8.5	1.0	_	B7J0521	10/18/2017	10/19/17 11:31	
Molybdenum	ND	1.0	_	B7J0521	10/18/2017	10/19/17 11:31	
Nickel	12	1.0	-	B7J0521	10/18/2017	10/19/17 11:31	
Selenium	ND	1.0	1	B7J0521	10/18/2017	10/19/17 11:31	
Silver	ND	1.0	_	B7J0521	10/18/2017	10/19/17 11:31	
Thallium	ND	1.0	_	B7J0521	10/18/2017	10/19/17 11:31	
Vanadium	17	1.0	-	B7J0521	10/18/2017	10/19/17 11:31	
Zinc	59	1.0	1	B7J0521	10/18/2017	10/19/17 11:31	

✓!
٦,
~
7471
_
EPA,
ب
$^{\sim}$
'apor
ĕ
್ಷ
>
ರ
7
Cold
ತ್ರ
A (Col
AA (Col
AA ((
AA ((
' by AA ((
' by AA ((
' by AA ((
AA ((
' by AA ((

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0523	10/18/2017	10/19/17 16:17	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

Analyst: KEK

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0362	B7J0362 10/16/2017	10/16/17 12:35	
Surrogate: 4-Bromofluorobenzene	91.8%	50 - 138		B7J0362	10/16/2017	10/16/17 12:35	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	9069	200	100	B7J0583	10/19/2017	10/19/17 22:35	
ORO	17000	200	100	B7J0583	10/19/2017	10/19/17 22:35	

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB35-5.0 Lab ID: 1703672-03

Diesel Range Organics by EPA 8015B

Analyst: TKT Notes **S**4 10/19/17 22:35 Date/Time Analyzed 10/19/2017 Prepared B7J0583 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result %0 Surrogate: p-Terphenyl Analyte

Polychlorinated Biphenyls by EPA 8082

Analyst: CO

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Aroclor 1016	ND	32	2	B7J0837	10/27/2017	11/01/17 17:49	DI
Aroclor 1221	ND	32	2	B7J0837	10/27/2017	11/01/17 17:49	DI
Aroclor 1232	ND	32	2	B7J0837	10/27/2017	11/01/17 17:49	DI
Aroclor 1242	ND	32	2	B7J0837	10/27/2017	11/01/17 17:49	DI
Aroclor 1248	ND	32	2	B7J0837	10/27/2017	11/01/17 17:49	DI
Aroclor 1254	ND	32	2	B7J0837	10/27/2017	11/01/17 17:49	DI
Aroclor 1260	ND	32	2	B7J0837	10/27/2017	11/01/17 17:49	DI
Aroclor 1262	ND	32	2	B7J0837	10/27/2017	11/01/17 17:49	DI
Aroclor 1268	ND	32	2	B7J0837	10/27/2017	11/01/17 17:49	D1
Surrogate: Decachlorobiphenyl	21.1%	18 - 136		B7J0837	10/27/2017	11/01/17 17:49	
Surrogate: Tetrachloro-m-xylene	58.3 %	30 - 130		B7J0837	10/27/2017	11/01/17 17:49	

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

Analyte	Result	PQL	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
, mary co	(9, An)	(9 An)		Tomo:	no mdo	, mar.)	
1,1,1,2-Tetrachloroethane	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
1,1,1-Trichloroethane	ND	5.5		B7J0504	10/18/2017	10/18/17 12:46	
1,1,2,2-Tetrachloroethane	ND	5.5		B7J0504	10/18/2017	10/18/17 12:46	
1,1,2-Trichloroethane	ND	5.5		B7J0504	10/18/2017	10/18/17 12:46	
1,1-Dichloroethane	ND	5.5		B7J0504	10/18/2017	10/18/17 12:46	
1,1-Dichloroethene	ND	5.5		B7J0504	10/18/2017	10/18/17 12:46	
1,1-Dichloropropene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
1,2,3-Trichloropropane	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
1,2,3-Trichlorobenzene	ND	5.5	-	B7J0504	10/18/2017	10/18/17 12:46	
1,2,4-Trichlorobenzene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
1,2,4-Trimethylbenzene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
1,2-Dibromo-3-chloropropane	ND	11	-	B7J0504	10/18/2017	10/18/17 12:46	
1,2-Dibromoethane	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
1,2-Dichlorobenzene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
1,2-Dichloroethane	N	5.5		B7J0504	10/18/2017	10/18/17 12:46	

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB35-5.0

Lab ID: 1703672-03

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
1,2-Dichloropropane	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
1,3,5-Trimethylbenzene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
1,3-Dichlorobenzene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
1,3-Dichloropropane	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
1,4-Dichlorobenzene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
2,2-Dichloropropane	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
2-Chlorotoluene	N	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
4-Chlorotoluene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
4-Isopropyltoluene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
Benzene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
Bromobenzene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
Bromochloromethane	ND	5.5	-	B7J0504	10/18/2017	10/18/17 12:46	
Bromodichloromethane	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
Bromoform	ND	5.5	-	B7J0504	10/18/2017	10/18/17 12:46	
Bromomethane	ND	5.5	-	B7J0504	10/18/2017	10/18/17 12:46	
Carbon disulfide	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
Carbon tetrachloride	N	5.5	-	B7J0504	10/18/2017	10/18/17 12:46	
Chlorobenzene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
Chloroethane	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
Chloroform	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
Chloromethane	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
cis-1,2-Dichloroethene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
cis-1,3-Dichloropropene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
Di-isopropyl ether	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
Dibromochloromethane	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
Dibromomethane	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
Dichlorodifluoromethane	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
Ethyl Acetate	ND	55	1	B7J0504	10/18/2017	10/18/17 12:46	
Ethyl Ether	ND	55	1	B7J0504	10/18/2017	10/18/17 12:46	
Ethyl tert-butyl ether	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
Ethylbenzene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
Freon-113	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
Hexachlorobutadiene	ND	5.5	-	B7J0504	10/18/2017	10/18/17 12:46	
Isopropylbenzene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
m,p-Xylene	ND	11	1	B7J0504	10/18/2017	10/18/17 12:46	
Methylene chloride	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
MTBE	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	

Page 14 of 72

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB35-5.0 Lab ID: 1703672-03

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
n-Butylbenzene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
n-Propylbenzene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
Naphthalene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
o-Xylene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
sec-Butylbenzene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
Styrene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
tert-Amyl methyl ether	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
tert-Butanol	ND	110	1	B7J0504	10/18/2017	10/18/17 12:46	
tert-Butylbenzene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
Tetrachloroethene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
Toluene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
trans-1,2-Dichloroethene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
trans-1,3-Dichloropropene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
Trichloroethene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
Trichlorofluoromethane	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
Vinyl acetate	ND	55	1	B7J0504	10/18/2017	10/18/17 12:46	
Vinyl chloride	ND	5.5	1	B7J0504	10/18/2017	10/18/17 12:46	
Surrogate: 1,2-Dichloroethane-d4	% 101	32 - 140		B7J0504	10/18/2017	10/18/17 12:46	
Surrogate: 4-Bromofluorobenzene	86.6%	68 - 131		B7J0504	10/18/2017	10/18/17 12:46	
Surrogate: Dibromofluoromethane	NO 2 %	49 - 134		B7J0504	10/18/2017	10/18/17 12:46	
Surrogate: Toluene-d8	% 801	75 - 132		B7J0504	10/18/2017	10/18/17 12:46	

EPA 8270/SIM
' EPA
by
Compounds
Organic
Semivolatile

Analyst: SP

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
2-Methylnaphthalene	ND	6200	200	B7J0832	10/27/2017	11/01/17 22:50	D1
Acenaphthene	ND	6200	500	B7J0832	10/27/2017	11/01/17 22:50	DI
Acenaphthylene	ND	6200	200	B7J0832	10/27/2017	11/01/17 22:50	D1
Anthracene	ND	6200	200	B7J0832	10/27/2017	11/01/17 22:50	DI
Benzo(a)anthracene	ND	6200	200	B7J0832	10/27/2017	11/01/17 22:50	DI
Benzo(a)pyrene	ND	6200	200	B7J0832	10/27/2017	11/01/17 22:50	D1
Benzo(b)fluoranthene	ND	6200	200	B7J0832	10/27/2017	11/01/17 22:50	DI
Benzo(g,h,i)perylene	ND	6200	200	B7J0832	10/27/2017	11/01/17 22:50	DI
Benzo(k)fluoranthene	ND	6200	200	B7J0832	10/27/2017	11/01/17 22:50	D1
Chrysene	ND	6200	200	B7J0832	10/27/2017	11/01/17 22:50	DI
Dibenz(a,h)anthracene	ND	6200	200	B7J0832	10/27/2017	11/01/17 22:50	DI

Page 15 of 72

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB35-5.0 Lab ID: 1703672-03

Semivolatile Organic Compounds by EPA 8270/SIM

Analyst: SP

Notes \overline{D} D DI DI D \Box \$4 **S**4 \$ 11/01/17 22:50 11/01/17 22:50 11/01/17 22:50 11/01/17 22:50 11/01/17 22:50 11/01/17 22:50 11/01/17 22:50 11/01/17 22:50 11/01/17 22:50 11/01/17 22:50 Date/Time Analyzed 10/27/2017 10/27/2017 10/27/2017 10/27/2017 10/27/2017 10/27/2017 10/27/2017 10/27/2017 710/27/2017 10/27/2017 Prepared B7J0832 B7J0832 B7J0832 B7J0832 B7J0832 B7J0832 B7J0832 B7J0832 B7J0832 Batch Dilution 500 500 500 500 500 29 - 109 39 - 108 39 - 123 0 - 146(ug/kg) 6200 6200 6200 6200 6200 PQL 6200 (ug/kg) Result 9 B R R 2 8 %0 %0 Surrogate: 1,2-Dichlorobenzene-d4 Surrogate: 2-Fluorobiphenyl Surrogate: Nitrobenzene-d5 Surrogate: 4-Terphenyl-d14 Indeno(1,2,3-cd)pyrene Phenanthrene Fluoranthene Naphthalene Fluorene Analyte Pyrene

Page 16 of 72

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB34-0.5 Lab ID: 1703672-04

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0521	10/18/2017	10/19/17 11:32	
Arsenic	3.1	1.0	1	B7J0521	10/18/2017	10/19/17 11:32	
Barium	100	1.0	1	B7J0521	10/18/2017	10/19/17 11:32	
Beryllium	ND	1.0	1	B7J0521	10/18/2017	10/19/17 11:32	
Cadmium	ND	1.0	1	B7J0521	10/18/2017	10/19/17 11:32	
Chromium	20	1.0	1	B7J0521	10/18/2017	10/19/17 11:32	
Cobalt	5.1	1.0	1	B7J0521	10/18/2017	10/19/17 11:32	
Copper	23	2.0	1	B7J0521	10/18/2017	10/19/17 11:32	
Lead	25	1.0	1	B7J0521	10/18/2017	10/19/17 11:32	
Molybdenum	ND	1.0	1	B7J0521	10/18/2017	10/19/17 11:32	
Nickel	12	1.0	1	B7J0521	10/18/2017	10/19/17 11:32	
Selenium	ND	1.0	1	B7J0521	10/18/2017	10/19/17 11:32	
Silver	ND	1.0	1	B7J0521	10/18/2017	10/19/17 11:32	
Thallium	ND	1.0	1	B7J0521	10/18/2017	10/19/17 11:32	
Vanadium	20	1.0	1	B7J0521	10/18/2017	10/19/17 11:32	
Zinc	62	1.0	_	B7J0521	10/18/2017	10/19/17 11:32	

	POL
Mercury by AA (Cold Vapor) EPA 7471A	Result

Mercury by AA (Cold Vapor) EPA 7471A						A	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0523	10/18/2017	10/19/17 16:19	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0362	10/16/2017	B7J0362 10/16/2017 10/16/17 12:53	
Surrogate: 4-Bromofluorobenzene	05 %	50 - 138		B7J0362	10/16/2017	10/16/17 12:53	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	1100	100	100	B7J0583	10/19/2017	10/19/17 22:52	
ORO	4000	100	100	B7J0583	10/19/2017	10/19/17 22:52	

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB34-0.5 Lab ID: 1703672-04

Diesel Range Organics by EPA 8015B

Analyst: TKT Notes **S**4 10/19/17 22:52 Date/Time Analyzed 10/19/2017 Prepared B7J0583 Batch Dilution 38 - 145 (mg/kg) PQL (mg/kg) Result %0 Surrogate: p-Terphenyl Analyte

Polychlorinated Biphenyls by EPA 8082

Analyst: CO

S1011/01/17 18:07 11/01/17 18:07 11/01/17 18:07 11/01/17 18:07 11/01/17 18:07 11/01/17 18:07 11/01/17 18:07 11/01/17 18:07 11/01/17 18:07 11/01/17 18:07 11/01/17 18:07 Date/Time Analyzed 10/27/2017 10/27/2017 10/27/2017 10/27/2017 10/27/2017 10/27/2017 10/27/2017 10/27/2017 10/27/2017 10/27/2017 10/27/2017 Prepared B7J0837 Dilution 18 - 136 30 - 130 (ug/kg) PQL 16 16 16 16 16 16 16 (ug/kg) Result \mathbb{R} 9 \exists 9 \mathbb{R} 8 9 \exists 8 17.7% 44.3 % Surrogate: Tetrachloro-m-xylene Surrogate: Decachlorobiphenyl Aroclor 1248 Aroclor 1260 Aroclor 1262 Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1254 Aroclor 1268 Aroclor 1221 Analyte

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
1,1,1-Trichloroethane	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
1,1,2,2-Tetrachloroethane	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
1,1,2-Trichloroethane	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
1,1-Dichloroethane	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
1,1-Dichloroethene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
1,1-Dichloropropene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
1,2,3-Trichloropropane	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
1,2,3-Trichlorobenzene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
1,2,4-Trichlorobenzene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
1,2,4-Trimethylbenzene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
1,2-Dibromo-3-chloropropane	ND	11	1	B7J0504	10/18/2017	10/18/17 13:05	
1,2-Dibromoethane	N	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
1,2-Dichlorobenzene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
1.2-Dichloroethane	QN.	5.5	_	B7J0504	10/18/2017	10/18/17 13:05	

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB34-0.5

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

Lab ID: 1703672-04

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
1,2-Dichloropropane	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
1,3,5-Trimethylbenzene	ND	5.5	_	B7J0504	10/18/2017	10/18/17 13:05	
1,3-Dichlorobenzene	ND	5.5	_	B7J0504	10/18/2017	10/18/17 13:05	
1,3-Dichloropropane	ND	5.5	-	B7J0504	10/18/2017	10/18/17 13:05	
1,4-Dichlorobenzene	ND	5.5	_	B7J0504	10/18/2017	10/18/17 13:05	
2,2-Dichloropropane	ND	5.5	_	B7J0504	10/18/2017	10/18/17 13:05	
2-Chlorotoluene	ND	5.5	_	B7J0504	10/18/2017	10/18/17 13:05	
4-Chlorotoluene	ND	5.5	_	B7J0504	10/18/2017	10/18/17 13:05	
4-Isopropyltoluene	N	5.5	-	B7J0504	10/18/2017	10/18/17 13:05	
Benzene	ND	5.5	-	B7J0504	10/18/2017	10/18/17 13:05	
Bromobenzene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
Bromochloromethane	ND	5.5	_	B7J0504	10/18/2017	10/18/17 13:05	
Bromodichloromethane	ND	5.5	_	B7J0504	10/18/2017	10/18/17 13:05	
Bromoform	ND	5.5	-	B7J0504	10/18/2017	10/18/17 13:05	
Bromomethane	ND	5.5	_	B7J0504	10/18/2017	10/18/17 13:05	
Carbon disulfide	ND	5.5	_	B7J0504	10/18/2017	10/18/17 13:05	
Carbon tetrachloride	ND	5.5	_	B7J0504	10/18/2017	10/18/17 13:05	
Chlorobenzene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
Chloroethane	ND	5.5	-	B7J0504	10/18/2017	10/18/17 13:05	
Chloroform	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
Chloromethane	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
cis-1,2-Dichloroethene	ND	5.5	-	B7J0504	10/18/2017	10/18/17 13:05	
cis-1,3-Dichloropropene	ND	5.5	-	B7J0504	10/18/2017	10/18/17 13:05	
Di-isopropyl ether	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
Dibromochloromethane	ND	5.5	-	B7J0504	10/18/2017	10/18/17 13:05	
Dibromomethane	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
Dichlorodifluoromethane	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
Ethyl Acetate	ND	55	1	B7J0504	10/18/2017	10/18/17 13:05	
Ethyl Ether	ND	55	_	B7J0504	10/18/2017	10/18/17 13:05	
Ethyl tert-butyl ether	ND	5.5	_	B7J0504	10/18/2017	10/18/17 13:05	
Ethylbenzene	ND	5.5	-	B7J0504	10/18/2017	10/18/17 13:05	
Freon-113	ND	5.5	_	B7J0504	10/18/2017	10/18/17 13:05	
Hexachlorobutadiene	ND	5.5	_	B7J0504	10/18/2017	10/18/17 13:05	
Isopropylbenzene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
m,p-Xylene	ND	111	-	B7J0504	10/18/2017	10/18/17 13:05	
Methylene chloride	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
MTBE	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	

Page 19 of 72

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB34-0.5 Lab ID: 1703672-04

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

	Result	POL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
n-Butylbenzene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
n-Propylbenzene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
Naphthalene	QN	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
o-Xylene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
sec-Butylbenzene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
Styrene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
tert-Amyl methyl ether	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
tert-Butanol	ND	110	1	B7J0504	10/18/2017	10/18/17 13:05	
tert-Butylbenzene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
Tetrachloroethene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
Toluene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
trans-1,2-Dichloroethene	N	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
trans-1,3-Dichloropropene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
Trichloroethene	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
Trichlorofluoromethane	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
Vinyl acetate	ND	55	1	B7J0504	10/18/2017	10/18/17 13:05	
Vinyl chloride	ND	5.5	1	B7J0504	10/18/2017	10/18/17 13:05	
Surrogate: 1,2-Dichloroethane-d4	95.0%	32 - 140		B7J0504	10/18/2017	10/18/17 13:05	
Surrogate: 4-Bromofluorobenzene	86.4%	68 - 131		B7J0504	10/18/2017	10/18/17 13:05	
Surrogate: Dibromofluoromethane	105 %	49 - 134		B7J0504	10/18/2017	10/18/17 13:05	
Surrogate: Toluene-d8	103 %	75 - 132		B7J0504	10/18/2017	10/18/17 13:05	

_
≥ .
≾
2
•
ì
ò
4
7
3
<u>.</u>
_
Ĵ
3
?
=
=
₹
٧
ga
<u> </u>
5
ב
3
7
•
≥
3

Semivolatile Organic Compounds by EPA 8270/SIM	A 8270/SIM						Analyst: SP
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
2-Methylnaphthalene	ND	2500	200	B7J0832	10/27/2017	11/01/17 23:18	DI
Acenaphthene	ND	2500	900	B7J0832	10/27/2017	11/01/17 23:18	DI
Acenaphthylene	ND	2500	900	B7J0832	10/27/2017	11/01/17 23:18	DI
Anthracene	ND	2500	900	B7J0832	10/27/2017	11/01/17 23:18	DI
Benzo(a)anthracene	ND	2500	900	B7J0832	10/27/2017	11/01/17 23:18	DI
Benzo(a)pyrene	ND	2500	900	B7J0832	10/27/2017	11/01/17 23:18	DI
Benzo(b)fluoranthene	ND	2500	900	B7J0832	10/27/2017	11/01/17 23:18	DI
Benzo(g,h,i)perylene	ND	2500	900	B7J0832	10/27/2017	11/01/17 23:18	DI
Benzo(k)fluoranthene	ND	2500	900	B7J0832	10/27/2017	11/01/17 23:18	DI
Chrysene	ND	2500	900	B7J0832	10/27/2017	11/01/17 23:18	DI
Dibenz(a,h)anthracene	ND	2500	200	B7J0832	10/27/2017	11/01/17 23:18	D1

Page 20 of 72

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB34-0.5 Lab ID: 1703672-04

Semivolatile Organic Compounds by EPA 8270/SIM

Analyst: SP

Notes \overline{D} D DI DI D \Box \$4 **S**4 \$ 11/01/17 23:18 11/01/17 23:18 11/01/17 23:18 11/01/17 23:18 11/01/17 23:18 11/01/17 23:18 11/01/17 23:18 11/01/17 23:18 11/01/17 23:18 11/01/17 23:18 Date/Time Analyzed 10/27/2017 10/27/2017 10/27/2017 10/27/2017 10/27/2017 10/27/2017 10/27/2017 10/27/2017 710/27/2017 10/27/2017 Prepared B7J0832 B7J0832 B7J0832 B7J0832 B7J0832 B7J0832 B7J0832 B7J0832 B7J0832 Batch Dilution 500 500 500 500 500 29 - 109 39 - 108 39 - 123 0 - 146(ug/kg) 2500 2500 2500 2500 2500 2500 PQL (ug/kg) Result 9 B R R 2 8 %0 %0 Surrogate: 1,2-Dichlorobenzene-d4 Surrogate: 2-Fluorobiphenyl Surrogate: Nitrobenzene-d5 Surrogate: 4-Terphenyl-d14 Indeno(1,2,3-cd)pyrene Phenanthrene Fluoranthene Naphthalene Fluorene Analyte Pyrene

Page 21 of 72

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB34-2.5 Lab ID: 1703672-05

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICF-AES EFA 0010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	2.0	1	B7J0522	10/18/2017	10/19/17 11:36	
Arsenic	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:36	
Barium	66	1.0	1	B7J0522	10/18/2017	10/19/17 11:36	
Beryllium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:36	
Cadmium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:36	
Chromium	7.5	1.0	_	B7J0522	10/18/2017	10/19/17 11:36	
Cobalt	3.7	1.0	1	B7J0522	10/18/2017	10/19/17 11:36	
Copper	9.7	2.0	-	B7J0522	10/18/2017	10/19/17 11:36	
Lead	ND	1.0	-	B7J0522	10/18/2017	10/19/17 11:36	
Molybdenum	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:36	
Nickel	5.8	1.0	_	B7J0522	10/18/2017	10/19/17 11:36	
Selenium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:36	
Silver	ND	1.0	_	B7J0522	10/18/2017	10/19/17 11:36	
Thallium	ND	1.0	-	B7J0522	10/18/2017	10/19/17 11:36	
Vanadium	15	1.0		B7J0522	10/18/2017	10/19/17 11:36	
Zinc	26	1.0	-	B7J0522	10/18/2017	10/19/17 11:36	

1
747
EPA 7471
Ξ
Vapor)
\sqrt{a}
크
A (Cold
೭
₹
7
lercury by
5
Ħ
ĭ
ĭ

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0524	10/18/2017	10/19/17 16:25	

Analyst: KEK

Gasoline Range Organics by EPA 8015B (Modified)

Gasoline Range Organics by EPA 80	EPA 8015B (Modified)						Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0362	10/16/2017	B7J0362 10/16/2017 10/16/17 13:12	
Surrogate: 4-Bromofluorobenzene	113 %	50 - 138		B7J0362	B7J0362 10/16/2017	10/16/17 13:12	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						7	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	30	1.0	1	B7J0583	10/19/2017	10/19/17 19:58	
ORO	29	1.0	1	B7J0583	10/19/2017	10/19/17 19:58	

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB34-2.5

Diesel Range Organics by EPA 8015B

Lab ID: 1703672-05

Diesel Range Organics by EPA 8015B	•						Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: p-Terphenyl	% 901	38 - 145		B7J0583	10/19/2017	10/19/17 19:58	

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
1,1,1-Trichloroethane	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
1, 1, 2, 2- Tetrachloroethane	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
1,1,2-Trichloroethane	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
1,1-Dichloroethane	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
1,1-Dichloroethene	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
1,1-Dichloropropene	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
1,2,3-Trichloropropane	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
1,2,3-Trichlorobenzene	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
1,2,4-Trichlorobenzene	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
1,2,4-Trimethylbenzene	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
1,2-Dibromo-3-chloropropane	ND	14	1	B7J0504	10/18/2017	10/18/17 13:23	
1,2-Dibromoethane	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
1,2-Dichlorobenzene	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
1,2-Dichloroethane	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
1,2-Dichloropropane	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
1,3,5-Trimethylbenzene	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
1,3-Dichlorobenzene	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
1,3-Dichloropropane	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
1,4-Dichlorobenzene	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
2,2-Dichloropropane	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
2-Chlorotoluene	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
4-Chlorotoluene	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
4-Isopropyltoluene	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
Benzene	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
Bromobenzene	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
Bromochloromethane	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
Bromodichloromethane	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
Bromoform	N	8.9	-	B7J0504	10/18/2017	10/18/17 13:23	
Bromomethane	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
Carbon disulfide	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB34-2.5 Lab ID: 1703672-05

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Carbon tetrachloride	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
Chlorobenzene	ND	8.9	П	B7J0504	10/18/2017	10/18/17 13:23	
Chloroethane	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
Chloroform	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
Chloromethane	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
cis-1,2-Dichloroethene	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
cis-1,3-Dichloropropene	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
Di-isopropyl ether	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
Dibromochloromethane	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
Dibromomethane	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
Dichlorodifluoromethane	ND	8.9	_	B7J0504	10/18/2017	10/18/17 13:23	
Ethyl Acetate	ND	89	1	B7J0504	10/18/2017	10/18/17 13:23	
Ethyl Ether	ND	89	1	B7J0504	10/18/2017	10/18/17 13:23	
Ethyl tert-butyl ether	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
Ethylbenzene	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
Freon-113	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
Hexachlorobutadiene	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
Isopropylbenzene	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
m,p-Xylene	ND	14	1	B7J0504	10/18/2017	10/18/17 13:23	
Methylene chloride	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
MTBE	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
n-Butylbenzene	ND	8.9	П	B7J0504	10/18/2017	10/18/17 13:23	
n-Propylbenzene	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
Naphthalene	ND	8.9	_	B7J0504	10/18/2017	10/18/17 13:23	
o-Xylene	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
sec-Butylbenzene	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
Styrene	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
tert-Amyl methyl ether	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
tert-Butanol	ND	140	1	B7J0504	10/18/2017	10/18/17 13:23	
tert-Butylbenzene	N	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
Tetrachloroethene	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
Toluene	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
trans-1,2-Dichloroethene	ND	8.9	_	B7J0504	10/18/2017	10/18/17 13:23	
trans-1,3-Dichloropropene	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
Trichloroethene	ND	8.9	1	B7J0504	10/18/2017	10/18/17 13:23	
Trichlorofluoromethane	ND	8.9	_	B7J0504	10/18/2017	10/18/17 13:23	
Vinyl acetate	ND	89	1	B7J0504	10/18/2017	10/18/17 13:23	

Page 24 of 72

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB34-2.5 Lab ID: 1703672-05

Volatile Organic Compounds by EPA 5035/EPA 8260B

Volatile Organic Compounds by EPA 5035/EPA 8260B	A 5035/EPA 826	0B					Analyst: AG
	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Vinyl chloride	ND	8.9	1	B7J0504	10/18/2017	B7J0504 10/18/2017 10/18/17 13:23	
Surrogate: 1,2-Dichloroethane-d4	104 %	32 - 140		B7J0504	10/18/2017	10/18/17 13:23	
Surrogate: 4-Bromofluorobenzene	89.2 %	68 - 131		B7J0504	10/18/2017	10/18/17 13:23	
Surrogate: Dibromofluoromethane	103 %	49 - 134		B7J0504	10/18/2017	10/18/17 13:23	
Surrogate: Toluene-d8	104 %	75 - 132		B7J0504	10/18/2017	10/18/17 13:23	

_ 1		
Analyst: SP		
	Date/Time	
		,
1	PQL	
Semivolatile Organic Compounds by EPA 8270/SIM	Result	

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
2-Methylnaphthalene	ND	5.0	1	B7J0832	10/27/2017	11/01/17 21:29	
Acenaphthene	ND	5.0	1	B7J0832	10/27/2017	11/01/17 21:29	
Acenaphthylene	ND	5.0		B7J0832	10/27/2017	11/01/17 21:29	
Anthracene	ND	5.0	1	B7J0832	10/27/2017	11/01/17 21:29	
Benzo(a)anthracene	N	5.0	1	B7J0832	10/27/2017	11/01/17 21:29	
Benzo(a)pyrene	ND	5.0		B7J0832	10/27/2017	11/01/17 21:29	
Benzo(b)fluoranthene	ND	5.0	1	B7J0832	10/27/2017	11/01/17 21:29	
Benzo(g,h,i)perylene	ND	5.0	_	B7J0832	10/27/2017	11/01/17 21:29	
Benzo(k)fluoranthene	ND	5.0		B7J0832	10/27/2017	11/01/17 21:29	
Chrysene	ND	5.0	1	B7J0832	10/27/2017	11/01/17 21:29	
Dibenz(a,h)anthracene	ND	5.0	_	B7J0832	10/27/2017	11/01/17 21:29	
Fluoranthene	ND	5.0	_	B7J0832	10/27/2017	11/01/17 21:29	
Fluorene	ND	5.0	1	B7J0832	10/27/2017	11/01/17 21:29	
Indeno(1,2,3-cd)pyrene	ND	5.0	1	B7J0832	10/27/2017	11/01/17 21:29	
Naphthalene	ND	5.0		B7J0832	10/27/2017	11/01/17 21:29	
Phenanthrene	ND	5.0	_	B7J0832	10/27/2017	11/01/17 21:29	
Pyrene	ND	5.0	1	B7J0832	10/27/2017	11/01/17 21:29	
Surrogate: 1,2-Dichlorobenzene-d4 51.2 %	%	29 - 109		B7J0832	10/27/2017	11/01/17 21:29	
Surrogate: 2-Fluorobiphenyl 84.0 %	%	39 - 108		B7J0832	10/27/2017	11/01/17 21:29	
Surrogate: Nitrobenzene-d5 70.9 %	%	0 - 146		B7J0832	10/27/2017	11/01/17 21:29	
Surrogate: 4-Terphenyl-d14	%	39 - 123		B7J0832	10/27/2017	11/01/17 21:29	

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB34-5.0 Lab ID: 1703672-06

Title 22 Metals by ICP-AES EPA 6010B

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
Analyfe	Result	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
	(9 m A)	(9 A)		Toma	no mdor r	nor frame	
Antimony	ND	2.0	1	B7J0522	10/18/2017	10/19/17 11:42	
Arsenic	1.7	1.0	1	B7J0522	10/18/2017	10/19/17 11:42	
Barium	52	1.0	1	B7J0522	10/18/2017	10/19/17 11:42	
Beryllium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:42	
Cadmium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:42	
Chromium	8.7	1.0	1	B7J0522	10/18/2017	10/19/17 11:42	
Cobalt	5.2	1.0	1	B7J0522	10/18/2017	10/19/17 11:42	
Copper	8.9	2.0	1	B7J0522	10/18/2017	10/19/17 11:42	
Lead	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:42	
Molybdenum	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:42	
Nickel	7.0	1.0	1	B7J0522	10/18/2017	10/19/17 11:42	
Selenium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:42	
Silver	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:42	
Thallium	ND	1.0	1	B7J0522	10/18/2017	10/19/17 11:42	
Vanadium	15	1.0	1	B7J0522	10/18/2017	10/19/17 11:42	
Zinc	27	1.0	-	B7J0522	10/18/2017	10/19/17 11:42	

Mercury by AA (Cold Vapor) EPA 7471A

Mercury by AA (Cold Vapor) EPA 7471A						7	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.10	1	B7J0524	10/18/2017	10/19/17 16:36	

Gasoline Range Organics by EPA 8015B (Modified)

Gasoline Range Organics by EPA 8015B	EPA 8015B (Modified)						Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B7J0362	10/16/2017	B7J0362 10/16/2017 10/16/17 14:44	
Surrogate: 4-Bromofluorobenzene 114 %	%	50 - 138		B7J0362	10/16/2017	B7J0362 10/16/2017 10/16/17 14:44	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B						†	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	5.0	1.0	1	B7J0583	10/19/2017	10/19/17 20:15	
ORO	7.1	1.0	1	B7J0583	10/19/2017	10/19/17 20:15	

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB34-5.0

Diesel Range Organics by EPA 8015B

Lab ID: 1703672-06

Diesel Range Organics by EPA 8015B							Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Surrogate: p-Terphenyl	% I	38 - 145		B7J0583	10/19/2017	10/19/17 20:15	

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
1,1,1-Trichloroethane	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
1,1,2,2-Tetrachloroethane	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
1,1,2-Trichloroethane	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
1,1-Dichloroethane	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
1,1-Dichloroethene	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
1,1-Dichloropropene	ND	6.1		B7J0504	10/18/2017	10/18/17 13:42	
1,2,3-Trichloropropane	ND	6.1		B7J0504	10/18/2017	10/18/17 13:42	
1,2,3-Trichlorobenzene	ND	6.1		B7J0504	10/18/2017	10/18/17 13:42	
1,2,4-Trichlorobenzene	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
1,2,4-Trimethylbenzene	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
1,2-Dibromo-3-chloropropane	ND	12		B7J0504	10/18/2017	10/18/17 13:42	
1,2-Dibromoethane	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
1,2-Dichlorobenzene	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
1,2-Dichloroethane	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
1,2-Dichloropropane	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
1,3,5-Trimethylbenzene	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
1,3-Dichlorobenzene	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
1,3-Dichloropropane	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
1,4-Dichlorobenzene	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
2,2-Dichloropropane	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
2-Chlorotoluene	N	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
4-Chlorotoluene	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
4-Isopropyltoluene	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
Benzene	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
Bromobenzene	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
Bromochloromethane	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
Bromodichloromethane	N	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
Bromoform	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
Bromomethane	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
Carbon disulfide	N	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB34-5.0 Lab ID: 1703672-06

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

Analyte	Result (119/kg)	PQL (110/ko)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
	(Sw.An)	(9 y An)		Tomo	no malou i	nor frame	
Carbon tetrachloride	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
Chlorobenzene	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
Chloroethane	ND	6.1	-	B7J0504	10/18/2017	10/18/17 13:42	
Chloroform	ND	6.1	-	B7J0504	10/18/2017	10/18/17 13:42	
Chloromethane	ND	6.1	-	B7J0504	10/18/2017	10/18/17 13:42	
cis-1,2-Dichloroethene	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
cis-1,3-Dichloropropene	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
Di-isopropyl ether	ND	6.1	-	B7J0504	10/18/2017	10/18/17 13:42	
Dibromochloromethane	ND	6.1	-	B7J0504	10/18/2017	10/18/17 13:42	
Dibromomethane	ND	6.1	-	B7J0504	10/18/2017	10/18/17 13:42	
Dichlorodifluoromethane	ND	6.1	-	B7J0504	10/18/2017	10/18/17 13:42	
Ethyl Acetate	ND	61	-	B7J0504	10/18/2017	10/18/17 13:42	
Ethyl Ether	ND	61	1	B7J0504	10/18/2017	10/18/17 13:42	
Ethyl tert-butyl ether	ND	6.1	-	B7J0504	10/18/2017	10/18/17 13:42	
Ethylbenzene	N	6.1	-	B7J0504	10/18/2017	10/18/17 13:42	
Freon-113	ND	6.1	-	B7J0504	10/18/2017	10/18/17 13:42	
Hexachlorobutadiene	ND	6.1	-	B7J0504	10/18/2017	10/18/17 13:42	
Isopropylbenzene	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
m,p-Xylene	ND	12	1	B7J0504	10/18/2017	10/18/17 13:42	
Methylene chloride	ND	6.1	-	B7J0504	10/18/2017	10/18/17 13:42	
MTBE	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
n-Butylbenzene	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
n-Propylbenzene	ND	6.1	-	B7J0504	10/18/2017	10/18/17 13:42	
Naphthalene	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
o-Xylene	ND	6.1	-	B7J0504	10/18/2017	10/18/17 13:42	
sec-Butylbenzene	ND	6.1	-	B7J0504	10/18/2017	10/18/17 13:42	
Styrene	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
tert-Amyl methyl ether	ND	6.1	-	B7J0504	10/18/2017	10/18/17 13:42	
tert-Butanol	ND	120	1	B7J0504	10/18/2017	10/18/17 13:42	
tert-Butylbenzene	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
Tetrachloroethene	ND	6.1	-	B7J0504	10/18/2017	10/18/17 13:42	
Toluene	ND	6.1	-	B7J0504	10/18/2017	10/18/17 13:42	
trans-1,2-Dichloroethene	ND	6.1	1	B7J0504	10/18/2017	10/18/17 13:42	
trans-1,3-Dichloropropene	ND	6.1	-	B7J0504	10/18/2017	10/18/17 13:42	
Trichloroethene	ND	6.1	-	B7J0504	10/18/2017	10/18/17 13:42	
Trichlorofluoromethane	N	6.1	-	B7J0504	10/18/2017	10/18/17 13:42	
Vinyl acetate	N	61		B7J0504	10/18/2017	10/18/17 13:42	

Page 28 of 72

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB34-5.0

Lab ID: 1703672-06

Volatile Organic Compounds by EPA 5035/EPA 8260B

Analyst: AG

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Vinyl chloride	ND	6.1	1	B7J0504	B7J0504 10/18/2017	10/18/17 13:42	
Surrogate: 1,2-Dichloroethane-d4	95.4%	32 - 140		B7J0504	10/18/2017	10/18/17 13:42	
Surrogate: 4-Bromofluorobenzene	85.3 %	68 - 131		B7J0504	10/18/2017	10/18/17 13:42	
Surrogate: Dibromofluoromethane	103 %	49 - 134		B7J0504	10/18/2017	10/18/17 13:42	
Surrogate: Toluene-d8	% 90I	75 - 132		B7J0504	10/18/2017	10/18/17 13:42	

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB34-GW

Lab ID: 1703672-07

Title 22 Metals by ICP-AES EPA 6010B							Analyst: GO
	Result	PQL				Date/Time	
Analyte	(mg/L)	(mg/L)	Dilution	Batch	Prepared	Analyzed	Notes
Antimony	ND	0.010	1	B7J0455	10/17/2017	10/17/17 17:34	
Arsenic	N	0.010		B7J0455	10/17/2017	10/17/17 17:34	
Barium	0.13	0.0030	1	B7J0455	10/17/2017	10/17/17 17:34	
Beryllium	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:34	
Cadmium	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:34	
Chromium	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:34	
Cobalt	0.0034	0.0030	1	B7J0455	10/17/2017	10/17/17 17:34	
Copper	N	0.0090	1	B7J0455	10/17/2017	10/17/17 17:34	
Lead	ND	0.0050	1	B7J0455	10/17/2017	10/17/17 17:34	
Molybdenum	ND	0.0050	1	B7J0455	10/17/2017	10/17/17 17:34	
Nickel	ND	0.0050	1	B7J0455	10/17/2017	10/17/17 17:34	
Selenium	ND	0.010	1	B7J0455	10/17/2017	10/17/17 17:34	
Silver	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:34	
Thallium	N	0.015	1	B7J0455	10/17/2017	10/17/17 17:34	
Vanadium	ND	0.0030	1	B7J0455	10/17/2017	10/17/17 17:34	
Zinc	ND	0.025	П	B7J0455	10/17/2017	10/17/17 17:34	
Mercury by AA (Cold Vapor) EPA 7470A	4					7	Analyst: KEK
	Result	PQL				Date/Time	
Analyte	(ng/L)	(ng/L)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.20	1	B7J0458	10/17/2017	10/18/17 17:28	
Gasoline Range Organics by EPA 8015B (Modified)	(Modified)						Analyst: VW
	Result	PQL				Date/Time	
Analyte	(mg/L)	(mg/L)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	0.05	1	B7J0434	10/17/2017	10/17/17 09:53	
Surrogate: 4-Bromofluorobenzene 106 %	\0	70 - 130		B7J0434	10/17/2017	10/17/17 09:53	
Diesel Range Organics by EPA 8015B						·	Analyst: TKT
	Result	PQL				Date/Time	
Analyte	(mg/L)	(mg/L)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	0.15	0.05	1	B7J0462	10/17/2017	10/17/17 22:44	
ORO	0.10	0.05	-	B7J0462	10/17/2017	10/17/17 22:44	

20 - 150

135 %

Surrogate: p-Terphenyl

Page 30 of 72

10/17/17 22:44 10/17/17 22:44

10/17/2017 10/17/2017

B7J0462 B7J0462

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Client Sample ID LB34-GW Lab ID: 1703672-07

Semivolatile Organic Compounds by EPA 8270/SIM

Analyst: SP

	Result	PQL				Date/Time	
Analyte	(ng/L)	(ng/L)	Dilution	Batch	Prepared	Analyzed	Notes
2-Methylnaphthalene	QN	0.20	1	B7J0413	10/16/2017	10/16/17 16:57	
Acenaphthene	ND	0.20	-	B7J0413	10/16/2017	10/16/17 16:57	
Acenaphthylene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:57	
Anthracene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:57	
Benzo(a)anthracene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:57	
Benzo(a)pyrene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:57	
Benzo(b)fluoranthene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:57	
Benzo(g,h,i)perylene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:57	
Benzo(k)fluoranthene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:57	
Chrysene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:57	
Dibenz(a,h)anthracene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:57	
Fluoranthene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:57	
Fluorene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:57	
Indeno(1,2,3-cd)pyrene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:57	
Naphthalene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:57	
Phenanthrene	ND	0.20	-	B7J0413	10/16/2017	10/16/17 16:57	
Pyrene	ND	0.20	1	B7J0413	10/16/2017	10/16/17 16:57	
Surrogate: 1,2-Dichlorobenzene-d4	61.7%	32 - 99		B7J0413	10/16/2017	10/16/17 16:57	
Surrogate: 2-Fluorobiphenyl	65.2 %	29 - 105		B7J0413	10/16/2017	10/16/17 16:57	
Surrogate: Nitrobenzene-d5	76.3 %	17 - 123		B7J0413	10/16/2017	10/16/17 16:57	
Surrogate: 4-Terphenyl-d14	84.0%	32 - 119		B7J0413	10/16/2017	10/16/17 16:57	

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

QUALITY CONTROL SECTION

Title 22 Metals by ICP-AES EPA 6010B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/L)	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes

	Result	PQL	MDL	Spike	Source		% Rec		RPD
Analyte	(mg/L)	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit
Batch B7J0455 - EPA 3010A W									
Blank (B7J0455-BLK1)					Prepared	: 10/17/2017	Prepared: 10/17/2017 Analyzed: 10/17/2017	7/2017	
Antimony	CN	0.010	0 0088		•		•		
Arsenic	Q.	0.010	0.0078						
Barium	N	0.0030	0.0026						
Beryllium	ND	0.0030	0.0016						
Cadmium	N	0.0030	0.0024						
Chromium	ND	0.0030	0.0020						
Cobalt	NO	0.0030	0.0016						
Copper	ND	0.0000	0.0038						
Lead	ND	0.0050	0.0047						
Molybdenum	N	0.0050	0.0030						
Nickel	ND	0.0050	0.0046						
Selenium	ND	0.010	0.0093						
Silver	ND	0.0030	0.0024						
Thallium	N	0.015	0.0085						
Vanadium	ND	0.0030	0.0022						
Zinc	N	0.025	0.0057						
LCS (B7J0455-BS1)					Prepared	: 10/17/2017	Prepared: 10/17/2017 Analyzed: 10/17/2017	7/2017	
Antimony	0.929102	0.010	0.0088	1.00000		92.9	80 - 120		
Arsenic	0.941062	0.010	0.0078	1.00000		94.1	80 - 120		
Barium	0.969431	0.0030	0.0026	1.00000		6.96	80 - 120		
Beryllium	0.952237	0.0030	0.0016	1.00000		95.2	80 - 120		
Cadmium	0.923200	0.0030	0.0024	1.00000		92.3	80 - 120		
Chromium	0.964497	0.0030	0.0020	1.00000		96.4	80 - 120		
Cobalt	0.960800	0.0030	0.0016	1.00000		96.1	80 - 120		
Copper	0.947343	0.0000	0.0038	1.00000		94.7	80 - 120		
Lead	0.953769	0.0050	0.0047	1.00000		95.4	80 - 120		
Molybdenum	0.936200	0.0050	0.0030	1.00000		93.6	80 - 120		
Nickel	0.929993	0.0050	0.0046	1.00000		93.0	80 - 120		
Selenium	0.907008	0.010	0.0093	1.00000		7.06	80 - 120		
Silver	1.18499	0.0030	0.0024	1.00000		118	80 - 120		
Thallium	0.946903	0.015	0.0085	1.00000		94.7	80 - 120		
Vanadium	0.953132	0.0030	0.0022	1.00000		95.3	80 - 120		
Zinc	0.930909	0.025	0.0057	1.00000		93.1	80 - 120		
Matrix Spike (B7J0455-MS1)		Š	Source: 1703640-01	40-01	Prepared	: 10/17/2017	Prepared: 10/17/2017 Analyzed: 10/17/2017	7/2017	

Page 32 of 72

101 99.6 101

0.106382 ND

2.50000 2.50000 2.50000

0.010 0.0030 0.0030

2.45296 2.51904 2.59554 2.52702

Arsenic Barium Beryllium

Antimony

60 - 130

98.1

9 9

2.50000

0.0088 0.0078 0.0026

0.010

Project Number: POLA Berth 191-193, 11618-005 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Report To: Brynn McCulloch

Reported: 11/03/2017

Title 22 Metals by ICP-AES EPA 6010B - Quality Control (cont'd)

Sesult	PQL	MDL	Spike	Source	, d	% Rec		RPD	777
ng/L)	(mg/L)	(mg/L)	revei	Kesuit	% Kec	Limits	KPD	LIMIT	Notes

Batch B7J0455 - EPA 3010A_W (continued)

Matrix Spike (B7J0455-MSI) - Continued	ned	Š	Source: 1703640-01	540-01	Prepared:	10/17/2017	Prepared: 10/17/2017 Analyzed: 10/17/2017	/2017	
Cadmium	2.37069	0.0030	0.0024	2.50000	ND	94.8	69 - 116		
Chromium	2.49293	0.0030	0.0020	2.50000	0.014934	99.1	74 - 120		
Cobalt	2.43594	0.0030	0.0016	2.50000	0.002840	97.3	70 - 116		
Copper	2.53772	0.0000	0.0038	2.50000	0.01129	101	76 - 123		
Lead	2.42425	0.0050	0.0047	2.50000	N	0.76	69 - 117		
Molybdenum	2.53677	0.0050	0.0030	2.50000	0.026825	100	68 - 120		
Nickel	2.38734	0.0050	0.0046	2.50000	0.011243	95.0	70 - 115		
Selenium	2.39006	0.010	0.0093	2.50000	ND	9.56	66 - 120		
Silver	2.66866	0.0030	0.0024	2.50000	NO	107	73 - 123		
Thallium	2.34797	0.015	0.0085	2.50000	NO	93.9	57 - 124		
Vanadium	2.52252	0.0030	0.0022	2.50000	0.010942	100	72 - 123		
Zinc	2.38635	0.025	0.0057	2.50000	0.023691	94.5	73 - 111		
Matrix Spike Dup (B7J0455-MSD1)		ŏ	Source: 1703640-01	540-01	Prepared:	10/17/2017	Prepared: 10/17/2017 Analyzed: 10/17/2017	/2017	
Antimony	2.42439	0.010	0.0088	2.50000	ND	97.0	60 - 130	1.17	20
Arsenic	2.47205	0.010	0.0078	2.50000	ND	6.86	69 - 123	1.88	20
Barium	2.56504	0.0030	0.0026	2.50000	0.106382	98.3	67 - 129	1.18	20
Beryllium	2.49000	0.0030	0.0016	2.50000	ND	9.66	74 - 120	1.48	20
Cadmium	2.33304	0.0030	0.0024	2.50000	ND	93.3	69 - 116	1.60	20
Chromium	2.44862	0.0030	0.0020	2.50000	0.014934	97.3	74 - 120	1.79	20
Cobalt	2.39427	0.0030	0.0016	2.50000	0.002840	95.7	70 - 116	1.73	20
Copper	2.50095	0.0000	0.0038	2.50000	0.01129	9.66	76 - 123	1.46	20
Lead	2.39216	0.0050	0.0047	2.50000	ND	95.7	69 - 117	1.33	20
Molybdenum	2.50298	0.0050	0.0030	2.50000	0.026825	0.66	68 - 120	1.34	20
Nickel	2.35861	0.0050	0.0046	2.50000	0.011243	93.9	70 - 115	1.21	20
Selenium	2.34170	0.010	0.0093	2.50000	ND	93.7	66 - 120	2.04	20
Silver	2.62202	0.0030	0.0024	2.50000	ND	105	73 - 123	1.76	20
Thallium	2.34150	0.015	0.0085	2.50000	ND	93.7	57 - 124	0.276	20
Vanadium	2.48646	0.0030	0.0022	2.50000	0.010942	0.66	72 - 123	1.44	20
Zinc	2.35433	0.025	0.0057	2.50000	0.023691	93.2	73 - 111	1.35	20

Page 33 of 72

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Title 22 Metals by ICP-AES EPA 6010B - Quality Control

	Result	POL	MDL	Spike	Source		% Rec		RPD		
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes	

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
S HOLDS LAND AND AND AND AND AND AND AND AND AND										
Batch B7J0521 - EPA 3050B_S										
Blank (B7J0521-BLK1)					Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	9/2017		
Antimony	N	2.0	0.51							
Arsenic	ND	1.0	0.12							
Barium	ND	1.0	0.12							
Beryllium	ND	1.0	0.03							
Cadmium	ND	1.0	0.14							
Chromium	ND	1.0	0.26							
Cobalt	ND	1.0	0.07							
Copper	ND	2.0	0.19							
Lead	N QN	1.0	0.18							
Molybdenum	N Q	1.0	0.12							
Nickel	ND	1.0	0.18							
Selenium	N	1.0	0.40							
Silver	ND	1.0	0.12							
Thallium	ND	1.0	0.38							
Vanadium	ND	1.0	90.0							
Zinc	ND	1.0	0.15							
LCS (B7J0521-BS1)					Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	9/2017		
Antimony	44.6737	2.0	0.51	50.0000		89.3	80 - 120			
Arsenic	44.3583	1.0	0.12	50.0000		88.7	80 - 120			
Barium	48.5528	1.0	0.12	50.0000		97.1	80 - 120			
Beryllium	45.5802	1.0	0.03	50.0000		91.2	80 - 120			
Cadmium	44.3475	1.0	0.14	50.0000		88.7	80 - 120			
Chromium	48.0257	1.0	0.26	50.0000		96.1	80 - 120			
Cobalt	47.3349	1.0	0.07	50.0000		94.7	80 - 120			
Copper	46.9373	2.0	0.19	50.0000		93.9	80 - 120			
Lead	45.6487	1.0	0.18	50.0000		91.3	80 - 120			
Molybdenum	46.5031	1.0	0.12	50.0000		93.0	80 - 120			
Nickel	45.5362	1.0	0.18	50.0000		91.1	80 - 120			
Selenium	42.9147	1.0	0.40	50.0000		85.8	80 - 120			
Silver	48.5406	1.0	0.12	50.0000		97.1	80 - 120			
Thallium	46.3220	1.0	0.38	50.0000		97.6	80 - 120			
Vanadium	47.2496	1.0	90.0	50.0000		94.5	80 - 120			
Zinc	45.4536	1.0	0.15	50.0000		6.06	80 - 120			
Matrix Spike (B7J0521-MS1)		S	Source: 1703659-01	59-01	Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	9/2017		
Antimony	78.2194	2.0	0.51	125.000	N	62.6	33 - 98			
Arsenic	96.0602	1.0	0.12	125.000	2.18176	75.1	48 - 101			
Barium	197.620	1.0	0.12	125.000	109.426	9.07	25 - 131			
Beryllium	94.5627	1.0	0.03	125.000	ND	75.7	26 - 97			
Cadmium	88.8968	1.0	0.14	125.000	0.462093	70.7	53 - 94			
Chromium	111.714	1.0	0.26	125.000	18.0048	75.0	45 - 113			

Page 34 of 72

Leighton Consulting, Inc. 17781 Cowan Street

Irvine, CA 92614

Report To: Brynn McCulloch

Project Number: POLA Berth 191-193, 11618-005

Reported: 11/03/2017

Title 22 Metals by ICP-AES EPA 6010B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0521 - EPA 3050B_S (continued)

Matrix Spike (B7J0521-MS1) - Continued	ıned	S	Source: 1703659-01	559-01	Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	9/2017	
Cobalt	100.921	1.0	0.07	125.000	7.86130	74.4	51 - 97		
Copper	120.351	2.0	0.19	125.000	21.5846	79.0	51 - 113		
Lead	144.756	1.0	0.18	125.000	64.7775	64.0	33 - 127		
Molybdenum	95.7408	1.0	0.12	125.000	ND	9.9/	54 - 97		
Nickel	104.175	1.0	0.18	125.000	14.6893	71.6	46 - 102		
Selenium	91.4219	1.0	0.40	125.000	ND	73.1	52 - 93		
Silver	104.123	1.0	0.12	125.000	ND	83.3	58 - 98		
Thallium	84.5474	1.0	0.38	125.000	ND	9.79	46 - 93		
Vanadium	121.406	1.0	90.0	125.000	26.4725	75.9	55 - 104		
Zinc	264.053	1.0	0.15	125.000	184.021	0.49	26 - 118		
Matrix Spike Dup (B7J0521-MSD1)		S	Source: 1703659-01	559-01	Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	9/2017	
Antimony	87.6342	2.0	0.51	125.000	ND	70.1	33 - 98	11.4	20
Arsenic	106.725	1.0	0.12	125.000	2.18176	83.6	48 - 101	10.5	20
Barium	217.283	1.0	0.12	125.000	109.426	86.3	25 - 131	9.48	20
Beryllium	105.696	1.0	0.03	125.000	ND	84.6	56 - 97	11.1	20
Cadmium	97.8498	1.0	0.14	125.000	0.462093	6.77	53 - 94	9.59	20
Chromium	123.744	1.0	0.26	125.000	18.0048	84.6	45 - 113	10.2	20
Cobalt	110.999	1.0	0.07	125.000	7.86130	82.5	51 - 97	9.51	20
Copper	134.808	2.0	0.19	125.000	21.5846	9.06	51 - 113	11.3	20
Lead	162.258	1.0	0.18	125.000	64.7775	78.0	33 - 127	11.4	20
Molybdenum	106.092	1.0	0.12	125.000	ND	84.9	54 - 97	10.3	20
Nickel	114.800	1.0	0.18	125.000	14.6893	80.1	46 - 102	9.70	20
Selenium	101.405	1.0	0.40	125.000	ND	81.1	52 - 93	10.4	20
Silver	115.307	1.0	0.12	125.000	ND	92.2	58 - 98	10.2	20
Thallium	94.6868	1.0	0.38	125.000	ND	75.7	46 - 93	11.3	20
Vanadium	133.700	1.0	90.0	125.000	26.4725	82.8	55 - 104	9.64	20
Zinc	291.180	1.0	0.15	125.000	184.021	85.7	26 - 118	9.77	20

Page 35 of 72

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Title 22 Metals by ICP-AES EPA 6010B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0522 - EPA 3050B S										
						0	-			
Blank (B7J0522-BLK1)					Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	19/2017		
Antimony	ND	2.0	0.51							
Arsenic	QN !	1.0	0.12							
Barium	QN !	1.0	0.12							
Beryllium	QN !	1.0	0.03							
Cadmium	2	1.0	0.14							
Chromium	NO	1.0	0.26							
Cobalt	ND	1.0	0.07							
Copper	ND	2.0	0.19							
Lead	ND	1.0	0.18							
Molybdenum	ND	1.0	0.12							
Nickel	ND	1.0	0.18							
Selenium	ND	1.0	0.40							
Silver	ND	1.0	0.12							
Thallium	ND	1.0	0.38							
Vanadium	ND	1.0	90.0							
Zinc	ND	1.0	0.15							
LCS (B7J0522-BS1)					Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	19/2017		
Antimony	44.0054	2.0	0.51	50.0000		0.88	80 - 120			
Arsenic	43.7278	1.0	0.12	50.0000		87.5	80 - 120			
Barium	47.6076	1.0	0.12	50.0000		95.2	80 - 120			
Beryllium	44.0730	1.0	0.03	50.0000		88.1	80 - 120			
Cadmium	43.4271	1.0	0.14	50.0000		6.98	80 - 120			
Chromium	47.0347	1.0	0.26	50.0000		94.1	80 - 120			
Cobalt	46.2982	1.0	0.07	50.0000		97.6	80 - 120			
Copper	45.7400	2.0	0.19	50.0000		91.5	80 - 120			
Lead	44.7014	1.0	0.18	50.0000		89.4	80 - 120			
Molybdenum	45.8167	1.0	0.12	50.0000		91.6	80 - 120			
Nickel	44.5192	1.0	0.18	50.0000		0.68	80 - 120			
Selenium	42.3748	1.0	0.40	50.0000		84.7	80 - 120			
Silver	46.9070	1.0	0.12	50.0000		93.8	80 - 120			
Thallium	44.5632	1.0	0.38	50.0000		89.1	80 - 120			
Vanadium	46.2541	1.0	90.0	50.0000		92.5	80 - 120			
Zinc	44.4701	1.0	0.15	50.0000		6.88	80 - 120			
Matrix Spike (B7J0522-MS1)		\mathbf{S}_0	Source: 1703672-05	72-05	Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	19/2017		
Antimony	55.3796	2.0	0.51	125.000	ND	44.3	33 - 98			
Arsenic	77.4801	1.0	0.12	125.000	0.237066	61.8	48 - 101			
Barium	156.386	1.0	0.12	125.000	98.8874	46.0	25 - 131			
Beryllium	76.9417	1.0	0.03	125.000	ND	9.19	26 - 97			
Cadmium	69.6659	1.0	0.14	125.000	ND	55.7	53 - 94			
Chromium	79.7975	1.0	0.26	125.000	7.45795	67.9	45 - 113			

Page 36 of 72

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Title 22 Metals by ICP-AES EPA 6010B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
nalyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0522 - EPA 3050B_S (continued)

Matrix Spike (B7J0522-MS1) - Continued	ned	Ø	Source: 1703672-05	572-05	Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	/2017	
Cobalt	75.9180	1.0	0.07	125.000	3.69589	57.8	51 - 97		
Copper	84.9218	2.0	0.19	125.000	7.57142	61.9	51 - 113		
Lead	71.4824	1.0	0.18	125.000	ND	57.2	33 - 127		
Molybdenum	75.1120	1.0	0.12	125.000	ND	60.1	54 - 97		
Nickel	75.5334	1.0	0.18	125.000	5.76752	55.8	46 - 102		
Selenium	74.6554	1.0	0.40	125.000	ND	59.7	52 - 93		
Silver	86.2298	1.0	0.12	125.000	ND	0.69	58 - 98		
Thallium	67.5519	1.0	0.38	125.000	ND	54.0	46 - 93		
Vanadium	88.0594	1.0	90.0	125.000	15.4392	58.1	55 - 104		
Zinc	85.3713	1.0	0.15	125.000	25.5268	47.9	26 - 118		
Matrix Spike Dup (B7J0522-MSD1)		S	Source: 1703672-05	572-05	Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	/2017	
Antimony	59.4024	2.0	0.51	125.000	N Q	47.5	33 - 98	7.01	20
Arsenic	82.6520	1.0	0.12	125.000	0.237066	62.9	48 - 101	6.46	20
Barium	164.454	1.0	0.12	125.000	98.8874	52.5	25 - 131	5.03	20
Beryllium	83.0842	1.0	0.03	125.000	ND	5.99	56 - 97	7.68	20
Cadmium	74.1982	1.0	0.14	125.000	ND	59.4	53 - 94	6.30	20
Chromium	84.5824	1.0	0.26	125.000	7.45795	61.7	45 - 113	5.82	20
Cobalt	80.6244	1.0	0.07	125.000	3.69589	61.5	51 - 97	6.01	20
Copper	89.4858	2.0	0.19	125.000	7.57142	65.5	51 - 113	5.23	20
Lead	75.3280	1.0	0.18	125.000	ND	60.3	33 - 127	5.24	20
Molybdenum	79.0384	1.0	0.12	125.000	ND	63.2	54 - 97	5.09	20
Nickel	79.8602	1.0	0.18	125.000	5.76752	59.3	46 - 102	5.57	20
Selenium	79.5914	1.0	0.40	125.000	ND	63.7	52 - 93	6.40	20
Silver	91.4008	1.0	0.12	125.000	ND	73.1	58 - 98	5.82	20
Thallium	71.8481	1.0	0.38	125.000	ND	57.5	46 - 93	6.16	20
Vanadium	93.7148	1.0	90.0	125.000	15.4392	62.6	55 - 104	6.22	20
Zinc	93.1380	1.0	0.15	125.000	25.5268	54.1	26 - 118	8.70	20

Page 37 of 72

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Mercury by AA (Cold Vapor) EPA 7470A - Quality Control

•		Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte (ug/L) (ug/L) (ug/L) Level Result % Rec Limits RPD Limit Notes	Analyte	(ng/L)	(ng/L)	(ng/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0458 - EPA 245.1/7470_W

Datei D/30436 - El A 243:1//4/0_W	≥ ,									
Blank (B7J0458-BLK1)					Prepared:	10/17/2017	Prepared: 10/17/2017 Analyzed: 10/18/2017	2017		
Mercury	N	0.20	0.05							
LCS (B7J0458-BS1)					Prepared:	10/17/2017	Prepared: 10/17/2017 Analyzed: 10/18/2017	2017		
Mercury	9.54958	0.20	0.05	10.0000		95.5	80 - 120			
Matrix Spike (B7J0458-MS1)			Source: 1703640-01	640-01	Prepared:	10/17/2017	Prepared: 10/17/2017 Analyzed: 10/18/2017	2017		
Mercury	9.82494	0.20	0.05	0.05 10.0000	0.066603	9.76	0.066603 97.6 70 - 130			
Matrix Spike Dup (B7J0458-MSD1)			Source: 1703640-01	640-01	Prepared:	10/17/2017	Prepared: 10/17/2017 Analyzed: 10/18/2017	7102,		
Mercury	10.2498	0.20	0.05	0.05 10.0000	0.066603	0.066603 102	70 - 130	4.23	20	
Post Spike (B7J0458-PS1)			Source: 1703640-01	640-01	Prepared:	10/17/2017	Prepared: 10/17/2017 Analyzed: 10/18/2017	2017		
Mercury	4.94797			5.00000	0.066603 97.6	9.76	85 - 115			

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Mercury by AA (Cold Vapor) EPA 7471A - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0523 - EPA 7471_S										
Blank (B7J0523-BLK1)					Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	9/2017		
Mercury	N	0.10	0.005							
LCS (B7J0523-BS1)					Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	9/2017		
Mercury	0.748114	0.10	0.005	0.833333		8.68	80 - 120			
Matrix Spike (B7J0523-MS1)		Š	Source: 1703659-01	59-01	Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	9/2017		
Mercury	0.889239	0.10	0.005	0.005 0.833333	0.069618	0.069618 98.4	70 - 130			
Matrix Spike Dup (B7J0523-MSD1)		Š	Source: 1703659-01	59-01	Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/19/2017	9/2017		
Mercury	0.851838	0.10	0.005	0.005 0.833333	0.069618 93.9	93.9	70 - 130	4.30	20	

Prepared: 10/18/2017 Analyzed: 10/19/2017

85 - 115

108

8.354E-4

5.00000E-3

6.2191E-3

Post Spike (B7J0523-PS1)

Mercury

Source: 1703659-01

Page 39 of 72

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Mercury by AA (Cold Vapor) EPA 7471A - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Ratch R710524 - FPA 7471 S										

Batch B7J0524

Prepared: 10/18/2017 Analyzed: 10/19/2017		Prepared: 10/18/2017 Analyzed: 10/19/2017	0.833333 92.1 80 - 120	2-05 Prepared: 10/18/2017 Analyzed: 10/19/2017	0.833333 0.014933 97.8 70-130	2-05 Prepared: 10/18/2017 Analyzed: 10/19/2017	0.833333 0.014933 88.8 70-130 9.39 20	2-05 Prepared: 10/18/2017 Analyzed: 10/19/2017	
	0.005		0.005	Source: 1703672-05	0.005 0.833333	Source: 1703672-05	0.005	Source: 1703672-05	•
	0.10		0.10		8 0.10		4 0.10		9
	ND		0.767508		0.829618	MSD1)	0.755244		001.000
Blank (B7J0524-BLK1)	Mercury	LCS (B7J0524-BS1)	Mercury	Matrix Spike (B7J0524-MS1)	Mercury	Matrix Spike Dup (B7J0524-MSD1)	Mercury	Post Spike (B7J0524-PS1)	

Page 40 of 72

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Gasoline Range Organics by EPA 8015B (Modified) - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0362 - GCVOA_S

Blank (B7J0362-BLK1)					Prepared:	10/16/2017	Prepared: 10/16/2017 Analyzed: 10/16/2017	2017	
Gasoline Range Organics	ND	1.0	0.20						
Surrogate: 4-Bromofluorobenzene	0.2112			0.400000		52.8	50 - 138		
LCS (B7J0362-BS1)					Prepared:	10/16/2017	Prepared: 10/16/2017 Analyzed: 10/16/2017	2017	
Gasoline Range Organics	4.55900	1.0	0.20	5.00000		91.2	70 - 130		
Surrogate: 4-Bromofluorobenzene	0.2227			0.400000		55.7	50 - 138		
Duplicate (B7J0362-DUP1)			Source: 1703671-02	571-02	Prepared:	10/16/2017	Prepared: 10/16/2017 Analyzed: 10/16/2017	7102	
Gasoline Range Organics	ND	1.0	0.20		ND			NR	20
Surrogate: 4-Bromofluorobenzene	0.2124			0.400000		53.1	50 - 138		
Matrix Spike (B7J0362-MS1)			Source: 1703671-02	571-02	Prepared:	10/16/2017	Prepared: 10/16/2017 Analyzed: 10/16/2017	2017	
Gasoline Range Organics	3.95500	1.0	0.20	5.00000	ND	79.1	17 - 141		
Surrogate: 4-Bromofluorobenzene	0.2115			0.400000		52.9	50 - 138		
Matrix Spike Dup (B7J0362-MSD1)			Source: 1703671-02	571-02	Prepared:	10/16/2017	Prepared: 10/16/2017 Analyzed: 10/16/2017	2017	
Gasoline Range Organics	3.51900	1.0	0.20	5.00000	ND	70.4	17 - 141	11.7	20
Surrogate: 4-Bromofluorobenzene	0.2040			0.400000		5I.0	50 - 138		

Page 41 of 72

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Gasoline Range Organics by EPA 8015B (Modified) - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/L)	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0434 - GCVOA_W

Blank (B7J0434-BLK1)					Prepared: 10/17/2017	Prepared: 10/17/2017 Analyzed: 10/17/2017	
Gasoline Range Organics	ND	0.05	0.05				
Surrogate: 4-Bromofluorobenzene	0.1009			0.100000	101	101 70 - 130	
LCS (B7J0434-BS1)					Prepared: 10/17/2017	Prepared: 10/17/2017 Analyzed: 10/17/2017	
Gasoline Range Organics	0.736000 0.05	0.05	0.05	0.05 1.00000	73.6	73.6 70 - 130	
Surrogate: 4-Bromofluorobenzene	91010			0.100000	102	70 - 130	
LCS Dup (B7J0434-BSD1)					Prepared: 10/17/2017	Prepared: 10/17/2017 Analyzed: 10/17/2017	
Gasoline Range Organics	0.848000	0.05	0.05	0.05 1.00000	84.8	84.8 70 - 130 14.1	20
Surrogate: 4-Bromofluorobenzene	0.1029			0000001	103	70 - 130	

Page 42 of 72

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Diesel Range Organics by EPA 8015B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/L)	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0462 - GCSEMI_DRO_W	w_0							
Blank (B7J0462-BLK1)					Prepared: 10/17/2017 Analyzed: 10/17/2017	7 Analyzed: 10/17/	2017	
DRO	N	0.05	0.05					
ORO	ND	0.05	0.05					
Surrogate: p-Terphenyl	0.1126			8.00000E-2	141	20 - 150		
LCS (B7J0462-BS1)					Prepared: 10/17/2017 Analyzed: 10/17/2017	7 Analyzed: 10/17/	2017	
DRO	0.939440	0.05	0.05	1.00000	93.9	93.9 42 - 142		
Surrogate: p-Terphenyl	0.1084			8.00000E-2	135	20 - 150		
LCS Dup (B7J0462-BSD1)					Prepared: 10/17/2017 Analyzed: 10/17/2017	7 Analyzed: 10/17/	2017	
DRO	0.977190	0.05	0.05	0.05 1.00000	7.79	97.7 42 - 142	3.94	20
Surrogate: p-Terphenyl	0.1115			8.00000E-2	139	20 - 150		

Page 43 of 72

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Diesel Range Organics by EPA 8015B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0583 - GCSEMI_DRO_LL_S	S_LL_S									
Blank (B7J0583-BLK1)					Prepared:	10/19/2017	Prepared: 10/19/2017 Analyzed: 10/19/2017	9/2017		
DRO	ND	1.0	1.0							
ORO	ND	1.0	1.0							
Surrogate: p-Terphenyl	4.185			5.33333		78.5	38 - 145			
LCS (B7J0583-BS1)					Prepared:	10/19/2017	Prepared: 10/19/2017 Analyzed: 10/19/2017	9/2017		
DRO	39.9217	1.0	1.0	33.3333		120	33 - 143			
Surrogate: p-Terphenyl	4.230			5.33333		26.3	38 - 145			
Duplicate (B7J0583-DUP1)			Source: 1703671-21	3671-21	Prepared:	10/19/2017	Prepared: 10/19/2017 Analyzed: 10/19/2017	7/2017		
DRO	14.0893	1.0	1.0		14.3507			1.84	20	
Surrogate: p-Terphenyl	3.229			2.66667		121	38 - 145			
Duplicate (B7J0583-DUP2)			Source: 1703681-11	3681-11	Prepared:	10/19/2017	Prepared: 10/19/2017 Analyzed: 10/21/2017	1/2017		
DRO	12.1503	1.0	1.0		16.8737			32.5	20	R
Surrogate: p-Terphenyl	2.276			2.66667		85.3	38 - 145			
Matrix Spike (B7J0583-MS1)			Source: 1703671-21	3671-21	Prepared:	10/19/2017	Prepared: 10/19/2017 Analyzed: 10/19/2017	7/2017		
DRO	43.2807	1.0	1.0	33.3333	14.3507	8.98	20 - 159			
Surrogate: p-Terphenyl	4.216			5.33333		1.62	38 - 145			
Matrix Spike (B7J0583-MS2)			Source: 1703681-11	3681-11	Prepared:	10/19/2017	Prepared: 10/19/2017 Analyzed: 10/21/2017	1/2017		
DRO	40.2700	1.0	1.0	33.3333	16.8737	70.2	20 - 159			
Surrogate: p-Terphenyl	2.984			2.66667		112	38 - 145			
Matrix Spike Dup (B7J0583-MSD1)			Source: 1703671-21	3671-21	Prepared:	10/19/2017	Prepared: 10/19/2017 Analyzed: 10/19/2017	9/2017		
DRO	37.6890	1.0	1.0	33.3333	14.3507	70.0	20 - 159	13.8	20	
Surrogate: p-Terphenyl	3.140			2.66667		8II	38 - 145			
Matrix Spike Dup (B7J0583-MSD2)			Source: 1703681-11	3681-11	Prepared:	10/19/2017	Prepared: 10/19/2017 Analyzed: 10/21/2017	1/2017		
DRO	32.2900	1.0	1.0	33.3333	16.8737	46.2	20 - 159	22.0	20	R
Surrogate: p-Terphenyl	2.036			2.66667		76.3	38 - 145			

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Polychlorinated Biphenyls by EPA 8082 - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD		
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes	

Batch B7J0837 - GCSEMI_PCB/	CB/PEST_S								
Blank (B7J0837-BLK1)					Prepared	10/27/2017	Prepared: 10/27/2017 Analyzed: 11/1/2017	/2017	
Aroclor 1016	ND	16	4.6						
Aroclor 1221	ND	16	4.6						
Aroclor 1232	ND	16	4.6						
Aroclor 1242	ND	16	4.6						
Aroclor 1248	ND	16	4.6						
Aroclor 1254	ND	16	4.6						
Aroclor 1260	ND	16	4.6						
Aroclor 1262	ND	16	4.6						
Aroclor 1268	ND	16	4.6						
Surrogate: Decachlorobiphenyl	15.29			16.6667		8.16	18 - 136		
Surrogate: Tetrachloro-m-xylene	15.55			16.6667		93.3	30 - 130		
LCS (B7J0837-BS1)					Prepared	: 10/27/2017	Prepared: 10/27/2017 Analyzed: 11/1/2017	/2017	
Aroclor 1016	166.246	16	4.6	166.667		7.66	73 - 111		
Aroclor 1260	161.782	16	4.6	166.667		97.1	75 - 125		
Surrogate: Decachlorobiphenyl	14.96			16.6667		2.68	18 - 136		
Surrogate: Tetrachloro-m-xylene	14.02			16.6667		84.1	30 - 130		
Matrix Spike (B7J0837-MS1)		9 1	Source: 1703672-04	672-04	Prepared	: 10/27/2017	Prepared: 10/27/2017 Analyzed: 11/1/2017	/2017	
Aroclor 1016	90.9625	16	4.6	166.667	N	54.6	36 - 127		
Aroclor 1260	175.296	16	4.6	166.667	N	105	31 - 142		
Surrogate: Decachlorobiphenyl	5.477			16.6667		32.9	18 - 136		
Surrogate: Tetrachloro-m-xylene	7.501			16.6667		45.0	30 - 130		
Matrix Spike Dup (B7J0837-MSD1)		9 1	Source: 1703672-04	672-04	Prepared	: 10/27/2017	Prepared: 10/27/2017 Analyzed: 11/1/2017	/2017	
Aroclor 1016	86.3872	16	4.6	166.667	N	51.8	36 - 127	5.16	20
Aroclor 1260	182.705	16	4.6	166.667	ND	110	31 - 142	4.14	20
Surrogate: Decachlorobiphenyl	5.843			16.6667		35.1	18 - 136		
Surrogate: Tetrachloro-m-xylene	8.482			16.6667		50.9	30 - 130		

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

	Prepared: 10/18/2017 Analyzed: 10/18/2017	96	.1	62	9:	81	9:	.3	54	.2	J	.5	9:	.2	.1		∞.	\mathcal{L}	.3	1.1	.2		9.	5:	.3	64	.1	49	.2	08	5:	5:	.2	0.	.1	82	4.	19	6	55		P
		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	10	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	0.5	0.0
		ND	N N	ND	N	ND	ND	N	ND	N ON	N	ND	N	N	N	ND	QN N	ND	<u>N</u>	ND	N N	N	N	N	ND	ND	N	N	N	N	N	N	ND	ND	N N	N N	ND	N	ND	N		9.
Batch B7J0504 - MSVOA_S	Blank (B7J0504-BLK1)	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,1-Dichloropropene	1,2,3-Trichloropropane	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,2-Dibromo-3-chloropropane	1,2-Dibromoethane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane	1,4-Dichlorobenzene	2,2-Dichloropropane	2-Chlorotoluene	4-Chlorotoluene	4-Isopropyltoluene	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Di-isopropyl ether	Dibromochloromethane	DIOIOINOCINICAMENT

Page 46 of 72

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control (cont'd)

Notes	Limit	RPD	Limits	% Rec	Result	Level	(ug/kg)	(ug/kg)	(ug/kg)	yte	Anal
	RPD		% Rec		Source	Spike	MDL	PQL	Result		

2. ((00)	(0-0-)	(0-0-)			
Batch B7J0504 - MSVOA_S (cont	(continued)					
Blank (B7J0504-BLK1) - Continued					Prepared: 10/18/2017	Prepared: 10/18/2017 Analyzed: 10/18/2017
Dichlorodifluoromethane	N	5.0	2.2			
Ethyl Acetate	ND	50	8.1			
Ethyl Ether	ND	50	6.1			
Ethyl tert-butyl ether	ND	5.0	0.67			
Ethylbenzene	ND	5.0	0.91			
Freon-113	ND	5.0	2.8			
Hexachlorobutadiene	ND	5.0	2.5			
Isopropylbenzene	ND	5.0	1.8			
m,p-Xylene	N QN	10	1.5			
Methylene chloride	N QN	5.0	2.3			
MTBE	N ON	5.0	0.63			
n-Butylbenzene	N ON	5.0	2.4			
n-Propylbenzene	ND	5.0	2.2			
Naphthalene	ND	5.0	0.97			
o-Xylene	N	5.0	0.87			
sec-Butylbenzene	N Q	5.0	2.3			
Styrene	N ON	5.0	1.5			
tert-Amyl methyl ether	N ON	5.0	0.59			
tert-Butanol	ND	100	19			
tert-Butylbenzene	N ON	5.0	2.0			
Tetrachloroethene	ND	5.0	1.6			
Toluene	ND	5.0	0.94			
trans-1,2-Dichloroethene	ND	5.0	0.59			
trans-1,3-Dichloropropene	ND	5.0	2.1			
Trichloroethene	ND	5.0	3.1			
Trichlorofluoromethane	ND	5.0	1.4			
Vinyl acetate	ND	20	8.6			
Vinyl chloride	ND	5.0	1.7			
Surrogate: 1,2-Dichloroethane-d4	43.50			50.0000	87.0	32 - 140
Surrogate: 4-Bromofluorobenzene	44.33			50.0000	88.7	68 - 131
Surrogate: Dibromofluoromethan	50.60			50.0000	I0I	49 - 134
Surrogate: Toluene-d8	53.33			50.0000	107	75 - 132
LCS (B7J0504-BS1)					Prepared: 10/18/2017	Prepared: 10/18/2017 Analyzed: 10/18/2017
1,1,1,2-Tetrachloroethane	48.3000	5.0	96.0	50.0000	9.96	80 - 117
1,1,1-Trichloroethane	48.4900	5.0	1.1	50.0000	97.0	70 - 122
1,1,2,2-Tetrachloroethane	47.6400	5.0	0.62	50.0000	95.3	69 - 115
1,1,2-Trichloroethane	49.7900	5.0	1.6	50.0000	9.66	74 - 120
1,1-Dichloroethane	49.5500	5.0	0.81	50.0000	99.1	72 - 118
1,1-Dichloroethene	45.4500	5.0	2.6	50.0000	6.06	61 - 124
1,1-Dichloropropene	50.4300	5.0	2.3	50.0000	101	74 - 128

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614 Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0504 - MSVOA_S (continued)

Prenared: 10/18/2017 Analyzed: 10/18/2017	, , , , , , , , , , , , , , , , , , ,	6/ - 116	86 - 127	88 - 15/	78 - 125	70 - 134	73 - 127	85 - 116	65 - 120	81 - 114	76 - 125	83 - 117	79 - 119	84 - 115	72 - 121	76 - 120	77 - 122	77 - 131	78 - 115	79 - 113	66 - 123	79 - 112	67 - 125	49 - 150	61 - 146	65 - 133	82 - 113	46 - 146	73 - 116	46 - 158	72 - 121	79 - 123	67 - 125	79 - 116	72 - 117	38 - 168	55 - 144	52 - 133	68 - 126	79 - 116	66 - 134	84 - 133	67 - 134
Prenared: 10/18/2017	Total in andar	104	100	601	104	100	102	101	101	101	103	103	101	100	102	101	105	106	102	8.76	101	9.76	96.3	110	8.86	0.86	7.86	106	0.66	106	6.86	102	101	96.1	109	108	108	116	103	101	101	106	102
		50.0000	50.000	20.000	50.0000	20.000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	100.000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	500.000	500.000	50.0000	100.000	50.0000	50.0000	50.0000
		0.54	1.2	Ι:Ι	1.5	1.6	3.2	1.1	1.2	1.8	1.7	1.3	1.1	1.2	1.2	1.6	1.5	2.3	0.64	1.1	0.64	1.2	08.0	2.5	3.5	1.2	1.0	1.1	0.82	1.4	0.67	1.9	0.55	1.0	1.6	2.2	8.1	6.1	0.67	0.91	2.8	2.5	1.8
		5.0	5.0	5.0	5.0	10	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	50	20	5.0	5.0	5.0	5.0	5.0
- (commune)		51.9700	49.9800	54.2800	52.0700	50.0200	51.2300	50.4100	50.3400	50.6000	51.3200	51.6800	50.3500	50.1700	50.8200	50.4000	52.3600	53.0300	101.730	48.9100	50.5500	48.7800	48.1400	54.9500	49.4000	49.0100	49.3400	52.8400	49.4800	53.2500	49.4400	51.2000	50.3800	48.0400	54.3700	54.2100	538.700	580.530	51.3300	100.980	50.3400	53.0900	50.8300
1.CS (B710504-BS1) - Continued)	1,2,3-Trichloropropane	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	I,2-Dibromo-3-chloropropane	1,2-Dibromoethane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane	1,4-Dichlorobenzene	2,2-Dichloropropane	2-Chlorotoluene	4-Chlorotoluene	4-Isopropyltoluene	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Di-isopropyl ether	Dibromochloromethane	Dibromomethane	Dichlorodifluoromethane	Ethyl Acetate	Ethyl Ether	Ethyl tert-butyl ether	Ethylbenzene	Freon-113	Hexachlorobutadiene	Isopropylbenzene

Page 48 of 72

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0504 - MSVOA_S (continued)

LCS (B7J0504-BS1) - Continued m.p-Xylene Methylene chloride MTBE n-Butylbenzene 55.7000 n-Propylbenzene 52.0700 Naphthalene 100.060					Prepared:	10/18/2017	Prenared: 10/18/2017 Analyzed: 10/18/2017	
Alene ene chloride lbenzene ylbenzene alene					1	10/10/10/	Allalyzea. 10/10/2017	
ene chloride Ibenzene ylbenzene alene	105.660	10	1.5	100.000		106	78 - 126	
lbenzene ylbenzene alene	41.7900	5.0	2.3	50.0000		83.6	31 - 148	
υ.	3900	5.0	0.63	50.0000		101	59 - 131	
enzene	0002	5.0	2.4	50.0000		111	75 - 141	
ne	00/00	5.0	2.2	50.0000		104	73 - 127	
	4100	5.0	0.97	50.0000		8.96	78 - 129	
	100.060	5.0	0.87	100.000		100	81 - 113	
sec-Butylbenzene 52.2600	2600	5.0	2.3	50.0000		105	73 - 129	
Styrene 53.61	53.6100	5.0	1.5	50.0000		107	88 - 118	
tert-Amyl methyl ether 49.7500	7500	5.0	0.59	50.0000		99.5	62 - 122	
tert-Butanol 229.040	.040	100	19	250.000		91.6	36 - 142	
tert-Butylbenzene 50.9300	9300	5.0	2.0	50.0000		102	74 - 126	
Tetrachloroethene 50.1200	1200	5.0	1.6	50.0000		100	74 - 127	
Toluene 102.850	.850	5.0	0.94	100.000		103	79 - 119	
trans-1,2-Dichloroethene 51.47	51.4700	5.0	0.59	50.0000		103	61 - 128	
trans-1,3-Dichloropropene 51.8200	8200	5.0	2.1	50.0000		104	75 - 116	
Trichloroethene 49.5300	5300	5.0	3.1	50.0000		99.1	76 - 123	
Trichlorofluoromethane 50.2500	2500	5.0	1.4	50.0000		100	58 - 134	
Vinyl acetate 551.500	.500	50	8.6	500.000		110	63 - 143	
Vinyl chloride 54.1900	1900	5.0	1.7	50.0000		108	51 - 145	
Surrogate: 1,2-Dichloroethane-d4 50.41	.41			50.0000		101	32 - 140	
Surrogate: 4-Bromofluorobenzene 51.59	.59			50.0000		103	68 - 131	
Surrogate: Dibromofluoromethan 48.92	26.			50.0000		8.76	49 - 134	
Surrogate: Toluene-d8 51.17	17			50.0000		102	75 - 132	
Matrix Spike (B7J0504-MS1)		Sou	Source: 1703697-01	7-01	Prepared:	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/18/2017	
1,1,1,2-Tetrachloroethane 45.5600	2600	5.0	96.0	50.0000	ND	91.1	27 - 130	
1,1,1-Trichloroethane 48.9000	0006	5.0	1.1	50.0000	N	8.76	32 - 135	
1,1,2,2-Tetrachloroethane 45.5300	5300	5.0	0.62	50.0000	N	91.1	17 - 135	
1,1,2-Trichloroethane 46.2000	2000	5.0	1.6	50.0000	N Q	92.4	31 - 129	
	3200	5.0	0.81	50.0000	N N	94.6	37 - 130	
1,1-Dichloroethene 47.6600	0099	5.0	5.6	50.0000	N Q	95.3	41 - 125	
1,1-Dichloropropene 50.3700	3700	5.0	2.3	50.0000	N Q	101	33 - 138	
1,2,3-Trichloropropane 48.1900	1900	5.0	0.54	50.0000	N Q	96.4	20 - 137	
1,2,3-Trichlorobenzene 44.4500	4500	5.0	1.2	50.0000	ND	6.88	0 - 147	
1,2,4-Trichlorobenzene 49.1900	1900	5.0	1.1	50.0000	N	98.4	0 - 156	
1,2,4-Trimethylbenzene 49.0500	0200	5.0	1.5	50.0000	ND	98.1	10 - 139	
ropropane	1000	10	1.6	50.0000	N	96.2	17 - 145	
1,2-Dibromoethane 49.42	49.4200	5.0	3.2	50.0000	N Q	8.86	25 - 136	
1,2-Dichlorobenzene 46.1600	1600	5.0	1.1	50.0000	N N	92.3	8 - 134	
1,2-Dichloroethane 46.9600	0096	5.0	1.2	50.0000	ND	93.9	31 - 123	

Leighton Consulting, Inc.

Irvine, CA 92614

17781 Cowan Street

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch

Reported: 11/03/2017

Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0504 - MSVOA_S (continued)

Prepared: 10/18/2017 Analyzed: 10/18/2017	38 - 123	10 - 139	8 - 134	34 - 130	10 - 134	36 - 133	15 - 133	13 - 135	2 - 146	40 - 123	18 - 132	32 - 130	33 - 122	20 - 134	35 - 140	32 - 143	23 - 144	24 - 128	35 - 135	36 - 126	36 - 146	31 - 136	28 - 130	32 - 133	30 - 129	28 - 126	23 - 162	0 - 156	33 - 128	33 - 138	22 - 132	31 - 140	0 - 150	15 - 144	19 - 138	9 - 145	31 - 136	0 - 153	12 - 141	0 - 145	20 - 129	4 - 143
10/18/2017	95.4	98.1	94.1	2.96	97.6	103	95.4	5.76	104	96.5	92.3	94.4	91.5	92.2	101	103	8.66	93.9	104	93.9	100	93.2	6.66	95.2	9.06	102	116	5.76	104	0.66	8.76	106	93.2	99.1	104	82.6	6.3	106	101	91.2	94.3	102
Prepared	ND	N N	ND	ND	ND	ND	ND	N	N	ND	N	N	ND	ND	ND	ND	ND	ND	N	ND	ND	ND	ND	ND	ND	N	N	R	ND	ND	ND	ND	ND	ND	R	ND	ND	ND	ND	ND	ND	ND
1697-01	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	100.000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	500.000	500.000	50.0000	100.000	50.0000	50.0000	50.0000	100.000	50.0000	50.0000	50.0000	50.0000	50.0000	100.000	50.0000
Source: 1703697-01	1.8	1.7	1.3	1.1	1.2	1.2	1.6	1.5	2.3	0.64	1.1	0.64	1.2	0.80	2.5	3.5	1.2	1.0	1.1	0.82	1.4	0.67	1.9	0.55	1.0	1.6	2.2	8.1	6.1	0.67	0.91	2.8	2.5	1.8	1.5	2.3	0.63	2.4	2.2	0.97	0.87	2.3
5 2	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	50	20	5.0	5.0	5.0	5.0	5.0	10	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Continued	47.6900	49.0400	47.0700	48.3700	46.3200	51.3400	47.7000	48.7400	51.8800	96.4900	46.1400	47.2200	45.7700	46.0900	50.7400	51.5500	49.8900	46.9600	52.1600	46.9300	50.2000	46.6200	49.9700	47.6000	45.3000	50.9800	57.9400	487.540	521.840	49.5100	97.8100	52.8300	46.6100	49.5500	104.120	41.3000	48.1400	52.7700	50.2700	45.5900	94.2600	50.9400
Matrix Spike (B7J0504-MS1) - Continued	1,2-Dichloropropane	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane	1,4-Dichlorobenzene	2,2-Dichloropropane	2-Chlorotoluene	4-Chlorotoluene	4-Isopropyltoluene	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Di-isopropyl ether	Dibromochloromethane	Dibromomethane	Dichlorodifluoromethane	Ethyl Acetate	Ethyl Ether	Ethyl tert-butyl ether	Ethylbenzene	Freon-113	Hexachlorobutadiene	Isopropylbenzene	m,p-Xylene	Methylene chloride	MTBE	n-Butylbenzene	n-Propylbenzene	Naphthalene	o-Xylene	sec-Butylbenzene

Page 50 of 72

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control (cont'd)

_	Notes	Limit	RPD	Limits	% Rec	Result	Level	(ug/kg)	(ug/kg)	(ug/kg)	nalyte
		RPD		% Rec		Source	Spike	MDL	PQL	Result	

Batch B7J0504 - MSVOA_S (continued)

Matrix Spike (B7J0504-MS1) - Conti	ontinued	S	Source: 1703697-01	97-01	Prepared	: 10/18/2017	Prepared: 10/18/2017 Analyzed: 10/18/2017	3/2017	
Styrene	50.7700	5.0	1.5	50.0000	ND	102	19 - 136		
tert-Amyl methyl ether	46.7500	5.0	0.59	50.0000	N	93.5	30 - 128		
tert-Butanol	232.050	100	19	250.000	N	92.8	22 - 146		
tert-Butylbenzene	50.2800	5.0	2.0	50.0000	ND	101	9 - 140		
Tetrachloroethene	50.6600	5.0	1.6	50.0000	N	101	18 - 143		
Toluene	97.2000	5.0	0.94	100.000	ND	97.2	30 - 132		
trans-1,2-Dichloroethene	50.4100	5.0	0.59	50.0000	ND	101	32 - 134		
trans-1,3-Dichloropropene	46.1500	5.0	2.1	50.0000	ND	92.3	23 - 127		
Trichloroethene	49.2200	5.0	3.1	50.0000	ND	98.4	17 - 158		
Trichlorofluoromethane	52.2000	5.0	1.4	50.0000	ND	104	36 - 135		
Vinyl acetate	227.320	50	8.6	500.000	N	45.5	0 - 154		
Vinyl chloride	56.0900	5.0	1.7	50.0000	ND	112	38 - 140		
Surrogate: 1,2-Dichloroethane-d4	50.88			50.0000		102	32 - 140		
Surrogate: 4-Bromofluorobenzene	49.78			50.0000		9.66	68 - 131		
Surrogate: Dibromofluoromethan	50.44			50.0000		I0I	49 - 134		
Surrogate: Toluene-d8	50.74			50.0000		I0I	75 - 132		
Matrix Spike Dup (B7J0504-MSD1)		S	Source: 1703697-01	597-01	Prepared	10/18/2017	Prepared: 10/18/2017 Analyzed: 10/18/2017	3/2017	
1,1,1,2-Tetrachloroethane	42.4600	5.0	96.0	50.0000	ND	84.9	27 - 130	7.04	20
1,1,1-Trichloroethane	44.8800	5.0	1.1	50.0000	N	8.68	32 - 135	8.57	20
1,1,2,2-Tetrachloroethane	42.0600	5.0	0.62	50.0000	N	84.1	17 - 135	7.92	20
1,1,2-Trichloroethane	46.5200	5.0	1.6	50.0000	ND	93.0	31 - 129	069.0	20
1,1-Dichloroethane	43.5300	5.0	0.81	50.0000	N	87.1	37 - 130	8.34	20
1,1-Dichloroethene	43.0900	5.0	2.6	50.0000	N	86.2	41 - 125	10.1	20
1,1-Dichloropropene	47.2000	5.0	2.3	50.0000	ND	94.4	33 - 138	6.50	20
1,2,3-Trichloropropane	45.8800	5.0	0.54	50.0000	ND	8.16	20 - 137	4.91	20
1,2,3-Trichlorobenzene	39.0400	5.0	1.2	50.0000	N	78.1	0 - 147	13.0	20
1,2,4-Trichlorobenzene	43.0000	5.0	1.1	50.0000	N N	0.98	0 - 156	13.4	20
1,2,4-Trimethylbenzene	43.2400	5.0	1.5	50.0000	<u>N</u>	86.5	10 - 139	12.6	20
1,2-Dibromo-3-chloropropane	45.6100	10	1.6	50.0000	ND	91.2	17 - 145	5.31	20
1,2-Dibromoethane	43.6800	5.0	3.2	50.0000	N	87.4	25 - 136	12.3	20
1,2-Dichlorobenzene	40.9100	5.0	1.1	50.0000	N	81.8	8 - 134	12.1	20
1,2-Dichloroethane	44.8300	5.0	1.2	50.0000	N	2.68	31 - 123	4.64	20
1,2-Dichloropropane	44.3700	5.0	1.8	50.0000	N N	88.7	38 - 123	7.21	20
1,3,5-Trimethylbenzene	43.1600	5.0	1.7	50.0000	N	86.3	10 - 139	12.8	20
1,3-Dichlorobenzene	41.8200	5.0	1.3	50.0000	R	83.6	8 - 134	11.8	20
1,3-Dichloropropane	45.8200	5.0	1.1	50.0000	N	91.6	34 - 130	5.41	20
1,4-Dichlorobenzene	41.5300	5.0	1.2	50.0000	<u>N</u>	83.1	10 - 134	10.9	20
2,2-Dichloropropane	45.3700	5.0	1.2	50.0000	N	7.06	36 - 133	12.3	20
2-Chlorotoluene	41.7300	5.0	1.6	50.0000	N	83.5	15 - 133	13.4	20
4-Chlorotoluene	43.2100	5.0	1.5	50.0000	ND	86.4	13 - 135	12.0	20

Leighton Consulting, Inc.

17781 Cowan Street

Irvine, CA 92614

Project Number: POLA Berth 191-193, 11618-005

Report To: Brynn McCulloch

Reported: 11/03/2017

Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0504 - MSVOA_S (continued)

I										
Matrix Spike Dup (B7J0504-MSD1) - Continued	- Continued	J 2	Source: 1703697-01	697-01	Prepared	: 10/18/2017	repared: 10/18/2017 Analyzed: 10/18/2017	3/2017		
4-Isopropyltoluene	44.9000	5.0	2.3	50.0000	<u>N</u>	8.68	2 - 146	14.4	20	
Benzene	89.9800	5.0	0.64	100.000	ND	0.06	40 - 123	86.9	20	
Bromobenzene	41.5800	5.0	1.1	50.0000	ND	83.2	18 - 132	10.4	20	
Bromochloromethane	43.9600	5.0	0.64	50.0000	N	6.78	32 - 130	7.15	20	
Bromodichloromethane	42.5500	5.0	1.2	50.0000	ND	85.1	33 - 122	7.29	20	
Bromoform	44.1900	5.0	08.0	50.0000	ND	88.4	20 - 134	4.21	20	
Bromomethane	45.4000	5.0	2.5	50.0000	ND	8.06	35 - 140	11.1	20	
Carbon disulfide	46.6500	5.0	3.5	50.0000	ND	93.3	32 - 143	86.6	20	
Carbon tetrachloride	45.4500	5.0	1.2	50.0000	ND	6.06	23 - 144	9.31	20	
Chlorobenzene	42.7100	5.0	1.0	50.0000	N	85.4	24 - 128	9.48	20	
Chloroethane	46.9000	5.0	1.1	50.0000	ND	93.8	35 - 135	10.6	20	
Chloroform	43.3400	5.0	0.82	50.0000	ND	86.7	36 - 126	7.95	20	
Chloromethane	46.8800	5.0	1.4	50.0000	ND	93.8	36 - 146	6.84	20	
cis-1,2-Dichloroethene	42.4800	5.0	0.67	50.0000	ND	85.0	31 - 136	9.29	20	
cis-1,3-Dichloropropene	44.1800	5.0	1.9	50.0000	ND	88.4	28 - 130	12.3	20	
Di-isopropyl ether	44.6400	5.0	0.55	50.0000	ND	89.3	32 - 133	6.42	20	
Dibromochloromethane	43.6500	5.0	1.0	50.0000	ND	87.3	30 - 129	3.71	20	
Dibromomethane	46.3800	5.0	1.6	50.0000	ND	92.8	28 - 126	9.45	20	
Dichlorodifluoromethane	50.7300	5.0	2.2	50.0000	ND	101	23 - 162	13.3	20	
Ethyl Acetate	343.100	50	8.1	500.000	N	9.89	0 - 156	34.8	20	R
Ethyl Ether	498.370	50	6.1	500.000	ND	7.66	33 - 128	4.60	20	
Ethyl tert-butyl ether	45.9600	5.0	0.67	50.0000	ND	91.9	33 - 138	7.44	20	
Ethylbenzene	89.8800	5.0	0.91	100.000	ND	6.68	22 - 132	8.45	20	
Freon-113	48.9100	5.0	2.8	50.0000	ND	8.76	31 - 140	7.71	20	
Hexachlorobutadiene	40.4400	5.0	2.5	50.0000	ND	6.08	0 - 150	14.2	20	
Isopropylbenzene	43.3500	5.0	1.8	50.0000	ND	2.98	15 - 144	13.3	20	
m,p-Xylene	92.1400	10	1.5	100.000	ND	92.1	19 - 138	12.2	20	
Methylene chloride	44.6900	5.0	2.3	50.0000	ND	89.4	9 - 145	7.88	20	
MTBE	45.4900	5.0	0.63	50.0000	ND	91.0	31 - 136	5.66	20	
n-Butylbenzene	45.9900	5.0	2.4	50.0000	ND	92.0	0 - 153	13.7	20	
n-Propylbenzene	44.0100	5.0	2.2	50.0000	R	88.0	12 - 141	13.3	20	
Naphthalene	41.6700	5.0	0.97	50.0000	R	83.3	0 - 145	8.98	20	
o-Xylene	87.2800	5.0	0.87	100.000	N	87.3	20 - 129	69.7	20	
sec-Butylbenzene	44.0300	5.0	2.3	50.0000	N	88.1	4 - 143	14.6	20	
Styrene	46.1800	5.0	1.5	50.0000	R	92.4	19 - 136	9.47	20	
tert-Amyl methyl ether	43.7600	5.0	0.59	50.0000	R	87.5	30 - 128	6.61	20	
tert-Butanol	215.700	100	19	250.000	R	86.3	22 - 146	7.30	20	
tert-Butylbenzene	43.3300	5.0	2.0	50.0000	N	86.7	9 - 140	14.8	20	
Tetrachloroethene	45.8200	5.0	1.6	50.0000	R	91.6	18 - 143	10.0	20	
Toluene	91.8400	5.0	0.94	100.000	R	91.8	30 - 132	2.67	20	
trans-1,2-Dichloroethene	45.5100	5.0	0.59	50.0000	N	91.0	32 - 134	10.2	20	
trans-1,3-Dichloropropene	44.8100	5.0	2.1	50.0000	ND	9.68	23 - 127	2.95	20	

Page 52 of 72

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Volatile Organic Compounds by EPA 5035/EPA 8260B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0504 - MSVOA_S (continued)

Matrix Spike Dup (B7J0504-MSD1) -	1) - Continued	9 2	ource: 1703697-01	697-01	Prepared	: 10/18/2017	repared: 10/18/2017 Analyzed: 10/18/2017	3/2017		
Trichloroethene	46.6200	5.0	3.1	50.0000	ND	93.2	17 - 158	5.43	20	
Trichlorofluoromethane	47.3700	5.0	1.4	50.0000	N	94.7	36 - 135	9.70	20	
Vinyl acetate	26.0100	50	8.6	500.000	N	5.20	0 - 154	159	20	R
Vinyl chloride	49.5700	5.0	1.7	50.0000	ND	99.1	38 - 140	12.3	20	
Surrogate: 1,2-Dichloroethane-d4	48.12			50.0000		2.96	32 - 140			
Surrogate: 4-Bromofluorobenzene	50.74			50.0000		I0I	68 - 131			
Surrogate: Dibromofluoromethan	50.20			50.0000		00I	49 - 134			
Surrogate: Toluene-d8	51.62			50.0000		103	75 - 132			

Page 53 of 72

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Semivolatile Organic Compounds by EPA 8270/SIM - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ng/L)	(ng/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0413 - MSSEMI_W

Batch B7J0413 - MSSEMI_W						
Blank (B7J0413-BLK1)					Prepared: 10/16/201	Prepared: 10/16/2017 Analyzed: 10/16/2017
2-Methylnaphthalene	ND	0.20	0.02			
Acenaphthene	N	0.20	0.02			
Acenaphthylene	ND	0.20	0.02			
Anthracene	ND	0.20	0.01			
Benzo(a)anthracene	ND	0.20	0.01			
Benzo(a)pyrene	ND	0.20	0.01			
Benzo(b)fluoranthene	ND	0.20	90.0			
Benzo(g,h,i)perylene	ND	0.20	0.02			
Benzo(k)fluoranthene	ND	0.20	0.02			
Chrysene	ND	0.20	0.02			
Dibenz(a,h)anthracene	ND	0.20	0.02			
Fluoranthene	ND	0.20	0.02			
Fluorene	ND	0.20	0.02			
Indeno(1,2,3-cd)pyrene	ND	0.20	0.02			
Naphthalene	ND	0.20	0.02			
Phenanthrene	N	0.20	0.02			
Pyrene	ND	0.20	0.02			
Surrogate: 1,2-Dichlorobenzene-d	0.7723			1.00000	77.2	32 - 99
Surrogate: 2-Fluorobiphenyl	0.8111			I.00000	1.18	29 - 105
Surrogate: Nitrobenzene-d5	0.9341			1.00000	93.4	17 - 123
Surrogate: 4-Terphenyl-d14	1.165			1.00000	1117	32 - 119
LCS (B7J0413-BS1)					Prepared: 10/16/201	Prepared: 10/16/2017 Analyzed: 10/16/2017
2-Methylnaphthalene	0.594950	0.20	0.02	1.00000	59.5	38 - 137
Acenaphthene	0.670340	0.20	0.02	1.00000	0.79	38 - 103
Acenaphthylene	0.682710	0.20	0.02	1.00000	68.3	41 - 102
Anthracene	0.707100	0.20	0.01	1.00000	70.7	37 - 118
Benzo(a)anthracene	0.778780	0.20	0.01	1.00000	9.77	42 - 118
Benzo(a)pyrene	0.712580	0.20	0.01	1.00000	71.3	17 - 148
Benzo(b)fluoranthene	0.800210	0.20	90.0	1.00000	80.0	33 - 126
Benzo(g,h,i)perylene	0.716580	0.20	0.02	1.00000	7.1.7	33 - 123
Benzo(k)fluoranthene	0.803040	0.20	0.02	1.00000	80.3	20 - 131
Chrysene	0.747150	0.20	0.02	1.00000	74.7	44 - 127
Dibenz(a,h)anthracene	0.796090	0.20	0.02	1.00000	9.62	31 - 122
Fluoranthene	0.761460	0.20	0.02	1.00000	76.1	48 - 113
Fluorene	0.740860	0.20	0.02	1.00000	74.1	46 - 100
Indeno(1,2,3-cd)pyrene	0.750140	0.20	0.02	1.00000	75.0	35 - 123
Naphthalene	0.706850	0.20	0.02	1.00000	7.07	35 - 115
Phenanthrene	0.708600	0.20	0.02	1.00000	6.07	43 - 112
Pyrene	0.762180	0.20	0.02	1.00000	76.2	47 - 116
Surrogate: 1,2-Dichlorobenzene-d	0.7505			1.00000	75.I	32-99

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Semivolatile Organic Compounds by EPA 8270/SIM - Quality Control (cont'd)

	Result	PQL	Spike	Source		% Rec		RPD	
Analyte	(ng/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0413 - MSSEMI_W (continued)

LCS (B7J0413-BS1) - Continued					Prepared: 10/16/2017 Analyzed: 10/16/2017	7 Analyzed: 10/1	6/2017	
Surrogate: 2-Fluorobiphenyl	0.8615			I.00000	86.2	29 - 105		
Surrogate: Nitrobenzene-d5	0.8931			1.00000	89.3	17 - 123		
Surrogate: 4-Terphenyl-d14	9966.0			1.00000	2.66	32 - 119		
LCS Dup (B7J0413-BSD1)					Prepared: 10/16/2017 Analyzed: 10/16/2017	7 Analyzed: 10/1	6/2017	
2-Methylnaphthalene	0.588280	0.20	0.05	1.00000	58.8	38 - 137	1.13	20
Acenaphthene	0.688400	0.20	0.02	1.00000	8.89	38 - 103	2.66	20
Acenaphthylene	0.696510	0.20	0.02	1.00000	2.69	41 - 102	2.00	20
Anthracene	0.698560	0.20	0.01	1.00000	6.69	37 - 118	1.22	20
Benzo(a)anthracene	0.791900	0.20	0.01	1.00000	79.2	42 - 118	1.67	20
Benzo(a)pyrene	0.696140	0.20	0.01	1.00000	9.69	17 - 148	2.33	20
Benzo(b)fluoranthene	0.811500	0.20	90.0	1.00000	81.2	33 - 126	1.40	20
Benzo(g,h,i)perylene	0.721590	0.20	0.02	1.00000	72.2	33 - 123	0.697	20
Benzo(k)fluoranthene	0.794240	0.20	0.02	1.00000	79.4	20 - 131	1.10	20
Chrysene	0.745200	0.20	0.02	1.00000	74.5	44 - 127	0.261	20
Dibenz(a,h)anthracene	0.792430	0.20	0.02	1.00000	79.2	31 - 122	0.461	20
Fluoranthene	0.772070	0.20	0.02	1.00000	77.2	48 - 113	1.38	20
Fluorene	0.737630	0.20	0.02	1.00000	73.8	46 - 100	0.437	20
Indeno(1,2,3-cd)pyrene	0.762320	0.20	0.02	1.00000	76.2	35 - 123	1.61	20
Naphthalene	0.704320	0.20	0.02	1.00000	70.4	35 - 115	0.359	20
Phenanthrene	0.702930	0.20	0.02	1.00000	70.3	43 - 112	0.803	20
Pyrene	0.772110	0.20	0.02	1.00000	77.2	47 - 116	1.29	20
Surrogate: 1,2-Dichlorobenzene-d	0.7333			I.00000	73.3	32 - 99		
Surrogate: 2-Fluorobiphenyl	0.852I			1.00000	85.2	29 - 105		
Surrogate: Nitrobenzene-d5	0.8699			1.000000	87.0	17 - 123		
Surrogate: 4-Terphenyl-d14	0.9920			I.00000	99.2	32 - 119		

Page 55 of 72

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Semivolatile Organic Compounds by EPA 8270/SIM - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B7J0832 - MSSEMI_S										
Blank (B7J0832-BLK1)					Prepared	: 10/27/2017	Prepared: 10/27/2017 Analyzed: 11/1/2017	1/2017		
2-Methylnaphthalene	ND	5.0	09.0							
Acenaphthene	2 :	5.0	0.41							
Acenaphthylene	2 5	5.0	0.41							
Anturacene Dougo(a)onthrooms		0.0	0.20							
Denzo(a)anunacene Benzo(a)nyrene	2 2	5.0	06.00							
Benzo(b)fluoranthene	e e	5.0	2.2							
Benzo(g,h,i)perylene	N	5.0	0.80							
Benzo(k)fluoranthene	ND	5.0	0.70							
Chrysene	N	5.0	0.61							
Dibenz(a,h)anthracene	ND	5.0	0.88							
Fluoranthene	ND	5.0	0.45							
Fluorene	ND	5.0	0.35							
Indeno(1,2,3-cd)pyrene	N	5.0	0.82							
Naphthalene	ND	5.0	0.56							
Phenanthrene	ND	5.0	0.34							
Pyrene	ND	5.0	0.51							
Surrogate: 1,2-Dichlorobenzene-d	25.98			33.3333		6.77	29 - 109			
Surrogate: 2-Fluorobiphenyl	36.07			33.3333		108	39 - 108			
Surrogate: Nitrobenzene-d5	32.13			33.3333		96.4	0 - 146			
Surrogate: 4-Terphenyl-d14	34.65			33.3333		104	39 - 123			
LCS (B7J0832-BS1)					Prepared	: 10/27/2017	Prepared: 10/27/2017 Analyzed: 11/1/2017	1/2017		
2-Methylnaphthalene	17.2447	5.0	09.0	33.3333		51.7	23 - 127			
Acenaphthene	19.8777	5.0	0.41	33.3333		9.69	35 - 91			
Acenaphthylene	21.5087	5.0	0.41	33.3333		64.5	35 - 92			
Anthracene	21.6807	5.0	0.56	33.3333		65.0	43 - 109			
Benzo(a)anthracene	25.2047	5.0	0.56	33.3333		75.6	46 - 121			
Benzo(a)pyrene	21.1923	5.0	69.0	33.3333		9.69	49 - 126			
Benzo(b)fluoranthene	24.9193	5.0	2.2	33.3333		74.8	34 - 137			
Benzo(g,h,i)perylene	23.6823	5.0	0.80	33.3333		71.0	40 - 124			
Benzo(k)fluoranthene	22.3137	5.0	0.70	33.3333		6.99	21 - 132			
Chrysene	21.0117	5.0	0.61	33.3333		63.0	51 - 124			
Dibenz(a,h)anthracene	28.6913	5.0	0.88	33.3333		86.1	38 - 123			
Fluoranthene	25.5123	5.0	0.45	33.3333		76.5	47 - 105			
Fluorene	24.3607	5.0	0.35	33.3333		73.1	34 - 95			
Indeno(1,2,3-cd)pyrene	26.3273	5.0	0.82	33.3333		0.62	45 - 124			
Naphthalene	23.5117	5.0	0.56	33.3333		70.5	26 - 110			
Phenanthrene	19.8617	5.0	0.34	33.3333		9.69	39 - 108			
Pyrene	24.4370	5.0	0.51	33.3333		73.3	47 - 107			
Surrogate: 1,2-Dichlorobenzene-d	22.13			33.3333		66.4	29 - 109			

Certificate of Analysis

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Semivolatile Organic Compounds by EPA 8270/SIM - Quality Control (cont'd)

	Result	PQL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0832 - MSSEMI_S (continued)

LCS (B7J0832-BS1) - Continued					Prepared:	10/27/201	Prepared: 10/27/2017 Analyzed: 11/1/2017	/2017		
Surrogate: 2-Fluorobiphenyl	31.93			33.3333		95.8	39 - 108			
Surrogate: Nitrobenzene-d5	28.51			33.3333		85.5	0 - 146			
Surrogate: 4-Terphenyl-d14	32.91			33.3333		7.86	39 - 123			
Matrix Spike (B7J0832-MS1)			Source: 1703672-05	572-05	Prepared:	10/27/201	Prepared: 10/27/2017 Analyzed: 11/2/2017	2/2017		
2-Methylnaphthalene	16.5523	5.0	09.0	33.3333	ND	49.7	30 - 141			
Acenaphthene	20.9210	5.0	0.41	33.3333	ND	62.8	9 - 155			
Acenaphthylene	22.2030	5.0	0.41	33.3333	ND	9.99	43 - 110			
Anthracene	23.0497	5.0	0.56	33.3333	ND	69.1	33 - 146			
Benzo(a)anthracene	25.3087	5.0	0.56	33.3333	ND	75.9	49 - 130			
Benzo(a)pyrene	22.0197	5.0	69.0	33.3333	ND	66.1	36 - 134			
Benzo(b)fluoranthene	25.1730 5	5.0	2.2	33.3333	ND	75.5	26 - 148			
Benzo(g,h,i)perylene	29.1263	5.0	0.80	33.3333	ND	87.4	16 - 156			
Benzo(k)fluoranthene	21.4240	5.0	0.70	33.3333	N	64.3	29 - 132			
Chrysene	25.6437 5	5.0	0.61	33.3333	1.90833	71.2	0 - 184			
Dibenz(a,h)anthracene	32.4570	5.0	0.88	33.3333	ND	97.4	29 - 149			
Fluoranthene	34.0057	5.0	0.45	33.3333	1.98000	96.1	14 - 162			
Fluorene	24.8377 5	5.0	0.35	33.3333	ND	74.5	48 - 111			
Indeno(1,2,3-cd)pyrene	30.0247	5.0	0.82	33.3333	ND	90.1	37 - 135			
Naphthalene	23.0713	5.0	0.56	33.3333	ND	69.2	34 - 126			
Phenanthrene		5.0	0.34	33.3333	1.80833	71.5	19 - 155			
Pyrene	31.1040 5	5.0	0.51	33.3333	0.977333	90.4	13 - 162			
Surrogate: 1,2-Dichlorobenzene-d	18.07			33.3333		54.2	29 - 109			
Surrogate: 2-Fluorobiphenyl	33.02			33.3333		1.66	39 - 108			
Surrogate: Nitrobenzene-d5	25.91			33.3333		77.7	0 - 146			
Surrogate: 4-Terphenyl-d14	27.60			33.3333		82.8	39 - 123			
Matrix Spike Dup (B7J0832-MSD1)			Source: 1703672-05	572-05	Prepared:	10/27/201	Prepared: 10/27/2017 Analyzed: 11/1/2017	//2017		
2-Methylnaphthalene	13.0847	5.0	09.0	33.3333	ND	39.3	30 - 141	23.4	20	×
Acenaphthene		5.0	0.41	33.3333	ND	46.8	9 - 155	29.2	20	R
Acenaphthylene	17.0913	5.0	0.41	33.3333	ND	51.3	43 - 110	26.0	20	R
Anthracene	16.6153	5.0	0.56	33.3333	ND	49.8	33 - 146	32.4	20	R
Benzo(a)anthracene	18.9587	5.0	0.56	33.3333	ND	6.95	49 - 130	28.7	20	R
Benzo(a)pyrene	16.6467	5.0	69.0	33.3333	ND	49.9	36 - 134	27.8	20	R
Benzo(b)fluoranthene		5.0	2.2	33.3333	ND	58.1	26 - 148	26.1	20	R
Benzo(g,h,i)perylene		5.0	08.0	33.3333	N	54.1	16 - 156	47.0	20	R
Benzo(k)fluoranthene		5.0	0.70	33.3333	ND	47.2	29 - 132	30.7	20	R
Chrysene		5.0	0.61	33.3333	1.90833	46.6	0 - 184	38.1	20	R
Dibenz(a,h)anthracene		5.0	0.88	33.3333	N	62.4	29 - 149	43.8	20	R
Fluoranthene		5.0	0.45	33.3333	1.98000	58.1	14 - 162	45.8	20	R
Fluorene		5.0	0.35	33.3333	N	56.9	48 - 111	26.7	20	R
Indeno(1,2,3-cd)pyrene	19.5260	5.0	0.82	33.3333	ND	58.6	37 - 135	42.4	20	R

Page 57 of 72

Certificate of Analysis

Project Number: POLA Berth 191-193, 11618-005 Report To: Brynn McCulloch Reported: 11/03/2017 Leighton Consulting, Inc. 17781 Cowan Street Irvine, CA 92614

Semivolatile Organic Compounds by EPA 8270/SIM - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B7J0832 - MSSEMI_S (continued)

l										
Matrix Spike Dup (B7J0832-MSD1)	11) - Continued		Source: 1703672-05	672-05	Prepared:	10/27/2017	repared: 10/27/2017 Analyzed: 11/1/2017	2017		
Naphthalene	18.2003	5.0	0.56	33.3333	ND	54.6	34 - 126	23.6	20	R
Phenanthrene	17.8243	5.0	0.34	33.3333	1.80833	48.0	19 - 155	35.9	20	R
Pyrene	20.7030	5.0	0.51	33.3333	0.977333	59.2	13 - 162	40.2	20	R
Surrogate: 1,2-Dichlorobenzene-d	18.70			33.3333		56.1	29 - 109			
Surrogate: 2-Fluorobiphenyl	26.72			33.3333		80.2	39 - 108			
Surrogate: Nitrobenzene-d5	22.92			33.3333		8.89	0 - 146			
Surrogate: 4-Terphenyl-d14	22.32			33.3333		6.99	39 - 123			

Page 58 of 72

Certificate of Analysis

Project Number: POLA Berth 191-193, 11618-005 Leighton Consulting, Inc.

Brynn McCulloch Report To:

17781 Cowan Street

Reported: 11/03/2017 Irvine, CA 92614

Notes and Definitions

S4 Surrogate was diluted out.

Surrogate recovery was outside of laboratory acceptance limit due to possible matrix interference. S10

R RPD value outside acceptance criteria. Calculation is based on raw values.

Internal standard recoveries did not meet method acceptance due to matrix interference. Result value is estimated. E3

D1 Sample required dilution due to possible matrix interference.

Analyte is not detected at or above the Practical Quantitation Limit (PQL). When client requests quantitation against MDL, Ð

analyte is not detected at or above the Method Detection Limit (MDL)

PQL Practical Quantitation Limit

MDL Method Detection Limit

NR Not Reported

RPD Relative Percent Difference

CA2 CA-ELAP (CDPH)

OR1 OR-NELAP (OSPHL)

otes:

- (1) The reported MDL and PQL are based on prep ratio variation and analytical dilution.
- (2) The suffix [2C] of specific analytes signifies that the reported result is taken from the instrument's second column.
 - (3) Results are wet unless otherwise specified.

Page 59 of 72

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Ordered By

Advanced Technology Laboratories 3275 Walnut Avenue

Signal Hill, CA 90755-5225

Telephone: (562)989-4045 Attention: Rachelle Arada Number of Pages 6

Date Received 10/25/2017 Date Reported 10/27/2017

Job Number	Order Date	Client
89990	10/25/2017	ATL

Project ID: 1703672 Project Name: PO# SC12141

> Enclosed please find results of analyses of 1 water sample which was analyzed as specified on the attached chain of custody. If there are any questions, please do not hesitate to call.

Checked By:

Approved By: C. Raymona

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 A Ordered By

Advanced Technology Laboratories

3275 Walnut Avenue

Signal Hill, CA 90755-5225

Telephone: (562)989-4045 Attention: Rachelle Arada Project ID: 1703672

Date Received 10/25/2017
Date Reported 10/27/2017

Job Number	Order Date	Client
89990	10/25/2017	ATL

CERTIFICATE OF ANALYSIS CASE NARRATIVE

AETL received 1 samples with the following specification on 10/25/2017.

Lab ID	Sample ID	Sample Date	Matrix		Quantity Of Containers
89990.01	1703672-07	10/13/2017	Aqueous		3
Met	hod ^ Submethod	Req I	Date Priority	TAT	Units
8260	0B	10/27/	2017 3	Rush	ug/L

The samples were analyzed as specified on the enclosed chain of custody. No analytical non-conformances were encountered.

Checked By: _____ Approved By: _____

Cyrus Razmara, Ph.D.

Laboratory Dire Page 61 of 72

American Environmental Testing Laboratory Inc. 2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Advanced Technology Laboratories Signal Hill, CA 90755-5225 3275 Walnut Avenue

Telephone: (562)989-4045

Rachelle Arada Attn:

Page:

1703672 Project ID: Project Name:

PO# SC12141

Method: 8260B, Volatile Organic Compounds by GC/MS (SW846)

Client

10/25/2017

89990

AETL Job Number Submitted

QC Batch No: 1026177A1

		CO Datell NO	.0.10201.71		
Our Lab I.D.			Method Blank	89990.01	
Client Sample I.D.				1703672-07	
Date Sampled				10/13/2017	
Date Prepared			10/25/2017	10/25/2017	
Preparation Method			5030B	5030B	
Date Analyzed			10/25/2017	10/25/2017	
Matrix			Aqueous	Aqueous	
Units			T/gu	T/gu	
Dilution Factor			-1	-	
Analytes	MDL	PQL	Results	Results	
Acetone	10	10	QN QN	QN	
Benzene	0.5	1.0	ΩN	QN	
Bromobenzene (Phenyl bromide)	0.5	1.0	QN	QN	
Bromochloromethane	0.5	1.0	QN QN	QN	
Bromodichloromethane	0.5	1.0	QN QN	QN	
Bromoform (Tribromomethane)	2.5	5.0	ΩN	QN	
Bromomethane (Methyl bromide)	1.5	3.0	ΩN	QN	
2-Butanone (MEK)	5.0	5.0	МD	ON	
n-Butylbenzene	0.5	1.0	ΩN	ON	
sec-Butylbenzene	0.5	1.0	QN QN	ON	
tert-Butylbenzene	0.5	1.0	ΩN	UD	
Carbon Disulfide	0.5	1.0	ΩN	UD	
Carbon tetrachloride	0.5	1.0	ΩN	ND	
Chlorobenzene	0.5	1.0	QN QN	QN	
Chloroethane	1.5	3.0	QN	ND	
2-Chloroethyl vinyl ether	2.5	5.0	QN	ND	
Chloroform (Trichloromethane)	0.5	1.0	QN O	ND	
Chloromethane (Methyl chloride)	1.5	3.0	QN O	ND	
2-Chlorotoluene	0.5	1.0	QN QN	ND	
4-Chlorotoluene	0.5	1.0	ΩN	QN	
1,2-Dibromo-3-chloropropane (DBCP)	2.5	5.0	QN QN	QN	
Dibromochloromethane	0.5	1.0	QN QN	ND	
1,2-Dibromoethane (EDB)	0.5	1.0	ΩN	UD	
Dibromomethane	0.5	1.0	ΩN	QN	
1,2-Dichlorobenzene	0.5	1.0	МD	UD	
1,3-Dichlorobenzene	0.5	1.0	ΩN	UD	
1,4-Dichlorobenzene	0.5	1.0	QN QN	QN	
Dichlorodifluoromethane	1.5	3.0	Ø.	QN	

Testing Laboratory Inc. Environmental American

www.aetlab.com 2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 • Fax: (818) 845-8840 Tel: (888) 288-AETL • (818) 845-8200

ANALYTICAL RESULTS

age: 3

Project ID: 1703672

Project Name: PO# SC12141

 AETL Job Number
 Submitted
 Client

 89990
 10/25/2017
 ATL

Method: 8260B, Volatile Organic Compounds by GC/MS (SW846)

10/25/2017 10/25/2017 1703672-07 10/13/2017 Results Aqueous 89990.01 5030B $^{ m L}$ B B Ð ₽ Ð B Ð B B B B B ₽ B B 身 B B ₽ B B ₽ B B £ ₽ Method Blank 10/25/2017 10/25/2017 Results QC Batch No: 1026177A1 Aqueous 5030B ng/L ₽ B ğ B ₽ B B B B ξ B B Ę B B B 身 B ₽ B Ð ₽ Ę B B B ВР 1.0 5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 5.0 1.0 1.0 1.0 1.0 4.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.0 1.0 2.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.5 2.5 0.5 0.5 0.5 0.5 2.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 MP Methyl-tert-butyl ether (MTBE) 4-Methyl-2-pentanone (MIBK) Methylene chloride (DCM) 1,2-Dichloroethane (EDC) trans-1,3-Dichloropropene Toluene (Methyl benzene) 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane trans-1,2-Dichloroethene cis-1,3-Dichloropropene Trichlorofluoromethane cis-1,2-Dichloroethene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,3-Trichloropropane Preparation Method 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,2-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane 1,1-Dichloropropene Hexachlorobutadiene Client Sample I.D. 1,1-Dichloroethane 1,1-Dichloroethene p-Isopropyltoluene Isopropylbenzene Tetrachloroethene Dilution Factor n-Propylbenzene Date Analyzed Date Sampled Date Prepared Trichloroethene Analytes Ethylbenzene Iodomethane 2-Hexanone Naphthalene Matrix Styrene Units

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 4

 Project ID:
 1703672
 AETL Job Number
 Submitted
 Client

 Project Name:
 PO# SC12141
 89990
 10/25/2017
 ATL

Method: 8260B, Volatile Organic Compounds by GC/MS (SW846)

QC Batch No: 1026177A1

Our Lab I.D.			Method Blank	89990.01		
Client Sample I.D.				1703672-07		
Date Sampled				10/13/2017		
Date Prepared			10/25/2017	10/25/2017		
Preparation Method			5030B	5030B		
Date Analyzed			10/25/2017	10/25/2017		
Matrix			Aqueous	Aqueous		
Units			ug/L	ug/L		
Dilution Factor			1	1		
Analytes	MDL	PQL	Results	Results		
Trichlorotrifluoroethane (Freon-113)	0.5	1.0	ND	ND		
1,2,4-Trimethylbenzene	0.5	1.0	ND	ND		
1,3,5-Trimethylbenzene	0.5	1.0	ND	ND		
Vinyl Acetate	0.5	5.0	ND	ND		
Vinyl chloride (Chloroethene)	0.5	3.0	ND	ND		
o-Xylene	0.5	1.0	ND	ND		
m,p-Xylenes	1.0	2.0	ND	ND		
Our Lab I.D.			Method Blank	89990.01		
Surrogates	%Rec.Limit		% Rec.	% Rec.		
Bromofluorobenzene	75-125		93.1	94.1		
Dibromofluoromethane	75-125		100	98.1		
Toluene-d8	75-125	<u></u>	99.9	97.1		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

Advanced Technology Laboratories 3275 Walnut Avenue Signal Hill, CA 90755-5225

Telephone: (562)989-4045 Attn: Rachelle Arada

Page: 5

Project ID: 1703672
Project Name: PO# SC12141

AETL Job Number Submitted Client
89990 10/25/2017 ATL

Method: 8260B, Volatile Organic Compounds by GC/MS (SW846)

QC Batch No: 1026177A1; Dup or Spiked Sample: B1026177A1; LCS: Clean Water; QC Prepared: 10/25/2017; MS Analyzed: 10/25/2017; LCS Analyzed: 10/26/2017; Units: ug/L

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Benzene	0.00	50.0	45.4	90.7	50.0	44.7	89.3	1.6	75-125	<20
Carbon tetrachloride	0.00	50.0	48.7	97.3	50.0	47.6	95.2	2.2	75-125	<20
Chlorobenzene	0.00	50.0	52.0	104	50.0	51.0	102	1.9	75-125	<20
Chloroform (Trichloromethane)	0.00	50.0	47.4	94.7	50.0	45.9	91.8	3.1	75-125	<20
1,2-Dichlorobenzene	0.00	50.0	49.0	97.9	50.0	49.8	99.6	1.7	75-125	<20
1,1-Dichloroethane	0.00	50.0	45.7	91.4	50.0	44.6	89.2	2.4	75-125	<20
1,1-Dichloroethene	0.00	50.0	45.1	90.1	50.0	44.1	88.2	2.1	75-125	<20
cis-1,2-Dichloroethene	0.00	50.0	44.2	88.4	50.0	43.2	86.4	2.3	75-125	<20
Ethylbenzene	0.00	50.0	53.0	106	50.0	52.0	104	1.9	75-125	<20
Methyl-tert-butyl ether (MTBE)	0.00	50.0	45.1	90.1	50.0	45.6	91.2	1.2	75-125	<20
n-Propylbenzene	0.00	50.0	52.0	104	50.0	51.0	102	1.9	75-125	<20
Toluene (Methyl benzene)	0.00	50.0	51.0	102	50.0	50.5	101	<1	75-125	<20
1,1,1-Trichloroethane	0.00	50.0	47.2	94.4	50.0	46.1	92.1	2.5	75-125	<20
1,1,2-Trichloroethane	0.00	50.0	49.3	98.5	50.0	48.3	96.6	1.9	75-125	<20
Trichloroethene	0.00	50.0	48.5	97.0	50.0	57.0	114	16.1	75-125	<20
1,2,4-Trimethylbenzene	0.00	50.0	52.5	105	50.0	51.5	103	1.9	75-125	<20
1,3,5-Trimethylbenzene	0.00	50.0	52.0	104	50.0	52.0	104	<1	75-125	<20
o-Xylene	0.00	50.0	50.5	101	50.0	50.0	100	<1	75-125	<20
m,p-Xylenes	0.00	100	102	102	100	98.4	98.4	3.6	75-125	<20
Surrogates										
Bromofluorobenzene	0.00	50.0	47.1	94.2	50.0	46.4	92.7	1.6	75-125	<20
Dibromofluoromethane	0.00	50.0	47.8	95.5	50.0	43.8	87.6	8.6	75-125	<20
Toluene-d8	0.00	50.0	49.5	99.0	50.0	48.0	96.0	3.1	75-125	<20

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Page: 6

 Project ID:
 1703672
 AETL Job Number
 Submitted
 Client

 Project Name:
 PO# SC12141
 89990
 10/25/2017
 ATL

Method: 8260B, Volatile Organic Compounds by GC/MS (SW846)

QC Batch No: 1026177A1; Dup or Spiked Sample: B1026177A1; LCS: Clean Water; QC Prepared: 10/25/2017;MS Analyzed: 10/25/2017; LCS Analyzed: 10/26/2017; Units: ug/L

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Benzene	50.0	46.8	93.6	50.0	46.1	92.1	1.6	75-125	<20	
Carbon tetrachloride	50.0	50.0	100	50.0	49.0	97.9	2.1	75-125	<20	
Chlorobenzene	50.0	52.0	104	50.0	51.5	103	<1	75-125	<20	
Chloroform (Trichloromethane)	50.0	48.4	96.7	50.0	47.7	95.4	1.4	75-125	<20	
1,2-Dichlorobenzene	50.0	49.7	99.3	50.0	49.7	99.3	<1	75-125	<20	
1,1-Dichloroethane	50.0	46.6	93.1	50.0	46.3	92.5	<1	75-125	<20	
1,1-Dichloroethene	50.0	47.4	94.8	50.0	46.3	92.6	2.3	75-125	<20	
cis-1,2-Dichloroethene	50.0	47.0	94.0	50.0	47.1	94.1	<1	75-125	<20	
Ethylbenzene	50.0	53.5	107	50.0	52.0	104	2.8	75-125	<20	
Methyl-tert-butyl ether (MTBE)	50.0	48.4	96.8	50.0	47.9	95.7	1.1	75-125	<20	
n-Propylbenzene	50.0	55.0	110	50.0	52.5	105	4.7	75-125	<20	
Toluene (Methyl benzene)	50.0	51.0	102	50.0	51.0	102	<1	75-125	<20	
1,1,1-Trichloroethane	50.0	47.7	95.4	50.0	47.5	94.9	<1	75-125	<20	
1,1,2-Trichloroethane	50.0	51.0	102	50.0	51.0	102	<1	75-125	<20	
Trichloroethene	50.0	47.6	95.1	50.0	47.9	95.7	<1	75-125	<20	
1,2,4-Trimethylbenzene	50.0	55.0	110	50.0	52.5	105	4.7	75-125	<20	
1,3,5-Trimethylbenzene	50.0	54.5	109	50.0	52.0	104	4.7	75-125	<20	
o-Xylene	50.0	52.0	104	50.0	50.5	101	2.9	75-125	<20	
m,p-Xylenes	100	104	104	100	101	101	2.9	75-125	<20	
Surrogates										
Bromofluorobenzene	50.0	49.0	97.9	50.0	47.4	94.7	3.3	75-125	<20	
Dibromofluoromethane	50.0	49.2	98.3	50.0	47.6	95.2	3.2	75-125	<20	
Toluene-d8	50.0	49.8	99.5	50.0	50.0	99.9	<1	75-125	<20	

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

Data Qualifier:

#: Recovery is not within acceptable control limits.

In the QC section, sample results have been taken directly from the ICP reading. No preparation factor has

been applied.

B: Analyte was present in the Method Blank.

D: Result is from a diluted analysis.

E: Result is beyond calibration limits and is estimated.

H: Analysis was performed over the allowed holding time due to circumstances which were beyond laboratory

control.

J: Analyte was detected . However, the analyte concentration is an estimated value, which is between the Method

Detection Limit (MDL) and the Practical Quantitation Limit (PQL).

M: Matrix spike recovery is outside control limits due to matrix interference. Laboratory Control Sample recovery

was acceptable.

MCL: Maximum Contaminant Level

NS: No Standard Available

S6: Surrogate recovery is outside control limits due to matrix interference.

S8: The analysis of the sample required a dilution such that the surrogate concentration was diluted below the

method acceptance criteria.

X: Results represent LCS and LCSD data.

Definition:

%Limi: Percent acceptable limits.

%REC: Percent recovery.

Con.L: Acceptable Control Limits

Conce: Added concentration to the sample.

LCS: Laboratory Control Sample

MDL: Method Detection Limit is a statistically derived number which is specific for each instrument, each method,

and each compound. It indicates a distinctively detectable quantity with 99% probability.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

MS:

Matrix Spike

MS DU:

Matrix Spike Duplicate

ND:

Analyte was not detected in the sample at or above MDL.

PQL:

Practical Quantitation Limit or ML (Minimum Level as per RWQCB) is the minimum concentration that can

be quantified with more than 99% confidence. Taking into account all aspects of the entire analytical

instrumentation and practice.

Recov:

Recovered concentration in the sample.

RPD:

Relative Percent Difference

SUBCONTRACT ORDER

Work Order: 1703672

89990

SENDING LABORATORY:

Advanced Technology Laboratories

3275 Walnut Avenue Signal Hill, CA 90755 Phone: 562.989.4045

Fax: 562.989.6348

Project Manager: Rachelle Arada (Rachelle@atlglobal.com)

Sampler: KCH

RECEIVING LABORATORY:

AETL

2834 North Naomi Street Burbank, CA 91504 Phone :(818) 845-8200

Fax: (818) 845-8840

PO#: SC12141-RUSH TAT

(RR)

IMPORTANT: Please include Work Order # and PO # in your invoice.

Analysis		Due	Expires	Sampled	Comments
ATL Lab#: 1703672-07 8260_SUB [Volatile Organic Compound: 3xVoa Vial - HCl	/ LB34-GW	10/27/17 17:00	Groundwater 10/27/17 09:25	10/13/17 09:25	89990.01

10/25/17 1339	10/25/17 1339	10/25/17 1339	
Released By	Date	Received By	Date
Released By	Date	Received By	Date
Released By	Date	Received By	Date

Page 1 of 1

2834 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

COOLER RECEIPT FORM

Client Name: A 7.	ob more e a e	THE PERSON NAMED OF THE PERSON	. Andrews - Application of the State of the								
Project Name:	800	09/1	1								
AETL Job Number: 89999 8	0 /		Card B								
Date Received: 10/25//7 Rece											
Carrier: A AETL Courier											
□Others:											
Samples were received in: 🔀 Cooler ()	Other	T (Specify):	9								
Inside temperature of shipping container No 1:	2.7;	, No 2:, No 3:									
Type of sample containers: NOA, □ Glass bo	ttles, □] Wide mouth jars, ☐ HDPI	E bottles,								
☐ Metal sleeves, ☐ Others (Specify):	V										
How are samples preserved: None, Ice,	Z\Blue	e Ice, U Dry Ice									
	VaOH,	ZnOAc, XHCl, Na ₂ S ₂	O _{3,} _MeOH								
Other (Specify):											
			Lean of the manner of the								
	Yes	No, explain below Name, if	client was notified.								
1. Are the COCs Correct?	X										
2. Are the Sample labels legible?	X										
3. Do samples match the COC?	X										
4. Are the required analyses clear?5. Is there enough samples for required analysis?	X										
6. Are samples sealed with evidence tape?	1/1										
7. Are sample containers in good condition?	101		· · · · · · · · · · · · · · · · · · ·								
8. Are samples preserved?	×										
9. Are samples preserved properly for the	X										
intended analysis?	X										
10. Are the VOAs free of headspace?	×										
11. Are the jars free of headspace?	Nea										
3208-7-7	20, 61-1 G p. 10-10-		24 7 5 60 62 600								
	- 4										
Explain all "No" answers for above questions:											
-											

CHAIN OF CUSTODY RECORD

Page 1 of 1

For Laboratory Use Only ATLCOC Ver: 20130715													
		Sa	mple Cor	nditio	ons Upon Receipt	IVIN							
Method	of Transport	Condition	Y	N	Condition	γ	N						
Client	☐ ATL	1. CHILLED	<u>/</u>		5. # OF SAMPLES MATCH COO	: Z							
☐ FedEx	☐ OnTrac	2. HEADSPACE (VOA)			6. PRESERVED	₫							
☐ GSO		3. CONTAINER INTACT	ď		7. COOLER TEMP, deg C:	(.<							
Other:		4. SEALED		Z									

3275 Walnut Ave., Signal Hill, CA 90755

	Tel:	(562) 989-4045 • Fa	x: (562) 989-4040	<u>Instructi</u>	on: Compl	lete all shade	d areas.		Other:	4. SE					
	Comp	pany:	hton Consulting SEND REPORT TO: Couloch Brecollic	- 1.10	Address:	1779	31 Cow					949-2	53-9	1836	
		LE19	MICH CONSULTA	<u>a 1000, </u>	City:		Irvin	C.	State: CK	Viewerland Street, Cheer C.	Fax	: □ same a:	SEND B	EPORT TO	
OMER	Attn:	a w	SEND REPORT TO: Emai	11 N - 1-12-7		Attn:	Act	Pa. 6			nail:	□ Saille a.	STINDI	LFORT TO	
_ ⊢	Comp	any:	CCOLLOCA BLECONO	och w le ghrong	roop.c	Company:	Acct.	r nyu	s je			(1 m 3 m 3			
CUS	Addre	<u> </u>	PM.			Address:	$-C\mathcal{A}$	Im.	1						
		-33.)111.00	7:		City:		11.0	C .		State	Areas and	Zip:		
	City:			State: Zip:		City.		n Navagas			State		Eip.		
		ect Name:		ecial Instructions/Comm	ents:		Encircle or Writ	e Requested A	ınalysis	Encircl	≥ Sample Matr	ix C	ontainer	QA/QC	
	Po	12 Be-th 1919 ect No.:	-193	5035 Kits			des)						int;	Routin ☐ Caltrar	
			PO #:	are for 8260 (MIY	(Se)	Pesticides) Metals)	语		3			er; 4=P	္ ္က်ာ္သာ Legal	
	Samı	18.005					orine F e 22 I	:		SLUDGE	S / FRC WASTE	TAT	A; 3=Lit anister !=Plastic	RWQC ☐ Level I	
	V	(CH				24 (V	nochik 00(Titi			AENT /	INKING DRM / LAYER		; 2=V0 er; 7 = 0 Glass; ;	B: 1=HC	
	ALCOHOMOTO .		Sample Des	scription		8260 / 624 (Volat 8015 (enc) TPH 8015 (enc) TPH 8270(Semi-volatiles)	100 B	2		SOIL SEDIMEN	WATER - DRINKING / EROU WATER - STORM / WASTE AQUEOUS / LAYERED - OIL		1=Tube 6=Tedia	Preservative 5=Zn ((Ac)2; 6: REMARKS	
ES	ITEM	Lab N o.	Sample ID / Location	Date	Time	8015 (6 8015 (6 8015 (6	8081(0) 8082(P(6010 / TO-15	ချ စ		Solution	WATER - WATER - AQUEOL	#	Type: 1=T 5=Jar: 6=Te Material:	Prese 5=Zn (REM	
MPL	1	1703672-01	LB35-0.5	10/13/17	837	XX				X		54			
SAI	2	~ ~ ~	LB35-2.5	A STATE OF THE STA	839							$\Pi\Pi$			
CT	3	-03	LB35-5.0	2000 CO 100 CO 1	841	$\Pi\Pi\Pi$						$\Pi\Pi$	O		
OJE	4	- 04	LB34-0.5	Description of the second of t	917										
P R	5	- 77 -	LB34-2.5		970							1111			
	6	: 05	LB 34-5.0		922								,		
	7	COMMUNICATION OF THE PROPERTY													
	8	37	LB34-GW	10/13/17	925	XX					X	15 9			
	9			and the second s											
	10														
	1. San	nple receiving hours: 7:30 AM to 7:30	PM Monday - Friday; Saturday 8:00 AM to 12:00 PM.	samples will be disposed of after 14 calend			minimum in the second s	and in a second	As the au	thorized ag	ent of the c	ompany a	above. I	hereby	
l _s	2. San 3. The	following turnaround time condition	s apply: 8. USINESS DAY if received by 9:00 AM	Electronic records maintained for fi ve (5) y Hard copy reports will be disposed of after Storage and Report Fees:	45 calendar days fr	rom report date.			purchase	laboratory	services fro	m ATL as	Carlotte and Carlo		
∑		TAT = 2 : 50% Surcharge 2ND BUSII TAT = 2 : 50% Surcharge 2ND BUSII TAT = 4 : 20% Surcharge 4TH BUSII	NESS DAY (COB 5:00 PM) NESS DAY (COB 5:00 PM)	 Liquid & solid samples: Complimentary sto extended storage or hold is requested. Air samples: Complimentary storage for te 	-				hereby gu	ıarantee pa . 1	yment as q		~ /1		
Pa	E 01	TAT = 5 : NO SURCHARGE 5th BUS ekend, holiday, after-hours work - ask exempted TAT is 10 - 15 business days	SINESS DAY (COB 5:00 PM) k for quote. Projects requiring shorter TATs will incur a surcharge	requested Hard copy and regenerated reports/EDDs: \$35 per reprocessed EDD.			\$50.00 per regenerated/re	forma? ed report;	K.Ha	M		Lois	·U	$V_{}$	
age 7	resp 6. Liqu	pective to the subcontract lab ask luid and solid samples will be disposed	for quote. 10	D. Rush TCLP/STLC samples: add 2 days to ar 1. Unanalyzed samples will incur a disposal f	nalysis TAT for extra iee of \$7 per sampl	e.			Submi	tter Print N			Signat	- 1,5 - 1,4 - 1,3 - 1, - 1, - 1, - 1, - 1, - 1, - 1	
-1 - •	Relino	quished by (Sonature and Pr	inted Name (A)	10 13/17	1146		y: (Signature and Prin		/			18th 13 /1	7	Time: 44	
f 72	Relino	quished by: (Signature and Pr	inted Name)	Date:	Time:		y: (Signature and Prin	(Date:		Time:	
Ľ,	Relino	quished by: (Signature and Pr	inted Name)	Date:	Time:	Received b	y: (Signature and Prin	ted Name)			Date:				

Dominic Mata

From:

Brynn McCulloch [bmcculloch@leightongroup.com]

Sent:

Thursday, October 26, 2017 5:22 PM

To:

Dominic Mata

Subject:

RE: Partial Results - POLA Berth 191-193, 11618.005 (ATL# 1703672)

Dominic,

We need the following additional analyses for the samples listed below.

VOCs (8260B) and PAHs (8270SIM) LB34-0.5, LB34-2.5 LB35-0.5, LB35-2.5, LB35-5.0

PCBs (8082)

LB34-0.5

LB35-0.5

LB35-5.0

Thank you!

Brynn McCulloch, PG 8798

Associate Geologist 17781 Cowan Irvine, Ca 92614 Cell – 949.394.2306 Office – 949.681.4287 Fax – 949.250.1114

Leighton

Solutions You Can Build On

The information accompanying this email transmission may contain confidential or legally privileged information that is intended only for the use of the individual or entity named in this message. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution or reliance upon the contents of this email is strictly prohibited. If you receive this email in error, please immediately notify the sender by reply e-mail and destroy all copies of the communication and any attachments

Please don't print this e-mail unless you really need to.

From: Dominic Mata [mailto:dominic@atlglobal.com]

Sent: Wednesday, October 25, 2017 4:27 PM

To: Brynn McCulloch

Cc: customer.relations@atlglobal.com

Subject: Partial Results - POLA Berth 191-193, 11618.005 (ATL# 1703672)

Hi Brynn,

Please find your partial 2 DRO/ORO results for the above project attached. The final report is now pending the 8260 water which has been sub contracted. If I can further assist, please let me know.

Thanks,

714-449-9937 | 11007 FOREST PLACE 562-646-1611 | SANTA FE SPRINGS, CA 90670 805-399-0060 | WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan

Irvine, CA 92614

Attn: Brynn McCulloch

Project Name: Berth 191-193

Project Address: Yacht Street & Canal Street

Wilmington, CA

Report date: 10/17/2017 **JEL Ref. No.:** E-0786 **Client Ref. No.:** 11618.005

Date Sampled: 10/17/2017

Date Received: 10/17/2017

Date Analyzed: 10/17/2017 **Physical State:** Soil Gas

ANALYSES REQUESTED

1. EPA 8260B – Volatile Organics by GC/MS + Oxygenates

Sampling – Soil Gas samples were collected in glass gas-tight syringes equipped with Teflon plungers.

A tracer gas mixture of n-pentane, n-hexane, and n-heptane was placed at the tubing-surface interface before sampling. These compounds were analyzed during the 8260B analytical run to determine if there were surface leaks into the subsurface due to improper installation of the probe. No n-pentane, n-hexane, or n-heptane was found in any of the samples reported herein.

The sampling rate was approximately 200 cc/min, except when noted differently on the chain of custody record, using a glass gas-tight syringe. Purging was completed using a pump set at approximately 200 cc/min, except when noted differently on the chain of custody record. A default of 3 purge volumes was used as recommended by July 2015 DTSC/RWQCB guidance documents.

Prior to purging and sampling of soil gas at each point, a shut-in test was conducted to check for leaks in the above ground fittings. The shut-in test was performed on the above ground apparatus by evacuating the line to a vacuum of 100 inches of water, sealing the entire system and watching the vacuum for at least one minute. A vacuum gauge attached in parallel to the apparatus measured the vacuum. If there was any observable loss of vacuum, the fittings were adjusted as needed until the vacuum did not change noticeably. The soil gas sample was then taken.

No flow conditions occur when a sampling rate greater than 10 mL/min cannot be maintained without applying a vacuum greater than 100 inches of water to the sampling train. The sampling train is left at a vacuum for no less than three minutes. If the vacuum does not subside appreciably after three minutes, the sample location is determined to be a no flow sample.

Analytical – Soil Gas samples were analyzed using EPA Method 8260 that includes extra compounds required by DTSC/RWQCB (such as Freon 113). Instrument Continuing Calibration Verification, QC Reference Standards, Instrument Blanks and Sampling Blanks were analyzed every 12 hours as prescribed by the method. In addition, a Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (LCSD) were analyzed with each batch of Soil Gas samples. A duplicate/replicate sample was analyzed each day of the sampling activity. All samples were injected into the GC/MS system within 30 minutes of sampling.

Approval:

Carolyn Carroll Stationary Lab Manager

714-449-9937 | 11007 FOREST PLACE 562-646-1611 | SANTA FE SPRINGS, CA 90670 805-399-0060 | WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Leighton Consulting, Inc. Report date: 10/17/2017

Client Address: 17781 Cowan Jones Ref. No.: E-0786

Irvine, CA 92614 Client Ref. No.: 11618.005

Attn: Brynn McCulloch Date Sampled: 10/17/2017

Date Received: 10/17/2017 **Date Analyzed:** 10/17/2017

Project:Berth 191-193Date Analyzed:10/17/2017Project Address:Yacht Street & Canal StreetPhysical State:Soil Gas

Yacht Street & Canal Street

Wilmington, CA

Physical State: Soil Gas

EPA 8260B – Volatile Organics by GC/MS + Oxygenates

<u>Sample ID:</u> LB1-4 LB6-4 LB13-4 LB23-4 REP

Jones ID:	E-0786-01	E-0786-02	E-0786-03	E-0786-04	E-0786-05	Practical Quantitation	<u>Units</u>
Analytes:						<u>Limit</u>	
Benzene	0.024	ND	ND	ND	ND	0.008	μg/L
Bromobenzene	ND	ND	ND	ND	ND	0.008	μg/L
Bromodichloromethane	ND	ND	ND	ND	ND	0.008	μg/L
Bromoform	ND	ND	ND	ND	ND	0.008	$\mu g/L$
n-Butylbenzene	ND	ND	ND	ND	ND	0.008	μg/L
sec-Butylbenzene	ND	ND	ND	ND	ND	0.008	μg/L
tert-Butylbenzene	ND	ND	ND	ND	ND	0.008	μg/L
Carbon tetrachloride	ND	ND	ND	ND	ND	0.008	μg/L
Chlorobenzene	ND	ND	ND	ND	ND	0.008	μg/L
Chloroform	0.167	ND	ND	ND	ND	0.008	μg/L
2-Chlorotoluene	ND	ND	ND	ND	ND	0.008	μg/L
4-Chlorotoluene	ND	ND	ND	ND	ND	0.008	μg/L
Dibromochloromethane	ND	ND	ND	ND	ND	0.008	μg/L
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	0.008	μg/L
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	0.008	μg/L
Dibromomethane	ND	ND	ND	ND	ND	0.008	μg/L
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	0.008	μg/L
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	0.008	μg/L
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	0.008	μg/L
Dichlorodifluoromethane	0.027	ND	ND	ND	ND	0.008	μg/L
1,1-Dichloroethane	ND	ND	ND	ND	ND	0.008	μg/L
1,2-Dichloroethane	ND	ND	ND	ND	ND	0.008	μg/L
1,1-Dichloroethene	0.024	ND	ND	ND	ND	0.008	μg/L
cis-1,2-Dichloroethene	30.6	2.15	ND	ND	ND	0.008	μg/L
trans-1,2-Dichloroethene	3.56	0.445	ND	ND	ND	0.008	μg/L
1,2-Dichloropropane	ND	ND	ND	ND	ND	0.008	μg/L
1,3-Dichloropropane	ND	ND	ND	ND	ND	0.008	μg/L
2,2-Dichloropropane	ND	ND	ND	ND	ND	0.008	$\mu g/L$
1,1-Dichloropropene	ND	ND	ND	ND	ND	0.008	μg/L

JONES ENVIRONMENTAL LABORATORY RESULTS

EPA 8260B – Volatile Organics by GC/MS + Oxygenates

Sample ID:	LB1-4	LB6-4	LB13-4	LB23-4	LB23-4 REP		
Jones ID:	E-0786-01	E-0786-02	E-0786-03	E-0786-04	E-0786-05	Practical Quantitation	<u>Units</u>
Analytes:						<u>Limit</u>	
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	0.008	μg/L
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	0.008	μg/L
Ethylbenzene	ND	ND	ND	ND	ND	0.008	μg/L
Freon 113	ND	ND	ND	ND	ND	0.040	μg/L
Hexachlorobutadiene	ND	ND	ND	ND	ND	0.008	μg/L
Isopropylbenzene	ND	ND	ND	ND	ND	0.008	μg/L
4-Isopropyltoluene	ND	ND	ND	ND	ND	0.008	μg/L
Methylene chloride	ND	ND	ND	ND	ND	0.008	μg/L
Naphthalene	ND	ND	ND	ND	ND	0.040	μ g/L
n-Propylbenzene	ND	ND	ND	ND	ND	0.008	μg/L
Styrene	ND	ND	ND	ND	ND	0.008	μ g/L
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	0.008	μg/L
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	0.008	μg/L
Tetrachloroethene	148*	ND	0.305	ND	ND	0.008	μg/L
Toluene	0.055	ND	ND	ND	ND	0.008	μ g/L
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	0.040	μg/L
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	0.008	μg/L
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	0.008	$\mu g/L$
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	0.008	μg/L
Trichloroethene	23.2*	ND	0.026	ND	ND	0.008	μg/L
Trichlorofluoromethane	0.016	ND	ND	ND	ND	0.008	μ g/L
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	0.008	μ g/L
1,2,4-Trimethylbenzene	0.008	ND	ND	ND	ND	0.008	μ g/L
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	0.008	μg/L
Vinyl chloride	ND	3.20	ND	ND	ND	0.008	μg/L
m,p-Xylene	ND	ND	ND	ND	ND	0.008	μ g/L
o-Xylene	ND	ND	ND	ND	ND	0.008	μg/L
MTBE	ND	ND	ND	ND	ND	0.040	μg/L
Ethyl-tert-butylether	ND	ND	ND	ND	ND	0.040	μ g/L
Di-isopropylether	ND	ND	ND	ND	ND	0.040	μg/L
tert-amylmethylether	ND	ND	ND	ND	ND	0.040	μg/L
tert-Butylalcohol	ND	ND	ND	ND	ND	0.400	μg/L
TIC:							
n-Pentane	ND	ND	ND	ND	ND	0.400	μg/L
n-Hexane	ND	ND	ND	ND	ND	0.400	μg/L
n-Heptane	ND	ND	ND	ND	ND	0.400	μ g/L
Dilution Factor	1/25*	1	1	1	1		
Surrogate Recoveries:						QC Limi	<u>ts</u>
Dibromofluoromethane	122%	99%	121%	97%	96%	60 - 140	
Toluene-d ₈	95%	99%	96%	94%	95%	60 - 140	
4-Bromofluorobenzene	108%	98%	99%	98%	93%	60 - 140	
	E1-101717-	E2-101717-	E1-101717-	E2-101717-	E2-101717-		
	E-0786	E-0786	E-0786	E-0786	E-0786		
ND- Not Data at d	L-0/00	L-0/00	L-0/60	L-0/00	E-0/00		

ND= Not Detected

^{* =} Dilutions for these compound(s); first number for all others

714-449-9937 11007 FOREST PLACE 562-646-1611 SANTA FE SPRINGS, CA 90670 805-399-0060 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Leighton Consulting, Inc. Report date: 10/17/2017

Client Address: 17781 Cowan Jones Ref. No.: E-0786

Irvine, CA 92614 Client Ref. No.: 11618.005

LB34-4

Brynn McCulloch **Date Sampled:** 10/17/2017 Attn:

> **Date Received:** 10/17/2017

Project: Berth 191-193 **Date Analyzed:** 10/17/2017 **Project Address:**

Yacht Street & Canal Street **Physical State:** Soil Gas

Wilmington, CA

LB25-4

LB31-4

Sample ID:

EPA 8260B - Volatile Organics by GC/MS + Oxygenates

LB27-4

Jones ID:	E-0786-06	E-0786-07	E-0786-08	E-0786-09	<u>Practical</u> <u>Quantitation</u>	<u>Units</u>
Analytes:					<u>Limit</u>	
Benzene	ND	ND	ND	ND	0.008	$\mu g/L$
Bromobenzene	ND	ND	ND	ND	0.008	μ g/L
Bromodichloromethane	ND	ND	ND	ND	0.008	μ g/L
Bromoform	ND	ND	ND	ND	0.008	μ g/L
n-Butylbenzene	ND	ND	ND	ND	0.008	μ g/L
sec-Butylbenzene	ND	ND	ND	ND	0.008	$\mu g/L$
tert-Butylbenzene	ND	ND	ND	ND	0.008	$\mu g/L$
Carbon tetrachloride	ND	ND	ND	ND	0.008	μ g/L
Chlorobenzene	ND	ND	ND	ND	0.008	$\mu g/L$
Chloroform	ND	ND	ND	ND	0.008	$\mu g/L$
2-Chlorotoluene	ND	ND	ND	ND	0.008	μ g/L
4-Chlorotoluene	ND	ND	ND	ND	0.008	$\mu g/L$
Dibromochloromethane	ND	ND	ND	ND	0.008	$\mu g/L$
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	0.008	μ g/L
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	0.008	$\mu g/L$
Dibromomethane	ND	ND	ND	ND	0.008	$\mu g/L$
1,2- Dichlorobenzene	ND	ND	ND	ND	0.008	$\mu g/L$
1,3-Dichlorobenzene	ND	ND	ND	ND	0.008	μ g/L
1,4-Dichlorobenzene	ND	ND	ND	ND	0.008	$\mu g/L$
Dichlorodifluoromethane	ND	ND	ND	ND	0.008	$\mu g/L$
1,1-Dichloroethane	ND	ND	ND	ND	0.008	$\mu g/L$
1,2-Dichloroethane	ND	ND	ND	ND	0.008	μ g/L
1,1-Dichloroethene	ND	ND	ND	ND	0.008	$\mu g/L$
cis-1,2-Dichloroethene	ND	ND	0.011	ND	0.008	$\mu g/L$
trans-1,2-Dichloroethene	ND	ND	ND	ND	0.008	$\mu g/L$
1,2-Dichloropropane	ND	ND	ND	ND	0.008	$\mu g/L$
1,3-Dichloropropane	ND	ND	ND	ND	0.008	$\mu g/L$
2,2-Dichloropropane	ND	ND	ND	ND	0.008	$\mu g/L$
1,1-Dichloropropene	ND	ND	ND	ND	0.008	$\mu g/L$

JONES ENVIRONMENTAL LABORATORY RESULTS

EPA 8260B – Volatile Organics by GC/MS + Oxygenates

Sample ID:	LB31-4	LB25-4	LB27-4	LB34-4	
Jones ID:	E-0786-06	E-0786-07	E-0786-08	E-0786-09	<u>Practical</u> <u>Quantitation</u> <u>Units</u>
Analytes:					<u>Limit</u>
cis-1,3-Dichloropropene	ND	ND	ND	ND	0.008 µg/L
trans-1,3-Dichloropropene	ND	ND	ND	ND	0.008 µg/L
Ethylbenzene	ND	ND	0.030	ND	0.008 µg/L
Freon 113	ND	ND	ND	ND	0.040 µg/L
Hexachlorobutadiene	ND	ND	ND	ND	0.008 µg/L
Isopropylbenzene	ND	ND	ND	ND	0.008 µg/L
4-Isopropyltoluene	ND	ND	ND	ND	0.008 µg/L
Methylene chloride	ND	ND	ND	ND	0.008 µg/L
Naphthalene	ND	ND	ND	ND	0.040 µg/L
n-Propylbenzene	ND	ND	ND	ND	0.008 µg/L
Styrene	ND	ND	ND	ND	0.008 µg/L
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	0.008 µg/L
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	0.008 µg/L
Tetrachloroethene	ND	0.262	0.102	0.274	0.008 µg/L
Toluene	ND	ND	0.066	0.038	0.008 µg/L
1,2,3-Trichlorobenzene	ND	ND	ND	ND	0.040 µg/L
1,2,4-Trichlorobenzene	ND	ND	ND	ND	0.008 µg/L
1,1,1-Trichloroethane	ND	ND	ND	ND	0.008 µg/L
1,1,2-Trichloroethane	ND	ND	ND	ND	0.008 µg/L
Trichloroethene	ND	0.021	0.029	0.029	0.008 µg/L
Trichlorofluoromethane	ND	ND	ND	ND	0.008 µg/L
1,2,3-Trichloropropane	ND	ND	ND	ND	0.008 µg/L
1,2,4-Trimethylbenzene	ND	ND	0.038	ND	0.008 µg/L
1,3,5-Trimethylbenzene	ND	ND	ND	ND	0.008 μg/L
Vinyl chloride	ND	ND	ND	ND	0.008 μg/L
m,p-Xylene	ND	ND	0.136	0.016	0.008 μg/L
o-Xylene	ND	ND	0.038	ND	0.008 μg/L
MTBE	ND	ND	ND	ND	0.040 μg/L
Ethyl-tert-butylether	ND	ND	ND	ND	0.040 μg/L
Di-isopropylether	ND	ND	ND	ND	0.040 μg/L
tert-amylmethylether	ND	ND	ND	ND	0.040 µg/L
tert-Butylalcohol	ND	ND	ND	ND	0.400 µg/L
TIC:					
n-Pentane	ND	ND	ND	ND	0.400 µg/L
n-Hexane	ND	ND	ND	ND	0.400 µg/L
n-Heptane	ND	ND	ND	ND	0.400 µg/L
Dilution Factor	1	1	1	1	
Surrogate Recoveries:					QC Limits
Dibromofluoromethane	107%	117%	116%	90%	60 - 140
Toluene-d ₈	94%	97%	97%	94%	60 - 140
4-Bromofluorobenzene	92%	103%	99%	97%	60 - 140
	E2-101717-	E1-101717-	E1-101717-	E2-101717-	
	E-0786	E-0786	E-0786	E-0786	

ND= Not Detected

714-449-9937 11007 FOREST PLACE 562-646-1611 SANTA FE SPRINGS, CA 90670 805-399-0060 WWW.JONESENV.COM

Report date:

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan Jones Ref. No.: E-0786

Irvine, CA 92614 **Client Ref. No.:** 11618.005

Brynn McCulloch **Date Sampled:** 10/17/2017 Attn:

> **Date Received:** 10/17/2017 10/17/2017

10/17/2017

Berth 191-193 **Project: Date Analyzed: Project Address:**

Yacht Street & Canal Street **Physical State:** Soil Gas

Wilmington, CA

EPA 8260B - Volatile Organics by GC/MS + Oxygenates

Sample ID:	METHOD BLANK	SAMPLING BLANK	METHOD BLANK	SAMPLING BLANK		
Jones ID:	101717- E1MB1	101717- E1SB1	101717- E2MB1	101717- E2SB1	<u>Practical</u> <u>Quantitation</u>	<u>Units</u>
Analytes:					<u>Limit</u>	
Benzene	ND	ND	ND	ND	0.008	μ g/L
Bromobenzene	ND	ND	ND	ND	0.008	μ g/L
Bromodichloromethane	ND	ND	ND	ND	0.008	μ g/L
Bromoform	ND	ND	ND	ND	0.008	μ g/L
n-Butylbenzene	ND	ND	ND	ND	0.008	μ g/L
sec-Butylbenzene	ND	ND	ND	ND	0.008	μ g/L
tert-Butylbenzene	ND	ND	ND	ND	0.008	μ g/L
Carbon tetrachloride	ND	ND	ND	ND	0.008	μ g/L
Chlorobenzene	ND	ND	ND	ND	0.008	$\mu g/L$
Chloroform	ND	ND	ND	ND	0.008	μ g/L
2-Chlorotoluene	ND	ND	ND	ND	0.008	μ g/L
4-Chlorotoluene	ND	ND	ND	ND	0.008	μ g/L
Dibromochloromethane	ND	ND	ND	ND	0.008	μ g/L
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	0.008	μ g/L
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	0.008	$\mu g/L$
Dibromomethane	ND	ND	ND	ND	0.008	$\mu g/L$
1,2- Dichlorobenzene	ND	ND	ND	ND	0.008	$\mu g/L$
1,3-Dichlorobenzene	ND	ND	ND	ND	0.008	μ g/L
1,4-Dichlorobenzene	ND	ND	ND	ND	0.008	μ g/L
Dichlorodifluoromethane	ND	ND	ND	ND	0.008	μ g/L
1,1-Dichloroethane	ND	ND	ND	ND	0.008	μ g/L
1,2-Dichloroethane	ND	ND	ND	ND	0.008	μ g/L
1,1-Dichloroethene	ND	ND	ND	ND	0.008	μ g/L
cis-1,2-Dichloroethene	ND	ND	ND	ND	0.008	μ g/L
trans-1,2-Dichloroethene	ND	ND	ND	ND	0.008	μ g/L
1,2-Dichloropropane	ND	ND	ND	ND	0.008	μ g/L
1,3-Dichloropropane	ND	ND	ND	ND	0.008	μg/L
2,2-Dichloropropane	ND	ND	ND	ND	0.008	μg/L
1,1-Dichloropropene	ND	ND	ND	ND	0.008	μg/L

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

	EPA 8260B – Volatile Organics by GC/MS + Oxygenates											
Sample ID:	METHOD BLANK	SAMPLING BLANK	METHOD BLANK	SAMPLING BLANK								
Jones ID:	101717- E1MB1	101717- E1SB1	101717- E2MB1	101717- E2SB1	<u>Practical</u> Quantitation Ur	nits						
Analytes:					<u>Limit</u>							
cis-1,3-Dichloropropene	ND	ND	ND	ND	$\overline{0.008}$ µg	g/L						
trans-1,3-Dichloropropene	ND	ND	ND	ND		g/L						
Ethylbenzene	ND	ND	ND	ND		g/L						
Freon 113	ND	ND	ND	ND		g/L						
Hexachlorobutadiene	ND	ND	ND	ND		g/L						
Isopropylbenzene	ND	ND	ND	ND		g/L						
4-Isopropyltoluene	ND	ND	ND	ND	• •	g/L						
Methylene chloride	ND	ND	ND	ND		g/L						
Naphthalene	ND	ND	ND	ND		g/L						
n-Propylbenzene	ND	ND	ND	ND		g/L						
Styrene	ND	ND	ND	ND		g/L						
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND		g/L						
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	• •	g/L						
Tetrachloroethene	ND	ND	ND	ND		g/L						
Toluene	ND	ND	ND	ND	• •	g/L						
1,2,3-Trichlorobenzene	ND	ND	ND	ND		g/L						
1,2,4-Trichlorobenzene	ND	ND	ND	ND		g/L						
1,1,1-Trichloroethane	ND	ND	ND	ND		g/L						
1,1,2-Trichloroethane	ND ND	ND	ND	ND ND	• •	g/L g/L						
Trichloroethene	ND ND	ND	ND	ND ND	• •	g/L g/L						
Trichlorofluoromethane	ND	ND	ND	ND		g/L						
1,2,3-Trichloropropane	ND ND	ND ND	ND ND	ND ND	• •	g/L g/L						
1,2,4-Trimethylbenzene	ND ND	ND ND	ND ND	ND ND	• •	g/L g/L						
•	ND ND	ND	ND ND	ND ND		g/L g/L						
1,3,5-Trimethylbenzene	ND ND	ND ND	ND ND	ND ND								
Vinyl chloride	ND ND	ND ND	ND ND	ND ND		g/L						
m,p-Xylene						g/L						
o-Xylene	ND	ND ND	ND	ND ND		g/L						
MTBE	ND	ND	ND	ND		g/L						
Ethyl-tert-butylether	ND	ND	ND	ND		g/L						
Di-isopropylether	ND	ND	ND	ND ND		g/L						
tert-amylmethylether	ND	ND	ND	ND		g/L						
tert-Butylalcohol	ND	ND	ND	ND	0.400 μg	g/L						
TIC:												
n-Pentane	ND	ND	ND	ND	0.400 μg	g/L						
n-Hexane	ND	ND	ND	ND	0.400 μg	g/L						
n-Heptane	ND	ND	ND	ND	0.400 με	g/L						
Dilution Factor	1	1	1	1								
Surrogate Recoveries:					QC Limits							
Dibromofluoromethane	119%	121%	132%	97%	60 - 140							
Toluene-d ₈	88%	92%	96%	104%	60 - 140							
4-Bromofluorobenzene	92%	103%	84%	100%	60 - 140							

ND= Not Detected

E-0786

E-0786

E1-101717- E1-101717- E2-101717- E2-101717-

E-0786

E-0786

714-449-9937 | 11007 FOREST PLACE 562-646-1611 | SANTA FE SPRINGS, CA 90670 805-399-0060 | WWW.JONESENV.COM

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Leighton Consulting, Inc. Report date: 10/17/2017

Client Address: 17781 Cowan Jones Ref. No.: E-0786

Irvine, CA 92614 Client Ref. No.: 11618.005

Attn: Brynn McCulloch Date Sampled: 10/17/2017

Date Received: 10/17/2017

101717-E1CCV1

Project: Berth 191-193 Date Analyzed: 10/17/2017

Project: Verbt Street & Conel Street

Physical States Soil Cone

Project Address: Yacht Street & Canal Street Physical State: Soil Gas

Wilmington, CA

101717-E1LCS1

EPA 8260B - Volatile Organics by GC/MS + Oxygenates

101717-E1LCSD1

Batch ID: E1-101717-E-0786

Jones ID:

Jones ID:	101/1/-EILCSI	101/1/-EILCSDI	101/1/-EICCVI							
	LCS	LCSD		Acceptability		Acceptability				
<u>Parameter</u>	Recovery (%)	Recovery (%)	RPD	Range (%)	<u>CCV</u>	Range (%)				
Vinyl chloride	92%	90%	2.1%	70 - 130	87%	80 - 120				
1,1-Dichloroethene	115%	102%	12.0%	70 - 130	99%	80 - 120				
Cis-1,2-Dichloroethene	130%	116%	11.1%	70 - 130	109%	80 - 120				
1,1,1-Trichloroethane	117%	106%	9.4%	70 - 130	102%	80 - 120				
Benzene	125%	109%	13.4%	70 - 130	106%	80 - 120				
Trichloroethene	122%	105%	14.6%	70 - 130	108%	80 - 120				
Toluene	129%	121%	6.0%	70 - 130	110%	80 - 120				
Tetrachloroethene	123%	118%	4.5%	70 - 130	107%	80 - 120				
Chlorobenzene	129%	120%	7.8%	70 - 130	112%	80 - 120				
Ethylbenzene	126%	116%	8.5%	70 - 130	105%	80 - 120				
1,2,4 Trimethylbenzene	130%	117%	11.3%	70 - 130	104%	80 - 120				
Surrogate Recovery:										
Dibromofluoromethane	116%	114%		60 - 140	110%	60 - 140				
Toluene-d ₈	97%	97%		60 - 140	94%	60 - 140				
4-Bromofluorobenzene 98% 100%			60 - 140	103%	60 - 140					

LCS = Laboratory Control Sample

LCSD = Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 15%

714-449-9937 | 11007 FOREST PLACE 562-646-1611 | SANTA FE SPRINGS, CA 90670 805-399-0060 | WWW.JONESENV.COM

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Leighton Consulting, Inc. Report date: 10/17/2017

Client Address: 17781 Cowan Jones Ref. No.: E-0786

Irvine, CA 92614 Client Ref. No.: 11618.005

Attn: Brynn McCulloch Date Sampled: 10/17/2017

Date Received: 10/17/2017 **Date Analyzed:** 10/17/2017

101717-E2CCV1

Project:Berth 191-193Date Analyzed:10/17/2017Project Address:Yacht Street & Canal StreetPhysical State:Soil Gas

Wilmington, CA

101717-E2LCS1

EPA 8260B - Volatile Organics by GC/MS + Oxygenates

101717-E2LCSD1

Batch ID: E2-101717-E-0786

Jones ID:

Jones ID:	101/1/-E2LCS1	101/1/-E2LCSD1		101/1/-E2CCV1							
	LCS	LCSD		Acceptability		Acceptability					
<u>Parameter</u>	Recovery (%)	Recovery (%)	<u>RPD</u>	Range (%)	CCV	Range (%)					
Vinyl chloride	85%	92%	8.0%	70 - 130	88%	80 - 120					
1,1-Dichloroethene	87%	89%	2.8%	70 - 130	112%	80 - 120					
Cis-1,2-Dichloroethene	103%	110%	6.2%	70 - 130	126%	80 - 120					
1,1,1-Trichloroethane	93%	99%	5.7%	70 - 130	94%	80 - 120					
Benzene	85%	91%	7.1%	70 - 130	102%	80 - 120					
Trichloroethene	82%	86%	5.0%	70 - 130	102%	80 - 120					
Toluene	82%	87%	5.8%	70 - 130	106%	80 - 120					
Tetrachloroethene	84%	83%	1.8%	70 - 130	104%	80 - 120					
Chlorobenzene	83%	86%	3.6%	70 - 130	98%	80 - 120					
Ethylbenzene	89%	85%	4.7%	70 - 130	98%	80 - 120					
1,2,4 Trimethylbenzene	82%	74%	9.3%	70 - 130	94%	80 - 120					
Surrogate Recovery:											
Dibromofluoromethane	113%	114%		60 - 140	92%	60 - 140					
Toluene-d ₈	96%	95%		60 - 140	96%	60 - 140					
4-Bromofluorobenzene 98% 96%		96%		60 - 140	60 - 140 97% 60 - 14						

LCS = Laboratory Control Sample

LCSD = Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 15%

11007 Forest PI. Santa Fe Springs, CA 90670 (714) 449-9937 Fax (714) 449-9685 www.jonesenv.com

Soil-Gas Chain-of-Custody Record

Client LEIGHTON ASSOCIATE	S, INC					10/17/20	17	P □ 1P	urge Numbe	er: 🗆 10	Р		Repor DD DF* - 10	_		ge	Jones Project #	
Project Name BERTH 1191-193						Client Project # 11618.00)5	Shut	t-In Test: Y)/ N		*(Slobal II	0			E-078	6
Project Address						11010.00	,	-	<u> </u>)							i,	
BERTH 193						Turn Around Re	quested	T	racer		Ana	lysis	Requ	este	t	. 1	Page	
WILMINGTON, CA						☐ Immediate Atten☐ Rush 24 Hours☐ Rush 48 Hours	ition	n-pent n-hexa	ane								1 of	1
Email						□ Rush 72 Hours		/ Helium	1					20		1 1	Sample Container:	
Phone 949-681-4287						Mobile Lab		□ 1,1-DF	-A	Material (M)				Magnehelic Vacuum (In/H ₂ O)	iners		GLASS GAS-TIGHT SYRI	
Report To		Sampler				Reporting Lir	nits Reques	sted	Units	rix:				Vacu	onta	_		
BRYNN MCCULLOCH		JSB				□ Commercial	Res	idential	4716	Matrix:	80B			elic	ofc			
Sample ID	Purge Number	Purge Volume (mL)	Date	Sample Collection Time	Sample Analysis Time	Laboratory Sample ID	Purge Rate (mL/min)	Pump Used	Magnehelic	Soil Gas (SG), Air (A)	EPA 8260B			Magneh	Number of Containers	Note	es & Special Instructi	ons
LB1-4	3	1290	10/17/17	8:04	8:11	E-0786-01	200	JOSH2	M100.102	SG	Х		1	98	2	VERY LOW FLO	OW, LOTS OF WATER IN PR	OBE(>50mL)
LB6-4	3	1290	10/17/17	8:07	8:13	E-0786-02	200	STEVE2	M100.120	SG	Х			82	2	WATER IN	N PROBE (~40mL)	
LB13-4	3	1290	10/17/17	8:32	8:43	E-0786-03	200	JOSH2	M100.102	SG	Х			12	2			
LB23-4	3	1290	10/17/17	8:36	8:45	E-0786-04	200	STEVE2	M100.120	SG	х			16	2			
LB1-4 DIL	- 2	-	10/17/17	8:50	9:00		-	-	M100.102	SG	х			98	1	VERY LOW FLOW, STILL	LLOTS OF WATER IN PROBE(>50mL), SEEN	AS TO REGENERATE
LB23-4 REP	3	1290	10/17/17	8:53	9:02	E-0786-05	200	JOSH2	M100.102	SG	х			16	2			
LB31-4	3	1290	10/17/17	9:20	9:27	E-0786-06	200	STEVE2	M100.120	SG	х			8	2			
LB25-4	3	1290	10/17/17	9:22	9:32	E-0786-07	200	JOSH2	M100.102	SG	х			10	2			
LB27-4	3	1290	10/17/17	9:38	9:44	E-0786-08	200	STEVE2	M100.120	SG	х			8	2			
LB34-4	3	1290	10/17/17	10:20	10:45	E-0786-09	200	JOSH2	M100.102	SG	Х			10	2			
Relinquished By (Signature)		Printed Nan				Received By (Signature)			Print	ed Nar	ne H	BAS	55		19	Total Number	of Containers	
Company Com	i	Date	7	Time	ζ	Company Cord S Received By Laboratory		orace of		() F		Time 7	1117	7			this Chain of Custody for	
ompany Date Time			Company	10 of 10		Date			Time					information provided here and accurate.				

714-449-9937 562-646-1611 SANTA FE SPRINGS, CA 90670 805-399-0060 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan

Irvine, CA 92614

Attn: Brynn McCulloch

Project Name: 390-400 Yacht St.

Project Address: Wilmington, CA

Report date: 12/18/2017

JEL Ref. No.: F-0087

Client Ref. No.: 11618.005

Date Sampled: 12/18/2017

Date Received: 12/18/2017 **Date Analyzed:** 12/18/2017

Physical State: Soil Gas

ANALYSES REQUESTED

1. EPA 8260B – Volatile Organics by GC/MS + Oxygenates

Sampling – Soil Gas samples were collected in glass gas-tight syringes equipped with Teflon plungers.

A tracer gas mixture of n-pentane, n-hexane, and n-heptane was placed at the tubing-surface interface before sampling. These compounds were analyzed during the 8260B analytical run to determine if there were surface leaks into the subsurface due to improper installation of the probe. No n-pentane, n-hexane, or n-heptane was found in any of the samples reported herein.

The sampling rate was approximately 200 cc/min, except when noted differently on the chain of custody record, using a glass gas-tight syringe. Purging was completed using a pump set at approximately 200 cc/min, except when noted differently on the chain of custody record. A default of 3 purge volumes was used as recommended by July 2015 DTSC/RWQCB guidance documents.

Prior to purging and sampling of soil gas at each point, a shut-in test was conducted to check for leaks in the above ground fittings. The shut-in test was performed on the above ground apparatus by evacuating the line to a vacuum of 100 inches of water, sealing the entire system and watching the vacuum for at least one minute. A vacuum gauge attached in parallel to the apparatus measured the vacuum. If there was any observable loss of vacuum, the fittings were adjusted as needed until the vacuum did not change noticeably. The soil gas sample was then taken.

No flow conditions occur when a sampling rate greater than 10 mL/min cannot be maintained without applying a vacuum greater than 100 inches of water to the sampling train. The sampling train is left at a vacuum for no less than three minutes. If the vacuum does not subside appreciably after three minutes, the sample location is determined to be a no flow sample.

Analytical – Soil Gas samples were analyzed using EPA Method 8260 that includes extra compounds required by DTSC/RWQCB (such as Freon 113). Instrument Continuing Calibration Verification, QC Reference Standards, Instrument Blanks and Sampling Blanks were analyzed every 12 hours as prescribed by the method. In addition, a Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (LCSD) were analyzed with each batch of Soil Gas samples. A duplicate/replicate sample was analyzed each day of the sampling activity. All samples were injected into the GC/MS system within 30 minutes of sampling.

Approval:

Angela Haar, Ph. D. Mobile Lab Manager **Project:**

714-449-9937 | 11007 FOREST PLACE 562-646-1611 | SANTA FE SPRINGS, CA 90670 805-399-0060 | WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Leighton Consulting, Inc. Report date: 12/18/2017

Client Address: 17781 Cowan Jones Ref. No.: F-0087

Irvine, CA 92614 Client Ref. No.: 11618.005

Attn: Brynn McCulloch Date Sampled: 12/18/2017

Date Received: 12/18/2017 390-400 Yacht St **Date Analyzed:** 12/18/2017

Project Address: Wilmington, CA Physical State: Soil Gas

EPA 8260B - Volatile Organics by GC/MS + Oxygenates

Sample ID:	LB43-4'	LB38-3'	LB36-4'	LB39-4'	LB40-4'		
Jones ID: Analytes:	F-0087-01	F-0087-02	F-0087-03	F-0087-04	F-0087-05	Practical Quantitation Limit	<u>Units</u>
Benzene	ND	ND	ND	ND	ND	0.008	μg/L
Bromobenzene	0.009	ND	ND	ND	ND	0.008	μg/L μg/L
Bromodichloromethane	ND	ND	ND	ND	ND	0.008	μg/L
Bromoform	ND	ND	ND	ND	ND	0.008	μg/L
n-Butylbenzene	0.013	ND	ND	ND	ND	0.008	μg/L
sec-Butylbenzene	0.014	ND	ND	ND	ND	0.008	μg/L
tert-Butylbenzene	0.013	ND	ND	ND	ND	0.008	μg/L
Carbon tetrachloride	ND	ND	ND	ND	ND	0.008	μg/L
Chlorobenzene	ND	ND	ND	ND	ND	0.008	μg/L
Chloroform	ND	ND	ND	0.026	ND	0.008	μg/L
2-Chlorotoluene	0.009	ND	ND	ND	ND	0.008	μg/L
4-Chlorotoluene	0.010	ND	ND	ND	ND	0.008	μg/L
Dibromochloromethane	ND	ND	ND	ND	ND	0.008	μg/L
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	0.008	μg/L
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	0.008	μg/L
Dibromomethane	ND	ND	ND	ND	ND	0.008	μg/L
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	0.008	μg/L
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	0.008	μg/L
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	0.008	μg/L
Dichlorodifluoromethane	0.011	0.011	0.010	0.010	0.009	0.008	μg/L
1,1-Dichloroethane	ND	ND	ND	ND	ND	0.008	μg/L
1,2-Dichloroethane	ND	ND	ND	ND	ND	0.008	μg/L
1,1-Dichloroethene	ND	ND	ND	0.056	ND	0.008	μg/L
cis-1,2-Dichloroethene	ND	ND	ND	70.1*	0.218	0.008	μg/L
trans-1,2-Dichloroethene	ND	ND	ND	2.67	0.012	0.008	μg/L
1,2-Dichloropropane	ND	ND	ND	ND	ND	0.008	μg/L
1,3-Dichloropropane	ND	ND	ND	ND	ND	0.008	μg/L
2,2-Dichloropropane	ND	ND	ND	ND	ND	0.008	μg/L
1,1-Dichloropropene	ND	ND	ND	ND	ND	0.008	μg/L

JONES ENVIRONMENTAL LABORATORY RESULTS

EPA 8260B – Volatile Organics by GC/MS + Oxygenates												
Sample ID:	LB43-4'	LB38-3'	LB36-4'	LB39-4'	LB40-4'							
Jones ID:	F-0087-01	F-0087-02	F-0087-03	F-0087-04	F-0087-05	Practical Quantitation	<u>Units</u>					
Analytes:						<u>Limit</u>						
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	0.008	μg/L					
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	0.008	μg/L					
Ethylbenzene	0.012	ND	0.019	ND	ND	0.008	μg/L					
Freon 113	ND	ND	ND	ND	ND	0.040	μg/L					
Hexachlorobutadiene	ND	ND	ND	ND	ND	0.008	μg/L					
Isopropylbenzene	0.012	ND	0.011	ND	ND	0.008	μg/L					
4-Isopropyltoluene	0.026	0.106	0.771	0.023	ND	0.008	μg/L					
Methylene chloride	ND	ND	ND	ND	ND	0.008	μg/L					
Naphthalene	ND	ND	ND	ND	ND	0.040	μg/L					
n-Propylbenzene	0.014	ND	0.012	ND	ND	0.008	μg/L					
Styrene	ND	ND	0.009	ND	ND	0.008	μg/L					
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	0.008	μg/L					
1,1,2,2-Tetrachloroethane	ND	ND	0.011	ND	ND	0.008	μg/L					
Tetrachloroethene	0.011	ND	0.141	8.75	0.243	0.008	μg/L					
Toluene	0.021	0.016	0.081	0.011	ND	0.008	μg/L					
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	0.020	μg/L					
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	0.020	μg/L					
1,1,1-Trichloroethane	ND	ND	ND	ND ND ND		0.008	μg/L					
1,1,2-Trichloroethane	0.118	ND	0.304	0.304 0.015		0.008	μg/L					
Trichloroethene	ND	ND	ND	18.4	0.146	0.008	μg/L					
Trichlorofluoromethane	0.009	3.71	3.59	ND	0.010	0.008	μg/L					
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	0.008	μg/L					
1,2,4-Trimethylbenzene	0.021	0.036	0.234	ND	ND	0.008	μg/L					
1,3,5-Trimethylbenzene	0.013	ND	0.010	ND	ND	0.008	μg/L					
Vinyl chloride	ND	ND	ND	0.014	ND	0.008	μg/L					
m,p-Xylene	0.021	ND	0.046	ND	ND	0.008	μg/L					
o-Xylene	0.011	ND	0.019	ND	ND	0.008	μg/L					
MTBE	ND	ND	ND	ND	ND	0.040	μg/L					
Ethyl-tert-butylether	ND	ND	ND	ND	ND	0.040	μg/L					
Di-isopropylether	ND	ND	ND	ND	ND	0.040	μg/L					
tert-amylmethylether	ND	ND	ND	ND	ND	0.040	μg/L					
tert-Butylalcohol	ND	ND	ND	ND	ND	0.400	$\mu g/L$					
TIC:												
n-Pentane	ND	ND	ND	ND	ND	0.400	μg/L					
n-Hexane	ND	ND	ND	ND	ND	0.400	μg/L					
n-Heptane	ND	ND	ND	ND	ND	0.400	$\mu g/L$					
Dilution Factor	1	1	1	1/25*	1							
Surrogate Recoveries:						QC Limi	<u>ts</u>					
Dibromofluoromethane	102%	102%	103%	104%	101%	60 - 140						
Toluene-d ₈	98%	98%	97%	95%	98%	60 - 140)					
4-Bromofluorobenzene	97%	95%	101%	99%	96%	60 - 140						
	F1-121817-	F1-121817-	F1-121817-	F1-121817-	F1-121817-							
	F-0087	F-0087	F-0087	F-0087	F-0087							
ND N. (D. (c.)												

ND= Not Detected

^{* =} Dilutions for these compound(s); first number for all others

714-449-9937 | 11007 FOREST PLACE 562-646-1611 | SANTA FE SPRINGS, CA 90670 805-399-0060 | WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Leighton Consulting, Inc. Report date: 12/18/2017

Client Address: 17781 Cowan Jones Ref. No.: F-0087

Irvine, CA 92614 Client Ref. No.: 11618.005

Attn: Brynn McCulloch Date Sampled: 12/18/2017

Date Received: 12/18/2017
Berth 191-193
Date Analyzed: 12/18/2017

Project:Berth 191-193Date Analyzed:12/18/20Project Address:Wilmington, CAPhysical State:Soil Gas

EPA 8260B – Volatile Organics by GC/MS + Oxygenates

Sample ID:	LB42-4'	LB42-4' REP	LB49-4'		
Jones ID:	F-0087-06	F-0087-06 F-0087-07 F-008		<u>Practical</u> <u>Quantitation</u>	<u>Units</u>
Analytes:				<u>Limit</u>	
Benzene	ND	ND	ND	0.008	$\mu g/L$
Bromobenzene	ND	ND	ND	0.008	$\mu g/L$
Bromodichloromethane	ND	ND	ND	0.008	μg/L
Bromoform	ND	ND	ND	0.008	$\mu g/L$
n-Butylbenzene	ND	ND	ND	0.008	$\mu g/L$
sec-Butylbenzene	ND	ND	ND	0.008	μg/L
tert-Butylbenzene	ND	ND	ND	0.008	μg/L
Carbon tetrachloride	ND	ND	ND	0.008	μg/L
Chlorobenzene	ND	ND	ND	0.008	μg/L
Chloroform	ND	ND	ND	0.008	μg/L
2-Chlorotoluene	ND	ND	ND	0.008	μg/L
4-Chlorotoluene	ND	ND	ND	0.008	μg/L
Dibromochloromethane	ND	ND	ND	0.008	μg/L
1,2-Dibromo-3-chloropropane	ND	ND	ND	0.008	μg/L
1,2-Dibromoethane (EDB)	ND	ND	ND	0.008	μg/L
Dibromomethane	ND	ND	ND	0.008	μg/L
1,2- Dichlorobenzene	ND	ND	ND	0.008	μg/L
1,3-Dichlorobenzene	ND	ND	ND	0.008	μg/L
1,4-Dichlorobenzene	ND	ND	ND	0.008	$\mu g/L$
Dichlorodifluoromethane	ND	ND	ND	0.008	μg/L
1,1-Dichloroethane	ND	ND	ND	0.008	μg/L
1,2-Dichloroethane	ND	ND	ND	0.008	μg/L
1,1-Dichloroethene	ND	ND	ND	0.008	μg/L
cis-1,2-Dichloroethene	0.110	0.133	0.100	0.008	μg/L
trans-1,2-Dichloroethene	ND	ND	ND	0.008	μg/L
1,2-Dichloropropane	ND	ND	ND	0.008	$\mu g/L$
1,3-Dichloropropane	ND	ND	ND	0.008	$\mu g/L$
2,2-Dichloropropane	ND	ND	ND	0.008	$\mu g/L$
1,1-Dichloropropene	ND	ND	ND	0.008	$\mu g/L$

JONES ENVIRONMENTAL LABORATORY RESULTS

EPA 8260B – Volatile Organics by GC/MS + Oxygenates											
Sample ID:	LB42-4'	LB42-4' REP	LB49-4'								
Jones ID:	F-0087-06	F-0087-07	F-0087-08		Practical Quantitation	<u>Units</u>					
Analytes:					<u>Limit</u>						
cis-1,3-Dichloropropene	ND	ND	ND		0.008	μg/L					
trans-1,3-Dichloropropene	ND	ND	ND		0.008	μg/L					
Ethylbenzene	ND	ND	ND		0.008	μg/L					
Freon 113	ND	ND	ND		0.040	μg/L					
Hexachlorobutadiene	ND	ND	ND		0.008	μg/L					
Isopropylbenzene	ND	ND	ND		0.008	μg/L					
4-Isopropyltoluene	0.206	0.206	0.014		0.008	μg/L					
Methylene chloride	ND	ND	ND		0.008	μg/L					
Naphthalene	ND	ND	ND		0.040	μg/L					
n-Propylbenzene	ND	ND	ND		0.008	μg/L					
Styrene	ND	ND	ND		0.008	μg/L					
1,1,1,2-Tetrachloroethane	ND	ND	ND		0.008	μg/L					
1,1,2,2-Tetrachloroethane	ND	ND	ND		0.008	μg/L					
Tetrachloroethene	0.066	0.075	0.090		0.008	μg/L					
Toluene	0.010	0.012	ND		0.008	μg/L					
1,2,3-Trichlorobenzene	ND	ND	ND		0.040	μg/L					
1,2,4-Trichlorobenzene	ND	ND	ND		0.030	μg/L					
1,1,1-Trichloroethane	ND	ND	ND		0.008	μg/L					
1,1,2-Trichloroethane	ND	ND	ND		0.008	μg/L					
Trichloroethene	0.014	0.030	0.064		0.008	μg/L					
Trichlorofluoromethane	0.052	0.054	ND		0.008	$\mu g/L$					
1,2,3-Trichloropropane	ND	ND	ND		0.008	μg/L					
1,2,4-Trimethylbenzene	0.066	0.070	ND		0.008	μg/L					
1,3,5-Trimethylbenzene	ND	ND	ND		0.008	μg/L					
Vinyl chloride	ND	ND	0.021		0.008	μg/L					
m,p-Xylene	ND	ND	ND		0.008	μg/L					
o-Xylene	ND	ND	ND		0.008	μg/L					
MTBE	ND	ND	ND		0.040	μg/L					
Ethyl-tert-butylether	ND	ND	ND		0.040	μg/L					
Di-isopropylether	ND	ND	ND		0.040	μg/L					
tert-amylmethylether	ND	ND	ND		0.040	μg/L					
tert-Butylalcohol	ND	ND	ND		0.400	μg/L					
TIC:											
n-Pentane	ND	ND	ND		0.400	μg/L					
n-Hexane	ND	ND	ND		0.400	μg/L					
n-Heptane	ND	ND	ND		0.400	μg/L					
Dilution Factor	1	1	1								
Surrogate Recoveries:					QC Lim						
Dibromofluoromethane	101%	100%	101%		60 - 140						
Toluene-d ₈	95%	98%	94%		60 - 140						
4-Bromofluorobenzene	100%	96%	97%		60 - 140)					
		F1-121817-									
ND N. D.	F-0087	F-0087	F-0087								
NICO NICA DICA 4 - 4											

ND= Not Detected

^{* =} Dilutions for these compound(s); first number for all others

714-449-9937 | 11007 FOREST PLACE 562-646-1611 | SANTA FE SPRINGS, CA 90670 805-399-0060 | WWW.JONESENV.COM

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Leighton Consulting, Inc. Report date: 12/18/2017

Client Address: 17781 Cowan Jones Ref. No.: F-0087

Irvine, CA 92614 Client Ref. No.: 11618.005

Attn: Brynn McCulloch Date Sampled: 12/18/2017

Date Received: 12/18/2017 **Date Analyzed:** 12/18/2017

Project:Berth 191-193Date Analyzed:12/18/20Project Address:Wilmington, CAPhysical State:Soil Gas

EPA 8260B – Volatile Organics by GC/MS + Oxygenates

Sample ID:	METHOD BLANK	SAMPLING BLANK		
Jones ID:	121817- F1MB1	121817- F1SB1	<u>Practical</u> <u>Quantitation</u>	<u>Units</u>
Analytes:			<u>Limit</u>	
Benzene	ND	ND	0.008	μg/L
Bromobenzene	ND	ND	0.008	μg/L
Bromodichloromethane	ND	ND	0.008	μg/L
Bromoform	ND	ND	0.008	μg/L
n-Butylbenzene	ND	ND	0.008	μg/L
sec-Butylbenzene	ND	ND	0.008	μg/L
tert-Butylbenzene	ND	ND	0.008	μg/L
Carbon tetrachloride	ND	ND	0.008	μg/L
Chlorobenzene	ND	ND	0.008	μg/L
Chloroform	ND	ND	0.008	μg/L
2-Chlorotoluene	ND	ND	0.008	μg/L
4-Chlorotoluene	ND	ND	0.008	μg/L
Dibromochloromethane	ND	ND	0.008	μg/L
1,2-Dibromo-3-chloropropane	ND	ND	0.008	μg/L
1,2-Dibromoethane (EDB)	ND	ND	0.008	μg/L
Dibromomethane	ND	ND	0.008	μg/L
1,2- Dichlorobenzene	ND	ND	0.008	μg/L
1,3-Dichlorobenzene	ND	ND	0.008	μg/L
1,4-Dichlorobenzene	ND	ND	0.008	μg/L
Dichlorodifluoromethane	ND	ND	0.008	μg/L
1,1-Dichloroethane	ND	ND	0.008	μg/L
1,2-Dichloroethane	ND	ND	0.008	μg/L
1,1-Dichloroethene	ND	ND	0.008	μg/L
cis-1,2-Dichloroethene	ND	ND	0.008	μg/L
trans-1,2-Dichloroethene	ND	ND	0.008	μg/L
1,2-Dichloropropane	ND	ND	0.008	μg/L
1,3-Dichloropropane	ND	ND	0.008	μg/L
2,2-Dichloropropane	ND	ND	0.008	μg/L
1,1-Dichloropropene	ND	ND	0.008	μg/L

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

EPA 8260B -	Volatile	Organics	by GC/MS	S + Oxygenates

Sample ID:	METHOD BLANK	SAMPLING BLANK	
Jones ID:	121817- F1MB1	121817- F1SB1	<u>Practical</u> <u>Quantitation</u> <u>Units</u>
Analytes:			<u>Limit</u>
cis-1,3-Dichloropropene	ND	ND	$\overline{0.008}$ µg/L
trans-1,3-Dichloropropene	ND	ND	0.008 μg/L
Ethylbenzene	ND	ND	0.008 μg/L
Freon 113	ND	ND	0.040 μg/L
Hexachlorobutadiene	ND	ND	0.008 μg/L
Isopropylbenzene	ND	ND	0.008 μg/L
4-Isopropyltoluene	ND	ND	0.008 μg/L
Methylene chloride	ND	ND	0.008 μg/L
Naphthalene	ND	ND	0.040 μg/L
n-Propylbenzene	ND	ND	0.008 µg/L
Styrene	ND	ND	0.008 μg/L
1,1,1,2-Tetrachloroethane	ND	ND	0.008 μg/L
1,1,2,2-Tetrachloroethane	ND	ND	0.008 μg/L
Tetrachloroethene	ND	ND	0.008 μg/L
Toluene	ND	ND	0.008 μg/L
1,2,3-Trichlorobenzene	ND	ND ND	0.040 μg/L
1,2,4-Trichlorobenzene	ND	ND	0.030 $\mu g/L$
1,1,1-Trichloroethane	ND	ND ND	0.008 μg/L
1,1,2-Trichloroethane	ND	ND ND	0.008 μg/L
Trichloroethene	ND	ND ND	0.008 μg/L
Trichlorofluoromethane	ND	ND ND	0.008 μg/L
1,2,3-Trichloropropane	ND ND	ND ND	0.008 μg/L 0.008 μg/L
1,2,4-Trimethylbenzene	ND ND	ND ND	0.008 μg/L 0.008 μg/L
1,3,5-Trimethylbenzene	ND ND	ND ND	0.008 μg/L 0.008 μg/L
	ND ND	ND ND	1.6
Vinyl chloride	ND ND	ND ND	1.6
m,p-Xylene	ND ND	ND ND	
o-Xylene MTBE	ND ND	ND ND	1.6
	ND ND	ND ND	1.6
Ethyl-tert-butylether	ND ND	ND ND	1.6
Di-isopropylether	ND ND	ND ND	1.6
tert-amylmethylether			1.6
tert-Butylalcohol	ND	ND	0.400 µg/L
TIC:	NID	NID	0.400/I
n-Pentane	ND	ND	0.400 μg/L
n-Hexane	ND	ND	0.400 μg/L
n-Heptane	ND	ND	0.400 µg/L
Dilution Factor	1	1	
Surrogate Recoveries:			QC Limits
Dibromofluoromethane	104%	106%	60 - 140
Toluene-d ₈	94%	95%	60 - 140
4-Bromofluorobenzene	98%	98%	60 - 140
		F1-121817-	
	F-0087	F-0087	

ND= Not Detected

^{* =} Dilutions for these compound(s); first number for all others

714-449-9937 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 562-646-1611 805-399-0060 WWW.JONESENV.COM

Report date:

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan

Irvine, CA 92614

121817-F1LCS1

Attn: Brynn McCulloch

Project: Berth 191-193 **Project Address:** Wilmington, CA

Jones ID:

Jones Ref. No.: F-0087 11618.005 11618.005 12/18/2017

Date Sampled: Date Received: 12/18/2017 12/18/2017 **Date Analyzed:**

12/18/2017

Soil Gas **Physical State:**

121817-F1CCV1

EPA 8260B - Volatile Organics by GC/MS + Oxygenates

F1-121817-F-0087 **Batch ID:**

LCS **LCSD** Acceptability Acceptability <u>Parameter</u> Recovery (%) Recovery (%) RPD Range (%) **CCV** Range (%) 37.9% 34.3% 9.8% 70 - 130 113.4%

121817-F1LCSD1

Vinyl chloride 80 - 120 95% 1,1-Dichloroethene 106% 11.0% 70 - 130 108% 80 - 120Cis-1,2-Dichloroethene 103% 95% 8.7% 70 - 130 107% 80 - 120 1,1,1-Trichloroethane 111% 103% 7.9% 70 - 130115% 80 - 12095% 89% Benzene 7.3% 70 - 130 99% 80 - 120Trichloroethene 113% 106% 5.9% 70 - 130 119% 80 - 120 Toluene 95% 90% 6.0% 70 - 13093% 80 - 120 111% 106% Tetrachloroethene 5.3% 70 - 130 109% 80 - 120Chlorobenzene 93% 88% 6.0% 70 - 130 92% 80 - 120 Ethylbenzene

94% 87% 7.3% 70 - 130 92% 80 - 120 1,2,4 Trimethylbenzene 90% 83% 7.9% 70 - 130 82% 80 - 120

Surrogate Recovery:

Dibromofluoromethane 107% 103% 60 - 140 107% 60 - 140 Toluene-d₈ 94% 96% 60 - 140 95% 60 - 140 60 - 140 60 - 140 4-Bromofluorobenzene 98% 100% 96%

LCS = Laboratory Control Sample

LCSD = Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 15%

οf

10

11007 Forest PI. Santa Fe Springs, CA 90670 (714) 449-9937 Fax (714) 449-9685 www.jonesenv.com

Soil-Gas Chain-of-Custody Record

Client LEIGHTON CONSULTING Project Name						Date				P		DD_	rt Optio		Jones Project #			
390-400 YACHT ST						11618. 0	Shut-	In Test: Y	/ N		*(Slobal II	D	F-0087				
Project Address 390-400 YACHT ST WILMINGTON, CA Email Phone						Turn Around Red Immediate Atten Rush 24 Hours Rush 48 Hours Rush 72 Hours Normal	Tracer n-pentane n-hexane h-heptane Helium 1,1-DFA				lysis	Requ			Page 1 of 2 Sample Container: GLASS GAS-TIGHT SYRINGE			
Report To BRYNN MCCULLOCH		Sampler JSB				Reporting Lir	Reporting Limits Requested Units					Magnehelic Vacuum (In/H ₂ O)	of Containers					
Sample ID	Purge Number	Purge Volume (mL)	Date	Sample Collection Time	Sample Analysis Time	Laboratory Sample ID	Purge Rate (mL/min)	Pump Used	Magnehelic	Soil Gas (SG	EPA 8260B			Magnehel Number o	Notes & Special Instructions			
LB43-4'	3	1610	12/18/17	7:14	7:19	F-0087-01	200	JOSH1	118001	SG				10	2			
LB38-3'	3	1590	12/18/17	7:30	7:35	F-0087-02	200	JOSH1	118001	SG	х			4	2			
LB38-3' REP	3	1590	12/18/17	7:52	7:55	15. 64	200	JOSH1	118001	SG	х			4	2	REP FAILED, TRYING ANOTHER		
LB36-4'	3	1610	12/18/17	8:06	8:12	F-0087-03	200	JOSH1	118001	SG	Х			66	2	LOW FLOW		
LB39-4'	3	1610	12/18/17	8:25	8:31	F-0087-04	200	JOSH1	118001	SG	х			10	2			
LB40-4'	3	1610	12/18/17	8:50	8:53	F-0087-05	200	JOSH1	118001	SG	х			16	2			
LB39-4' DIL	m-i		12/18/17	9:04	9:09	11. [1	1.7	118001	SG	х			10	2			
LB42-4'	3	1610	12/18/17	9:22	9:27	F-0087-06	200	JOSH1	118001	SG	х			144	2			
LB42-4' REP	3	1610	12/18/17	9:40	9:47	F-0087-07	200	JOSH1	118001	SG	х			14	2			
LB49-4'	3	1610	12/18/17	10:00	10:03	F-0087-08	200	JOSH1	118001	SG	х			90	2	VERY LOW FLOW		
Relinquished By (Signature)	Printed Name					Received By (Signature)				ted Nar		<<			20	Total Number of Containers		
Company Date Time Relinquished By (Signature) Printed Name					Company Date Time JONES EN TROUMENTAL (18-17 11:00) Received By Laboratory (Signature) Printed Name)	Client signature on this Chain of Custody form constitutes acknowledgement that the above analyses have been					
Company Date Time						acknowledgement to								ested, and the information provided herein is correct and accurate.				

0 f

10

11007 Forest Pl. Santa Fe Springs, CA 90670 (714) 449-9937 Fax (714) 449-9685 www.jonesenv.com

Soil-Gas Chain-of-Custody Record

Client LEIGHTON CONSULTING Project Name						12/18/2017 P 1P 73P 77P 710P EDD_					DF* - 10% Surcharge Jones Project #									
390-400 YACHT ST						11618. 005		Shut	-In Test: (Test: (Y) N *Global ID					F-0087					
Project Address 390-400 YACHT ST						Turn Around Requested Immediate Attention Rush 24 Hours Rush 48 Hours Rush 72 Hours		Tracer			Analysis Requeste					Page				
WILMINGTON, CA Email Phone					n-pentane n-hexane n-heptane Helium			Material (M)			ν./H ₂ O)	n/H ₂ O)			Sample Cor		2			
Report To BRYNN MCCULLOCH		Sampler JSB				Mobile Lab Reporting Li	Reporting Limits Requested		ested Units esidential		98			Magnehelic Vacuum (In/H ₂ O)	of Containers	GLASS GAS-TIGHT SYRINGE If different than above, see Notes.				
Sample ID	Purge Number	Purge Volume (mL)	Date	Sample Collection Time	Sample Analysis Time	Laboratory Sample ID	Purge Rate (mL/min)	Pump Used	Magnehelic	Sample Matrix: Soil Gas (SG), Air (A), I	EPA 8260B			Magnehe	Number of		Notes & Special Instructions			
LB37-4'	1 -	7	12/18/17	8:20	1	F-0087-09		T-21	118001	SG				>100	0	NO FLOV	V, WATER	IN PROB	E	
LB41-4'	1 -		12/18/17	9:02		F-0087-10	1294	0-1	118001	SG	х			>100	0	NO FLOW, WATER IN PROBE			E	
LB44-4'	120	72.0	12/18/17	9:50	2.7	F-0087-11	Gr		118001	SG	х			>100	0	NO FLOV	NO FLOW, WATER IN PROBE			
LB48-4'		•	12/18/17	9:54	1.51	F-0087-12	1 3		118001	SG	х			>100	0	NO FLOV	V, WATER	IN PROB	E	
													-		H					
				1					1											
Relinquished By (Signature)		Printed Name				Received By (Signature)				ted Nar		AS Time	A Total Numi				r of Containers			
Company Relinquished By (Signature)		Date Printed Nan		Time		Company Received By Laboratory	S Enui (Signature)	Dunen	en 1	7-19 ted Nan	5.12		(1:0	0	Client signature on this Chain of Custody form constitutes acknowledgement that the above analyses have been					
Company		Date		Time		ompany Date Time						reqested, and the information provided herein is correct and accurate.								

APPENDIX B 2018 Human Health Risk Assessment

Human Health Risk Assessment Berths 191 – 193 Wilmington, California

Prepared for

Leighton Consulting, Inc. 17781 Cowan Irvine, California 92614-6009

Prepared by:

Enviro-Tox Services, Inc. 20 Corporate Park, Suite 220 Irvine, California 92606

June 18, 2018

This Report has been prepared for the exclusive use of City of Los Angeles, Harbor Department as it pertains to Berths 191 - 193 at the Port of Los Angeles in Wilmington, California. Our professional services have been performed using that degree of care and skill ordinarily exercised under similar circumstances by other scientists, geologists and engineers practicing in this field. No other warranty, express or implied, is made as to the professional advice presented in this report.

Heriberto Robles, Ph.D., D.A.B.T.

Board Certified Toxicologist Enviro-Tox Services, Inc.

J.J. Pela

June 18, 2018

CONTENTS

1.0	Introduction		1								
2.0	Site Characterization										
3.0	Selection of Chemicals of Potential Co	ncern	6								
	3.2 Selection of Chemicals of Potenti	al Concern for Soil Matrixal Concern in Soil Gasal Concern in Groundwater	7								
4.0	Exposure Assessment		9								
	-										
5.0	Toxicity Assessment		12								
		gens									
6.0	Fate and Transport Modeling		14								
	6.1 Chemical Emissions to Indoor Ai	r	14								
7.0	Risk Characterization		17								
		nd Dust Exposure									
8.0	Conclusions and Recommendations		21								
9.0	Uncertainty Analysis		24								
10.0) References		25								

TABLES

Table 1	Summary of Soil Metal Analytical Results
Table 2	Summary of Total Petroleum Hydrocarbon in Soil Analytical Results
Table 3	Summary of Volatile Organic Compound in Soil Analytical Results
Table 4	Summary of Semivolatile Organic Compounds in Soil Analytical Results
Table 5	Summary of Polychlorinated Biphenyls in Soil Analytical Results
Table 6	Summary of Volatile Organic Compounds in Soil Gas Analytical Results
Table 7	Summary of Volatile Organic Compounds in Groundwater Analytical Results
Table 8	Summary of Semivolatile Organic Compounds in Groundwater Analytical
	Results
Table 9	Exposure Parameters for Onsite Receptors
Table 10	Toxicity Criteria for Chemicals of Potential Concern
Table 11	Estimated Incremental Cancer Risks and Hazard Quotients per Unit
	Concentration for VOCs Detected in Soil Gas
Table 12	Estimated Incremental Cancer Risks and Hazard Quotients per Unit
	Concentration for VOCs Detected in Groundwater
Table 13	Estimated Cancer Risks per Sampling Location for VOCs Detected in Soil Gas
Table 14	Estimated Cancer Risks per Sampling Location for VOCs Detected in
	Groundwater
Table 15	Estimated Hazard Quotients per Sampling Location for VOCs Detected in Soil
	Gas
Table 16	Estimated Hazard Quotients per Sampling Location for VOCs Detected in
	Groundwater
Table 17	Virtual Remediation of Diesel Range Organics in Soil

ILLUSTRATIONS

Figure 1 – Sampling Location Map (provided by Leighton Consulting, Inc.)

Figure 2 – Conceptual Site Model

APPENDICES

Appendix A – Johnson and Ettinger Modeling Spreadsheets

.

1.0 Introduction

At the request of Leighton Consulting, Inc. (Leighton), Enviro-Tox Services, Inc. (Enviro-Tox) conducted a Human Health Risk Assessment (HHRA) for the City of Los Angeles, Harbor Department (Harbor Department) Berths 191-193 in Wilmington, California (the Site). The objective of the risk assessment was to determine whether metals, petroleum hydrocarbons, polychlorinated biphenyls (PCBs), semivolatile organic compounds (SVOCs), and volatile organic compounds (VOCs) detected in soil, soil gas and groundwater represent a health threat to human health.

In an effort to assess environmental conditions at the Site, Leighton conducted an environmental investigation at the site. During the investigation, soil, soil gas and groundwater samples were collected from borings drilled at the Site. Soil samples were taken at various depths down to a maximum depth of about five feet below ground surface (bgs). The purpose of the sampling was to assess the vertical and lateral extent of chemical-impacted soil, soil gas and groundwater and to establish a baseline for the future Site occupants. Results of environmental investigations are summarized in Leighton's (2018) report. Results indicate that soils at the Site are impacted by total petroleum hydrocarbons (TPH) as well as by traces of a few metals and VOCs. In addition, the environmental investigation revealed the presence of VOCs at relatively high concentrations in a few soil gas and groundwater monitoring sampling locations (Leighton, 2018).

The HHRA was performed in conformance with the following guidance from the U.S. Environmental Protection Agency (USEPA) and the California Department of Toxic Substances Control (DTSC):

- California Department of Toxic Substances Control. 2015. *Preliminary Endangerment Assessment Guidance Manual*.
- California Department of Toxic Substances Control. 2011. Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air.
- U.S. Environmental Protection Agency. 1989. Risk Assessment Guidance for Superfund: Volume l Human Health Evaluation Manual.

- U.S. Environmental Protection Agency. 2002. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites.
- U.S. Environmental Protection Agency. 2018. Regional Screening Levels.

As required by the USEPA and DTSC, this HHRA quantitatively evaluates the potential health impacts associated with human exposure to chemicals detected in soil, soil gas and groundwater at the Site. Site characterization data collected during the most recent Site investigation was compiled into a database and analyzed to establish representative chemical concentrations. Then, where appropriate, environmental fate and transport models were used to estimate the concentrations of the chemicals to which human receptors might be exposed.

Conservative methods, models, and assumptions have been utilized to prepare this HHRA in accordance with the guidelines of the USEPA and DTSC. In addition, the risk assessment incorporates, to the extent possible, recent improvements and refinements in the practice of risk assessment. Current regulatory guidance requires risk assessments to be conservative in nature and to overestimate potential health risks. Therefore, actual risks associated with conditions evaluated in this risk assessment are likely to be lower than those described herein.

2.0 Site Characterization

A brief summary of the Site history and previous investigation activities is presented below. Details on Site investigation activities are presented in Leighton Consulting's concurrent *Baseline Environmental Site Characterization Report*.

2.1 Background

The Site encompasses roughly 6.8 acres and is located east of Canal Street and south of Yacht Street in Wilmington, California. Historically, the Site was associated with the Former Wilmington Liquid Bulk Terminals, Inc., a yacht club, docks for boats, and a marine gas and oil station.

2.2 Site Assessment

Leighton Consulting, Inc. (Leighton) completed a Baseline Environmental Site Characterization Report for the Site in April 2018. Site characterization activities including grab groundwater, soil, and vapor sampling. The results of the assessment are summarized below.

Soil

Diesel range petroleum hydrocarbons (DRO) were detected above the Environmental Protection Agency (EPA) Region IX Regional Screening Level (RSL) for industrial soil in 14 of the 104 soil samples analyzed during the investigation. While there was no discernable trend in DRO impacted soil, DRO was found primarily within the surficial soil in the northern portion of the Site and in deeper soil (5 feet bgs) in the southern portion of the Site (Leighton, 2018).

Copper and lead exceeded the soluble threshold limit concentration (STLC) waste extraction test (WET) limits in of 5.0 milligrams per liter (mg/L) in soil samples collected from borings LB5, LB11, LB17, LB31, and LB33 (Figure 1). Soil in the vicinity of these borings may be classified as non-RCRA hazardous waste (California hazardous) if removed from the Site. The copper and lead-impacted soil appears to be limited to the upper 3 feet bgs (Leighton, 2018).

GRO, ORO, VOCs, PAHs, PCBs, and dioxin/furans were not detected in the soil samples analyzed during the investigation at concentrations exceeding their respective industrial screening levels (Leighton, 2018).

Soil gas

Four VOCs – cis-1,2-dichloroethene, PCE, TCE, and vinyl chloride – were detected in soil gas at concentrations above their respective adjusted Department of Toxic Substances Control (DTSC) Office of Human and Ecological Risk (HERO) Note Numbers 3 and 5 for soil gas in an industrial setting in three borings (LB1, LB6, and LB39). Elevated concentrations of the same VOCs were detected in groundwater samples collected at these three locations and it is likely that the impacted soil gas is a result of off-gassing of the contaminated groundwater (Leighton, 2018).

Groundwater

Total petroleum hydrocarbons (TPH) were detected in a majority of the groundwater samples analyzed during this investigation. One groundwater sample, LB1, had a concentration of gasoline range petroleum hydrocarbons (GRO) and DRO exceeding the Environmental Screening Levels (ESLs) developed by the San Francisco Bay Regional Water Quality Control Board. Based on the site-wide TPH impacts to groundwater, it is likely that the Site is located within a regional plume of TPH-impacted groundwater (Leighton, 2018).

Elevated levels of copper, nickel, and zinc were detected in groundwater samples collected from borings LB1, LB6, LB25, and LB27 at concentrations exceeding the ESLs. Since the groundwater beneath the Site is non-beneficial for municipal use and direct contact with groundwater beneath the Site is unlikely, it was determined that these elevated concentrations of metals in groundwater should not pose a risk to future commercial/industrial occupants of the Site (Leighton, 2018).

Two VOCs – PCE and TCE – were detected in groundwater at concentrations above their respective ESL screening criteria from three borings (LB1, LB37, and LB39). The elevated concentrations of VOCs in groundwater were limited to the northern portion of the Site. The

primary VOC contaminants of concern in groundwater are PCE and TCE; however, other chlorinated VOCs such as cis- and trans-1,2-dichloroethene, 1,2-dichloroethane, 1,1-dichloroethee, and vinyl chloride were detected along with fuel constituents such as benzene and MTBE (Leighton, 2018).

PAHs were not detected in the groundwater samples analyzed during this investigation (Leighton, 2018).

3.0 Selection of Chemicals of Potential Concern

All chemicals detected at the Site by Leighton (2018) were included in a formal selection of chemicals of potential concern (COPC). Copies of Leighton Consulting, Inc. soil, soil gas and groundwater data tables for the Site are included in Appendix A.

As described in current USEPA and DTSC risk assessment guidance, the purpose of selecting COPCs is to focus the assessment on those chemicals that could reasonably be expected to pose a significant health risk. COPCs were selected so that the most prevalent, and potentially toxic, compounds detected at the Site (i.e., those chemicals that represent the greatest potential threat to human health) were quantitatively evaluated in the health risk evaluation.

Current risk assessment guidance (DTSC 2018) state that chemicals deemed to pose no significant health risk can be eliminated from consideration in a risk assessment. Specifically, chemicals detected at a site can be eliminated from consideration if their maximum detected concentrations are at or below concentrations known to regulatory agencies to pose no significant risk.

For this evaluation, all chemicals detected in soil, soil gas and groundwater were screened by comparing their maximum detected concentrations to screening levels published by the USEPA and the DTSC. The screening levels selected for this evaluation were:

- 1. The DTSC-modified Screening Levels (DTSC-LSs) for industrial land use published in the DTSC's (2018) HHRA Note No. 3; and,
- 2. The USEPA's Regional Screening Levels for industrial sites (RSL-ind).

It should be noted all screening levels used here are considered to be conservative. Under most circumstances, the presence of a chemical in environmental media at concentrations below their corresponding screening level can be assumed to not pose a significant, long-term (chronic) threat to human health and the environment. In general, California regulatory agencies do not require additional evaluation at sites where a chemical is present at concentrations below their corresponding, media-specific screening levels. In fact, regulatory agencies like to compare

maximum detected concentrations to screening levels at commercial/industrial sites with limited impacts, where the preparation of a more formal environmental assessment may not be warranted or feasible due to time and cost constraints.

3.1 Selection of Chemicals of Potential Concern for Soil Matrix

In a conventional risk assessment, metal elements detected in soil at concentrations deemed to be within natural, background concentrations are excluded from the risk evaluation (USEPA 1989 and DTSC 2015). In this HHRA the only metal that was excluded from evaluation was arsenic. According to DTSC (2009) risk assessment guidance, arsenic in soil should not be included in risk evaluations when arsenic is found to be within natural, background concentrations. The background arsenic concentration at the Site is unknown. However, it is well accepted that soils in Southern California are naturally rich in arsenic and that the upper background concentration is about 12 milligrams per kilogram (mg/kg; https://dtsc.ca.gov/upload/Background-Arsenic.pdf. The maximum detected soil arsenic concentration at the site was 12 mg/kg (Table 1). Therefore, arsenic in soil at the Site is considered to be well within background levels and was not included in this HHRA. Other than arsenic, all metals reportedly detected in soil were included in the risk evaluation.

Organic and inorganic chemicals detected in soil at the Site are summarized in Tables 1 through 5. In each table, maximum detected concentrations are presented along with their corresponding screening levels. As can be seen in the tables, the only chemical whose maximum detected concentration exceeded its corresponding screening level was TPH as Diesel Range Organics (DRO; Table 2). Therefore, other than DRO, all metals, TPH fractions, PCBs, SVOCs and VOCs detected in soils are deemed to pose no significant risk or hazard to onsite workers and were not considered to be COPCs in this HHRA.

3.2 Selection of Chemicals of Potential Concern in Soil Gas

VOCs detected in soil gas at the Site are summarized in Table 6. Maximum detected concentrations and their corresponding screening levels are also summarized in Table 6. The only chemicals detected in soil gas at concentrations that exceeded their corresponding screening

levels were cis-1,2-dichloroethylene, tetrachloroethylene (PCE), trichloroethylene (TCE), and vinyl chloride. Therefore, only cis-1,2-dichloroethylene, PCE, TCE and vinyl chloride were retained as soil gas COPCs. Potential health risks and hazards posed by the four VOCs retained as COPCs were evaluated in this HHRA.

3.3 Selection of Chemicals of Potential Concern in Groundwater

A few metals and TPH were detected in groundwater. Since local groundwater is not a source of drinking water, potential health risks and hazards posed by metals and TPH were not evaluated in this HHRA. Only volatile chemicals that could volatilize from groundwater and eventually impact indoor air were evaluated here.

VOCs detected in groundwater are summarized in Table 7. Maximum detected concentrations and their corresponding screening levels are also summarized in Table 7. The only chemicals detected in groundwater at concentrations that exceeded their corresponding screening levels were:

- 1,1-Dichlroethylene,
- 1,2-Dichloroethane,
- cis-1,2-Dichlroethylene,
- Methyl tert-butyl ether (MTBE)
- PCE,
- trans-1,2-Dichloroethylene,
- TCE, and
- Vinyl chloride

Therefore, the eight VOCs listed above were retained as COPCs in groundwater. Potential health risks and hazards posed by the eight VOCs retained as COPCs for groundwater were evaluated in this HHRA.

4.0 Exposure Assessment

California health and environmental protection agencies require the remediation of chemical spills and leaks if the release represents a threat to human health and the environment. Similarly, cleanup of an accidental release has to be conducted to the extent that the threat posed by the release is reduced to acceptable levels. The purpose of this HHRA was to determine if COPCs detected in soil, soil gas and groundwater at the Site represents a threat to onsite workers.

4.1 Conceptual Site Model

A Conceptual Site Model (CSM) shows all potentially complete exposure pathways for a given environmental source. The CSM identifies potential chemical sources, release mechanisms, transport media, routes of chemical migration through the environment, exposure media, and potential receptors. The CSM for the Site under current land use conditions is presented in Figure 2. The following paragraphs define the exposure pathways evaluated in this HHRA and present the rationale for their inclusion or elimination from consideration.

The Site is located in an industrial zone within the Port of Los Angeles, Wilmington, California. Therefore, the Site is likely to continue to operate as an industrial facility.

Most of the Site is likely to be covered by buildings, parking lots, roads, machinery, and landscaped areas. Under these conditions, workers at the Site do not come in contact with surface soils. However, in an effort to assess potential health risks posed by soil exposure, it was assumed that onsite workers could be exposed to surface soils while working at the Site. In addition to onsite workers, utility maintenance workers might come in contact with soil during trenching or utility maintenance work. Therefore, the dermal and ingestion pathways are considered to be complete for maintenance workers as well as for onsite industrial workers (Figure 2).

Groundwater under the Site is known to be impacted by metals, TPH and VOCs (Leighton; 2018). It is safe to assume that onsite workers receive their drinking water from municipal sources and do not depend on onsite groundwater wells for their drinking water. Therefore, direct contact with groundwater exposure pathway is not considered to be a complete exposure pathway. However, VOCs may volatilize and flow from groundwater to soil gas and then into indoor air (Figure 2). This HHRA evaluated the potential risks and hazards posed by VOCs detected in groundwater by modeling the migration and vapor intrusion of VOCs detected in both, soil gas and groundwater.

Since VOCs were detected in groundwater and soil gas samples collected at the Site, this HHRA assumed that a potential source of VOCs exists under the Site. It was also assumed that this potential VOC source would be active for the next 25 years and that VOC vapors may migrate up to the surface and enter a building through cracks in its foundation. Thus, the volatilization and vapor intrusion into onsite buildings is considered to be a potential exposure pathway and is evaluated in this HHRA.

4.2 Potential Receptors

As stated earlier, the Site is located within an industrial zone within the city of Wilmington, California. Therefore, onsite receptors are expected to be only workers employed at an industrial establishment at the Site. It is highly unlikely that the Site will be redeveloped in the future to accommodate a residential development. Therefore, the potential receptors evaluated included:

- Onsite industrial workers, and
- Onsite construction/maintenance workers.

Exposure parameters used to define the onsite industrial and maintenance workers are presented in Table 9.

Although offsite residential and/or industrial receptors may also be exposed to Site chemicals, their exposure should be substantially less than that estimated for onsite receptors because of

wind dispersion and dilution. Therefore, only exposures to onsite receptors were quantitatively evaluated in this HHRA.

5.0 Toxicity Assessment

The toxicity assessment characterizes the relationship between the magnitude of exposure to a COPC and the nature and magnitude of adverse health effects that may result from such exposure. For purposes of calculating exposure criteria to be used in risk assessments, adverse health effects are classified into two broad categories – non-carcinogens and carcinogens. Toxicity values/exposure criteria are generally developed based on the threshold approach for non-carcinogenic effects and the non-threshold approach for carcinogenic effects. Toxicity values may be based on epidemiological studies, short-term human studies, and sub-chronic or chronic animal data.

5.1 Toxicity Values for Non-Carcinogens

For the purpose of assessing risks associated with non-carcinogenic effects, the USEPA has adopted a science policy position that protective mechanisms such as repair, detoxification, and compensation must be overcome before an adverse health effect is manifested. Therefore, there is a range of exposures, from zero to some finite value (a threshold), that can be tolerated by the organism without appreciable risk of adverse effects occurring.

Non-carcinogenic effects were evaluated using reference doses (RfDs) developed by the USEPA. The RfD is a health-based criterion based on the assumption that thresholds exist for non-carcinogenic toxic effects (e.g., liver or kidney damage). In general, the RfD is an estimate (with uncertainty spanning perhaps an order of magnitude) of a daily exposure to the human population (including sensitive subgroups) that is likely to be without an appreciable risk of deleterious effects during a lifetime of exposure (USEPA, 1989). RfDs are expressed as acceptable daily doses in milligrams of compound per kilogram of body weight per day (mg/kg-day). Table 10 presents the RfDs used in this assessment.

5.2 Toxicity Values for Carcinogens

Certain chemicals are regulated as carcinogens based on the likelihood that exposure could cause cancer in humans. Numerical estimates of cancer potency for these chemicals are presented as

cancer slope factors (CSFs). The CSF defines the cancer risk due to constant lifetime exposure to one unit of a carcinogen (in units of risk per mg/kg-day). CSFs are derived by calculating the 95% UCL on the slope of the linearized portion of the dose-response curve using the multistage cancer model on study data. Use of the 95% UCL of the slope means that there is only a 5% chance that the probability of a response could be greater than the estimated value for the experimental data used. This is a conservative approach and may overestimate the actual risk, given that the actual risk is expected to be between zero and the calculated value. Carcinogenic slope factors assume no threshold for effect; therefore, if there are in fact thresholds for carcinogenicity, the true risks could be zero at sufficiently low doses. Table 10 presents the CSFs used in this assessment.

6.0 Fate and Transport Modeling

Chemical, physical, and biological processes can affect the fate and transport of chemicals in water, soil, and air. VOCs tend to volatilize rapidly from subsurface soil and groundwater because of the relatively high vapor pressure of these compounds. Subsequent to volatilization, these compounds can affect ambient air where human receptors can be exposed through the inhalation pathway. The magnitude of potential vapor emissions is estimated in the following sections.

6.1 Chemical Emissions to Indoor Air

It is known that chemicals may migrate through environmental media from their source to some point where human receptors may be exposed. Therefore, it was necessary to determine if the VOCs detected in soil gas – given their residual concentrations, locations, soil physical characteristics, weather conditions, etc. – could potentially migrate up to the surface (where human receptors may be exposed).

Screening-level models were used to predict indoor air concentrations that may result from the chemical vapors potentially released from groundwater and soil gas under the Site. The estimated vapor flux and indoor air concentrations were then used to estimate potential health risks that may result from onsite exposures. For purposes of this evaluation, it was assumed that the land use would be commercial/industrial into the foreseeable future.

The potential migration of VOC vapors into indoor air was estimated using the Johnson and Ettinger (J&E) model (1991), modified to incorporate DTSC toxicity values (GW-SCREEN, DTSC version 3.0 last modified December 2014 and SG-SCREEN, DTSC Version 2.0-last modified December 2014). Copies of the J&E models used in the evaluation are included in Appendix A. The estimated VOC flux and ambient concentrations were then used to estimate potential health risks and hazards that may result from site exposure to estimated VOC concentrations in indoor air. The J&E model is based on the following assumptions:

- Chemical-containing groundwater occur at a defined and constant depth of 5 feet bgs.
- Chemical-containing soil gas occur at a defined and constant depth of 4 feet bgs.
- The gas-phase chemical migrates vertically through soil pore space up to the ground surface by steady-state diffusion.
- The soil between the chemical sources and the ground surface is assumed to be homogeneous.
- Vapor diffusion is described by a single chemical-specific effective diffusion coefficient.
- No retardation of the soil gas occurs as the chemical migrates from soil gas sources up to the ground surface.
- Vapor migrates through cracks in the building foundation and mixes instantaneously with indoor air resulting in an ambient indoor air concentration.

The method assumes that the source chemical concentrations do not decrease over time (i.e.; no mass depletion) and the depth to the top of the chemical sources remain constant, which results in an overestimate of long-term exposure effects.

The J&E models were run using default soil physical parameters as recommended by the DTSC (2011). Soils at the Site have been described as sandy silty soils. Default soil physical parameters for sandy loam were obtained from the J&E VLOOKUP table.

The J&E model assumes that the concentrations in indoor air are proportional to the flux throughout the soil column, and that a gas infiltrating into the building through the foundation floor is uniformly and instantaneously mixed within the air space above the lowest occupied floor of the building. Because this model ignores a number of possible attenuating factors, it is likely that it over-predicts the chemical flux to indoor air. However, because of its simplicity, this approach provides a simple method to estimate the likely maximum rate at which chemicals

would be transported to the surface soils and into a building. Copies of the J&E models used are included in Appendix A.

The indoor air chemical concentrations estimated to result from the volatilization of VOCs could be considered to represent a "worst-case" estimate. In the calculations it was assumed that single chemical compounds are volatilizing, traveling alone through the vadose zone and escaping to ambient air. In reality, all chemicals detected at the Site are competing with each other for available soil-pore space. It is well known that chemical volatilization and migration is limited by the vapor saturation in the vadose zone.

Given the variable chemical composition and concentrations found in all groundwater and soil gas sampling points, VOC data was not pooled and averaged to obtain a "site wide" VOC exposure point concentration. Instead, it was assumed that VOC vapors could migrate vertically and impact indoor air directly above the area where those VOCs were detected. For this evaluation, potential vapor emissions and associated health risks and hazards were estimated separately for each groundwater and soil gas sampling point.

The point of departure for chemical volatilization modeling was the groundwater and soil gas data collected at the Site (Tables 6 and 7). Groundwater and soil gas data represent volatile chemicals that have the potential to migrate from the subsurface up to the ambient air.

7.0 Risk Characterization

The risk characterization section provides a quantitative estimation of the health risks associated with chemical exposure. The risk characterization used the toxicity information from Section 5.0; the exposure factors estimated in Section 4.0; and the estimated chemical exposure point concentrations to evaluate both non-carcinogenic and carcinogenic health effects. Non-carcinogenic health effects were characterized with respect to established regulatory criteria and carcinogenic health risks were characterized with respect to acceptable cancer risks.

Health risk estimates presented in this section have been developed for onsite workers. The health risks were estimated assuming:

- 1. Exposure to Chemical-Affected Soil and Dust. It was assumed that the upper 5 feet of chemical-affected soil would be exposed to the surface. Under these conditions, it was assumed that onsite receptors have direct contact with soil and dust through the ingestion, dermal contact, and inhalation pathways; and
- 2. Exposure to Chemical-Affected Indoor Air. It was assumed that the Site will operate as an industrial facility into the foreseeable future. Under these conditions, VOCs detected in groundwater and soil gas were assumed to enter an onsite building through cracks in its foundation. Onsite receptors could then be exposed to VOCs while indoors.

7.1 Risk Characterization for Soil and Dust Exposure

Current risk assessment guidance (DTSC 2016 and 2018) state that chemicals deemed to pose no significant health risk can be eliminated from consideration in a risk assessment. Specifically, chemicals detected at a Site can be eliminated from consideration if their maximum detected concentrations are at or below concentrations known to regulatory agencies to pose no significant risk.

For this evaluation, metals, TPH fractions, PCBs, SVOCs and VOC compounds detected in soil matrix were evaluated by comparing the data to soil screening levels developed by the USEPA and the DTSC.

Maximum detected soil chemical concentrations are presented in Tables 1 through 5. The same tables present their corresponding screening levels. The only chemical whose maximum detected concentration exceeded its corresponding screening level was TPH as DRO (Table 2). It should be noted this HHRA assumes onsite workers are exposed to DRO-impacted soil through ingestion, dermal contact and inhalation of particles. In reality, DRO is not volatile so DRO in soil would not pose a health threat if such soils are inaccessible to onsite receptors. Inaccessible soil are soils covered by buildings, paved roads, paved parking lots, buildings, landscaped areas or covered by at least four feet of soil.

7.2 Vapor Intrusion Health Risks and Hazards

Vapor intrusion risk characterization involves estimating the magnitude of the potential adverse health effects that could occur as a result of chronic, long-term exposure to chemicals identified in groundwater and soil gas at the Site. Summaries of the VOCs detected in soil gas and groundwater at the Site are presented in Tables 6 and 7, respectively.

The J&E model contains a module for estimating potential doses as well as cancer risks and health hazards associated with a given dose. For this assessment, the J&E model was used to estimate the potential health risks and hazards associated with indoor VOC exposures. For each chemical detected, a soil gas or groundwater chemical concentration of one microgram per liter (1 ug/L) was used as the subsurface soil gas or groundwater chemical concentration. The estimated "cancer risk per unit concentration" factors were used to estimate potential cancer risks associated with chemicals detected in either soil gas or groundwater at the Site. "Hazard quotients per unit concentration" factors were also estimated for each VOC detected in either soil gas or groundwater samples. These "hazard quotients per unit concentration" factors were used to estimate hazard quotients associated with each VOC detected in either groundwater or soil gas at the Site. Estimated cancer risks (and hazard quotients) per unit factors for VOCs detected in soil gas are presented in Table 11. Estimated cancer risks (and hazard quotients) per

unit factors for VOCs detected in groundwater are presented in Table 12. Supporting calculations are presented in Appendix A.

Point-by-point cancer risk evaluations for all sampling points were obtained by multiplying the cancer unit risk factors by its corresponding soil gas or groundwater chemical concentration to obtain the cancer risk for each chemical and sampling point. Point-by-point estimated cancer risks for VOCs detected in soil gas are summarized in Table 13. Point-by-point estimated cancer risks for VOCs detected in groundwater are summarized in Table 14.

The estimated cancer risks were compared to the risk level considered acceptable by federal and state regulatory agencies. The U.S. Environmental Protection Agency has established acceptable incremental cancer risk levels to be within the risk range of 1 in 10,000 (1.0E-04) and 1.0E-06; risks greater than 1.0E-04 are generally considered unacceptable. Thus, although agencies will exercise caution in determining whether risks within the range of 1.0E-04 and 1.0E-06 require additional investigation or some form of risk management, there is a general precedent that predicted cancer risks below 1E-05 are considered acceptable for worker exposure scenarios.

The health risk evaluation presented in this HHRA evaluated the potential health risks posed by the presence of VOCs detected in either soil gas or groundwater under the Site. The assessment included the evaluation of potential health risks to onsite workers. In this evaluation it was assumed that onsite workers are exposed for up to 25 years to chemical vapors that may enter onsite buildings. Although it is extremely unlikely that significant amounts of vapors are intruding into the buildings, a conservative fate and transport model was used to simulate potential concentrations that may result from chemical volatilization. The modeling parameters and assumptions used in this assessment were conservative in order not to underestimate potential risks.

According to the results of the HHRA, exposure to VOCs detected in soil gas sampling location LB1-4 had an estimated incremental cancer risk of 4E-05 (Table 13). Estimated cancer risks for all other soil gas sampling locations were equal to or below 1E-05 (Table 13).

Also, according to the vapor intrusion model for chemicals detected in groundwater, exposure to VOCs detected in groundwater at sampling points LB1-GW, LB6-GW, LB37-GW, LB39-GW,

LB40-GW, LB41-GW, LB48-GW, and LB49-GW could pose a potential cancer risks higher than 1E-05 (Table 14). More than 99 percent of the estimated cancer risks in the samples was contributed by PCE, TCE and vinyl chloride.

For each sampling point, chemical and source evaluated, the hazard quotient per sample was obtained by multiplying the hazard quotient per unit concentration by the chemical concentration detected in the sample to obtain the hazard quotient for each chemical and sampling point. Estimated "point-by-point" hazard quotients for VOCs detected in soil gas are summarized in Table 15. Estimated "point-by-point" hazard quotients for VOCs detected in groundwater are summarized in Table 16.

The estimated hazard quotients were compared to an acceptable hazard level. Implicit in the calculation is the assumption of a threshold level of exposure below which no adverse effects are expected to occur. For example, hazard quotients equal to or less than 1.0 indicate that no adverse health effects are expected to occur from exposure to chemicals at the Site.

According to the results of the HHRA, exposure to VOCs detected in soil gas sampling locations LB1-4 and LB39-4 had estimated hazard quotients of about 2 (Table 15). Estimated hazard quotients for all other soil gas sampling locations were all equal to or below 1 (Table 15).

Also, according to the vapor intrusion model for chemicals detected in groundwater, exposure to VOCs detected in groundwater at sampling points LB1-GW, LB37-GW, LB39-GW, and LB41-GW could result in hazard quotients higher than 1 (Table 16).

8.0 Conclusions and Recommendations

The HHRA presented in this report evaluated the potential health risks posed by the presence of metals, TPH fractions, PCBs, SVOCs and VOCs in soil, soil gas and groundwater at the Site. In this assessment it was assumed that onsite workers might come in contact with chemical-impacted soils through the ingestion, dermal contact and inhalation of vapors and dust. The HHRA was conducted in accordance with established DTSC (2015) and USEPA (1989) risk assessment guidance. Based on the assessment of all potentially complete exposure pathways, potential health risks were evaluated due to the presence of anthropogenic chemicals detected in soil (upper 5 feet), groundwater and soil gas at the Site.

The evaluation included the assessment of potential health risks under the following two distinct exposure scenarios.

- 1. Exposure to Chemical-Affected Soil and Dust. It was assumed that chemically affected soil is found within the upper 5 feet of soils and those chemical-impacted soils are accessible to onsite workers. Under these conditions, it was assumed that onsite workers have direct contact with soil and dust through the ingestion, dermal contact and inhalation pathway.
- 2. Exposure to Chemical-Affected Indoor Air. It was assumed that indoor workers such as office and shop workers spend most of their time indoors. It was also assumed that VOCs detected in soil gas or groundwater may enter an onsite building through cracks in its foundation and indoor workers are exposed to VOCs while indoors.

For this assessment, conservative fate and transport models were used to simulate potential chemical exposures, chemical volatilization and vapor intrusion. Results of the fate and transport modeling were used to estimate potential chemical doses that may be received by onsite workers while at the Site. In all cases, modeling parameters and assumptions used in this assessment were conservative in order not to underestimate potential health risks.

It should be noted that the HHRA was based on site-specific data as well as conservative (health-protective) assumptions, estimates, models and parameters. Therefore, the results are not absolute estimates of health risks at the Site but are health protective estimates.

Based on the exposure scenarios and fate and transport modeling described above, the following conclusions can be drawn from the evaluation.

- According to the results of the HHRA, exposure to VOCs detected in soil gas sampling location LB1-4 had an estimated incremental cancer risk of 4E-05 (Table 13). Estimated cancer risks for all other soil gas sampling locations were equal to or below 1E-05 (Table 13). Also, according to the vapor intrusion model for chemicals detected in groundwater, exposure to VOCs detected in groundwater at sampling points LB1-GW, LB6-GW, LB37-GW, LB39-GW, LB40-GW, LB41-GW, LB48-GW, and LB49-GW could pose a potential cancer risks higher than 1E-05 (Table 14). More than 99 percent of the estimated cancer risks in the samples was contributed by PCE, TCE, and vinyl chloride.
- As for non-cancer hazard quotients, soil gas sampling locations LB1-4 and LB39-4 had estimated hazard quotients of about 2 (Table 15). Estimated hazard quotients for all other soil gas sampling locations were within acceptable levels (Table 15). Also, according to the vapor intrusion model for chemicals detected in groundwater, exposure to VOCs detected in groundwater at sampling points LB1-GW, LB37-GW, LB39-GW, and LB41-GW could result in hazard quotients higher than 1 (Table 16).
- Based on the results of this HHRA, it seems prudent to recommend that some form of vapor mitigation measures (such as an impermeable membrane and passive venting system) be implemented at and around the soil gas and groundwater sampling locations mentioned above. For the rest of the Site, the results of the modeling indicate that there is no significant health risk associated with vapor intrusion into future onsite buildings as normally constructed (i.e., without special mitigation measures or engineering controls).
- Results of the HHRA indicate that DRO detected in soil at the Site could exceed levels considered acceptable to California health and environmental protection agencies. In light of these results, a virtual remediation was conducted by gradually removing from the assessment maximum detected soil DRO concentrations. The virtual remediation was conducted until the estimated 95-percent upper confidence limit (95UCL) soil DRO concentration was below its soil screening level of 400 mg/Kg (Table 17). According to

the HHRA, when the DRO samples LB28-5.0 and LB35-5.0 were removed from the evaluation, the estimated DRO 95UCL concentration remaining in soil at the Site is 353.50 mg/kg (Table 17). The estimated residual DRO concentration is below its established soil screening level (USEPA 2017) and therefore within levels considered acceptable to California health and environmental protection agencies. It should be noted that as long as soil samples LB28 and LB35 remain covered by at least four feet of soil, paving or buildings, DRO in those samples would not pose a health threat to onsite receptors. Thus, it is recommended that soil samples LB28 and LB35 not be disturbed during redevelopment of the site. In the event that redevelopment activities require soil excavation, the excavation and removal of samples LB28 and LB35 should be considered.

All conclusions and recommendations presented in this report are based on reported chemical concentrations and the current land use of the Site. In this risk assessment, all fate-and-transport models, parameters, toxicity data and assumptions were used in accordance with federal and state regulatory guidelines. These guidelines are meant to protect the public and tend to overestimate potential health risks. As such, this risk assessment provides an estimate of the upper boundary of potential health risks, rather than an accurate representation of true health risks posed by the Site. In reality, the actual health risks could be as low as zero.

9.0 Uncertainty Analysis

This risk assessment was based on Site-specific data, laboratory analytical results, and assumed values and conditions. Site-specific data and laboratory results were validated and are supported by quality control and quality assurance documentation. Although professional judgment was used in the selection of each exposure assumption, some argument can be made regarding the validity of each assumption. The purpose of this section is to provide information concerning the validity of each assumption (including the effect of each assumption on the overall risk), the major data gaps, and the effect of these data gaps on the accuracy or reasonableness of the risk assessment.

It is important to fully specify the assumptions and uncertainties inherent in the risk assessment for two reasons: (1) to place the risk estimates in proper perspective, and (2) to identify key Site-related variables and assumptions that contributed most to the conclusions reached in the risk assessment. The focus of this section is also to highlight parameters and Site conditions that contributed most to the predicted risks and that can be further studied with a limited investment of resources. Another use of the uncertainty analysis can be to identify areas where a moderate amount of additional data collection might significantly improve the prediction ability of the risk assessment process.

There is always some doubt as to how well an exposure model or its mathematical expression approximates true relationships between environmental media and Site-specific conditions. Ideally, one would like to use a fully validated model that accounts for all the known factors involved. At present, however, only simple, partially validated models are available and commonly used.

10.0 References

- American Society for Testing Materials (ASTM). 1995. Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites. E:1739-95. West Conshohocken, PA.
- California Department of Toxic Substances Control (DTSC). 2008. Determination of a Southern California Regional Background Arsenic Concentration in Soil. https://dtsc.ca.gov/upload/Background-Arsenic.pdf
- California Department of Toxic Substances Control. 2018. Office of Environmental Health Hazard Assessment. Criteria for Carcinogens. On-line database: http://www.oehha.ca.gov/risk/chemicalDB/index.asp.
- Johnson, P.C. and R.A. Ettinger. 1991. Heuristic Model for Predicting the Intrusion Rate of Contaminant Vapors into Buildings. Environmental Science and Technology 25:1445-1452.
- Leighton Consulting, Inc. 2018. Baseline Environmental Site Characterization Report Port of Los Angeles Berths 191 through 193, Wilmington, California. April 13
- U.S. Environmental Protection Agency. 1988. Superfund Exposure Assessment Manual. Office of Remedial Response, Washington, D.C.
- U.S. Environmental Protection Agency. 1989. Risk Assessment Guidance for Superfund: Volume I Human Health Evaluation Manual (Part A). Office of Emergency and Remedial Response, Washington, D.C.
- U.S. Environmental Protection Agency. 2003. User's Guide for the Johnson and Ettinger (1991) Model for Subsurface Vapor Intrusion into Buildings. Office of Emergency and Remedial Response, Toxics Integration Branch (5202G), Washington, DC.
- U.S. Environmental Protection Agency. 2017. Regional Screening Levels (RSLs). Online database. January.

TABLES

Table 1 Summary of Soil Metal Analytical Results Berth 191 - 193 Port of Los Angeles

Wilmington, California

Sample ID	Depth (feet bgs)	Date	Units	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury
USEPA RSL	Industrial Soil		mg/kg	470	12.0	220,000	2,300	980	1,800,000	350	47,000	800	46
LB1-0.5	0.5	10/11/17	mg/kg	ND	2.6	50	ND	ND	9.2	5.1	29	22	0.17
LB1-2.5	2.5	10/11/17	mg/kg	ND	1.7	28	ND	ND	6.3	2.9	2.9	ND	0.17
LB1-5.0	5	10/11/17	mg/kg	ND	2	26	ND	ND	6.7	3.5	3.8	ND	ND
LB2-0.5	0.5	10/11/17	mg/kg	ND	4	93	ND	ND	29	7.2	670	110	0.28
LB2-2.5	2.5	10/11/17	mg/kg	ND	1.7	50	ND	ND	7.9	4	5.2	5.8	0.16
LB2-5.0	5	10/11/17	mg/kg	ND	3.5	25	ND	1.2	7.5	4.8	4.2	1.7	0.11
LB3-0.5	0.5	10/11/17	mg/kg	ND	2.2	53	ND	ND	10	4	8.8	29	0.25
LB3-2.5	2.5	10/11/17	mg/kg	ND	2	29	ND	ND	6.1	3.6	3.5	ND	0.15
LB3-5.0	5	10/11/17	mg/kg	ND	1.4	33	ND	ND	6.6	3.6	3.1	ND	0.12
LB4-0.5	0.5	10/11/17	mg/kg	5.1	2.3	96	ND	ND	16	3.9	58	130	0.72
LB4-2.5	2.5	10/11/17	mg/kg	ND	2.3	51	ND	ND	7.4	3	11	20	0.34
LB4-3.5	3.5	10/11/17	mg/kg	ND	8	94	ND	ND	8.5	4.5	590	5	0.13
LB5-0.5	0.5	10/11/17	mg/kg	ND	2.8	73	ND	ND	13	5.7	22	14	ND
LB5-2.5	2.5	10/11/17	mg/kg	2.5	5.5	89	ND	ND	12	5.1	51	99	1.4
LB5-5.0	5	10/11/17	mg/kg	ND	1.6	47	ND	ND	9.5	5.3	6.3	ND	0.18
LB6-0.5	0.5	10/12/17	mg/kg	ND	ND	12	ND	ND	2.9	1.2	2.4	7.3	0.16
LB6-2.5	2.5	10/12/17	mg/kg	ND	ND	9.8	ND	ND	2.1	1.2	ND	ND	0.16
LB6-5.0	5	10/12/17	mg/kg	ND	ND	9.1	ND	ND	1.7	ND	ND	ND	0.2
LB7-0.5	0.5	10/12/17	mg/kg	ND	ND	110	ND	ND	12	11	27	16	ND
LB7-2.5	2.5	10/12/17	mg/kg	ND	1.5	52	ND	ND	9.3	4.5	50	49	0.25
LB7-5.0	5	10/12/17	mg/kg	ND	ND	29	ND	ND	6.6	3.5	4.1	1	ND
LB8-0.5	0.5	10/11/17	mg/kg	ND	5	100	ND	ND	17	6.1	42	29	0.21
LB8-2.5	2.5	10/11/17	mg/kg	ND	2.9	34	ND	ND	6.9	3.4	3.5	1.4	ND
LB8-5.0	5	10/11/17	mg/kg	ND	2.9	26	ND	ND	6.8	3.1	3.1	2	ND
LB9-0.5	0.5	10/11/17	mg/kg	ND	2.7	90	ND	ND	13	6.2	19	13	0.12
LB9-2.5	2.5	10/11/17	mg/kg	ND	3.2	55	ND	ND	11	5.9	14	13	0.27
LB9-5.0	5	10/11/17	mg/kg	ND	2	21	ND	ND	5.8	3.1	2.6	ND	0.12
LB10-0.5	0.5	10/12/17	mg/kg	ND	ND	21	ND	ND	3.1	1.6	5.7	5	0.21
LB10-2.5	2.5	10/12/17	mg/kg	ND	ND	21	ND	ND	3.8	2.2	2.3	ND	0.51
LB10-5.0	5	10/12/17	mg/kg	ND	ND	11	ND	ND	2.4	1.3	ND	ND	0.24
LB11-0.5	0.5	10/12/17	mg/kg	ND	12	61	ND	ND	25	5.1	890	150	2.2
LB11-2.5	2.5	10/12/17	mg/kg	ND	5	79	ND	ND	14	9	16	3.9	ND
LB11-5.0	5	10/12/17	mg/kg	ND	2.9	110	ND	ND	19	9.3	19	3.9	ND

Table 1 Summary of Soil Metal Analytical Results Berth 191 - 193 Port of Los Angeles

Wilmington, California

Sample ID	Depth (feet bgs)	Date	Units	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury
USEPA RSL	Industrial Soil		mg/kg	470	12.0	220,000	2,300	980	1,800,000	350	47,000	800	46
LB12-0.5	0.5	10/11/17	mg/kg	ND	5.4	140	ND	ND	18	6.3	52	38	0.34
LB12-2.5	2.5	10/11/17	mg/kg	ND	3.4	30	ND	ND	7.9	2.6	ND	1.2	ND
LB12-5.0	5	10/11/17	mg/kg	ND	3.7	46	ND	ND	8.5	4.6	4.7	1.6	0.17
LB13-0.5	0.5	10/11/17	mg/kg	ND	4.8	100	ND	ND	15	5.5	34	42	0.62
LB13-2.5	2.5	10/11/17	mg/kg	ND	3.7	47	ND	ND	9.3	4.9	6.3	6.3	ND
LB13-5.0	5	10/11/17	mg/kg	ND	2.8	25	ND	ND	6.7	3.1	2	1.2	ND
LB14-0.5	0.5	10/11/17	mg/kg	ND	3.6	84	ND	ND	24	6.7	33	28	0.28
LB14-2.5	2.5	10/11/17	mg/kg	ND	ND	97	ND	ND	8.5	4.2	9.3	ND	0.15
LB14-5.0	5	10/11/17	mg/kg	ND	1.5	57	ND	ND	11	6.2	7.8	ND	0.21
LB15-0.5	0.5	10/12/17	mg/kg	ND	ND	78	ND	ND	7.8	3.9	9.2	4.5	ND
LB15-2.5	2.5	10/12/17	mg/kg	ND	ND	15	ND	ND	2.9	1.8	2.1	ND	0.22
LB15-5.0	5	10/12/17	mg/kg	ND	ND	8.3	ND	ND	1.7	ND	ND	ND	0.17
LB16-0.5	0.5	10/12/17	mg/kg	ND	2.2	74	ND	ND	6.7	6	27	5	ND
LB16-2.5	2.5	10/12/17	mg/kg	ND	2.5	78	ND	ND	10	5.6	19	33	ND
LB16-5.0	5	10/12/17	mg/kg	ND	2.4	65	ND	ND	7.3	3.7	12	4.9	ND
LB17-0.5	0.5	10/11/17	mg/kg	ND	1.4	75	ND	ND	14	4	16	51	0.73
LB17-2.5	2.5	10/11/17	mg/kg	ND	1.3	46	ND	ND	9.1	4.9	6	ND	ND
LB17-5.0	5	10/11/17	mg/kg	ND	1	51	ND	ND	8.5	5.1	5.3	ND	0.1
LB18-0.5	0.5	10/11/17	mg/kg	ND	2.5	99	ND	ND	35	7.3	100	33	0.23
LB18-2.5	2.5	10/11/17	mg/kg	ND	2.1	28	ND	ND	7	3.3	3.1	ND	ND
LB18-5.0	5	10/11/17	mg/kg	ND	2.2	35	ND	ND	7.5	4.3	3.9	ND	ND
LB19-0.5	0.5	10/11/17	mg/kg	ND	3.1	37	ND	ND	7.5	3.7	3.6	1.6	ND
LB19-2.5	2.5	10/11/17	mg/kg	ND	3.4	20	ND	ND	6	2.9	ND	1.4	ND
LB19-5.0	5	10/11/17	mg/kg	ND	3	33	ND	ND	6.6	3.8	3.2	1.1	ND
LB20-0.5	0.5	10/11/17	mg/kg	ND	3.7	52	ND	ND	15	6.1	39	35	0.22
LB20-2.5	2.5	10/11/17	mg/kg	ND	3.3	30	ND	ND	6.6	3.4	3	1.8	ND
LB20-5.0	5	10/11/17	mg/kg	ND	2.9	36	ND	ND	7.1	3.7	3.1	2.3	ND
LB21-0.5	0.5	10/12/17	mg/kg	ND	1.3	20	ND	ND	5.6	2.8	3.1	ND	ND
LB21-2.5	2.5	10/12/17	mg/kg	ND	2.1	38	ND	ND	8.1	4.4	4.8	ND	ND
LB21-5.0	5	10/12/17	mg/kg	ND	2.4	65	ND	ND	11	6.5	8.3	ND	ND
LB22-0.5	0.5	10/12/17	mg/kg	ND	2.3	50	ND	ND	11	5.3	9.8	5.5	ND
LB22-2.5	2.5	10/12/17	mg/kg	ND	ND	69	ND	ND	15	7.1	12	1.3	0.17
LB22-5.0	5	10/12/17	mg/kg	ND	1.7	19	ND	ND	4.1	2.1	2.5	ND	ND

Table 1 Summary of Soil Metal Analytical Results Berth 191 - 193 Port of Los Angeles

Wilmington, California

Sample ID	Depth (feet bgs)	Date	Units	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury
USEPA RSL	Industrial Soil		mg/kg	470	12.0	220,000	2,300	980	1,800,000	350	47,000	800	46
LB23-0.5	0.5	10/11/17	mg/kg	ND	ND	24	ND	ND	6	2.4	2.8	ND	ND
LB23-2.5	2.5	10/11/17	mg/kg	ND	1.1	36	ND	ND	8.4	4.2	5.9	ND	0.1
LB23-5.0	5	10/11/17	mg/kg	ND	1.7	28	ND	ND	5.8	2.9	2.6	ND	ND
LB24-0.5	0.5	10/11/17	mg/kg	ND	4.5	59	ND	ND	12	6.7	9.7	2.9	ND
LB24-2.5	2.5	10/11/17	mg/kg	ND	3.3	36	ND	ND	7.2	3.7	3.3	1.5	ND
LB24-5.0	5	10/11/17	mg/kg	ND	4.4	23	ND	ND	5.8	2.9	ND	1.2	ND
LB25-0.5	0.5	10/11/17	mg/kg	ND	2.8	18	ND	ND	5.8	2.6	2.4	1.9	ND
LB25-2.5	2.5	10/11/17	mg/kg	ND	3.4	48	ND	ND	8.6	5	4.7	1.8	ND
LB25-5.0	5	10/11/17	mg/kg	ND	2.4	24	ND	ND	5.6	2.6	ND	1.1	ND
LB26-0.5	0.5	12-Oct-17	mg/kg	ND	2.2	13	ND	ND	4.2	2.1	2.4	1.1	ND
LB26-2.5	2.5	12-Oct-17	mg/kg	ND	2	23	ND	ND	5.5	2.6	2.7	ND	ND
LB26-5.0	5	12-Oct-17	mg/kg	ND	1.6	62	ND	ND	9.8	5.8	7	ND	ND
LB27-0.5	0.5	12-Oct-17	mg/kg	ND	4	98	ND	ND	18	8.7	28	130	ND
LB27-2.5	2.5	12-Oct-17	mg/kg	ND	2.1	43	ND	ND	9.4	5.5	6.5	ND	ND
LB27-5.0	5	12-Oct-17	mg/kg	ND	1.1	16	ND	ND	3.8	1.8	ND	ND	ND
LB28-0.5	0.5	12-Oct-17	mg/kg	ND	4.2	45	ND	ND	8.3	4.1	17	85	ND
LB28-2.5	2.5	12-Oct-17	mg/kg	ND	5	63	ND	ND	13	5.3	27	53	ND
LB28-5.0	5	12-Oct-17	mg/kg	ND	2.5	81	ND	ND	19	4.1	9.2	4	ND
LB29-0.5	0.5	12-Oct-17	mg/kg	ND	2.4	17	ND	ND	4.1	2.2	10	10	ND
LB29-2.5	2.5	12-Oct-17	mg/kg	ND	2.1	18	ND	ND	5.1	2.3	2.1	ND	ND
LB29-5.0	5	12-Oct-17	mg/kg	ND	1.4	35	ND	ND	7	3.8	4.4	ND	ND
LB30-0.5	0.5	12-Oct-17	mg/kg	ND	1.6	48	ND	ND	10	4.6	8.3	5	ND
LB30-2.5	2.5	12-Oct-17	mg/kg	ND	1.6	82	ND	ND	16	5.4	91	180	0.25
LB30-5.0	5	12-Oct-17	mg/kg	ND	ND	44	ND	ND	10	7	8.1	3	ND
LB31-0.5	0.5	12-Oct-17	mg/kg	ND	4.3	63	ND	ND	12	5.2	110	110	0.89
LB31-2.5	2.5	12-Oct-17	mg/kg	ND	ND	13	ND	ND	3.6	1.8	2.2	ND	ND
LB31-5.0	5	12-Oct-17	mg/kg	ND	1.6	53	ND	ND	9.6	5.8	6.8	ND	ND
LB32-0.5	0.5	12-Oct-17	mg/kg	ND	3.7	60	ND	ND	13	6.1	29	7.5	ND
LB32-2.5	2.5	12-Oct-17	mg/kg	ND	1.6	28	ND	ND	5.9	3	3.3	ND	ND
LB32-5.0	5	12-Oct-17	mg/kg	ND	1.7	63	ND	ND	11	6.6	9.7	ND	ND
LB33-0.5	0.5	12-Oct-17	mg/kg	ND	1.7	44	ND	ND	13	6.2	6.1	1.5	ND
LB33-2.5	2.5	12-Oct-17	mg/kg	ND	6.9	73	ND	ND	14	9	230	110	0.23
LB33-5.0	5	12-Oct-17	mg/kg	ND	2	55	ND	ND	9.7	6.1	7.9	ND	ND

Table 1 Summary of Soil Metal Analytical Results Berth 191 - 193

Port of Los Angeles Wilmington, California

Sample ID	Depth (feet bgs)	Date	Units	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury
USEPA RSL	Industrial Soil		mg/kg	470	12.0	220,000	2,300	980	1,800,000	350	47,000	800	46
LB34-0.5	0.5	13-Oct-17	mg/kg	ND	3.1	100	ND	ND	20	5.1	23	25	ND
LB34-2.5	2.5	13-Oct-17	mg/kg	ND	ND	99	ND	ND	7.5	3.7	7.6	ND	ND
LB34-5.0	5	13-Oct-17	mg/kg	ND	1.7	52	ND	ND	8.7	5.2	6.8	ND	ND
LB35-0.5	0.5	13-Oct-17	mg/kg	ND	ND	71	ND	ND	6.7	4.6	8.1	4.1	ND
LB35-2.5	2.5	13-Oct-17	mg/kg	ND	ND	67	ND	ND	6.1	3.7	5.3	1.1	ND
LB35-5.0	5	13-Oct-17	mg/kg	ND	ND	39	ND	ND	6.7	3.2	5.1	8.5	ND
Minimum SL				470	12	220,000	2,300	980	1,800,000	350	47,000	800	46
Max. Conc.				5.1	12	140	0	1.2	35	11	890	180	2.2
Is Max > SL ?				No	No	No	No	No	No	No	No	No	No

Notes:

bgs = below ground

surface

ND<0.44 = Not detected above the laboratory reporting limit.

RSL = USEPA Regional Screening Level, industrial (November 2017)

mg/kg = milligrams per kilogram

Table 1 Summary of Soil Metal Analytical Results Berth 191 - 193 Port of Los Angeles

Sample ID	Depth (feet bgs)	Date	Units	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
USEPA RSL I	Industrial Soil		mg/kg	5,800	22,000	5,800	5,800	12	5,800	350,000
LB1-0.5	0.5	10/11/17	mg/kg	ND	11	ND	ND	ND	23	40
LB1-2.5	2.5	10/11/17	mg/kg	ND	4	ND	ND	ND	13	14
LB1-5.0	5	10/11/17	mg/kg	ND	4.3	ND	ND	ND	15	16
LB2-0.5	0.5	10/11/17	mg/kg	1.9	22	ND	ND	ND	30	120
LB2-2.5	2.5	10/11/17	mg/kg	ND	5.6	ND	ND	ND	15	32
LB2-5.0	5	10/11/17	mg/kg	ND	5.6	ND	ND	ND	15	17
LB3-0.5	0.5	10/11/17	mg/kg	ND	7.9	ND	ND	ND	20	65
LB3-2.5	2.5	10/11/17	mg/kg	ND	4.6	ND	ND	ND	12	18
LB3-5.0	5	10/11/17	mg/kg	ND	4.8	ND	ND	ND	12	18
LB4-0.5	0.5	10/11/17	mg/kg	ND	11	ND	ND	ND	18	160
LB4-2.5	2.5	10/11/17	mg/kg	ND	6.2	ND	ND	ND	13	43
LB4-3.5	3.5	10/11/17	mg/kg	ND	8	ND	ND	ND	23	43
LB5-0.5	0.5	10/11/17	mg/kg	ND	12	ND	ND	ND	23	51
LB5-2.5	2.5	10/11/17	mg/kg	ND	12	ND	ND	ND	23	160
LB5-5.0	5	10/11/17	mg/kg	ND	7.2	ND	ND	ND	17	25
LB6-0.5	0.5	10/12/17	mg/kg	ND	2.1	ND	ND	ND	4.9	16
LB6-2.5	2.5	10/12/17	mg/kg	ND	1.6	ND	ND	ND	3.7	6.7
LB6-5.0	5	10/12/17	mg/kg	ND	1.2	ND	ND	ND	3	5.3
LB7-0.5	0.5	10/12/17	mg/kg	ND	12	ND	ND	ND	36	71
LB7-2.5	2.5	10/12/17	mg/kg	ND	14	ND	1.5	ND	16	89
LB7-5.0	5	10/12/17	mg/kg	ND	5	ND	ND	ND	13	19
LB8-0.5	0.5	10/11/17	mg/kg	ND	15	ND	ND	ND	27	170
LB8-2.5	2.5	10/11/17	mg/kg	ND	4.6	ND	ND	ND	15	18
LB8-5.0	5	10/11/17	mg/kg	ND	3.9	ND	ND	ND	19	15
LB9-0.5	0.5	10/11/17	mg/kg	ND	12	ND	ND	ND	27	44
LB9-2.5	2.5	10/11/17	mg/kg	ND	9.7	ND	ND	ND	22	46
LB9-5.0	5	10/11/17	mg/kg	ND	3.8	ND	ND	ND	13	14
LB10-0.5	0.5	10/12/17	mg/kg	ND	4.7	ND	ND	ND	6.3	18
LB10-2.5	2.5	10/12/17	mg/kg	ND	3	ND	ND	ND	6.5	11
LB10-5.0	5	10/12/17	mg/kg	ND	1.6	ND	ND	ND	3.8	6.4
LB11-0.5	0.5	10/12/17	mg/kg	ND	11	ND	ND	ND	17	780
LB11-2.5	2.5	10/12/17	mg/kg	ND	13	ND	ND	ND	32	38
LB11-5.0	5	10/12/17	mg/kg	ND	14	ND	ND	ND	33	46

Table 1 Summary of Soil Metal Analytical Results Berth 191 - 193 Port of Los Angeles

Sample ID	Depth (feet bgs)	Date	Units	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
USEPA RSL	Industrial Soil		mg/kg	5,800	22,000	5,800	5,800	12	5,800	350,000
LB12-0.5	0.5	10/11/17	mg/kg	ND	16	ND	ND	ND	28	200
LB12-2.5	2.5	10/11/17	mg/kg	ND	3.1	ND	ND	ND	28	13
LB12-5.0	5	10/11/17	mg/kg	ND	6	ND	ND	ND	19	23
LB13-0.5	0.5	10/11/17	mg/kg	ND	13	ND	ND	ND	27	210
LB13-2.5	2.5	10/11/17	mg/kg	ND	7.4	ND	ND	ND	22	31
LB13-5.0	5	10/11/17	mg/kg	ND	4	ND	ND	ND	17	15
LB14-0.5	0.5	10/11/17	mg/kg	ND	16	ND	ND	ND	27	86
LB14-2.5	2.5	10/11/17	mg/kg	ND	5.6	ND	ND	ND	18	26
LB14-5.0	5	10/11/17	mg/kg	ND	8.3	ND	ND	ND	21	30
LB15-0.5	0.5	10/12/17	mg/kg	ND	6.4	ND	ND	ND	15	31
LB15-2.5	2.5	10/12/17	mg/kg	ND	2.3	ND	ND	ND	5.6	8.7
LB15-5.0	5	10/12/17	mg/kg	ND	1.2	ND	ND	ND	2.8	4.6
LB16-0.5	0.5	10/12/17	mg/kg	ND	7.1	ND	ND	ND	17	180
LB16-2.5	2.5	10/12/17	mg/kg	ND	11	ND	ND	ND	18	160
LB16-5.0	5	10/12/17	mg/kg	ND	6.5	ND	ND	ND	14	39
LB17-0.5	0.5	10/11/17	mg/kg	ND	10	ND	ND	ND	22	250
LB17-2.5	2.5	10/11/17	mg/kg	ND	6.7	ND	ND	ND	20	24
LB17-5.0	5	10/11/17	mg/kg	ND	6.6	ND	ND	ND	16	24
LB18-0.5	0.5	10/11/17	mg/kg	3.5	32	ND	ND	ND	23	150
LB18-2.5	2.5	10/11/17	mg/kg	ND	4.5	ND	ND	ND	16	16
LB18-5.0	5	10/11/17	mg/kg	ND	5.3	ND	ND	ND	17	18
LB19-0.5	0.5	10/11/17	mg/kg	ND	4.9	ND	ND	ND	19	21
LB19-2.5	2.5	10/11/17	mg/kg	ND	3.3	ND	ND	ND	17	14
LB19-5.0	5	10/11/17	mg/kg	ND	4.9	ND	ND	ND	14	19
LB20-0.5	0.5	10/11/17	mg/kg	ND	21	ND	ND	ND	32	110
LB20-2.5	2.5	10/11/17	mg/kg	ND	4.5	ND	ND	ND	13	17
LB20-5.0	5	10/11/17	mg/kg	ND	4.8	ND	ND	ND	15	18
LB21-0.5	0.5	10/12/17	mg/kg	ND	3.8	ND	ND	ND	12	14
LB21-2.5	2.5	10/12/17	mg/kg	ND	6.2	ND	ND	ND	14	22
LB21-5.0	5	10/12/17	mg/kg	ND	8.9	ND	ND	ND	19	33
LB22-0.5	0.5	10/12/17	mg/kg	ND	8.7	ND	ND	ND	19	97
LB22-2.5	2.5	10/12/17	mg/kg	ND	11	ND	ND	ND	23	40
LB22-5.0	5	10/12/17	mg/kg	ND	2.9	ND	ND	ND	7.2	10

Table 1 Summary of Soil Metal Analytical Results Berth 191 - 193 Port of Los Angeles

Sample ID	Depth (feet bgs)	Date	Units	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
USEPA RSL	Industrial Soil		mg/kg	5,800	22,000	5,800	5,800	12	5,800	350,000
LB23-0.5	0.5	10/11/17	mg/kg	ND	3	ND	ND	ND	14	11
LB23-2.5	2.5	10/11/17	mg/kg	ND	5.7	ND	ND	ND	15	20
LB23-5.0	5	10/11/17	mg/kg	ND	4	ND	ND	ND	10	15
LB24-0.5	0.5	10/11/17	mg/kg	ND	9.4	ND	ND	ND	28	35
LB24-2.5	2.5	10/11/17	mg/kg	ND	5.2	ND	ND	ND	14	19
LB24-5.0	5	10/11/17	mg/kg	ND	3.6	ND	ND	ND	15	14
LB25-0.5	0.5	10/11/17	mg/kg	ND	3.2	ND	ND	ND	17	12
LB25-2.5	2.5	10/11/17	mg/kg	ND	6.5	ND	ND	ND	18	25
LB25-5.0	5	10/11/17	mg/kg	ND	3.5	ND	ND	ND	12	14
LB26-0.5	0.5	12-Oct-17	mg/kg	ND	2.7	ND	ND	ND	8	11
LB26-2.5	2.5	12-Oct-17	mg/kg	ND	3.8	ND	ND	ND	8.8	14
LB26-5.0	5	12-Oct-17	mg/kg	ND	7.7	ND	ND	ND	18	30
LB27-0.5	0.5	12-Oct-17	mg/kg	ND	15	ND	ND	ND	32	120
LB27-2.5	2.5	12-Oct-17	mg/kg	ND	7.1	ND	ND	ND	16	26
LB27-5.0	5	12-Oct-17	mg/kg	ND	2.4	ND	ND	ND	6.7	9.5
LB28-0.5	0.5	12-Oct-17	mg/kg	ND	12	ND	ND	ND	16	190
LB28-2.5	2.5	12-Oct-17	mg/kg	ND	13	ND	ND	ND	20	120
LB28-5.0	5	12-Oct-17	mg/kg	ND	11	ND	ND	ND	18	50
LB29-0.5	0.5	12-Oct-17	mg/kg	ND	4	ND	ND	ND	9.7	43
LB29-2.5	2.5	12-Oct-17	mg/kg	ND	3	ND	ND	ND	9.9	11
LB29-5.0	5	12-Oct-17	mg/kg	ND	5.3	ND	ND	ND	12	19
LB30-0.5	0.5	12-Oct-17	mg/kg	ND	6.5	ND	ND	ND	18	26
LB30-2.5	2.5	12-Oct-17	mg/kg	ND	24	ND	ND	ND	38	130
LB30-5.0	5	12-Oct-17	mg/kg	ND	7.4	ND	ND	ND	18	29
LB31-0.5	0.5	12-Oct-17	mg/kg	ND	9.7	ND	ND	ND	21	140
LB31-2.5	2.5	12-Oct-17	mg/kg	ND	2.2	ND	ND	ND	6.8	8.3
LB31-5.0	5	12-Oct-17	mg/kg	ND	7.8	ND	ND	ND	17	29
LB32-0.5	0.5	12-Oct-17	mg/kg	ND	11	ND	ND	ND	22	48
LB32-2.5	2.5	12-Oct-17	mg/kg	ND	4.4	ND	ND	ND	10	19
LB32-5.0	5	12-Oct-17	mg/kg	ND	9.1	ND	ND	ND	20	32
LB33-0.5	0.5	12-Oct-17	mg/kg	ND	9.3	ND	ND	ND	22	34
LB33-2.5	2.5	12-Oct-17	mg/kg	ND	20	ND	ND	ND	22	790
LB33-5.0	5	12-Oct-17	mg/kg	ND	8	ND	ND	ND	19	29

Table 1 Summary of Soil Metal Analytical Results Berth 191 - 193

Port of Los Angeles Wilmington, California

Sample ID	Depth (feet bgs)	Date	Units	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
USEPA RSL I	USEPA RSL Industrial Soil			5,800	22,000	5,800	5,800	12	5,800	350,000
LB34-0.5	0.5	13-Oct-17	mg/kg	ND	12	ND	ND	ND	20	79
LB34-2.5	2.5	13-Oct-17	mg/kg	ND	5.8	ND	ND	ND	15	26
LB34-5.0	5	13-Oct-17	mg/kg	ND	7	ND	ND	ND	15	27
LB35-0.5	0.5	13-Oct-17	mg/kg	ND	15	ND	ND	ND	24	30
LB35-2.5	2.5	13-Oct-17	mg/kg	ND	13	ND	ND	ND	19	74
LB35-5.0	5	13-Oct-17	mg/kg	ND	12	ND	ND	ND	17	29

Minimum SL	5,800	22,000	5,800	5,800	12	5,800	350,000
Max. Conc.	3.5	32	0	1.5	0	38	790
Is Max > SL ?	No	No	No	No	No	No	No

Notes:

bgs = below ground

surface

ND<0.44 = Not detected above the laboratory reporting limit.

RSL = USEPA Regional Screening Level, industrial (November 2017)

mg/kg = milligrams per kilogram

Table 2 Summary of Total Petroleum Hydrocarbon in Soil Analytical Results Berth 191 - 193 Port of Los Angeles

Sample ID	Depth (feet bgs)	Date	Units	GRO	DRO	ORO	Total TPH
USEPA	RSL Industrial Soil		mg/kg	420	440	33,000	
LB1-0.5	0.5	10/11/17	mg/kg	ND<0.20	200	460	660
LB1-2.5	2.5	10/11/17	mg/kg	ND<0.20	8.4	7.1	15.5
LB1-5.0	5	10/11/17	mg/kg	ND<0.20	5.0	4.4	9.4
LB2-0.5	0.5	10/11/17	mg/kg	ND<0.20	720	1,700	2,420
LB2-2.5	2.5	10/11/17	mg/kg	ND<0.20	8.7	13	21.7
LB2-5.0	5	10/11/17	mg/kg	ND<0.20	8.1	8.3	16.4
LB3-0.5	0.5	10/11/17	mg/kg	ND<0.20	20	41	61
LB3-2.5	2.5	10/11/17	mg/kg	ND<0.20	6.1	5.4	11.5
LB3-5.0	5	10/11/17	mg/kg	ND<0.20	10	9.1	19.1
LB4-0.5	0.5	10/11/17	mg/kg	ND<0.20	640	1,900	2,540
LB4-2.5	2.5	10/11/17	mg/kg	ND<0.20	22	52	74
LB4-3.5	3.5	10/11/17	mg/kg	ND<0.20	70	140	210
LB5-0.5	0.5	10/11/17	mg/kg	ND<0.21	470	1,500	1,970
LB5-2.5	2.5	10/11/17	mg/kg	ND<0.18	20	46	66
LB5-5.0	5	10/11/17	mg/kg	ND<0.21	19	15	34
LB6-0.5	0.5	10/12/17	mg/kg	ND<0.20	7.1	16	23.1
LB6-2.5	2.5	10/12/17	mg/kg	ND<0.20	6.8 5.1		11.9
LB6-5.0	5	10/12/17	mg/kg	ND<0.20	1.2	1.6	2.8
LB7-0.5	0.5	10/12/17	mg/kg	ND<0.20	270	630	900
LB7-2.5	2.5	10/12/17	mg/kg	ND<0.20	92	130	222
LB7-5.0	5	10/12/17	mg/kg	ND<0.20	10	11	21
LB8-0.5	0.5	10/11/17	mg/kg	ND<0.20	180	580	760
LB8-2.5	2.5	10/11/17	mg/kg	ND<0.20	4.8	5.0	9.8
LB8-5.0	5	10/11/17	mg/kg	ND<0.20	3.7	3.7	7.4
LB9-0.5	0.5	10/11/17	mg/kg	ND<0.22	690	2,500	3,190
LB9-2.5	2.5	10/11/17	mg/kg	ND<0.19	75	160	235
LB9-5.0	5	10/11/17	mg/kg	ND<0.17	8.9	5.7	14.6
LB10-0.5	0.5	10/12/17	mg/kg	ND<0.20	840	3,800	4,640
LB10-2.5	2.5	10/12/17	mg/kg	ND<0.20	5.2	7.3	12.5
LB10-5.0	5	10/12/17	mg/kg	ND<0.20	1.3	1.5	2.8
LB11-0.5	0.5	10/12/17	mg/kg	ND<0.20	310	730	1,040
LB11-2.5	2.5	10/12/17	mg/kg	ND<0.20	8.6	7.9	16.5
LB11-5.0	5	10/12/17	mg/kg	ND<0.20	12	9.3	21.3
LB12-0.5	0.5	10/11/17	mg/kg	ND<0.20	180	420	600
LB12-2.5	2.5	10/11/17	mg/kg	ND<0.20	5.7	5.7	11.4

Table 2 Summary of Total Petroleum Hydrocarbon in Soil Analytical Results Berth 191 - 193 Port of Los Angeles

Sample ID	Depth (feet bgs)	Date	Units	GRO	DRO	ORO	Total TPH
USEPA F	RSL Industrial Soil		mg/kg	420	440	33,000	
LB12-5.0	5	10/11/17	mg/kg	ND<0.20	6.4	6.6	13
LB13-0.5	0.5	10/11/17	mg/kg	ND<0.20	350	1,200	1,550
LB13-2.5	2.5	10/11/17	mg/kg	ND<0.20	6.9	8.4	15.3
LB13-5.0	5	10/11/17	mg/kg	ND<0.20	6.7	6.7	13.4
LB14-0.5	0.5	10/11/17	mg/kg	ND<0.20	160	440	600
LB14-2.5	2.5	10/11/17	mg/kg	ND<0.24	9.2	15	24.2
LB14-5.0	5	10/11/17	mg/kg	ND<0.20	3.6	3.1	6.7
LB15-0.5	0.5	10/12/17	mg/kg	ND<0.20	20	35	55
LB15-2.5	2.5	10/12/17	mg/kg	ND<0.20	4.0	4.6	8.6
LB15-5.0	5	10/12/17	mg/kg	ND<0.20	2.9	2.5	5.4
LB16-0.5	0.5	10/12/17	mg/kg	ND<0.20	7.7	10	17.7
LB16-2.5	2.5	10/12/17	mg/kg	ND<0.20	390	1,100	1,490
LB16-5.0	5	10/12/17	mg/kg	ND<0.20	63	130	193
LB17-0.5	0.5	10/11/17	mg/kg	ND<0.20	1,400	3,400	4,800
LB17-2.5	2.5	10/11/17	mg/kg	ND<0.20	11	9.6	20.6
LB17-5.0	5	10/11/17	mg/kg	ND<0.20	6.7	6.2	12.9
LB18-0.5	0.5	10/11/17	mg/kg	ND<0.20	110	280	390
LB18-2.5	2.5	10/11/17	mg/kg	ND<0.20	6.1	5.9	12
LB18-5.0	5	10/11/17	mg/kg	ND<0.20	11	9.8	20.8
LB19-0.5	0.5	10/11/17	mg/kg	ND<0.20	8.8	7.9	16.7
LB19-2.5	2.5	10/11/17	mg/kg	ND<0.20	3.3	3.7	7.0
LB19-5.0	5	10/11/17	mg/kg	ND<0.20	3.9	4.0	7.9
LB20-0.5	0.5	10/11/17	mg/kg	ND<0.20	14	26	40
LB20-2.5	2.5	10/11/17	mg/kg	ND<0.20	3.2	3.7	6.9
LB20-5.0	5	10/11/17	mg/kg	ND<0.20	4.2	3.1	7.3
LB21-0.5	0.5	10/12/17	mg/kg	ND<0.20	9.1	9.9	19
LB21-2.5	2.5	10/12/17	mg/kg	ND<0.20	20	17	37
LB21-5.0	5	10/12/17	mg/kg	ND<0.20	7.2	8.5	15.7
LB22-0.5	0.5	10/12/17	mg/kg	ND<0.20	11	21	32
LB22-2.5	2.5	10/12/17	mg/kg	ND<0.20	8.6	10	18.6
LB22-5.0	5	10/12/17	mg/kg	ND<0.20	9.6	9.2	18.8
LB23-0.5	0.5	10/11/17	mg/kg	ND<0.20	14	12	26
LB23-2.5	2.5	10/11/17	mg/kg	ND<0.20	6.3	7.1	13.4
LB23-5.0	5	10/11/17	mg/kg	ND<0.20	8.7	7.6	16.3
LB24-0.5	0.5	10/11/17	mg/kg	ND<0.20	5.1	6.2	11.3

Table 2 Summary of Total Petroleum Hydrocarbon in Soil Analytical Results Berth 191 - 193 Port of Los Angeles

Sample ID	Depth (feet bgs)	Date	Units	GRO	DRO	ORO	Total TPH
USEPA F	RSL Industrial Soil		mg/kg	420	440	33,000	
LB24-2.5	2.5	10/11/17	mg/kg	ND<0.20	5.6	5.6	11.2
LB24-5.0	5	10/11/17	mg/kg	ND<0.20	4.3	4.7	9.0
LB25-0.5	0.5	10/11/17	mg/kg	ND<0.20	2.6	2.2	4.8
LB25-2.5	2.5	10/11/17	mg/kg	ND<0.20	2.1	1.9	4.0
LB25-5.0	5	10/11/17	mg/kg	ND<0.20	2.4	2.6	5.0
LB26-0.5	0.5	12-Oct-17	mg/kg	ND<0.20	11	14	25
LB26-2.5	2.5	12-Oct-17	mg/kg	ND<0.20	12	12	24
LB26-5.0	5	12-Oct-17	mg/kg	ND<0.20	20	18	38
LB27-0.5	0.5	12-Oct-17	mg/kg	ND<0.20	41	80	121
LB27-2.5	2.5	12-Oct-17	mg/kg	ND<0.20	9.5	11	20.5
LB27-5.0	5	12-Oct-17	mg/kg	ND<0.20	8.1	8.4	16.5
LB28-0.5	0.5	12-Oct-17	mg/kg	ND<0.20	530	930	1,460
LB28-2.5	2.5	12-Oct-17	mg/kg	ND<0.20	480	1,000	1,480
LB28-5.0	5	12-Oct-17	mg/kg	400	11,000	5,600	16,600
LB29-0.5	0.5	12-Oct-17	mg/kg	ND<0.20	54	100	154
LB29-2.5	2.5	12-Oct-17	mg/kg	ND<0.20	8.8	8.8	17.6
LB29-5.0	5	12-Oct-17	mg/kg	ND<0.20	5.4	5.6	11
LB30-0.5	0.5	12-Oct-17	mg/kg	ND<0.20	32	36	68
LB30-2.5	2.5	12-Oct-17	mg/kg	ND<0.20	220	450	670
LB30-5.0	5	12-Oct-17	mg/kg	ND<0.20	9.2	13	22.2
LB31-0.5	0.5	12-Oct-17	mg/kg	ND<0.20	230	490	720
LB31-2.5	2.5	12-Oct-17	mg/kg	ND<0.20	5.7	6.0	11.7
LB31-5.0	5	12-Oct-17	mg/kg	ND<0.20	9.3	9.4	18.7
LB32-0.5	0.5	12-Oct-17	mg/kg	ND<0.20	170	360	530
LB32-2.5	2.5	12-Oct-17	mg/kg	ND<0.20	6.8	9.5	16.3
LB32-5.0	5	12-Oct-17	mg/kg	ND<0.20	13	12	25
LB33-0.5	0.5	12-Oct-17	mg/kg	ND<0.20	78	160	238
LB33-2.5	2.5	12-Oct-17	mg/kg	ND<0.20	2,500	6,800	9,300
LB33-5.0	5	12-Oct-17	mg/kg	ND<0.20	9.0	8.1	17.1
LB34-0.5	0.5	13-Oct-17	mg/kg	ND<0.20	1,100	4,000	5,100
LB34-2.5	2.5	13-Oct-17	mg/kg	ND<0.20	30	59	89
LB34-5.0	5	13-Oct-17	mg/kg	ND<0.20	5.0	7.1	12.1
LB35-0.5	0.5	13-Oct-17	mg/kg	ND<0.20	2,400	7,800	10,200
LB35-2.5	2.5	13-Oct-17	mg/kg	ND<0.20	1,800	7,400	9,200
LB35-5.0	5	13-Oct-17	mg/kg	ND<0.20	6,300	17,000	23,300

Table 2 Summary of Total Petroleum Hydrocarbon in Soil Analytical Results Berth 191 - 193

Port of Los Angeles

Wilmington, California

Sample ID	Depth (feet bgs)	Date	Units	GRO	DRO	ORO	Total TPH
USEPA F	RSL Industrial Soil		mg/kg	420	440	33,000	

Notes:

bgs = below ground surface

mg/kg = milligrams per kilogram

RSL = USEPA Regional Screening Level, industrial (November 2017). Most conservative value between aromatic/aliphatic

ND<0.20 = Not detected above the reporting detection limit.

GRO = Gasoline Range Petroleum Hydrocarbons

DRO = Diesel Range Petroleum Hydrocarbons

ORO = Oil Range Petroleum Hydrocarbons

Table 3 Summary of Volatile Organic Compound Analytical Results Berth 191 - 193

Port of Los Angeles Wilmington, California

		_			7
Sample ID	Depth (feet bgs)	Date	Units	Carbon Disulfide	Tetrachloroethene
USEPA F	RSL Industrial Soil		ug/kg	3,500,000	100,000
LB2-0.5	0.5	10/11/17	ug/kg	5.3	ND<1.5
LB2-2.5	2.5	10/11/17	ug/kg	7.4 H7	ND<1.4 H7
LB4-0.5	0.5	10/11/17	ug/kg	ND<3.5	27
LB4-2.5	2.5	10/11/17	ug/kg	ND<3.3	ND<1.5
LB5-0.5	0.5	10/11/17	ug/kg	ND<3.2	ND<1.4
LB5-2.5	2.5	10/11/17	ug/kg	ND<3.7	ND<1.7
LB9-0.5	0.5	10/11/17	ug/kg	ND<3.3	ND<1.5
LB9-2.5	2.5	10/11/17	ug/kg	ND<3.7	ND<1.7
LB10-0.5	0.5	10/12/17	ug/kg	ND<3.4	ND<1.5
LB10-2.5	2.5	10/12/17	ug/kg	13	ND<1.4
LB11-0.5	0.5	10/12/17	ug/kg	ND<3.4	ND<1.5
LB11-2.5	2.5	10/12/17	ug/kg	ND<3.4	ND<1.5
LB13-0.5	0.5	10/11/17	ug/kg	ND<3.3	ND<1.5
LB13-2.5	2.5	10/11/17	ug/kg	ND<3.8	ND<1.7
LB16-2.5	2.5	10/12/17	ug/kg	ND<3.4	ND<1.5
LB16-5.0	5	10/12/17	ug/kg	ND<3.3	ND<1.5
LB17-0.5	0.5	10/11/17	ug/kg	12	ND<1.6
LB17-2.5	2.5	10/11/17	ug/kg	ND<3.9	ND<1.7
LB28-0.5	0.5	10/12/17	ug/kg	ND<3.7	ND<1.7
LB28-2.5	2.5	10/12/17	ug/kg	ND<3.5	ND<1.5
LB28-5.0	5	10/12/17	ug/kg	ND<3.9	ND<1.7
LB33-2.5	2.5	10/12/17	ug/kg	ND<3.3	ND<1.5
LB33-5.0	5	10/12/17	ug/kg	ND<3.7	ND<1.6
LB34-0.5	0.5	10/13/17	ug/kg	ND<3.9	ND<1.7
LB34-2.5	2.5	10/13/17	ug/kg	ND<4.8	ND<2.1
LB34-5.0	5	10/13/17	ug/kg	ND<4.3	ND<1.9
LB35-0.5	0.5	10/13/17	ug/kg	ND<4.5	ND<2.0
LB35-2.5	2.5	10/13/17	ug/kg	ND<4.5	ND<2.0
LB35-5.0	5	10/13/17	ug/kg	ND<3.9	ND<1.7

Notes:

bgs = below ground surface

ug/kg = micrograms per kilogram

ND<0.88 = Not detected above the laboratory reporting limit

RSL = USEPA Regional Screening Level, industrial (November 2017)

Table 4 Summary of Semivolatile Organic Compounds Analytical Results Berth 191 - 193

Port of Los Angeles Wilmington, California

Sample ID	Date Date		Units	2-Methylnaphthalen	Benzo(b)fluoranthen	Fluoranthene	Pyrene
USEPA RSL Ir	ndustrial So	oil	ug/kg	3,000,000	21,000	30,000,000	23,000,000
LB2-2.5	2.5	11-Oct-17	ug/kg	ND	10	12	11
LB28-5.0	5	12-Oct-17	ug/kg	7800	ND	ND	ND

Notes:

bgs = below ground surface

ug/kg = micrograms per kilogram

ND<0.88 = Not detected above the laboratory reporting limit

RSL = USEPA Regional Screening Level, industrial (June, 2017)

Table 5 Summary of Polychlorinated Biphenyls in Soil Analytical Results Berth 191 - 193

Port of Los Angeles Wilmington, California

Sample ID	Depth (feet bgs)	Date	Units	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Aroclor 1262	Aroclor 1268
USEPA RSL Indi	ustrial Soil		ug/kg	27,000	830	720	950	950	970	990		
LB2-0.5	0.5	10/11/17	ug/kg	ND								
LB4-0.5	0.5	10/11/17	ug/kg	ND	ND	ND	ND	ND	ND	79	ND	ND
LB5-0.5	0.5	10/11/17	ug/kg	ND								
LB9-0.5	0.5	10/11/17	ug/kg	ND								
LB10-0.5	0.5	10/12/17	ug/kg	ND	ND	ND	ND	ND	ND	19	ND	ND
LB11-0.5	0.5	10/12/17	ug/kg	ND	ND	ND	ND	ND	870	ND	ND	ND
LB13-0.5	0.5	10/11/17	ug/kg	ND	ND	ND	ND	ND	ND	21	ND	ND
LB16-2.5	2.5	10/12/17	ug/kg	ND	ND	ND	ND	ND	110	ND	ND	ND
LB17-0.5	0.5	10/11/17	ug/kg	ND	ND	ND	ND	ND	ND	32	ND	ND
LB19-0.5	0.5	10/11/17	ug/kg	ND								
LB28-5.0	5	10/12/17	ug/kg	ND								
LB33-2.5	2.5	10/12/17	ug/kg	ND								
LB34-0.5	0.5	10/13/17	ug/kg	ND								
LB35-0.5	0.5	10/13/17	ug/kg	ND								
LB35-5.0	5	10/13/17	ug/kg	ND								
LB45-0.5	0.5	12/13/17	ug/kg	16	16	16	16	16	16	68	16	16
LB46-0.5	0.5	12/13/17	ug/kg	16	16	16	16	16	16	16	16	16
LB47-0.5	0.5	12/13/17	ug/kg	16	16	16	16	16	16	180	16	16

Notes:

bgs = below ground surface

ug/kg = micrograms per kilogram

ND = Not detected above the reporting limit.

RSL = USEPA Regional Screening Level, industrial (November 2017)

Table 6 Summary of Volatile Organic Compounds in Soil Gas Analytical Results Berth 191 - 193 Port of Los Angeles

Sample ID	Date	Depth (feet bgs)	Units	Benzene	Bromobenzene	n-Butylbenzene	sec-Butylbenzene	tert-Butylbenzene	Chloroform	2-Chlorotoluene	4-Chlorotoluene	Dichlorodifluoromethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene
Region IX RSL indu				3.2	520	520	520	520	1.06	2200	2200	880	1760		700
HERO Note 3 indu				0.84	-		-	-		-		-	620	70	700
LB1-4	10/17/17	4.0	ug/l	0.024	<0.008	<0.008	<0.008	<0.008	0.167	<0.008	<0.008	0.027	0.024	30.6	3.56
LB1-4 LB6-4	10/17/17	4.0	ug/L ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	2.15	0.445
LB13-4	10/17/17	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008
LB23-4	10/17/17	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008
LB23-4 REP	10/17/17	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008
LB25-4	10/17/17	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008
LB27-4	10/17/17	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	0.011	<0.008
LB31-4	10/17/17	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008
LB34-4	10/17/17	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008
LB36-4'	12/18/17	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	0.010	<0.008	<0.008	<0.008
LB38-3'	12/18/17	3.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	0.011	<0.008	<0.008	<0.008
LB39-4'	12/18/17	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	0.026	<0.008	<0.008	0.010	0.056	70.1	2.67
LB40-4'	12/18/17	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	0.009	<0.008	0.218	0.012
LB42-4'	12/18/17	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	0.110	<0.008
LB42-4' REP	12/18/17	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	0.133	<0.008
LB43-4'	12/18/17	4.0	ug/L	<0.008	0.009	0.013	0.014	0.013	<0.008	0.009	0.010	0.011	<0.008	<0.008	<0.008
LB49-4'	12/18/17	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	0.100	<0.008

Table 6

Summary of Volatile Organic Compounds in Soil Gas Analytical Results

Berth 191 - 193

Port of Los Angeles

Wilmington, California

Sample ID	Date	Depth (feet bgs)	Units	Benzene	Bromobenzene	n-Butylbenzene	sec-Butylbenzene	tert-Butylbenzene	Chloroform	2-Chlorotoluene	4-Chlorotoluene	Dichlorodifluoromethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene
Screening Criteri	a	EPA Region IX	RSI_industrial*	3.2	520				1.06	T		880	1,760		
		DTSC HERO No		0.84									620	70	700
		DTSC HERO No		0.0.									020		
		DTSC HERO No					-					1		1	
		EPA Region 9 I	RSL residential*						0.12						
		EPA Region 9	RSL industrial*	3.2					1.06			880	1760		
		Minimum Screen Maximum Detec Does Max Excee	ted Conc.	0.8 0.024 No	520.0 0.009 No	520.0 0.013 No	520.0 0.014 No	520.0 0.013 No	1.1 0.167 No	2200.0 0.009 No	2200.0 0.01 No	880.0 0.027 No	620.0 0.056 No	70.0 70.1 Yes	700.0 3.56 No

Surrogates:

Isopropylbenzene for 4-Isopropyltoluene

Bromobenzene for butylbenzenes

1,4-Dichlorobenzen for Dichlorotoulenes

*= Screening levels are adjusted using a 0.0005 attenuation factor for future commerical/industrial use are from Table 2 of the 2011 Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance)

ug/L = micrograms per liter

bgs = below ground surface

Table 6 Summary of Volatile Organic Compounds in Soil Gas Analytical Results Berth 191 - 193 Port of Los Angeles

Sample ID	Date	Depth (feet bgs)	Units	Ethylbenzene	Isopropylbenzene	4-Isopropyltoluene	n-Propylbenzene	Styrene	1,1,2,2-Tetrachloroethane	Tetrachloroethene	Toluene	1,1,2-Trichloroethane	Trichloroethene	Trichlorofluoromethane	1,2,4-Trimethylbenzene
Region IX RSL indu				9.8	3600	3600	8800	8800	0.42	94	44000	1.54	6		520
HERO Note 3 indu								7800		4	2600			10800	
HERO Note 5 indu													16	-	
LB1-4	10/17/17	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	148	0.055	<0.008	23.2	0.016	0.008
LB6-4	10/17/17	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008
LB13-4	10/17/17	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	0.035	<0.008	<0.008	0.026	<0.008	<0.008
LB23-4	10/17/17	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008
LB23-4 REP	10/17/17	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008
LB25-4	10/17/17	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	0.262	<0.008	<0.008	0.021	<0.008	<0.008
LB27-4	10/17/17	4.0	ug/L	0.030	<0.008	<0.008	<0.008	<0.008	<0.008	0.102	0.066	<0.008	0.029	<0.008	0.038
LB31-4	10/17/17	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008
LB34-4	10/17/17	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	0.274	0.038	<0.008	0.029	<0.008	<0.008
LB36-4'	12/18/17	4.0	ug/L	0.019	0.011	0.771	0.012	0.009	0.011	0.141	0.081	0.304	<0.008	3.59	0.234
LB38-3'	12/18/17	3.0	ug/L	<0.008	<0.008	0.106	<0.008	<0.008	<0.008	<0.008	0.016	<0.008	<0.008	3.71	0.036
LB39-4'	12/18/17	4.0	ug/L	<0.008	<0.008	0.023	<0.008	<0.008	<0.008	8.75	0.011	0.015	18.4	<0.008	<0.008
LB40-4'	12/18/17	4.0	ug/L	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	0.243	<0.008	0.012	0.146	0.010	<0.008
LB42-4'	12/18/17	4.0	ug/L	<0.008	<0.008	0.206	<0.008	<0.008	<0.008	0.066	0.010	<0.008	0.014	0.052	0.066
LB42-4' REP	12/18/17	4.0	ug/L	<0.008	<0.008	0.206	<0.008	<0.008	<0.008	0.075	0.012	<0.008	0.030	0.054	0.070
LB43-4'	12/18/17	4.0	ug/L	0.012	0.012	0.026	0.014	<0.008	<0.008	0.011	0.021	0.118	<0.008	0.009	0.021
LB49-4'	12/18/17	4.0	ug/L	<0.008	<0.008	0.014	<0.008	<0.008	<0.008	0.090	<0.008	<0.008	0.064	<0.008	<0.008

Table 6 Summary of Volatile Organic Compounds in Soil Gas Analytical Results

Berth 191 - 193

Port of Los Angeles

Wilmington, California

Sample ID	Date	Depth (feet bgs)	Units	Ethylbenzene	Isopropylbenzene	4-IsopropyItoluene	n-Propylbenzene	Styrene	1,1,2,2-Tetrachloroethane	Tetrachloroethene	Toluene	1,1,2-Trichloroethane	Trichloroethene	Trichlorofluoromethane	1,2,4-Trimethylbenzene
Screening Criteri	a				-	_'	•	-	_'		-		•	-	
		EPA Region IX	RSL industrial*	9.8	3,600		8,800	8,800	0.42	94	44,000	1.54	6		520
		DTSC HERO No	ote 3 industrial*					7,800		4.0	2,600			10,800	
		DTSC HERO No											2.0		
		DTSC HERO No	ote 5 industrial*										16		
		EPA Region 9 I	RSL residential*							11	5,200		0.48		63
		EPA Region 9	RSL industrial*	9.8						94	44,000		6.0		520
		Minimum Screer Maximum Detec Does Max Excee	ted Conc.	9.8 0.03 No	3600.0 0.012 No	3600.0 0.771 No	8800.0 0.014 No	7800.0 0.009 No	0.4 0.011 No	4.0 148 Yes	2600.0 0.081 No	1.5 0.304 No	2.0 23.2 Yes	10800.0 3.71 No	520.0 0.234 No

Surrogates:

Isopropylbenzene for 4-Isopropyltoluene Bromobenzene for butylbenzenes

1,4-Dichlorobenzen for Dichlorotoulenes

*= Screening levels are adjusted using a 0.0005 2011 Final Guidance for the Evaluation and M

ug/L = micrograms per liter

bgs = below ground surface

Table 6 Summary of Volatile Organic Compounds in Soil Gas Analytical Results Berth 191 - 193 Port of Los Angeles Wilmington, California

Sample ID	Date	Depth (feet bgs)	Units	1,3,5-Trimethylbenzene	Vinyl Chloride	m,p-Xylene	o-Xylene
Region IX RSL indu	ustrial*			520	5.6	880	880
HERO Note 3 indu	ustrial*			-	0.32	-	-
HERO Note 5 indu	ustrial*			-	-	-	-
LB1-4	10/17/17	4.0	ug/L	<0.008	<0.008	<0.008	<0.008
LB6-4	10/17/17	4.0	ug/L	<0.008	3.20	<0.008	<0.008
LB13-4	10/17/17	4.0	ug/L	<0.008	<0.008	<0.008	<0.008
LB23-4	10/17/17	4.0	ug/L	<0.008	<0.008	<0.008	<0.008
LB23-4 REP	10/17/17	4.0	ug/L	<0.008	<0.008	<0.008	<0.008
LB25-4	10/17/17	4.0	ug/L	<0.008	<0.008	<0.008	<0.008
LB27-4	10/17/17	4.0	ug/L	<0.008	<0.008	0.136	0.038
LB31-4	10/17/17	4.0	ug/L	<0.008	<0.008	<0.008	<0.008
LB34-4	10/17/17	4.0	ug/L	<0.008	<0.008	0.016	<0.008
LB36-4'	12/18/17	4.0	ug/L	0.010	<0.008	0.046	0.019
LB38-3'	12/18/17	3.0	ug/L	<0.008	<0.008	<0.008	<0.008
LB39-4'	12/18/17	4.0	ug/L	<0.008	0.014	<0.008	<0.008
LB40-4'	12/18/17	4.0	ug/L	<0.008	<0.008	<0.008	<0.008
LB42-4'	12/18/17	4.0	ug/L	<0.008	<0.008	<0.008	<0.008
LB42-4' REP	12/18/17	4.0	ug/L	<0.008	<0.008	<0.008	<0.008
LB43-4'	12/18/17	4.0	ug/L	0.013	<0.008	0.021	0.011
LB49-4'	12/18/17	4.0	ug/L	<0.008	0.021	<0.008	<0.008

Table 6 Summary of Volatile Organic Compounds in Soil Gas Analytical Results

Berth 191 - 193

Port of Los Angeles

Wilmington, California

Sample ID	Date	Depth (feet bgs)	Units	1,3,5-Trimethylbenzene	Vinyl Chloride	m,p-Xylene	o-Xylene
Screening Criteria	a				-	•	
		EPA Region IX	RSL industrial*	520	5.6	880	880
		DTSC HERO No	ote 3 industrial*		0.32		
	DTSC HERO Note 5 reside						
	DTSC HERO Note 5 industr						
		EPA Region 9 I	RSL residential*			100	100
		EPA Region 9	RSL industrial*		5.6	880	880
		Minimum Screer Maximum Detec	. ,	520.0 0.013	0.3 3.2	880.0 0.136	880.0 0.038

Does Max Exceed SLs? No

Yes

No

No

Surrogates:

Isopropylbenzene for 4-Isopropyltoluene

Bromobenzene for butylbenzenes

1,4-Dichlorobenzen for Dichlorotoulenes

*= Screening levels are adjusted using a 0.0005 2011 Final Guidance for the Evaluation and M

ug/L = micrograms per liter bgs = below ground surface

Table 7 Summary of Volatile Organic Compounds in Groundwater Analytical Results Berth 191 - 193

Port of Los Angeles Wilmington, California

Sample ID	Date	Units	1,1-Dichloroethene	1,2-Dichloroethane	Benzene	Bromodichloromethane	Bromoform	Carbon disulfide	cis-1,2-Dichloroethene	Dibromochloromethane	MTBE	Tetrachloroethene
California MCLs		ug/L	6.0	0.5	1.0	80	80		6.0	80	13.0	5.0
LB1-GW	10/11/17	ug/L	ND<14	ND<20	ND<10	ND<16	ND<7.0	ND<11	3300	ND<5.3	ND<4.6	19,000
LB6-GW	10/12/17	ug/L	ND<0.28	ND<0.39	0.81	ND<0.32	ND<0.14	ND<0.21	78	ND<0.11	19	ND<0.18
LB13-GW	10/11/17	ug/L	ND<0.28	ND<0.39	ND<0.21	ND<0.32	ND<0.14	ND<0.21	0.61	ND<0.11	ND<0.09	2
LB23-GW	10/11/17	ug/L	ND<0.28	ND<0.39	ND<0.21	ND<0.32	ND<0.14	ND<0.21	ND<0.39	ND<0.11	ND<0.09	1.3
LB25-GW	10/11/17	ug/L	ND<0.28	ND<0.39	ND<0.21	ND<0.32	ND<0.14	ND<0.21	1.5	ND<0.11	ND<0.09	6.2
LB27-GW	10/12/17	ug/L	ND<0.28	ND<0.39	ND<0.21	ND<0.32	ND<0.14	ND<0.21	ND<0.39	ND<0.11	ND<0.09	ND<0.18
LB31-GW	10/12/17	ug/L	ND<0.28	ND<0.39	ND<0.21	ND<0.32	ND<0.14	ND<0.21	ND<0.39	ND<0.11	ND<0.09	ND<0.18
LB34-GW	10/13/17	ug/L	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
LB36-GW	12/13/17	ug/L	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	7.6	ND<0.5	1.3	2.6
LB37-GW	12/13/17	ug/L	7.2	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	2,400	ND<0.5	ND<0.5	440
LB38-GW	12/13/17	ug/L	ND<0.5	ND<0.5	ND<0.5	0.70	4.2	ND<0.5	24	2.7	ND<0.5	ND<0.5
LB39-GW	12/13/17	ug/L	9.6	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	4,900	ND<0.5	1.2	380
LB40-GW	12/13/17	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	3.5	380	<1.0	2.0	12
LB41-GW	12/13/17	ug/L	13	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	8,500	ND<0.5	ND<0.5	40
LB42-GW	12/13/17	ug/L	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	4.7	ND<0.5
LB43-GW	12/13/17	ug/L	ND<0.5	1.1	ND<0.5	ND<0.5	ND<0.5	ND<0.5	5.9	ND<0.5	15	ND<0.5
LB44-GW	12/13/17	ug/L	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	17	ND<0.5	6.3	ND<0.5
LB48-GW	12/13/17	ug/L	2.8	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1,100	ND<0.5	ND<0.5	7.6
LB49-GW	12/13/17	ug/L	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	180	ND<0.5	6.8	0.52
Min Screening Criteria Max. Conc.			6.0 13 Yes	0.5 1.1 Yes	1.0 0.81 No	80.0 0.7 No	80.0 4.2 No	0.0 3.5 Yes	6.0 8500 Yes	80.0 2.7 No	13.0 19 Yes	5.0 19000 Yes

Notes:

ug/L = micrograms per liter

ND<0.13 = Not detected above laboratory reporting limit

Table 7 Summary of Volatile Organic Compounds in Groundwater Analytical Results Berth 191 - 193

Port of Los Angeles Wilmington, California

Sample ID	Date	Units	trans-1,2-Dichloroethene	Trichloroethene	Vinyl chloride
California MCLs	5	ug/L	10.0	5.0	0.5
LB1-GW	10/11/17	ug/L	210	7,900	ND<13
LB6-GW	10/12/17	ug/L	33	ND<0.15	43
LB13-GW	10/11/17	ug/L	ND<0.15	1.6	ND<0.25
LB23-GW	10/11/17	ug/L	ND<0.15	0.78	ND<0.25
LB25-GW	10/11/17	ug/L	ND<0.15	3.5	ND<0.25
LB27-GW	10/12/17	ug/L	ND<0.15	ND<0.15	ND<0.25
LB31-GW	10/12/17	ug/L	ND<0.15	ND<0.15	ND<0.25
LB34-GW	10/13/17	ug/L	ND<0.5	ND<0.5	ND<0.5
LB36-GW	12/13/17	ug/L	0.50	3.8	0.73
LB37-GW	12/13/17	ug/L	230	870	4.0
LB38-GW	12/13/17	ug/L	0.78	ND<0.5	2.7
LB39-GW	12/13/17	ug/L	220	890	7.7
LB40-GW	12/13/17	ug/L	19	21	11
LB41-GW	12/13/17	ug/L	290	110	57
LB42-GW	12/13/17	ug/L	ND<0.5	ND<0.5	ND<0.5
LB43-GW	12/13/17	ug/L	ND<0.5	ND<0.5	2.4
LB44-GW	12/13/17	ug/L	ND<0.5	ND<0.5	ND<0.5
LB48-GW	12/13/17	ug/L	38	10	8.3
LB49-GW	12/13/17	ug/L	35	1.8	57
Min Screening Criteria			10.0	5.0	0.5

Min Screening Criteria	10.0	5.0	0.5
Max. Conc.	290	7900	57
	Yes	Yes	Yes

Notes:

ug/L = micrograms per liter

ND<0.13 = Not detected above laboratory reporting limi

Table 8 Summary of Semivolatile Organic Compounds in Groundwater Aalytical Results Berth 191 - 193 Port of Los Angeles Wilmington, California

Sample ID	Date	Units	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a) pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene
California N	ЛCLs	ug/L						0.2					
LB1-GW	10/11/17	ug/L	ND<0.02	ND<0.02	ND<0.02	ND<0.01	ND<0.01	ND<0.01	ND<0.06	ND<0.02	ND<0.02	ND<0.02	ND<0.02
LB6-GW	10/11/17	ug/L	ND<0.02	ND<0.02	ND<0.02	ND<0.01	ND<0.01	ND<0.01	ND<0.06	ND<0.02	ND<0.02	ND<0.02	ND<0.02
LB13-GW	10/11/17	ug/L	ND<0.02	ND<0.02	ND<0.02	ND<0.01	ND<0.01	ND<0.01	ND<0.06	ND<0.02	ND<0.02	ND<0.02	ND<0.02
LB23-GW	10/11/17	ug/L	ND<0.02	ND<0.02	ND<0.02	ND<0.01	ND<0.01	ND<0.01	ND<0.06	ND<0.02	ND<0.02	ND<0.02	ND<0.02
LB25-GW	10/12/17	ug/L	ND<0.02	ND<0.02	ND<0.02	ND<0.01	ND<0.01	ND<0.01	ND<0.06	ND<0.02	ND<0.02	ND<0.02	ND<0.02
LB27-GW	10/12/17	ug/L	ND<0.02	ND<0.02	ND<0.02	ND<0.01	ND<0.01	ND<0.01	ND<0.06	ND<0.02	ND<0.02	ND<0.02	ND<0.02
LB31-GW	10/13/17	ug/L	ND<0.02	ND<0.02	ND<0.02	ND<0.01	ND<0.01	ND<0.01	ND<0.06	ND<0.02	ND<0.02	ND<0.02	ND<0.02
LB34-GW	10/12/17	ug/L	ND<0.02	ND<0.02	ND<0.02	ND<0.01	ND<0.01	ND<0.01	ND<0.06	ND<0.02	ND<0.02	ND<0.02	ND<0.02

Notes:

ug/L = micrograms per liter

MCLs = Maximum Contaminant Level (Sept.

2016)

ND<0.13 = Not detected above laboratory

reporting limit

-- = not applicable

Table 8 Summary of Semivolatile Organic Compounds in Groundwater Aalytical Results Berth 191 - 193 Port of Los Angeles

Wilmington, California

Sample ID	Date	Units	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
California N	1CLs	ug/L						
LB1-GW	10/11/17	ug/L	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02
LB6-GW	10/11/17	ug/L	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02
LB13-GW	10/11/17	ug/L	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02
LB23-GW	10/11/17	ug/L	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02
LB25-GW	10/12/17	ug/L	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02
LB27-GW	10/12/17	ug/L	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02
LB31-GW	10/13/17	ug/L	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02
LB34-GW	10/12/17	ug/L	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02

Notes:

ug/L = micrograms per liter

MCLs = Maximum Contaminant Level (Sept.

2016)

ND<0.13 = Not detected above laboratory

reporting limit

-- = not applicable

Table 9 Exposure Parameters for Onsite Receptors Berths 191 - 193 Port of Los Angeles, California Wilmington, California

			Exposure Parameters	
Exposure/Site Specific Parameters	Units	Indoor Worker	Maintenance Worker	Source
Chemical Concentration in Air (CA)				chemical-specific
Exposure Frequency (EF)	days/year	250	250	DTSC 2004
Exposure Duration (ED)	years	25	25	DTSC 2004
Exposure Time (ET)	hr/day	8	8	Default
Averaging Time for Noncarcinogens (AT_n)	hours	219,000	219,000	USEPA 2009
Averaging Time for Carcinogens (AT _c)	hours	613,200	613,200	USEPA 2009

Table 10 Toxicity Criteria of Chemicals of Potential Concern Berths 191 - 193 Port of Los Angeles Wilmington, California

Chemical	Chronic Inhalation Reference Concentration (RfC) (mg/m³)		Inhalation Unit Risk (ug/m³)-1	
VOCs				
1,1-Dichloroethylene	7.0E-02	С	0.0E+00	С
1,2-Dichloroethane	7.0E-03	С	2.6E-05	С
1,2-Dichloroethylene (cis)	8.0E-03	С	0.0E+00	С
1,2-Dichloroethylene (trans)	8.0E-02	С	0.0E+00	С
MTBE	3.0E+00	С	2.6E-07	С
Tetrachloroethylene	4.0E-02	С	6.1E-06	С
Trichloroethylene	2.0E-03	С	4.1E-06	С
Vinyl chloride	1.0E-01	С	7.8E-05	С

Notes:

mg/m³ = Milligrams per cubic meter

NA = Not applicable or not available

ug/m³ = Micrograms per cubic meter

Sources:

c = Human Health Risk Assessment (HHRA) Note Number: 3. DTSC-modified Screening Levels (DTSC-SLs), January 2018. Or the Cal-EPA (2018) OEHHA, Toxicity Criteria Database www.oehha.ca.gov/risk/chemicalDB/index.asp

e = USEPA, 2017: Regional Screening Levels (RSL) for Chemical Contaminants at Superfund Sites. November. www.epa.gov/region09/superfund/prg

Table 11 Estimated Incremental Cancer Risks and Hazard Quotients per Unit Concentration **VOCs Detected in Soil Gas** Berths 191 - 193 Port of Los Angeles Wilmington, California

		Exposure to Indoor Air							
Chemical of Potential Concern (COPC)	CAS Number	Soil-Gas Concentration (µg/L)	Indoor Chemical Air Concentration (ug/m³)	Cancer Risk per Unit Concentration Factor (Risk / ug/L)	Hazard Quotient per Unit Concentration Factor (HI / ug/L)				
1,1-Dichloroethylene	75354	1	6.08E-01	NA	2.0E-03				
1,2-Dichloroethane	107062	1	6.06E-01	1.3E-06	2.0E-02				
1,2-Dichloroethylene (cis)	156592	1	6.16E-01	NA	1.8E-02				
1,2-Dichloroethylene (trans)	156605	1	6.13E-01	NA	1.7E-03				
MTBE	1634044	1	5.66E-01	1.2E-08	4.3E-05				
Tetrachloroethylene	127184	1	4.48E-01	2.2E-07	2.6E-03				
Trichloroethylene	79016	1	5.39E-01	1.8E-07	6.1E-02				
Vinyl chloride	75014	1	6.74E-01	4.3E-06	1.5E-03				

Notes:

μg/L = micrograms per liter NA = Not applicable or not available

Table 12 Estimated Incremental Cancer Risks and Hazard Quotients per Unit Concentration **VOCs Detected in Groundwater** Berths 191 - 193 Port of Los Angeles Wilmington, California

		Exposure to Indoor Air							
Chemical of Potential Concern (COPC)	CAS Number	Soil-Gas Concentration (µg/L)	Indoor Chemical Air Concentration (ug/m³)	Cancer Risk per Unit Concentration Factor (Risk / ug/L)	Hazard Quotient per Unit Concentration Factor (HI / ug/L)				
1,1-Dichloroethylene	75354	1	2.15E-01	NA	7.0E-04				
1,2-Dichloroethane	107062	1	9.73E-03	2.1E-08	3.2E-04				
1,2-Dichloroethylene (cis)	156592	1	3.42E-02	NA	9.8E-04				
1,2-Dichloroethylene (trans)	156605	1	3.41E-02	NA	9.7E-05				
MTBE	1634044	1	4.46E-03	9.4E-11	3.4E-07				
Tetrachloroethylene	127184	1	9.22E-02	4.6E-08	5.3E-04				
Trichloroethylene	79016	1	6.70E-02	2.2E-08	7.6E-03				
Vinyl chloride	75014	1	2.73E-01	1.7E-06	6.2E-04				

Notes:

μg/L = micrograms per liter NA = Not applicable or not available

Table 13
Estimated Cancer Risk per Sampling Location
For VOCs Detected in Soil Gas
Berths 191 - 193
Port of Los Angeles
Wilmington, California

	Volatile Organic Compounds (ug/L)								ıtion
Sample Location	1,1-Dichloroethylene	1,2-Dichloroethane	1,2-Dichloroethylene (cis)	1,2-Dichloroethylene (trans)	MTBE	Tetrachloroethylene	Trichloroethylene	Vinyl Chloride	Total Cancer Risk per Sample Location
Cancer Risk per Unit Concentration Factor (risk/ug/L)	NA	1.3E-06	NA	NA	1.2E-08	2.2E-07	1.8E-07	4.3E-06	Total C
LB1-4	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.3E-05	4.2E-06	0.0E+00	4.E-05
LB6-4	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.4E-05	1.E-05
LB13-4	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	7.8E-09	4.7E-09	0.0E+00	1.E-08
LB23-4	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.E+00
LB25-4	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	5.8E-08	3.8E-09	0.0E+00	6.E-08
LB27-4	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.3E-08	5.2E-09	0.0E+00	3.E-08
LB31-4	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.E+00
LB34-4	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	6.1E-08	5.2E-09	0.0E+00	7.E-08
LB36-4'	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.1E-08	0.0E+00	0.0E+00	3.E-08
LB38-3'	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.E+00
LB39-4'	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.9E-06	3.3E-06	6.0E-08	5.E-06
LB40-4'	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	5.4E-08	2.6E-08	0.0E+00	8.E-08
LB42-4'	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.7E-08	5.4E-09	0.0E+00	2.E-08
LB43-4'	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.4E-09	0.0E+00	0.0E+00	2.E-09
LB49-4'	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.0E-08	1.2E-08	9.0E-08	1.E-07

Highlighted sampling locations exceed acceptable risk values.

Table 14
Estimated Cancer Risk per Sampling Location
For VOCs Detected in Groundwater
Port of Los Angeles
Wilmington, California

	Volatile Organic Compounds (ug/L)									
Sample Location	1,1-Dichloroethylene	1,2-Dichloroethane	1,2-Dichloroethylene (cis)	1,2-Dichloroethylene (trans)	MTBE	Tetrachloroethylene	Trichloroethylene	Vinyl Chloride	Total Cancer Risk per Sample Location	
Cancer Risk per Unit Concentration Factor (risk/ug/L)	NA	2.1E-08	NA	NA	9.4E-11	4.6E-08	2.2E-08	1.7E-06	Total C	
LB1-GW	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	8.7E-04	1.8E-04	0.0E+00	1.E-03	
LB6-GW	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.8E-09	0.0E+00	0.0E+00	7.5E-05	7.E-05	
LB13-GW	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	9.2E-08	3.6E-08	0.0E+00	1.E-07	
LB23-GW	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	6.0E-08	1.7E-08	0.0E+00	8.E-08	
LB25-GW	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.8E-07	7.8E-08	0.0E+00	4.E-07	
LB36-GW	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.2E-10	1.2E-07	8.5E-08	1.3E-06	1.E-06	
LB37-GW	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.0E-05	1.9E-05	6.9E-06	5.E-05	
LB38-GW	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	4.7E-06	5.E-06	
LB39-GW	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.1E-10	1.7E-05	2.0E-05	1.3E-05	5.E-05	
LB40-GW	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.9E-10	5.5E-07	4.7E-07	1.9E-05	2.E-05	
LB41-GW	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.8E-06	2.5E-06	9.9E-05	1.E-04	
LB42-GW	0.0E+00	0.0E+00	0.0E+00	0.0E+00	4.4E-10	0.0E+00	0.0E+00	0.0E+00	4.E-10	
LB43-GW	0.0E+00	2.3E-08	0.0E+00	0.0E+00	1.4E-09	0.0E+00	0.0E+00	4.2E-06	4.E-06	
LB44-GW	0.0E+00	0.0E+00	0.0E+00	0.0E+00	6.0E-10	0.0E+00	0.0E+00	0.0E+00	6.E-10	
LB48-GW	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.5E-07	2.2E-07	1.4E-05	1.E-05	
LB49-GW	0.0E+00	0.0E+00	0.0E+00	0.0E+00	6.4E-10	2.4E-08	4.0E-08	9.9E-05	1.E-04	

Highlighted sampling locations exceed acceptable risk values.

Table 15
Estimated Hazard Quotient per Sampling Location
For VOCs Detected in Soil Gas
Port of Los Angeles
Wilmington, California

	Volatile Organic Compounds (ug/L)									
Sample Location	1,1-Dichloroethylene	1,2-Dichloroethane	1,2-Dichloroethylene (cis)	1,2-Dichloroethylene (trans)	MTBE	Tetrachloroethylene	Trichloroethylene	Vinyl Chloride	Total Hazard Quotient per Sample Location	
Hazard Quotient per Unit Concentration Factor (risk/ug/L)	2.0E-03	2.0E-02	1.8E-02	1.7E-03	4.3E-05	2.6E-03	6.1E-02	1.5E-03	Total Haz	
LB1-4	4.8E-05	0.0E+00	5.4E-01	6.2E-03	0.0E+00	3.8E-01	1.4E+00	0.0E+00	2.E+00	
LB6-4	0.0E+00	0.0E+00	3.8E-02	7.8E-04	0.0E+00	0.0E+00	0.0E+00	4.9E-03	4.E-02	
LB13-4	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	8.9E-05	1.6E-03	0.0E+00	2.E-03	
LB23-4	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.E+00	
LB25-4	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	6.7E-04	1.3E-03	0.0E+00	2.E-03	
LB27-4	0.0E+00	0.0E+00	1.9E-04	0.0E+00	0.0E+00	2.6E-04	1.8E-03	0.0E+00	2.E-03	
LB31-4	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.E+00	
LB34-4	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	7.0E-04	1.8E-03	0.0E+00	2.E-03	
LB36-4'	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.6E-04	0.0E+00	0.0E+00	4.E-04	
LB38-3'	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.E+00	
LB39-4'	1.1E-04	0.0E+00	1.2E+00	4.7E-03	0.0E+00	2.2E-02	1.1E+00	2.2E-05	2.E+00	
LB40-4'	0.0E+00	0.0E+00	3.8E-03	2.1E-05	0.0E+00	6.2E-04	9.0E-03	0.0E+00	1.E-02	
LB42-4'	0.0E+00	0.0E+00	2.3E-03	0.0E+00	0.0E+00	1.9E-04	1.8E-03	0.0E+00	4.E-03	
LB43-4'	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.8E-05	0.0E+00	0.0E+00	3.E-05	
LB49-4'	0.0E+00	0.0E+00	1.8E-03	0.0E+00	0.0E+00	2.3E-04	3.9E-03	3.2E-05	6.E-03	

Highlighted sampling locations exceed acceptable hazard values.

Table 16
Estimated Hazard Quotient per Sampling Location
For VOCs Detected in Groundwater
Port of Los Angeles
Wilmington, California

	Volatile Organic Compounds (ug/L)								ocation
Sample Location	1,1-Dichloroethylene	1,2-Dichloroethane	1,2-Dichloroethylene (cis)	1,2-Dichloroethylene (trans)	MTBE	Tetrachloroethylene	Trichloroethylene	Vinyl Chloride	Total Hazard Quotient per Sample Location
Hazard Quotient per Unit	7.0E-04	3.2E-04	9.8E-04	9.7E-05	3.4E-07	5.3E-04	7.6E-03	6.2E-04	Total Ha
LB1-GW	0.0E+00	0.0E+00	3.2E+00	2.0E-02	0.0E+00	1.0E+01	6.0E+01	0.0E+00	7.E+01
LB6-GW	0.0E+00	0.0E+00	7.6E-02	3.2E-03	6.4E-06	0.0E+00	0.0E+00	2.7E-02	1.E-01
LB13-GW	0.0E+00	0.0E+00	6.0E-04	0.0E+00	0.0E+00	1.1E-03	1.2E-02	0.0E+00	1.E-02
LB23-GW	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	6.8E-04	6.0E-03	0.0E+00	7.E-03
LB25-GW	0.0E+00	0.0E+00	1.5E-03	0.0E+00	0.0E+00	3.3E-03	2.7E-02	0.0E+00	3.E-02
LB36-GW	0.0E+00	0.0E+00	7.4E-03	4.9E-05	4.4E-07	1.4E-03	2.9E-02	4.5E-04	4.E-02
LB37-GW	5.1E-03	0.0E+00	2.3E+00	2.2E-02	0.0E+00	2.3E-01	6.7E+00	2.5E-03	9.E+00
LB38-GW	0.0E+00	0.0E+00	2.3E-02	7.6E-05	0.0E+00	0.0E+00	0.0E+00	1.7E-03	3.E-02
LB39-GW	6.7E-03	0.0E+00	4.8E+00	2.1E-02	4.1E-07	2.0E-01	6.8E+00	4.8E-03	1.E+01
LB40-GW	0.0E+00	0.0E+00	3.7E-01	1.8E-03	6.8E-07	6.3E-03	1.6E-01	6.9E-03	5.E-01
LB41-GW	9.1E-03	0.0E+00	8.3E+00	2.8E-02	0.0E+00	2.1E-02	8.4E-01	3.6E-02	9.E+00
LB42-GW	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.6E-06	0.0E+00	0.0E+00	0.0E+00	2.E-06
LB43-GW	0.0E+00	3.5E-04	5.8E-03	0.0E+00	5.1E-06	0.0E+00	0.0E+00	1.5E-03	8.E-03
LB44-GW	0.0E+00	0.0E+00	1.7E-02	0.0E+00	2.1E-06	0.0E+00	0.0E+00	0.0E+00	2.E-02
LB48-GW	2.0E-03	0.0E+00	1.1E+00	3.7E-03	0.0E+00	4.0E-03	7.6E-02	5.2E-03	1.E+00
LB49-GW	0.0E+00	0.0E+00	1.8E-01	3.4E-03	2.3E-06	2.7E-04	1.4E-02	3.6E-02	2.E-01

Highlighted sampling locations exceed acceptable hazard values.

Table 17 Virtual Remediation of Diesel Range Organics in Soil Berth 191-193

Port of Los Angeles Wilmington, California

_	Depth	i, Camorna		
Sample ID	(feet bgs)	Date	Units	DRO
USEPA F	RSL Industrial Soil		mg/kg	440
LB1-0.5	0.5	10/11/17	mg/kg	200
LB1-2.5	2.5	10/11/17	mg/kg	8.4
LB1-5.0	5	10/11/17	mg/kg	5.0
LB2-0.5	0.5	10/11/17	mg/kg	720
LB2-2.5	2.5	10/11/17	mg/kg	8.7
LB2-5.0	5	10/11/17	mg/kg	8.1
LB3-0.5	0.5	10/11/17	mg/kg	20
LB3-2.5	2.5	10/11/17	mg/kg	6.1
LB3-5.0	5	10/11/17	mg/kg	10
LB4-0.5	0.5	10/11/17	mg/kg	640
LB4-2.5	2.5	10/11/17	mg/kg	22
LB4-3.5	3.5	10/11/17	mg/kg	70
LB5-0.5	0.5	10/11/17	mg/kg	470
LB5-2.5	2.5	10/11/17	mg/kg	20
LB5-5.0	5	10/11/17	mg/kg	19
LB6-0.5	0.5	10/12/17	mg/kg	7.1
LB6-2.5	2.5	10/12/17	mg/kg	6.8
LB6-5.0	5	10/12/17	mg/kg	1.2
LB7-0.5	0.5	10/12/17	mg/kg	270
LB7-2.5	2.5	10/12/17	mg/kg	92
LB7-5.0	5	10/12/17	mg/kg	10
LB8-0.5	0.5	10/11/17	mg/kg	180
LB8-2.5	2.5	10/11/17	mg/kg	4.8
LB8-5.0	5	10/11/17	mg/kg	3.7
LB9-0.5	0.5	10/11/17	mg/kg	690
LB9-2.5	2.5	10/11/17	mg/kg	75
LB9-5.0	5	10/11/17	mg/kg	8.9
LB10-0.5	0.5	10/12/17	mg/kg	840
LB10-2.5	2.5	10/12/17	mg/kg	5.2
LB10-5.0	5	10/12/17	mg/kg	1.3
LB11-0.5	0.5	10/12/17	mg/kg	310
LB11-2.5	2.5	10/12/17	mg/kg	8.6
LB11-5.0	5	10/12/17	mg/kg	12
LB12-0.5	0.5	10/11/17	mg/kg	180
LB12-2.5	2.5	10/11/17	mg/kg	5.7
LB12-5.0	5	10/11/17	mg/kg	6.4
LB13-0.5	0.5	10/11/17	mg/kg	350
LB13-2.5	2.5	10/11/17	mg/kg	6.9
LB13-5.0	5	10/11/17	mg/kg	6.7
LB14-0.5	0.5	10/11/17	mg/kg	160
LB14-2.5	2.5	10/11/17	mg/kg	9.2
LB14-5.0	5	10/11/17	mg/kg	3.6
LB15-0.5	0.5	10/12/17	mg/kg	20
LB15-2.5	2.5	10/12/17	mg/kg	4
LB15-5.0	5	10/12/17	mg/kg	2.9
LB16-0.5	0.5	10/12/17	mg/kg	7.7
LB16-2.5	2.5	10/12/17	mg/kg	390

Table 17 Virtual Remediation of Diesel Range Organics in Soil Berth 191-193

Port of Los Angeles Wilmington, California

wilmington, California							
Sample ID	Depth (feet bgs)	Date	Units	DRO			
USEPA F	RSL Industrial Soil		mg/kg	440			
LB16-5.0	5	10/12/17	mg/kg	63			
LB17-0.5	0.5	10/11/17	mg/kg	1,400			
LB17-2.5	2.5	10/11/17	mg/kg	11			
LB17-5.0	5	10/11/17	mg/kg	6.7			
LB18-0.5	0.5	10/11/17	mg/kg	110			
LB18-2.5	2.5	10/11/17	mg/kg	6.1			
LB18-5.0	5	10/11/17	mg/kg	11			
LB19-0.5	0.5	10/11/17	mg/kg	8.8			
LB19-2.5	2.5	10/11/17	mg/kg	3.3			
LB19-5.0	5	10/11/17	mg/kg	3.9			
LB20-0.5	0.5	10/11/17	mg/kg	14			
LB20-2.5	2.5	10/11/17	mg/kg	3.2			
LB20-5.0	5	10/11/17	mg/kg	4.2			
LB21-0.5	0.5	10/12/17	mg/kg	9.1			
LB21-2.5	2.5	10/12/17	mg/kg	20			
LB21-5.0	5	10/12/17	mg/kg	7.2			
LB22-0.5	0.5	10/12/17	mg/kg	11			
LB22-2.5	2.5	10/12/17	mg/kg	8.6			
LB22-5.0	5	10/12/17	mg/kg	9.6			
LB23-0.5	0.5	10/11/17	mg/kg	14			
LB23-2.5	2.5	10/11/17	mg/kg	6.3			
LB23-5.0	5	10/11/17	mg/kg	8.7			
LB24-0.5	0.5	10/11/17	mg/kg	5.1			
LB24-2.5	2.5	10/11/17	mg/kg	5.6			
LB24-5.0	5	10/11/17	mg/kg	4.3			
LB25-0.5	0.5	10/11/17	mg/kg	2.6			
LB25-2.5	2.5	10/11/17	mg/kg	2.1			
LB25-5.0	5	10/11/17	mg/kg	2.4			
LB26-0.5	0.5	12-Oct-17	mg/kg	11			
LB26-2.5	2.5	12-Oct-17	mg/kg	12			
LB26-5.0	5	12-Oct-17	mg/kg	20			
LB27-0.5	0.5	12-Oct-17	mg/kg	41			
LB27-2.5	2.5	12-Oct-17	mg/kg	9.5			
LB27-5.0	5	12-Oct-17	mg/kg	8.1			
LB28-0.5	0.5	12-Oct-17	mg/kg	530			
LB28-2.5	2.5	12-Oct-17	mg/kg	480			
LB29-0.5	0.5	12-Oct-17	mg/kg	54			
LB29-2.5	2.5	12-Oct-17	mg/kg	8.8			
LB29-5.0	5	12-Oct-17	mg/kg	5.4			
LB30-0.5	0.5	12-Oct-17	mg/kg	32			
LB30-2.5	2.5	12-Oct-17	mg/kg	220			
LB30-5.0	5	12-Oct-17	mg/kg	9.2			
LB31-0.5	0.5	12-Oct-17	mg/kg	230			
LB31-2.5	2.5	12-Oct-17	mg/kg	5.7			
LB31-5.0	5	12-Oct-17	mg/kg	9.3			
LB32-0.5	0.5	12-Oct-17	mg/kg	170			
LB32-2.5	2.5	12-Oct-17	mg/kg	6.8			
2002 2.0	2.5	12 000-17	···6/ \\8	J 0.0			

Table 17 Virtual Remediation of Diesel Range Organics in Soil Berth 191-193

Port of Los Angeles Wilmington, California

vviiiiiigeri, camerina						
Sample ID	Depth (feet bgs)	Date	Units	DRO		
USEPA F	RSL Industrial Soil		mg/kg	440		
LB32-5.0	5	12-Oct-17	mg/kg	13		
LB33-0.5	0.5	12-Oct-17	mg/kg	78		
LB33-2.5	2.5	12-Oct-17	mg/kg	2,500		
LB33-5.0	5	12-Oct-17	mg/kg	9		
LB34-0.5	0.5	13-Oct-17	mg/kg	1,100		
LB34-2.5	2.5	13-Oct-17	mg/kg	30		
LB34-5.0	5	13-Oct-17	mg/kg	5		
LB35-0.5	0.5	13-Oct-17	mg/kg	2,400		
LB35-2.5	2.5	13-Oct-17	mg/kg	1,800		
95UCL			mg/kg	353.50		

Notes:

bgs = below ground surface

mg/kg = milligrams per kilogram

RSL = USEPA Regional Screening Level, industrial (November 2017). Most conservative value between aromatic/aliphatic

ND<0.20 = Not detected above the reporting detection limit.

GRO = Gasoline Range Petroleum Hydrocarbons

DRO = Diesel Range Petroleum Hydrocarbons

ORO = Oil Range Petroleum Hydrocarbons

FIGURES

Base Map: Google Earth 2016 drafted by Mark Withrow

Berth 191-193 Wilmington, California

APPENDIX A Johnson and Ettinger Model Spreadsheets

USEPA SG-SCREEN Version 2.0, 04/2003 DTSC Modification December 2014

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Land Use: Commercial

Reset to Defaults

	Sc	oil Gas Concentration I	Data	Exposure Scenario:	For VOCs Detect	ed in Soil (Gas			
ENTER	ENTER		ENTER							
	Soil		Soil							
Chemical	gas	OR	gas							
CAS No.	conc.,		conc.,				Resu	ılts Sumr	nary	
(numbers only,	C_{g}		C_{g}			Soil Gas	Attenuation	Indoor Air	Cancer	Noncancer
no dashes)	$(\mu g/m^3)$	_	(ppmv)	Chemical		Conc.	Factor	Conc.	Risk	Hazard
		-				(µg/m³)	(unitless)	(µg/m³)	(unitless)	(unitless)
75354	1.00E+03			1,1-Dichloroethylene		1.00E+03	6.1E-04	6.1E-01	NA	2.0E-03
107062	1.00E+03			1,2-Dichloroethane		1.00E+03	6.1E-04	6.1E-01	1.3E-06	2.0E-02
156592	1.00E+03			cis-1,2-Dichloroethylene		1.00E+03	6.2E-04	6.2E-01	NA	1.8E-02
156605	1.00E+03			trans-1,2-Dichloroethylen	e	1.00E+03	6.1E-04	6.1E-01	NA	1.7E-03
1634044	1.00E+03			MTBE (methyl-tert-butyl	ether)	1.00E+03	5.7E-04	5.7E-01	1.2E-08	4.3E-05
127184	1.00E+03			Tetrachloroethylene		1.00E+03	4.5E-04	4.5E-01	2.2E-07	2.6E-03
79016	1.00E+03			Trichloroethylene		1.00E+03	5.4E-04	5.4E-01	1.8E-07	6.1E-02
75014	1 00E±02			Vinyl oblavida (oblavaeth	om o)	1.00E+02	6.7F-04	6.7F-01	4.3F-06	1.5F-03

MORE **↓**

ENTER	ENTER	ENTER	ENTER		ENTER
Depth					
below grade	Soil gas		Vadose zone		User-defined
to bottom	sampling	Average	SCS		vadose zone
of enclosed	depth	soil	soil type		soil vapor
space floor,	below grade,	temperature,	(used to estimate	OR	permeability,
L_{F}	L_{s}	T_S	soil vapor		$k_{\rm v}$
(15 or 200 cm)	(cm)	(°C)	permeability)	_	(cm ²)
15	121.92	24	SL		

MORE •

ENTER	ENTER	ENTER	ENTER
Vandose zone	Vadose zone	Vadose zone	Vadose zone
SCS	soil dry	soil total	soil water-filled
soil type	bulk density,	porosity,	porosity,
Lookup Soil Parameters	${ ho_b}^A$	n ^V	$\theta_{\mathrm{w}}^{\mathrm{V}}$
T di di lictorio	(g/cm ³)	(unitless)	(cm ³ /cm ³)
SL	1.62	0.387	0.103

ENTER
Average vapor
flow rate into bldg.
(Leave blank to calculate)
Q_{soil}
(L/m)

MORE ↓	

Lookup Receptor Parameters

ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
Averaging	Averaging					
time for	time for	Exposure	Exposure	Exposure	Air Exchange	Ceiliing
carcinogens,	noncarcinogens,	duration,	frequency,	Time	Rate	Height
AT_C	AT_{NC}	ED	EF	ET	ACH	CH
(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour) ⁻¹	(cm)

EW=> Commercial 70 25 25 250 8 1 243.84 (NEW) (EW) (EW) (EW) (Feet)

END

		Diffusivity in air, D _a	Diffusivity in water, $D_{\rm w}$	Henry's law constant at reference temperature, H	Henry's law constant reference temperature, T_R	Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$	Normal boiling point, T _B	Critical temperature, $T_{\rm C}$	Unit risk factor, URF
CAS	Chemical	(cm^2/s)	(cm^2/s)	(atm-m ³ /mol)	(°C)	(cal/mol)	(°K)	(°K)	$(\mu g/m^3)^{-1}$
75354	1,1-Dichloroethylene	8.63E-02	1.10E-05	2.61E-02	25	6,247	304.80	576.10	0.0E+00
107062	1,2-Dichloroethane	8.57E-02	1.10E-05	1.18E-03	25	7,643	356.70	561.00	2.6E-05
156592	cis-1,2-Dichloroethylene	8.84E-02	1.13E-05	4.08E-03	25	7,192	333.70	544.00	0.0E+00
156605	trans-1,2-Dichloroethylene	8.76E-02	1.12E-05	4.08E-03	25	6,717	320.90	516.50	0.0E+00
1634044	MTBE (methyl-tert-butyl ether)	7.53E-02	8.59E-06	5.87E-04	25	6,678	328.30	497.10	2.6E-07
127184	Tetrachloroethylene	5.05E-02	9.46E-06	1.77E-02	25	8,288	394.40	620.20	6.1E-06
79016	Trichloroethylene	6.87E-02	1.02E-05	9.85E-03	25	7,505	360.40	544.20	4.1E-06
75014	Vinyl chloride (chloroethene)	1.07E-01	1.20E-05	2.78E-02	25	5,250	259.30	432.00	7.8E-05

Land Use: Commercial

CAS	Chemical	Reference conc., RfC (mg/m ³)	Molecular weight, MW (g/mol)	Source-building separation, L_T (cm)	Vadose zone soil air-filled porosity, θ_a^V (cm^3/cm^3)	Vadose zone effective total fluid saturation, S_{te} (cm^{3}/cm^{3})	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k_{rg} (cm ²)	Vadose zone soil effective vapor permeability, k_v (cm^2)
			7		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
75354	1,1-Dichloroethylene	7.0E-02	96.90	106.92	0.284	0.184	6.07E-09	0.901	5.47E-09
107062	1,2-Dichloroethane	7.0E-03	99.00	106.92	0.284	0.184	6.07E-09	0.901	5.47E-09
156592	cis-1,2-Dichloroethylene	8.0E-03	96.90	106.92	0.284	0.184	6.07E-09	0.901	5.47E-09
156605	trans-1,2-Dichloroethylene	8.0E-02	96.90	106.92	0.284	0.184	6.07E-09	0.901	5.47E-09
1634044	MTBE (methyl-tert-butyl ether)	3.0E+00	88.20	106.92	0.284	0.184	6.07E-09	0.901	5.47E-09
127184	Tetrachloroethylene	4.0E-02	166.00	106.92	0.284	0.184	6.07E-09	0.901	5.47E-09
79016	Trichloroethylene	2.0E-03	131.00	106.92	0.284	0.184	6.07E-09	0.901	5.47E-09
75014	Vinyl chloride (chloroethene)	1.0E-01	62.50	106.92	0.284	0.184	6.07E-09	0.901	5.47E-09

Land Use: Commercial

CAS	Chemical	$\begin{array}{c} \text{Floor-} \\ \text{wall} \\ \text{seam} \\ \text{perimeter,} \\ X_{\text{crack}} \\ \text{(cm)} \end{array}$	Soil gas conc. (µg/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A_B (cm^2)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z_{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H_{TS} (atm-m ³ /mol)
75354	1,1-Dichloroethylene	4,000	1.00E+03	6.77E+04	1.00E+06	5.00E-03	15	6,299	2.52E-02
107062	1.2-Dichloroethane	4,000	1.00E+03	6.77E+04 6.77E+04	1.00E+06 1.00E+06	5.00E-03	15	8,368	1.13E-03
156592	cis-1,2-Dichloroethylene	4,000	1.00E+03	6.77E+04	1.00E+06	5.00E-03	15	7,592	3.91E-03
156605	trans-1,2-Dichloroethylene	4,000	1.00E+03	6.77E+04	1.00E+06	5.00E-03	15	6,987	3.92E-03
1634044	MTBE (methyl-tert-butyl ether)	4,000	1.00E+03	6.77E+04	1.00E+06	5.00E-03	15	7,113	5.64E-04
127184	Tetrachloroethylene	4,000	1.00E+03	6.77E+04	1.00E+06	5.00E-03	15	9,410	1.68E-02
79016	Trichloroethylene	4,000	1.00E+03	6.77E+04	1.00E+06	5.00E-03	15	8,383	9.39E-03
75014	Vinyl chloride (chloroethene)	4,000	1.00E+03	6.77E+04	1.00E+06	5.00E-03	15	4,841	2.70E-02

Land Use: Commercial

CAS	Chemical	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ_{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D^{eff}_{V} (cm ² /s)	Diffusion path length, L _d (cm)	Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q_{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)
75354	1,1-Dichloroethylene	1.03E+00	1.80E-04	8.71E-03	106.92	15	1.00E+03	1.25	8.33E+01	8.71E-03
107062	1,2-Dichloroethane	4.61E-02	1.80E-04	8.65E-03	106.92	15	1.00E+03	1.25	8.33E+01	8.65E-03
156592	cis-1,2-Dichloroethylene	1.60E-01	1.80E-04	8.92E-03	106.92	15	1.00E+03	1.25	8.33E+01	8.92E-03
156605	trans-1,2-Dichloroethylene	1.61E-01	1.80E-04	8.84E-03	106.92	15	1.00E+03	1.25	8.33E+01	8.84E-03
1634044	MTBE (methyl-tert-butyl ether)	2.31E-02	1.80E-04	7.60E-03	106.92	15	1.00E+03	1.25	8.33E+01	7.60E-03
127184	Tetrachloroethylene	6.88E-01	1.80E-04	5.10E-03	106.92	15	1.00E+03	1.25	8.33E+01	5.10E-03
79016	Trichloroethylene	3.85E-01	1.80E-04	6.94E-03	106.92	15	1.00E+03	1.25	8.33E+01	6.94E-03
75014	Vinyl chloride (chloroethene)	1.11E+00	1.80E-04	1.08E-02	106.92	15	1.00E+03	1.25	8.33E+01	1.08E-02

Land Use: Commercial

			Exponent of equivalent	Infinite source	Infinite			Incremental risk from	Hazard quotient
			foundation	indoor	source	Unit		vapor	from vapor
		Area of	Peclet	attenuation	bldg.	risk	Reference	intrusion to	intrusion to
		crack,	number,	coefficient,	conc.,	factor,	conc.,	indoor air,	indoor air,
		A_{crack}	exp(Pe ^f)	α	$C_{building}$	URF	RfC	carcinogen	noncarcinogen
CAS	Chemical	(cm ²)	(unitless)	(unitless)	$(\mu g/m^3)$	$(\mu g/m^3)^{-1}$	(mg/m^3)	(unitless)	(unitless)
75354	1,1-Dichloroethylene	5.00E+03	2.03E+08	6.08E-04	6.08E-01	NA	7.0E-02	NA	2.0E-03
107062	1,2-Dichloroethane	5.00E+03	2.32E+08	6.06E-04	6.06E-01	2.6E-05	7.0E-03	1.3E-06	2.0E-02
156592	cis-1,2-Dichloroethylene	5.00E+03	1.29E+08	6.16E-04	6.16E-01	NA	8.0E-03	NA	1.8E-02
156605	trans-1,2-Dichloroethylene	5.00E+03	1.53E+08	6.13E-04	6.13E-01	NA	8.0E-02	NA	1.7E-03
1634044	MTBE (methyl-tert-butyl ether)	5.00E+03	3.31E+09	5.66E-04	5.66E-01	2.6E-07	3.0E+00	1.2E-08	4.3E-05
127184	Tetrachloroethylene	5.00E+03	1.58E+14	4.48E-04	4.48E-01	6.1E-06	4.0E-02	2.2E-07	2.6E-03
79016	Trichloroethylene	5.00E+03	2.73E+10	5.39E-04	5.39E-01	4.1E-06	2.0E-03	1.8E-07	6.1E-02
75014	Vinyl chloride (chloroethene)	5.00E+03	5.02E+06	6.74E-04	6.74E-01	7.8E-05	1.0E-01	4.3E-06	1.5E-03

Land Use: Commercial

USEPA GW-SCREEN Version 3.0, 04/2003

DTSC Modification December 2014

Reset to

Defaults

Department of Toxic Substances Control Vapor Intrusion Screening Model - Groundwater

DATA ENTRY SHEET

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

s ____

OR

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION

(enter "X" in "YES" box and initial groundwater conc. below)

Land Use: Commercial

YES X

Exposure Scenario: For VOCs Detected in Groundwater

ENTER	ENTER Initial								
Chemical CAS No.	groundwater conc.,			Resul	Risk-Based Groundwater Concentration				
(numbers only,	C_{W}		Soil Gas Conc.	Attenuation Factor	Indoor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
no dashes)	(µg/L)	Chemical	(C _{source})	(alpha)	(C _{building})	Risk	Hazard	= 10 ⁻⁶	HQ = 1
			(µg/m³)	(unitless)	(µg/m³)			(µg/L)	(µg/L)
75354	1.00E+00	1,1-Dichloroethylene	1.03E+03	2.1E-04	2.2E-01	NA	7.0E-04	NA	NA
107062	1.00E+00	1,2-Dichloroethane	4.61E+01	2.1E-04	9.7E-03	2.1E-08	3.2E-04	NA	NA
156592	1.00E+00	cis-1,2-Dichloroethylene	1.60E+02	2.1E-04	3.4E-02	NA	9.8E-04	NA	NA
156605	1.00E+00	trans-1,2-Dichloroethylene	1.61E+02	2.1E-04	3.4E-02	NA	9.7E-05	NA	NA
1634044	1.00E+00	MTBE (methyl-tert-butyl ether)	2.31E+01	1.9E-04	4.5E-03	9.4E-11	3.4E-07	NA	NA
127184	1.00E+00	Tetrachloroethylene	6.88E+02	1.3E-04	9.2E-02	4.6E-08	5.3E-04	NA	NA
79016	1.00E+00	Trichloroethylene	3.85E+02	1.7E-04	6.7E-02	2.2E-08	7.6E-03	NA	NA
75014	1.00E+00	Vinyl chloride (chloroethene)	1.11E+03	2.5E-04	2.7E-01	1.7E-06	6.2E-04	NA	NA

MORE **↓**

ENTER	ENTER	ENTER	ENTER	
Depth				
below grade			Average	ENTER
to bottom	Depth		soil/	Average vapor
of enclosed	below grade	SCS	groundwater	flow rate into bldg.
space floor,	to water table,	soil type	temperature,	(Leave blank to calculate)
L_{F}	L_{WT}	directly above	T_S	Q_{soil}
(15 or 200 cm)	(cm)	water table	(°C)	(L/m)
15	152.4	S	24	5

ENTER		ENTER				
Vadose zone		User-defined	ENTER	ENTER	ENTER	ENTER
SCS		vandose zone	Vadose zone	Vadose zone	Vadose zone	Vadose zone
soil type		soil vapor	SCS	soil dry	soil total	soil water-filled
(used to estimate	OR	permeability,	soil type	bulk density,	porosity,	porosity,
soil vapor		k_{v}	Lookup Soil	ρ_b^V	n ^V	$\theta_{\rm w}^{\ \ V}$
permeability)		(cm ²)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)
SL			SL	1.62	0.387	0.103

L	MORE ↓	
	Lookup Receptor Parameters	

ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	
Target	Target hazard	Averaging	Averaging						
risk for	quotient for	time for	time for	Exposure	Exposure	Exposure	Air Exchange	Ceiliing	
carcinogens,	noncarcinogens,	carcinogens,	noncarcinogens,	duration,	frequency,	Time	Rate	Height	
TR	THQ	AT_C	AT_{NC}	ED	EF	ET	ACH	CH	
(unitless)	(unitless)	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour) ⁻¹	(cm)	_
1.0E-06	1	70	25	25	250	8	1	304.8	
Used to calcula	te risk-based		•			(NEW)	(NEW)	10.0	(feet)

NEW=> Commercial

END

groundwater concentration.

		Diffusivity in air, $\mathrm{D_a}$	Diffusivity in water, $D_{\rm w}$	Henry's law constant at reference temperature, H	Henry's law constant reference temperature, T_R	Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$	Normal boiling point, T _B	Critical temperature, $T_{\rm C}$	Organic carbon partition coefficient, K_{oc}	Pure component water solubility, S
CAS No.	Chemical	(cm^2/s)	(cm^2/s)	(atm-m ³ /mol)	(°C)	(cal/mol)	(°K)	(°K)	(cm^3/g)	(mg/L)
	_								•	
75354	1,1-Dichloroethylene	8.63E-02	1.10E-05	2.61E-02	25	6,247	304.80	576.10	3.18E+01	2.42E+03
107062	1,2-Dichloroethane	8.57E-02	1.10E-05	1.18E-03	25	7,643	356.70	561.00	3.96E+01	8.60E+03
156592	cis-1,2-Dichloroethylene	8.84E-02	1.13E-05	4.08E-03	25	7,192	333.70	544.00	3.96E+01	6.41E+03
156605	trans-1,2-Dichloroethylene	8.76E-02	1.12E-05	4.08E-03	25	6,717	320.90	516.50	3.96E+01	4.52E+03
1634044	MTBE (methyl-tert-butyl ether)	7.53E-02	8.59E-06	5.87E-04	25	6,678	328.30	497.10	1.16E+01	5.10E+04
127184	Tetrachloroethylene	5.05E-02	9.46E-06	1.77E-02	25	8,288	394.40	620.20	9.49E+01	2.06E+02
79016	Trichloroethylene	6.87E-02	1.02E-05	9.85E-03	25	7,505	360.40	544.20	6.07E+01	1.28E+03
75014	Vinyl chloride (chloroethene)	1.07E-01	1.20E-05	2.78E-02	25	5,250	259.30	432.00	2.17E+01	8.80E+03

Land Use: Commercial

CAS No.	Chemical	Unit risk factor, URF (µg/m³)-1	Reference conc., RfC (mg/m³)	Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, $\theta_a^{\ V}$ (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k_{rg} (cm^2)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Thickness of capillary zone, L _{cz} (cm)
75354	1,1-Dichloroethylene	0.0E+00	7.0E-02	137.4	0.284	0.184	6.07E-09	0.901	5.47E-09	17.05
107062	1,2-Dichloroethane	2.6E-05	7.0E-03	137.4	0.284	0.184	6.07E-09	0.901	5.47E-09	17.05
156592	cis-1,2-Dichloroethylene	0.0E+00	8.0E-03	137.4	0.284	0.184	6.07E-09	0.901	5.47E-09	17.05
156605	trans-1,2-Dichloroethylene	0.0E+00	8.0E-02	137.4	0.284	0.184	6.07E-09	0.901	5.47E-09	17.05
1634044	MTBE (methyl-tert-butyl ether)	2.6E-07	3.0E+00	137.4	0.284	0.184	6.07E-09	0.901	5.47E-09	17.05
127184	Tetrachloroethylene	6.1E-06	4.0E-02	137.4	0.284	0.184	6.07E-09	0.901	5.47E-09	17.05
79016	Trichloroethylene	4.1E-06	2.0E-03	137.4	0.284	0.184	6.07E-09	0.901	5.47E-09	17.05
75014	Vinyl chloride (chloroethene)	7.8E-05	1.0E-01	137.4	0.284	0.184	6.07E-09	0.901	5.47E-09	17.05

Land Use: Commercial

CAS No.	Chemical	Total porosity in capillary zone, $n_{\rm cz}$ $({\rm cm}^3/{\rm cm}^3)$	Air-filled porosity in capillary zone, θ _{a,cz} (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz} = (cm^3/cm^3)$	Floor-wall seam perimeter, X _{crack} (cm)	Bldg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio,	Crack depth below grade, Z_{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{\rm v,TS}$ (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol)
75354	1,1-Dichloroethylene	0.375	0.122	0.253	4,000	8.47E+04	1.00E+06	5.00E-03	15	6,299	2.52E-02
107062	1,2-Dichloroethane	0.375	0.122	0.253	4,000	8.47E+04	1.00E+06	5.00E-03	15	8,368	1.13E-03
156592	cis-1,2-Dichloroethylene	0.375	0.122	0.253	4,000	8.47E+04	1.00E+06	5.00E-03	15	7,592	3.91E-03
156605	trans-1,2-Dichloroethylene	0.375	0.122	0.253	4,000	8.47E+04	1.00E+06	5.00E-03	15	6,987	3.92E-03
1634044	MTBE (methyl-tert-butyl ether)	0.375	0.122	0.253	4,000	8.47E+04	1.00E+06	5.00E-03	15	7,113	5.64E-04
127184	Tetrachloroethylene	0.375	0.122	0.253	4,000	8.47E+04	1.00E+06	5.00E-03	15	9,410	1.68E-02
79016	Trichloroethylene	0.375	0.122	0.253	4,000	8.47E+04	1.00E+06	5.00E-03	15	8,383	9.39E-03
75014	Vinyl chloride (chloroethene)	0.375	0.122	0.253	4,000	8.47E+04	1.00E+06	5.00E-03	15	4,841	2.70E-02

Land Use: Commercial

CAS No.	Chemical	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ_{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D_{V}^{eff} (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} _{cz} (cm ² /s)	Total overall effective diffusion coefficient, $D^{\rm eff}_{\ T}$ (cm ² /s)	Diffusion path length, L _d (cm)	Convection path length, L_p (cm)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q_{soil} (cm ³ /s)
75354	1,1-Dichloroethylene	1.03E+00	1.80E-04	8.71E-03	5.53E-04	3.08E-03	137.4	15	1.03E+03	1.25	8.33E+01
107062	1,2-Dichloroethane	4.61E-02	1.80E-04	8.65E-03	5.66E-04	3.12E-03	137.4	15	4.61E+01	1.25	8.33E+01
156592	cis-1,2-Dichloroethylene	1.60E-01	1.80E-04	8.92E-03	5.71E-04	3.17E-03	137.4	15	1.60E+02	1.25	8.33E+01
156605	trans-1,2-Dichloroethylene	1.61E-01	1.80E-04	8.84E-03	5.66E-04	3.14E-03	137.4	15	1.61E+02	1.25	8.33E+01
1634044	MTBE (methyl-tert-butyl ether)	2.31E-02	1.80E-04	7.60E-03	5.10E-04	2.79E-03	137.4	15	2.31E+01	1.25	8.33E+01
127184	Tetrachloroethylene	6.88E-01	1.80E-04	5.10E-03	3.24E-04	1.80E-03	137.4	15	6.88E+02	1.25	8.33E+01
79016	Trichloroethylene	3.85E-01	1.80E-04	6.94E-03	4.42E-04	2.46E-03	137.4	15	3.85E+02	1.25	8.33E+01
75014	Vinyl chloride (chloroethene)	1.11E+00	1.80E-04	1.08E-02	6.86E-04	3.82E-03	137.4	15	1.11E+03	1.25	8.33E+01

Land Use: Commercial

CAS No.	Chemical	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A_{crack} (cm^2)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., $C_{\rm building}$ ($\mu g/m^3$)	Unit risk factor, URF (µg/m³) ¹	Reference conc., RfC (mg/m ³)	Incremental risk from vapor intrusion to indoor air, carcinogen (unitless)	Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless)
75354	1,1-Dichloroethylene	8.71E-03	5.00E+03	2.03E+08	2.09E-04	2.15E-01	NA	7.0E-02	NA	7.0E-04
107062	1,2-Dichloroethane	8.65E-03	5.00E+03	2.32E+08	2.11E-04	9.73E-03	2.6E-05	7.0E-03	2.1E-08	3.2E-04
156592	cis-1,2-Dichloroethylene	8.92E-03	5.00E+03	1.29E+08	2.13E-04	3.42E-02	NA	8.0E-03	NA	9.8E-04
156605	trans-1,2-Dichloroethylene	8.84E-03	5.00E+03	1.53E+08	2.12E-04	3.41E-02	NA	8.0E-02	NA	9.7E-05
1634044	MTBE (methyl-tert-butyl ether)	7.60E-03	5.00E+03	3.31E+09	1.93E-04	4.46E-03	2.6E-07	3.0E+00	9.4E-11	3.4E-07
127184	Tetrachloroethylene	5.10E-03	5.00E+03	1.58E+14	1.34E-04	9.22E-02	6.1E-06	4.0E-02	4.6E-08	5.3E-04
79016	Trichloroethylene	6.94E-03	5.00E+03	2.73E+10	1.74E-04	6.70E-02	4.1E-06	2.0E-03	2.2E-08	7.6E-03
75014	Vinyl chloride (chloroethene)	1.08E-02	5.00E+03	5.02E+06	2.46E-04	2.73E-01	7.8E-05	1.0E-01	1.7E-06	6.2E-04

Land Use: Commercial

VLOOKUP TABLES

			Bulk Density							
SCS Soil Type	K _s (cm/h)	α ₁ (1/cm)	N (unitless)	M (unitless)	n (cm ³ /cm ³)	$\theta_{\rm r} ({\rm cm}^3/{\rm cm}^3)$	Mean Grain Diameter (cm)	(g/cm ³)	$\theta_{\rm w} ({\rm cm}^3/{\rm cm}^3)$	SCS Soil Name
C	0.61	0.01496	1.253	0.2019	0.459	0.098	0.0092	1.43	0.215	Clay
CL	0.34	0.01581	1.416	0.2938	0.442	0.079	0.016	1.48	0.168	Clay Loam
L	0.50	0.01112	1.472	0.3207	0.399	0.061	0.020	1.59	0.148	Loam
LS	4.38	0.03475	1.746	0.4273	0.390	0.049	0.040	1.62	0.076	Loamy Sand
3	26.78	0.03524	3.177	0.6852	0.375	0.053	0.044	1.66	0.054	Sand
SC	0.47	0.03342	1.208	0.1722	0.385	0.117	0.025	1.63	0.197	Sandy Clay
SCL	0.55	0.02109	1.330	0.2481	0.384	0.063	0.029	1.63	0.146	Sandy Clay Loam
SI	1.82	0.00658	1.679	0.4044	0.489	0.050	0.0046	1.35	0.167	Silt
SIC	0.40	0.01622	1.321	0.2430	0.481	0.111	0.0039	1.38	0.216	Silty Clay
SICL	0.46	0.00839	1.521	0.3425	0.482	0.090	0.0056	1.37	0.198	Silty Clay Loam
SIL	0.76	0.00506	1.663	0.3987	0.439	0.065	0.011	1.49	0.180	Silt Loam
SL	1.60	0.02667	1.449	0.3099	0.387	0.039	0.030	1.62	0.103	Sandy Loam

NEW => Receptor Look	up Table (added by HERO)					
Receptor	AT_C	AT_{NC}	ED	EF	ET	ACH
Type	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(1/hour)
Residential	70	30	30	350	24	0.5
Commercial	70	25	25	250	8	1
User-Defined						

Notes on Toxicity Criteria (see cell comments for individual chemical toxicity values) . Chemical name (blue) = Carcinogens with IUR

- . Values are from USEPA IRIS database except as indicated.
- Rold = Cal/EPA Office of Environmental Health Hazard Assessment (OEHHA) toxicity value
 IUR or RfC (red) = revised values (March 2014 update of December 2011 values)
 X denotes route extrapolation from oral toxicity criteria.

(Values posted by USEPA or OEHHA as inhalation criteria, including cancer slope factors, are not denoted except as in original USEPA 2002 Draft VI guidance.)

		0	Chemic	cal Properties I		oc, Da, Dw, S, H, H va	alues updated per USE		SL Table)		F-W-door		C-Recommended T			1
NEW => 11 Addition CAS No. in red)	ional Chemicals	Organic carbon			Pure component		Henry's law constant	Henry's law constant	Normal		Enthalpy of vaporization at		Calculate Risk and E+00 = no value available)		ed March 2014)	1
JAS No. In rea)		partition	Diffusivity	Diffusivity	component	Henry's	at reference	reference	boiling	Critical	the normal	(0.01 Inhalation	Reference	Molecular		i
		coefficient,	in air.	in water,	solubility,	law constant	temperature,	temperature,	point,	temperature,	boiling point,	Unit Risk	conc.,	weight,	Extrapolated from oral toxicity value	Comme
		K _{oc}	D,	D _w	S S	H'	Н	T _R	T _B	T _C	DH _{v h}	IUR	RfC	MW.	IUR RfC	Flag
CAS No.	Chemical	(cm ³ /g)	(cm ² /s)	(cm ² /s)	(mg/L)	(unitless)	(atm-m ³ /mol)	(°C)	(°K)	(°K)	(cal/mol)	(µg/m ³) ⁻¹	(mg/m³)	(g/mol)	(X) (X)	(v)
			()	, , , , , , , , , , , , , , , , , , , ,	(g. = /	(2			\ /		(45	,	(3)	(-7	
	Carbon tetrachloride	4.39E+01	5.71E-02	9.79E-06	7.93E+02	1.13E+00	2.76E-02	25	349.9	556.6	7,127	4.2E-05	1.0E-01	1.54E+02		1
	Chlordane	3.38E+04	3.44E-02	4.02E-06	5.60E-02	1.99E-03	4.85E-05	25	624.2	885.7	14,000	3.4E-04	7.0E-04	4.10E+02		i
	gamma-HCH (Lindane)	2.81E+03	4.33E-02	5.06E-06	7.30E+00	2.10E-04	5.14E-06	25	596.6	839.4	15,000	3.1E-04	1.1E-03	2.91E+02	X	i
	Ethyl ether	9.70E+00	8.52E-02	9.36E-06	6.04E+04	5.03E-02	1.23E-03	25	307.5	466.7	6,338	0.0E+00	7.0E-01	7.41E+01	X	i
	Dieldrin	2.01E+04 2.36E+00	2.33E-02 1.06E-01	6.01E-06 1.15E-05	1.95E-01 1.00E+06	4.09E-04 1.43E-03	1.00E-05 3.50E-05	25 25	613.3 329.2	842.3 508.1	17,000 6,955	4.6E-03 0.0E+00	1.8E-04 3.1E+01	3.81E+02	Х	i
	Acetone Chloroform	3.18E+01	7.69E-02	1.15E-05 1.09E-05	7.95E+03	1.50E-01	3.67E-03	25	334.3	536.4	6,988	2.3E-05	9.8E-02	5.81E+01 1.19E+02		i
	Hexachloroethane	1.97E+02	3.21E-02	8.89E-06	5.00E+01	1.59E-01	3.89E-03	25	458.0	695.0	9.510	1.1E-05	3.0E-02	2.37E+02		i
	Benzene	1.46E+02	8.95E-02	1.03E-05	1.79E+03	2.27E-01	5.55E-03	25	353.2	562.2	7.342	2.9E-05	3.0E-03	7.81E+01		v
	1,1,1-Trichloroethane	4.39E+01	6.48E-02	9.60E-06	1.29E+03	7.03E-01	1.72E-02	25	347.2	545.0	7,136	0.0E+00	1.0E+00	1.33E+02		,
	Methoxychlor	2.69E+04	2.21E-02	5.59E-06	1.00E-01	8.30E-06	2.03E-07	25	651.0	848.5	16.000	0.0E+00	1.8E-02	3.46E+02	X	1
72559		1.18E+05	4.08E-02	4.76E-06	4.00E-02	1.70E-03	4.16E-05	25	636.4	860.4	15.000	9.7E-05	0.0E+00	3.18E+02	X	1
	Methyl bromide (bromomethane)	1.32E+01	1.00E-01	1.35E-05	1.52E+04	3.00F-01	7.34E-03	25	276.7	467.0	5.714	0.0E+00	5.0E-03	9.49E+01	.,	1
	Methyl chloride (chloromethane)	1.32E+01	1.24E-01	1.36E-05	5.32E+03	3.61E-01	8.82E-03	25	249.0	416.3	5,115	0.0E+00	9.0E-02	5.05E+01		v
	Hydrogen cyanide	3.80E+00	1.68E-01	1.68E-05	1.00E+06	5.44E-03	1.33E-04	25	299.0	456.7	6,676	0.0E+00	8.0E-04	2.70E+01		1 ′
	Methylene bromide (dibromomethane)	2.17E+01	5.51E-02	1.19E-05	1.19E+04	3.36E-02	8.22E-04	25	370.0	583.0	7.868	0.0E+00	4.0E-03	1.74E+02		1
	Chloroethane (ethyl chloride)	2.17E+01	1.04E-01	1.16E-05	6.71E+03	4.54E-01	1.11E-02	25	285.3	460.4	5,879	1.3E-06	1.0E+01	6.45E+01	X	v
	Vinyl chloride (chloroethene)	2.17E+01	1.07E-01	1.20E-05	8.80E+03	1.14E+00	2.78E-02	25	259.3	432.0	5.250	7.8E-05	1.0E-01	6.25E+01	**	, ´
	Acetonitrile	4.67E+00	1.34E-01	1.41E-05	1.00E+06	1.41E-03	3.45E-05	25	354.6	545.5	7,110	0.0E+00	6.0E-02	4.11E+01		i
	Acetaldehyde	1.00E+00	1.28E-01	1.35E-05	1.00E+06	2.73E-03	6.67E-05	25	293.1	466.0	6,157	2.7E-06	9.0E-03	4.41E+01		i
	Methylene chloride (dichloromethane)	2.17E+01	9.99E-02	1.25E-05	1.30E+04	1.33E-01	3.25E-03	25	313.0	510.0	6,706	1.0E-06	4.0E-01	8.49E+01		i
	Carbon disulfide	2.17E+01	1.06E-01	1.30E-05	2.16E+03	5.89E-01	1.44E-02	25	319.0	552.0	6.391	0.0E+00	7.0E-01	7.61E+01		i
75218	Ethylene oxide	3.24E+00	1.34E-01	1.45E-05	1.00E+06	6.05E-03	1.48E-04	25	283.6	469.0	6,104	8.8E-05	3.0E-02	4.41E+01		i
	Bromoform	3.18E+01	3.57E-02	1.04E-05	3.10E+03	2.19E-02	5.35E-04	25	422.4	696.0	9,479	1.1E-06	7.0E-02	2.53E+02	Х	i
	Bromodichloromethane	3.18E+01	5.63E-02	1.07E-05	3.03E+03	8.67E-02	2.12E-03	25	363.2	585.9	7,800	3.7E-05	7.0E-02	1.64E+02	x x	i
75296	2-Chloropropane	9.14E+00	8.88E-02	1.01E-05	3.73E+03	5.93E-01	1.45E-02	25	308.7	485.0	6,286	0.0E+00	1.0E-01	7.85E+01		v
75343	1,1-Dichloroethane	3.18E+01	8.36E-02	1.06E-05	5.04E+03	2.30E-01	5.62E-03	25	330.6	523.0	6,895	1.6E-06	8.0E-01	9.90E+01	x x	1
75354	1,1-Dichloroethylene	3.18E+01	8.63E-02	1.10E-05	2.42E+03	1.07E+00	2.61E-02	25	304.8	576.1	6,247	0.0E+00	7.0E-02	9.69E+01		i
75456	Chlorodifluoromethane	3.18E+01	1.03E-01	1.33E-05	2.77E+03	1.66E+00	4.06E-02	25	232.4	369.3	4,836	0.0E+00	5.0E+01	8.65E+01		i
	Trichlorofluoromethane	4.39E+01	6.54E-02	1.00E-05	1.10E+03	3.97E+00	9.70E-02	25	296.7	471.0	5,999	0.0E+00	1.2E+00	1.37E+02		i
75718	Dichlorodifluoromethane	4.39E+01	7.60E-02	1.08E-05	2.80E+02	1.40E+01	3.43E-01	25	243.2	385.0	9,421	0.0E+00	1.0E-01	1.21E+02		i
76131	1,1,2-Trichloro-1,2,2-trifluoroethane	1.97E+02	3.76E-02	8.59E-06	1.70E+02	2.15E+01	5.26E-01	25	320.7	487.3	6,463	0.0E+00	5.0E+00	1.87E+02		i
	Heptachlor	4.13E+04	2.23E-02	5.70E-06	1.80E-01	1.20E-02	2.94E-04	25	603.7	846.3	13,000	1.2E-03	1.8E-03	3.73E+02	X	1
	Hexachlorocyclopentadiene	1.40E+03	2.72E-02	7.22E-06	1.80E+00	1.10E+00	2.70E-02	25	512.2	746.0	10,931	0.0E+00	2.0E-04	2.73E+02		1
78831	Isobutanol	2.92E+00	8.97E-02	1.00E-05	8.50E+04	4.00E-04	9.78E-06	25	381.0	547.8	10,936	0.0E+00	1.1E+00	7.41E+01	X	1
	1,2-Dichloropropane	6.07E+01	7.33E-02	9.73E-06	2.80E+03	1.15E-01	2.82E-03	25	369.5	572.0	7,590	1.0E-05	4.0E-03	1.13E+02	X	i
	Methylethylketone (2-butanone)	4.51E+00	9.14E-02	1.02E-05	2.23E+05	2.33E-03	5.69E-05	25	352.5	536.8	7,481	0.0E+00	5.0E+00	7.21E+01		i
	1,1,2-Trichloroethane	6.07E+01	6.69E-02	1.00E-05	4.59E+03	3.37E-02	8.24E-04	25	386.2	602.0	8,322	1.6E-05	2.0E-04	1.33E+02		i
	Trichloroethylene	6.07E+01	6.87E-02	1.02E-05	1.28E+03	4.03E-01	9.85E-03	25	360.4	544.2	7,505	4.1E-06	2.0E-03	1.31E+02		У
	Methyl acetate	3.06E+00	9.58E-02	1.10E-05	2.43E+05	4.70E-03	1.15E-04	25	329.8	506.7	7,260	0.0E+00	3.5E+00	7.41E+01	X	1
	1,1,2,2-Tetrachloroethane	9.49E+01	4.89E-02	9.29E-06	2.83E+03	1.50E-02	3.67E-04	25	419.6	661.2	8,996	5.8E-05	7.0E-02	1.68E+02	Х	1
	2-Nitropropane	3.08E+01	8.47E-02	1.02E-05	1.70E+04	4.87E-03	1.19E-04	25	393.2	594.0	8,383	2.7E-03	2.0E-02	8.91E+01		1
	Methylmethacrylate	9.14E+00	7.50E-02	9.21E-06	1.50E+04	1.30E-02	3.19E-04	25	373.5	567.0	8,975	0.0E+00	7.0E-01	1.00E+02		1
	Acenaphthene	5.03E+03	5.06E-02	8.33E-06	3.90E+00	7.52E-03	1.84E-04	25	550.5	803.2	12,155	0.0E+00	2.1E-01	1.54E+02	X	1
	Fluorene	9.16E+03	4.40E-02	7.89E-06	1.69E+00	3.93E-03	9.62E-05	25	570.4	870.0	12,666	0.0E+00	1.4E-01	1.66E+02	X	1
	Hexachloro-1,3-butadiene	8.45E+02	2.67E-02	7.03E-06	3.20E+00	4.21E-01	1.03E-02	25	486.2	738.0	10,206	2.2E-05	3.5E-03	2.61E+02	X	1
	o-Nitrotoluene	3.71E+02	5.88E-02	8.67E-06	6.50E+02	5.11E-04	1.25E-05	25	495.0	720.0	12,239	6.3E-05	3.2E-03	1.37E+02	X X	У
	Naphthalene	1.54E+03	6.05E-02	8.38E-06	3.10E+01	1.80E-02	4.40E-04	25	491.1	748.4	10,373	3.4E-05	3.0E-03	1.28E+02		1
	2-Methylnaphthalene	2.48E+03	5.24E-02	7.78E-06	2.46E+01	2.11E-02	5.18E-04	25	514.3	761.0	12,600	0.0E+00	1.4E-02	1.42E+02	Х	i
92524	Biphenyl	5.13E+03	4.71E-02	7.56E-06	6.94E+00	1.26E-02	3.08E-04	25	529.1	789.0	10,890	0.0E+00	4.0E-04	1.54E+02		У

VLOOKUP TABLES

NEW => 11 Additional CAS No. in red)	Chemicals	Organic carbon	Chemi	cal Properties I	Lookup Table (K Pure component	oc, Da, Dw, S, H, H v	alues updated per USEI Henry's law constant	PA November 2013 RS Henry's law constant	SL Table) Normal		Enthalpy of vaporization at	Used to	C-Recommended To Calculate Risk and +00 = no value available)			
		partition	Diffusivity	Diffusivity	water	Henry's	at reference	reference	boiling	Critical	the normal	Inhalation	Reference	Molecular	Extrapolated from oral	
		coefficient,	in air,	in water,	solubility,	law constant	temperature,	temperature,	point,	temperature,	boiling point,	Unit Risk	conc.,	weight,	toxicity value	Comm
040 N	0	K _{oc} (cm ³ /g)	D _a (cm ² /s)	D _w (cm ² /s)	S (**********	H'	H (atm-m ³ /mol)	T _R (°C)	T _B (°K)	T _C (°K)	DH _{v,b}	IUR (µg/m³) ⁻¹	RfC (mg/m ³)	MW	IUR RfC	Fla
CAS No. 95476 o-X	Chemical	(cm /g) 3.83E+02	(cm /s) 6.89E-02	(cm /s) 8.53E-06	(mg/L) 1.78E+02	(unitless) 2.12E-01	5.18E-03	25	417.6	630.3	(cal/mol) 8.661	(μg/m) 0.0E+00	(mg/m) 1.0E-01	(g/mol) 1.06E+02	(X) (X)	(y)
	yiene -Dichlorobenzene	3.83E+02 3.83E+02	5.62E-02	8.92E-06	1.78E+02 1.56E+02	7.85E-02	5.18E-03 1.92E-03	25 25	417.6	705.0	9,700	0.0E+00 0.0E+00	2.0E-01	1.06E+02 1.47E+02		
	Chlorophenol	3.07E+02	6.61E-02	9.48E-06	1.13E+04	4.58E-04	1.12E-05	25	447.5	675.0	9,572	0.0E+00	1.8E-02	1.29E+02	×	
	,4-Trimethylbenzene	6.14E+02	6.07E-02	7.92E-06	5.70E+01	2.52E-01	6.16E-03	25	442.3	649.2	9,369	0.0E+00	6.0E-02	1.20E+02	**	
96128 1,2-	-Dibromo-3-chloropropane	1.16E+02	3.21E-02	8.90E-06	1.23E+03	6.01E-03	1.47E-04	25	469.0	703.5	9,960	6.0E-03	2.0E-04	2.36E+02		
96184 1,2,	,3-Trichloropropane	1.16E+02	5.75E-02	9.24E-06	1.75E+03	1.40E-02	3.43E-04	25	430.0	652.0	9,171	8.6E-03	3.0E-04	1.47E+02	X	у
96333 Met		5.84E+00	8.60E-02	1.02E-05	4.94E+04	8.14E-03	1.99E-04	25	353.7	536.0	7,749	0.0E+00	2.0E-02	8.61E+01		
	ylmethacrylate	1.67E+01	6.53E-02	8.38E-06	5.40E+03	2.34E-02	5.73E-04	25	390.0	571.0	10,957	0.0E+00	3.0E-01	1.14E+02		
98066 tert- 98828 Cur	-Butylbenzene	1.00E+03 6.98E+02	5.30E-02 6.03E-02	7.37E-06 7.86E-06	2.95E+01 6.13F+01	5.40E-01 4.70F-01	1.32E-02 1.15E-02	25 25	442.1 425.6	1220.0 631.1	8,980 10.335	0.0E+00 0.0E+00	4.0E-01 4.0E-01	1.34E+02 1.20F+02		
98862 Ace		5.19F+01	6.03E-02 6.52E-02	8.72E-06	6.13E+01 6.13F+03	4.70E-01 4.25F-04	1.15E-02 1.04E-05	25 25	425.6 475.0	709.5	11,732	0.0E+00	4.0E-01 3.5E-01	1.20E+02 1.20E+02	X	у
98953 Nitro		2.26E+02	6.81E-02	9.45E-06	2.09E+03	9.81E-04	2.40E-05	25	484.0	719.0	10,566	4.0E-05	9.0E-03	1.23E+02	^	
100414 Eth		4.46E+02	6.85E-02	8.46E-06	1.69E+02	3.22E-01	7.88E-03	25	409.3	617.2	8,501	2.5E-06	1.0E+00	1.06E+02		
100425 Styr		4.46E+02	7.11E-02	8.78E-06	3.10E+02	1.12E-01	2.75E-03	25	418.3	636.0	8,737	0.0E+00	9.0E-01	1.04E+02		
100447 Ber	nzylchloride	4.46E+02	6.34E-02	8.81E-06	5.25E+02	1.68E-02	4.12E-04	25	452.0	685.0	8,773	4.9E-05	1.0E-03	1.27E+02	X	
100527 Ber		1.11E+01	7.44E-02	9.46E-06	6.95E+03	1.09E-03	2.67E-05	25	452.0	695.0	11,658	0.0E+00	3.5E-01	1.06E+02	X	1
	ropylbenzene	8.13E+02	6.02E-02	7.83E-06	5.22E+01	4.29E-01	1.05E-02	25	432.2	630.0	9,123	0.0E+00	1.0E+00	1.20E+02		1
104518 n-B		1.48E+03	5.28E-02	7.33E-06	1.18E+01	6.50E-01	1.59E-02	25	456.5	660.5	9,290	0.0E+00	1.8E-01	1.34E+02	Х	1
106423 p-X		3.75E+02	6.82E-02	8.42E-06	1.62E+02	2.82E-01	6.90E-03	25	411.5	616.2	8,525	0.0E+00	1.0E-01	1.06E+02		1
106467 1,4- 106898 Epic	-Dichlorobenzene	3.75E+02 9.91E+00	5.50E-02 8.89E-02	8.68E-06 1.11E-05	8.13E+01 6.59E+04	9.85E-02 1.24E-03	2.41E-03 3.04E-05	25 25	447.2 390.0	684.8 600.0	9,271 10	1.1E-05 2.3E-05	8.0E-01 1.0E-03	1.47E+02 9.25E+01		1
	-Dibromoethane (ethylene dibromid	3.96E+01	4.30E-02	1.11E-05 1.04E-05	3.91E+03	1.24E-03 2.66E-02	3.04E-05 6.50E-04	25 25	404.6	583.0	8,310	6.0E-04	8.0E-04	9.25E+01 1.88E+02		1
106934 1,2-		3.96E+01	1.00E-01	1.04E-05	7.35E+02	3.01E+00	7.36E-02	25 25	268.6	425.0	5,370	1.7E-04	2.0E-03	5.41E+01		1
107028 Acr		1.00E+00	1.12E-01	1.22E-05	2.12E+05	4.99E-03	1.22E-04	25	325.6	506.0	6,731	0.0E+00	2.0E-05	5.61E+01		1
107062 1,2-	-Dichloroethane	3.96E+01	8.57E-02	1.10E-05	8.60E+03	4.82E-02	1.18E-03	25	356.7	561.0	7,643	2.6E-05	7.0E-03	9.90E+01		
107131 Acn	ylonitrile	8.51E+00	1.14E-01	1.23E-05	7.45E+04	5.64E-03	1.38E-04	25	350.3	519.0	7,786	2.9E-04	2.0E-03	5.31E+01		
108054 Viny		5.58E+00	8.49E-02	1.00E-05	2.00E+04	2.09E-02	5.11E-04	25	345.7	519.1	7,800	0.0E+00	2.0E-01	8.61E+01		
	thylisobutylketone (4-methyl-2-penta		6.98E-02	8.35E-06	1.90E+04	5.64E-03	1.38E-04	25	389.5	571.0	8,243	0.0E+00	3.0E+00	1.00E+02		у
	opropyl ether (DIPE)	2.28E+01	6.54E-02	7.76E-06	8.80E+03	7.76E-06	2.56E-03	25	341.5	499.9	6,950	0.0E+00	7.0E-01	1.02E+02		
108383 m-X		3.75E+02	6.84E-02	8.44E-06	1.61E+02	2.94E-01	7.18E-03	25	412.3	617.1	8,523	0.0E+00	1.0E-01	1.06E+02		
	(2-Chloroisopropyl)ether ,5-Trimethylbenzene	8.29E+01 6.02E+02	3.99E-02 6.02E-02	7.36E-06 7.84E-06	1.70E+03 4.82F+01	3.03E-03 3.59E-01	7.42E-05 8.77E-03	25 25	460.0 437.9	690.0 637.3	9,695 9,321	1.0E-05 0.0E+00	1.4E-01 6.0E-02	1.71E+02 1.20E+02	×	
	thylcyclohexane	7.85E+01	7.35F-02	8.52F-06	1.40F+01	4.22F+00	1.03F-01	25	373.9	572.2	7,474	0.0E+00	7.0F-01	9.82F+01	^	v
108883 Tolu		2.34E+02	7.78E-02	9.20E-06	5.26E+02	2.71E-01	6.64E-03	25	383.8	591.8	7,930	0.0E+00	3.0E-01	9.21E+01		,
108907 Chlo		2.34E+02	7.21E-02	9.48E-06	4.98E+02	1.27E-01	3.11E-03	25	404.9	632.4	8,410	0.0E+00	5.0E-02	1.13E+02		
109660 Per	ntane, n-	7.22E+01	8.21E-02	8.80E-06	3.80E+01	5.11E+01	1.25E+00	25	309.0	469.7	6,155	0.0E+00	1.0E+00	7.22E+01		
109693 1-C	hlorobutane	7.22E+01	7.84E-02	9.33E-06	1.10E+03	6.83E-01	1.67E-02	25	351.6	542.0	7,263	0.0E+00	1.4E-01	9.26E+01	X	
109999 Tetr		1.08E+01	9.54E-02	1.08E-05	1.00E+06	2.88E-03	7.05E-05	25	339.0	541.0	7,074	0.0E+00	2.0E+00	7.21E+01		у
110009 Fun		8.00E+01	1.03E-01	1.17E-05	1.00E+04	2.21E-01	5.40E-03	25	304.6	490.2	6,477	0.0E+00	3.5E-03	6.81E+01	X	у
110543 Hex		1.32E+02	7.31E-02	8.17E-06	9.50E+00	7.36E+01	1.80E+00	25	341.7	508.0	6,895	0.0E+00	7.0E-01	8.62E+01		
110827 Cyc	clohexane (2-chloroethyl)ether	1.46E+02 3.22F+01	8.00E-02 5.67E-02	9.11E-06 8.71E-06	5.50E+01 1.72E+04	6.13E+00 6.95E-04	1.50E-01 1.70E-05	25 25	353.7 451.2	553.4 659.8	7,154 10.803	0.0E+00 7.1E-04	6.0E+00 0.0E+00	8.42E+01 1.43F+02		
111444 BIS(6.76E+03	2.25E-02	5.76F-06	3.25E-01	2.66E-03	6.50F-05	25 25	674.4	942.9	14.000	0.0E+00	2.1F-02	1.43E+02 4.07F+02	×	
	kachlombenzene	6.20F+03	2.90E-02	7.85E-06	6.20E-03	6.95F-02	1.70E-03	25	582.6	825.0	14,000	5.1E-04	2.8F-03	2.85E+02	x	
	,4-Trichlorobenzene	1.36E+03	3.96E-02	8.40E-06	4.90E+01	5.81E-02	1.42E-03	25	486.2	725.0	10,471	0.0E+00	2.0E-03	1.81E+02	^	1
	tonaldehyde (2-butenal)	1.79E+00	9.56E-02	1.08E-05	1.50E+05	7.93E-04	1.94E-05	25	375.2	568.0	9	5.4E-04	0.0E+00	7.01E+01	X	1
123911 1,4-		2.63E+00	8.74E-02	1.05E-05	1.00E+06	1.96E-04	4.80E-06	25	374.3	587.2	8,164	7.7E-06	3.0E-02	8.81E+01		1
	romochloromethane	3.18E+01	3.66E-02	1.06E-05	2.70E+03	3.20E-02	7.83E-04	25	416.1	678.2	5,900	2.7E-05	7.0E-02	2.08E+02	X	1
126987 Met		1.31E+01	9.64E-02	1.06E-05	2.54E+04	1.01E-02	2.47E-04	25	363.3	554.0	7,600	0.0E+00	3.0E-02	6.71E+01		1
	chloro-1,3-butadiene (chloroprene)	6.07E+01	8.42E-02	1.00E-05	8.37E+02	2.29E+00	5.61E-02	25	332.4	525.0	8,075	3.0E-04	2.0E-02	8.85E+01		1
	rachloroethylene	9.49E+01	5.05E-02	9.46E-06	2.06E+02	7.24E-01	1.77E-02	25	394.4	620.2	8,288	6.1E-06	4.0E-02	1.66E+02		1
129000 Pyre 132649 Dibe		5.43E+04 9.16E+03	2.78E-02 4.11E-02	7.25E-06 7.38E-06	1.35E-01 3.10E+00	4.87E-04 8.71E-03	1.19E-05 2.13E-04	25 25	668.0 560.0	936.0 824.0	14,370 66,400	0.0E+00 0.0E+00	1.1E-01 3.5E-03	2.02E+02 1.68E+02	X	1
	enzoturan -Butylbenzene	9.16E+03 1.33E+03	4.11E-02 5.28E-02	7.38E-06 7.34E-06	3.10E+00 1.76E+01	8.71E-03 7.20E-01	2.13E-04 1.76E-02	25 25	560.0 446.5	824.0 679.0	66,400 88,730	0.0E+00 0.0E+00	3.5E-03 4.0E-01	1.68E+02 1.34E+02	X	1
141786 Eth		5.58E+00	8.23E-02	9.70E-06	8.00E+04	5.48E-03	1.76E-02 1.34E-04	25	350.3	523.3	7,634	0.0E+00	7.0E-02	8.81E+01		1
	-Dichloropropane	7.22E+01	7.39E-02	9.82E-06	2.75E+03	3.99E-02	9.76E-04	25	393.9	590.9	8,103	0.0E+00	7.0E-02	1.13E+02	X	
	1,2-Dichloroethylene	3.96E+01	8.84E-02	1.13E-05	6.41E+03	1.67E-01	4.08E-03	25	333.7	544.0	7,192	0.0E+00	8.0E-03	9.69E+01	X	
156605 tran	ns-1,2-Dichloroethylene	3.96E+01	8.76E-02	1.12E-05	4.52E+03	1.67E-01	4.08E-03	25	320.9	516.5	6,717	0.0E+00	8.0E-02	9.69E+01		
	nzo(b)fluoranthene	5.99E+05	4.76E-02	5.56E-06	1.50E-03	2.69E-05	6.57E-07	25	715.9	969.3	17,000	1.1E-04	0.0E+00	2.52E+02		1
218019 Chr		1.81E+05	2.61E-02	6.75E-06	2.00E-03	2.14E-04	5.23E-06	25	714.2	979.0	16,455	1.1E-05	0.0E+00	2.28E+02		
309002 Aldı		8.20E+04	3.72E-02	4.35E-06	1.70E-02	1.80E-03	4.40E-05	25	603.0	839.4	15,000	4.9E-03	1.1E-04	3.65E+02	X	
	ha-HCH (alpha-BHC)	2.81E+03	4.33E-02	5.06E-06	2.00E+00	2.10E-04	5.14E-06	25	596.6	839.4	15,000	1.8E-03	0.0E+00	2.91E+02	**	1
	-Dichlorobenzene	3.79E+02	5.56E-02	8.80E-06	1.19E+02	8.85E-02	2.17E-03	25	446.0	684.0	9,230	0.0E+00	1.1E-01	1.47E+02	X	3
	-Dichloropropene	7.22E+01 9.70F+00	7.63E-02 7.63E-02	1.01E-05 1.04E-05	2.80E+03 2.20F+04	1.45E-01 1.78E-01	3.55E-03 4.36E-03	25 25	381.2 379.0	587.4 568.5	7,900 7.910	1.6E-05 6.2E-02	2.0E-02 0.0E+00	1.11E+02 1.15E+02		1 .
	(Chloromethyl)ether ,1,2-Tetrachloroethane	9.70E+00 8.60E+01	4.82E-02	9.10E-05	1.07E+03	1.78E-01 1.02E-01	4.36E-03 2.50E-03	25 25	403.5	624.0	9,768	7.4E-06	1.1E-01	1.15E+02 1.68E+02	X)
	litroso-di-n-butylamine	9.15E+02	6.49E-02	7.59E-06	1.07E+03	5.40E-04	1.32E-05	25	389.0	583.5	11,200	3.1E-03	0.0E+00	1.58E+02	^	1
		1.16E+01	7.53E-02	8.59E-06	5.10E+04	2.40E-02	5.87E-04	25	328.3	497.1	6,678	2.6E-07	3.0E+00	8.82E+01		
	BE (methyl-tert-butyl ether)	1.10=+01														
1634044 MTE	BE (methyl-tert-butyl ether) rcury (elemental)	5.20E+01	3.07E-02	6.30E-06	6.00E-02	4.67E-01	1.14E-02	25	629.9	1750.0	14,127	0.0E+00	3.0E-05	2.01E+02		

	/ 40	
SCS Soil Type	K _s (cm/h)	
C CL L LS S S	0.61	
CL	0.34	
L	0.50	
LS	4.38	
S	26.78	
SC	0.47	
SCL SI	0.55	
SI	1.82	
SIC	0.40	
SICL	0.46	
SIL	0.76	
SL	1.60	

NEW => Receptor Lookup Table (added by HERO)

Receptor	AT_C	
Type	(yrs)	
Residential	70	
Commercial	70	
User-Defined		

EW => 11 Addi AS No. in red	itional Chemicals		ecommende vember 201			Original (USEPA 2002	USEPA
AO NO. III IEU	,	Inhalation Unit Risk IUR	Reference conc., RfC	Extrapolate toxicity IUR		Extrapolate toxicity URF	ed from or
CAS No.	Chemical	(µg/m ³) ⁻¹	(mg/m ³)	(X)	(X)	(X)	(X)
5623	5 Carbon tetrachloride	6.0E-06	1.0E-01				
	9 Chlordane	1.0E-04	7.0E-04				
5889	9 gamma-HCH (Lindane)	3.1E-04				X	X
	7 Ethyl ether						X
6057	1 Dieldrin	4.6E-03					X
6764	1 Acetone		3.1E+01				X
6766	3 Chloroform	2.3E-05	9.8E-02				
6772	1 Hexachloroethane	1.1E-05	3.0E-02				X
7143	2 Benzene	7.8E-06	3.0E-02				
7155	6 1,1,1-Trichloroethane		5.0E+00				
7243	5 Methoxychlor						X
7255	9 DDE	9.7E-05		Х		X	
7483	9 Methyl bromide (bromomethane)		5.0E-03				
7487	3 Methyl chloride (chloromethane)		9.0E-02				
	8 Hydrogen cyanide		8.0E-04				
7495	3 Methylene bromide (dibromomethane		4.0E-03				X
7500	3 Chloroethane (ethyl chloride)		1.0E+01			X	
7501	4 Vinyl chloride (chloroethene)	8.8E-06	1.0E-01				
7505	8 Acetonitrile		6.0E-02				
	0 Acetaldehyde	2.2E-06	9.0E-03				
7509	2 Methylene chloride (dichloromethane)	1.0E-08	6.0E-01				
	0 Carbon disulfide		7.0E-01				
7521	8 Ethylene oxide	8.8E-05	3.0E-02				
7525	2 Bromoform	1.1E-06					X
	4 Bromodichloromethane	3.7E-05		Х		X	X
	6 2-Chloropropane						
	3 1,1-Dichloroethane	1.6E-06					
	4 1,1-Dichloroethylene		2.0E-01				
	6 Chlorodifluoromethane		5.0E+01				
	4 Trichlorofluoromethane		7.0E-01				
	8 Dichlorodifluoromethane		1.0E-01				
	1 1,1,2-Trichloro-1,2,2-trifluoroethane		3.0E+01				
	8 Heptachlor	1.3E-03					X
	4 Hexachlorocyclopentadiene		2.0E-04				
	1 Isobutanol						X
	5 1,2-Dichloropropane	1.0E-05	4.0E-03			X	
	3 Methylethylketone (2-butanone)		5.0E+00				
	5 1,1,2-Trichloroethane	1.6E-05	2.0E-04			x	X
	6 Trichloroethylene	4.1E-06	2.0E-03			X	
	9 Methyl acetate	E 0E 05				1	X
	5 1,1,2,2-Tetrachloroethane 9 2-Nitropropane	5.8E-05 2.7E-03	2.0E-02			1	X
	6 Methylmethacrylate	2.7 ⊑-03	7.0E-02			1	
	6 Methylmethacrylate 9 Acenaphthene		7.UE-01			1	х
	9 Acenaphthene 7 Fluorene					1	X
	7 Fluorene 3 Hexachloro-1.3-butadiene	2.2E-05				1	X
	2 o-Nitrotoluene	2.2E-05				1	X
	3 Naphthalene	3.4E-05	3.0E-03			1	Λ
	6 2-Methylnaphthalene	3.4E-U5	3.UE=U3			1	х
			4.0E-04			1	X
9252	4 Biphenyl		4.0⊑=04				X

VLOOKUP TABLES

NEW => 11 Addit	ional Chemicale		ecommende vember 201:	ed Toxicity Criteria	ARCI Original	
(CAS No. in red)	orial Criemicals	NO	vember 201	S KSL Table	(USEPA 2002	
(Inhalation	Reference	Extrapolated from oral	Extrapolate	
		Unit Risk	conc.,	toxicity value	toxicity	value
		IUR	RfC	IUR RfC	URF	RfC
CAS No.	Chemical	(µg/m ³) ⁻¹	(mg/m ³)	(X) (X)	(X)	(X)
	o-Xylene		1.0E-01 2.0E-01			
	1,2-Dichlorobenzene 2-Chlorophenol		2.0E=01			х
	1,2,4-Trimethylbenzene		7.0F-03			А
96128	1,2-Dibromo-3-chloropropane	6.0E-03	2.0E-04			
	1,2,3-Trichloropropane		3.0E-04		X	
	Methyl acrylate		2.0E-02			X
	Ethylmethacrylate		3.0E-01			X
	tert-Butylbenzene Cumene		4.0E-01			X
	Acetophenone		4.0E-01			x
	Nitrobenzene	4.0E-05	9.0E-03			
100414	Ethylbenzene	2.5E-06	1.0E+00			
	Styrene		1.0E+00			
	Benzylchloride	4.9E-05	1.0E-03		X	
	Benzaldehyde					X
	n-Propylbenzene n-Butylbenzene		1.0E+00			X
	p-Xylene		1.0E-01			Х
	1,4-Dichlorobenzene	1.1E-05	8.0E-01			
	Epichlorohydrin	1.2E-06	1.0E-03			
	1,2-Dibromoethane (ethylene dibromid	6.0E-04	9.0E-03			
	1,3-Butadiene	3.0E-05	2.0E-03			
107028	Acrolein		2.0E-05			
	1,2-Dichloroethane	2.6E-05	7.0E-03			
	Acrylonitrile	6.8E-05	2.0E-03			
	Vinyl acetate		2.0E-01			
	Methylisobutylketone (4-methyl-2-pent		3.0E+00 7.0F-01			
108203	Diisopropyl ether (DIPE) m-Xylene		7.0E-01 1.0E-01			
	bis(2-Chloroisopropyl)ether	1.0E-05	1.02-01			
	1,3,5-Trimethylbenzene	1.02-03				
	Methylcyclohexane					
	Toluene		5.0E+00			
	Chlorobenzene		5.0E-02			
	Pentane, n-		1.0E+00			
	1-Chlorobutane					X
110009	Tetrahydrofuran		2.0E+00			х
	Hexane		7.0F-01			А
	Cyclohexane		6.0F+00			
111444	Bis(2-chloroethyl)ether	3.3E-04				
115297	Endosulfan					X
118741	Hexachlorobenzene	4.6E-04				X
	1,2,4-Trichlorobenzene		2.0E-03			
	Crotonaldehyde (2-butenal)				X	
	1,4-Dioxane	5.0E-06	3.0E-02		.,,	
	Dibromochloromethane Methacrylonitrile	2.7E-05	3.0E-02		X	X
	2-Chloro-1,3-butadiene (chloroprene)	3.0E-04	3.0E-02 2.0E-02			
	Tetrachloroethylene	2.6E-07	4.0E-02			
	Pyrene	2.02-07	1.02 02			X
	Dibenzofuran					X
	sec-Butylbenzene					X
	Ethylacetate					X
	1,3-Dichloropropane					
	cis-1,2-Dichloroethylene		0.0= 00			X
	trans-1,2-Dichloroethylene Benzo(b)fluoranthene	1.1E-04	6.0E-02		х	X
	Chrysene	1.1E-04 1.1E-05			X	
309002		4.9E-03			^	х
	alpha-HCH (alpha-BHC)	1.8E-03				А
	1,3-Dichlorobenzene	1.02-00				X
	1,3-Dichloropropene	4.0E-06	2.0E-02			
542881	bis(Chloromethyl)ether	6.2E-02				
	1,1,1,2-Tetrachloroethane	7.4E-06				X
	N-Nitroso-di-n-butylamine	1.6E-03				
	MTBE (methyl-tert-butyl ether)	2.6E-07	3.0E+00 3.0F-04			
7439976 123456789	Mercury (elemental)		3.0E-04 3.0F-04			
123430789		ı	J.JE=04			

APPENDIX C Boring Logs

PROJE LOCAT DRILLI SAMPI	ECT NATION ING MILING NO ND EL OF CAS ED BY	B. A	B. 1 191- 19 Di D D O D C D	91 · 94, \ irec Gra	Wilming t Push ab sam N/A	gton, C	A	BORING/WELL N DATE DRILLED CASING TYPE/DI GRAVEL PACK T GROUT TYPE/QU DEPTH TO WATE GROUND WATER DEVITORMENTAL INC	12/6/2022 IAMETER N/A IYPE N/A UANTITY Ce ER 5	A / N/A ement grout	
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPT	ΓΙΟΝ	CONTACT	WELL DIAGRAM
 - 5 -		Ļ	B50-0. B50-2. B50-5.	5	0.0	SM	Δ Δ	@Surface: 6 inches of asphalt @ 0.5': Silty SAND, light brown, slightly medium dense, very fine to medium gra and shells, no odor or staining. @5': SAND, medium brown, wet, loose,	ained, trace gravel	0.5 ▼ 5.0	—Cement grout
LAEWINNOT - SOIL VAPOR BORING LOGS LB59.GPJ ROCKLOG2012.GDT 2/23/23		L	B50-5.	0	0.0	SW		@5': SAND, medium brown, wet, loose, grained, trace silt and gravel Notes: Total Depth: 10 feet below ground surfa Groundwater encountered at 5 feet Grab groundwater sample collected		10.0	

LAEWINN01 - SOIL VAPOR BORING LOGS LB50-LB59.GPJ ROCKLOG2012.GDT 2/23/23

PROJ LOCA DRILL SAMP GROU TOP (LOGG REMA	LING ME PLING M JND ELI DF CAS BED BY ARKS	ME B. ETHOD IETHOI EVATIO ING Drill	B. 1 191- 19 D D C D C C D C C D C C C C C C C C C	91 · 94, \ irec Gra	Wilming t Push ab sam N/A	gton, C	A nium E	stigation Addendum	DATE DRILLED 12/6/202 CASING TYPE/DIAMETER GRAVEL PACK TYPE N/GROUT TYPE/QUANTITY DEPTH TO WATER	N/A / N/A / N/A / N/A / N/A / Cement 5	grout		
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHC	LOGIC DESCRIPTION		CONTACT DEPTH	WELL	DIAGRAM
		L	B51-0.		0.0	SM		very fine to fine grain or staining. @2.5': SAND, mediu fine to fine grained, to grained, to groundwater en	medium brown, slightly moist, led, trace gravel and shells, no more more more more more more more mor	odor	0.5 2.5		Cement grout

LAEWINN01 - SOIL VAPOR BORING LOGS LB50-LB59.GPJ ROCKLOG2012.GDT 2/23/23

PROJE PROJE LOCAT DRILLII SAMPL GROUN TOP OF LOGGE REMAR	CT NATION NG ME LING M ND ELE F CASE ED BY RKS	ME B. ETHOD ETHOI EVATION ING Drill	B. 1 191- 19 DN	91 - 94, \ and Gra	- 194 E Wilming Auger ab sam N/A	ple Millenr	A nium E	nvironmental Inc	DATE DRILLED 12/6/202 CASING TYPE/DIAMETER GRAVEL PACK TYPE N/GROUT TYPE/QUANTITY DEPTH TO WATER	N/A / N/A A Cement 5.5	grout		
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHO	LOGIC DESCRIPTION		CONTACT DEPTH	WEL	L DIAGRAM
 - 5 -		L	B52-0. B52-2. B52-5.	5	0.0	SM		very fine to medium on odor or staining.	medium brown, slightly moist, ligrained sand, trace gravel and some brown, moist, loose, very fine	shells, e to	0.52.55.5		− Cement grout
								Notes: Total Depth: 5.5 feet Groundwater encoun	below ground surface (bgs) tered at 5.5 feet				

LAEWINN01 - SOIL VAPOR BORING LOGS LB50-LB59.GPJ ROCKLOG2012.GDT 2/23/23

	ECT NU				6.024				BORING/WELL NUMBER	LB53			
	ECT NA							tigation Addendum					
LOCA						gton, C				N/A / N/	/A		
	ING ME				l Auger								
SAMP	LING N	IETHO	D _	Gra	ab sam					Cemen	grout		
	IND ELI		ON _										
TOP C	OF CAS				N/A				GROUND WATER ELEVATION	N			
LOGG	ED BY												
REMA	RKS	Drill	ing cor	nple	eted by	Millenr	nium E	nvironmental Inc					
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG		LOGIC DESCRIPTION		CONTACT	WEL	L DIAGRAM
			DE2 0	_	0.0	SM		@Surface: 6 inches			0.5		
		L	B53-0	.Б	0.0	SIVI	$ \cdot \cdot \cdot $	@ 0.5' : Silty SAND,	medium brown, slightly moist, l grained sand, trace gravel and	oose, shells			
							.]][]]	no odor or staining.	gramou bana, trabo gravor ana	oriono,	2.5		Cement grout
_		L	B53-2	.5	0.0	SW	۵ ۵	@2.5': SAND, mediu	m brown, moist, loose, very fin	e to	2.0		
								fine grained, trace gr	avel		4.0		
							- Δ				7.0		
-													
_													
_													
								Notes:	-l /l				
-								Groundwater encoun	elow ground surface (bgs) tered at 4 feet				
_													
-													
-													
_													
_													
-													
-													
_													
_													
-													
_													
-													

PROJE LOCAT DRILLI SAMPI	ECT NATION ING ME LING M ND ELE F CASI	B. 19 ETHOD EVATION	B. 19 91- 194 Hai	1, Wilm nd Aug Grab sa N/A	Baselin ington, (er mple	CA	stigation Addendum	DATE DRILLED12/6/202 CASING TYPE/DIAMETER GRAVEL PACK TYPEN GROUT TYPE/QUANTITY	22 N/A / N/ /A Cement 4	A grout	
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXIENI PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHO	LOGIC DESCRIPTION		CONTACT DEPTH	WELL DIAGRAM
LAEWINN01 - SOIL VAPOR BORING LOGS LB50-LB59.GPJ ROCKLOG2012.GDT 2/23/23		LB	354-0.5 354-2.5		SW		very fine to medium on odor or staining. @1.5': Asphalt layer @2.5': SAND, mediudense, very fine to fine	ND, light brown, slightly moist, grained sand, trace gravel and m brown, moist, loose to mediate grained, trace gravel selow ground surface (bgs) tered at 4 feet	shells, um	1.5 2.0	- Cement grout

PROJE LOCAT DRILLII SAMPL GROUN	NG METI ING MET ND ELEV F CASING ED BY	B 191 HOD THOD ATION G TCD	B. 191 - 194, Dire Gr	Wilming ct Push rab sam N/A	gton, C	A	tigation Addendum	GROUT TYPE/QUANTITY Centre de la Control de	/ N/A ent gro	ut
DEPTH (ft. BGL)	BLOW COUNTS	(inches)	SAIMIPLE IU.	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHO	LOGIC DESCRIPTION	CONTACT	WELL DIAGRAM
National - Soil Vapor Boring Logs LB50-LB59.GPJ ROCKLOG2012.GDT 2/23/23		LB5	5-0.5	0.0	SW		very fine to medium codor or staining. @2.5': SAND, medium fine to fine grained, tr @4': groundwater end @8': dark grey, trace	medium brown, slightly moist, loose, grained, trace gravel and shells, no m brown, slightly moist, loose, very ace shells countered clay	0.5 2.5 ¥	— Cement grout

PROJECT PROJEC	ON ON IG MEING M D ELE CASI D BY	ME B THOD ETHOD EVATION NG TO	B. 1 191- 19 Ha D DN	91 - 94, V and Gra	Nilming Auger ab sam N/A	gton, C	CA	stigation Addendum	GRAVEL PACK TYPE # GROUT TYPE/QUANTITY DEPTH TO WATER # 1	Nylaflov ‡3 Sand Hydrate 4	d bent	onite	
DEPTH (ft. BGL)	COUNTS	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHO	LOGIC DESCRIPTION		CONTACT	WEL	L DIAGRAM
LAEWNN01 - SOIL VAPOR BORING LOGS LB50-LB59.GPJ ROCKLOG2012:GDT 2/23/23		L	B56-0.:		0.0	SW		fine to medium graine staining. @2.5': SAND, mediu fine grained, trace sh	medium brown, moist, loose, ed, trace gravel and shells, no m brown, moist, loose, very fi ells	ne to	0.5 2.5 4.0		Hydrated bentonite airstone probe No. 3 Sand Hydrated bentonite

PRO.	IECT N	UMBER	R 13	2730	6.024			BORING/WELL NUMBER	LB57			
	JECT N					Baseline	e Inves	igation Addendum DATE DRILLED 12/6/2				
LOC	ATION	В.						CASING TYPE/DIAMETER	Nvlafl	ow / 1/4-i	inch	
DRIL	LING M				Auger				#3 Sand			
SAM	PLING N	/ETHO			_			GROUT TYPE/QUANTITY		ited bento	onite	
GRO	JND EL	EVATIO						DEPTH TO WATER	4			
ТОР	OF CAS	ING	_					GROUND WATER ELEVAT				
LOG	GED BY	т (CD									
REM	ARKS	Drill	ing con	nple	eted by	Milleni	nium E	nvironmental Inc				
	1		T		-							
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION		CONTACT	WEL	L DIAGRAM
						SW	Δ Λ	@Surface: 4 inches of concrete	/	0.3		
	1	[B57-0.	þ	0.0	300	. ".	@ 0.5': SAND, medium brown, moist, loose, very fine grained, trace silt and shells	y fine to			-Hydrated
	-						Δ. Δ	ille grained, trace sitt and shells				bentonite
_		L	B57-2.	5	0.0		Δ Δ				5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	⊤airstone prob
							Δ. Δ			4 .0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	[∖] No. 3 Sand
	1						ļ			4.0		`Hydrated bentonite
	-											bentonite
	1											
•												
-								Notes:				
-	-							Total Depth: 4 feet below ground surface (bgs) Groundwater encountered at 4 feet				
								Vapor probe set at 3 feet				
	-											
	1											
	-											
	1											
	1											
	-											
	1											
	1											
	1											
	Ī					1	1			1	1	
-	-											

PROJ LOCA DRILL SAMP GROU TOP (LOGG	CCATION B. 191- 194, Wilmington, CA RILLING METHOD Hand Auger AMPLING METHOD Grab sample ROUND ELEVATION OP OF CASING N/A OGGED BY TCD EMARKS Drilling completed by Millennium Environmental Inc					GRAVEL PACK TYPE GROUT TYPE/QUANTITY DEPTH TO WATER #3 Sat	lylaflov nd lydrate						
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHO	LOGIC DESCRIPTION		CONTACT DEPTH	WELI	_ DIAGRAM
LAEWINN01 - SOIL VAPOR BORING LOGS LB50-LB59.GPJ ROCKLOG2012.GDT 2/23/23			358-0.£		0.0	SW		fine to medium graine staining or odor @2.5': SAND, mediu fine grained, trace sil	medium brown, moist, loose, very ed, trace gravel and shells, no moist, loose, very fine to to t, gravel and shells	•	2.5 4.0	100 100	Hydrated bentonite airstone probe No. 3 Sand Hydrated bentonite

	ECT N									LB59		
	ECT NA							tigation Addendum	DATE DRILLED 12/6/202			
LOCA			<u> 191- 19</u>						CASING TYPE/DIAMETER		/ / 1/4-i	inch
	ING MI				l Auger					3 Sand		.,
	LING N			Gra					GROUT TYPE/QUANTITY			onite
	IND EL		ON _						DEPTH TO WATER			
	OF CAS				N/A				GROUND WATER ELEVATION	N		
REMA			CD ing oor	mple	atad by	Millon	nium E	nvironmental Inc				
KEIVIA	INNO		ing cor	Пріс	eled by	IVIIIICIII	IIIUIII L	IIVIIOIIIIeillai IIIC				
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHO	LOGIC DESCRIPTION		CONTACT DEPTH	WELL DIAGRAM
				L				@Surface: 6 inches			0.5	
		L	B59-0.	.5	0.0	SM		@ 0.5' : Silty SAND, fine to medium graine staining or odor	medium brown, moist, loose, v ed, trace gravel and shells, no	-		− Hydrated bentonite
			B59-2.	5	0.0	SW			m brown, moist, loose, very fin		2.5	115.
		_			0.0		Δ <u>Δ</u>	fine grained, trace gra	avel and shells		4.0	No. 3 Sand Hydrated
<u> </u>												bentonite
-												
_												
L _												
-												
-								Notes:				
_									elow ground surface (bgs)			
_								Vapor probe set at 3	feet			
" – –												
723/23												
12.6												
7 20												
Z K												
S												
- (F)												
- R5												
R20												
35												
בו פרב												
-												
A												
LAEWINNOT - SOIL VAPOR BORING LOGS LBS0-LB59.GFJ ROCKLOGZ012.GD1 2/23												

APPENDIX D Boring Permit

ENVIRONMENTAL HEALTH

Drinking Water Program

5050 Commerce Drive, Baldwin Park, CA 91706

Telephone: (626) 430-5420 • http://publichealth.lacountv.gov/eh/ep/dw/dw_main.htm

Work Plan Approval

WORK SITE ADDRESS	CITY	ZIP	EMAIL ADDRESS
Signal Street	San Pedro	90731	mwithrow@leightongroup.com

NOTICE:

- WORK PLAN APPROVALS ARE VALID FOR 180 DAYS. 30 DAY EXTENSIONS OF WORK PLAN APPROVALS ARE CONSIDERED ON AN INDIVIDUAL (CASE-BY-CASE) BASIS AND MAY BE SUBJECT TO ADDITIONAL PLAN REVIEW FEES (HOURLY RATE AS APPLICABLE).
- WORK PLAN MODIFICATIONS MAY BE REQUIRED IF WELL AND GEOLOGIC CONDITIONS ENCOUNTERED AT THE SITE INSPECTION ARE FOUND TO DIFFER
 FROM THE SCOPE OF WORK PRESENTED TO THE DEPARTMENT OF PUBLIC HEALTH—DRINKING WATER PROGRAM.
- WORK PLAN APPROVALS ARE LIMITED TO COMPLIANCE WITH THE CALIFORNIA WELL STANDARDS AND THE LOS ANGELES COUNTY CODE AND DOES NOT
 GRANT ANY RIGHTS TO CONSTRUCT, RENOVATE, OR DECOMMISSION ANY WELL. THE APPLICANT IS RESPONSIBLE FOR SECURING ALL OTHER
 NECESSARY PERMITS SUCH AS WATER RIGHTS, PROPERTY RIGHTS, COASTAL COMMISSION APPROVALS, USE COVENANTS, ENCROACHMENT
 PERMISSIONS, UTILITY LINE SETBACKS, CITY/COUNTY PUBLIC WORKS RIGHTS OF WAY, ETC.
- THIS PERMIT IS NOT COMPLETE UNTIL ALL OF THE FOLLOWING REQUIREMENTS ARE SIGNED BY THE DEPUTY HEALTH OFFICER. WORK SHALL NOT BE INITIATED WITHOUT A WORK PLAN APPROVAL STAMPED BY THE DEPARTMENT OF PUBLIC HEALTH—DRINKING WATER PROGRAM.

TO BE COMPLETED BY DEPARTMENT OF PUBLIC HEALTH—DRINKING WATER PROGRAM:

ADDITIONAL APPROVAL CONDITIONS:

- Work plan approval is issued for scope of work submitted to the Drinking Water Program. Any
 modifications to the scope of work will require additional work plan review.
- As discussed, please ensure the boring/exploration hole is backfilled within 24 hours of boring construction.
- Ensure to backfill using a tremie pipe under pressure or equivalent equipment with approved cement grout, proceeding upward from the bottom of the boring/exploration hole to surface.
- Ensure soil borings are sealed per California Well Standards 74-90
 - Cement grout mix ratio of 5-6 gallons of water per 94-pound bag of Portland cement.
 - Up to 6% of Bentonite may be added to the cement-based mix.
 - No hydrated Bentonite chips and/or soil cuttings.
- Borings/Exploration holes must comply with all applicable requirements published in the California Well Standards (Bulletins 74-81 and 74-90) and the Los Angeles County Code, Title 11.

APPROVED BY:

Teri Hachey, REHS 26415 Carl Boyer Dr. Santa Clarita, Ca 91350 (661) 287-7017

ALEHA NO: 5770

APPENDIX E

Laboratory Reports and Chain-of-Custody Documents

18 December 2022

Mark Withrow Leighton Consulting 17781 Cowan Irvine, CA

Re: POLA Berths 191-194

Enclosed are the results of analyses for samples received by the laboratory on 12/13/22. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Colby Wakeman Lab Director

Project: POLA Berths 191-194

Project Number: 12736.024 Project Manager: Mark Withrow Reported 12/18/22 12:33

Notes

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LB59-3	JEI220355-01	Soil Gas	12/13/2022 13:33	12/13/2022 13:33
LB58-3	JEI220355-02	Soil Gas	12/13/2022 13:33	12/13/2022 13:33
LB57-3	JEI220355-03	Soil Gas	12/13/2022 13:33	12/13/2022 13:33
LB56-3	JEI220355-04	Soil Gas	12/13/2022 13:33	12/13/2022 13:33

DETECTIONS SUMMARY

Sample ID: LB59-3 Laboratory ID: JE1220355-01

		Reporting		
Analyte	Result	Limit	Units	Method
Freon 11	44	16	$\mu g/m3$	EPA 8260
Tetrachloroethene	104	8	µg/m3	EPA 8260
m,p-Xylene	27	16	µg/m3	EPA 8260
Sample ID: LB58-3			Laboratory ID:	JEI220355-02

		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Tetrachloroethene	50	8	μg/m3	EPA 8260	
Sample ID: LB57-3		I	aboratory ID:	JEI220355-03	

No Results Detected

Sample ID: LB56-3 Laboratory ID: JE1220355-04

Analyte	Result	Reporting Limit	Units	Method	Notes
Tetrachloroethene	13	8	μg/m3	EPA 8260	Hotes
1,2,4-Trimethylbenzene	10	8	μg/m3	EPA 8260	
m,p-Xylene	17	16	μg/m3	EPA 8260	

Jones Environmental, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Colby Wakeman Lab Director

Project: POLA Berths 191-194

Project Number: 12736.024 Project Manager: Mark Withrow Reported 12/18/22 12:33

LB59-3 JEI220355-01(Soil Gas)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Analyte	Controller of		ACD-WAVE	The American Control		riepared	Anaryzeu	Method	Notes
		tile Organ	ic Comp	ounds by	EPA 8260				
Benzene	ND	8	$\mu g/m3$	1	QC2212058		12/13/22	EPA 8260	
Bromodichloromethane	ND	8	$\mu g/m3$				"	"	
Bromoform	ND	8	$\mu g/m3$	(10)	31		***	.11	
n-Butylbenzene	ND	12	$\mu g/m3$	10	"		,,	"	
sec-Butylbenzene	ND	12	$\mu g/m3$	"	"		"	"	
ert-Butylbenzene	ND	12	$\mu g/m3$	30.			0.00	200	
Carbon tetrachloride	ND	8	$\mu g/m3$	"	"		"	"	
Chlorobenzene	ND	8	μg/m3	"	"		"	v	
Chloroform	ND	8	μg/m3	30.7	10		in.	310	
Dibromochloromethane	ND	8	μg/m3	"	"		"	"	
1,2-Dibromoethane (EDB)	ND	8	μg/m3	"	"		"	"	
1,2-Dichlorobenzene	ND	16	μg/m3	90.0	**			:11	
1,3-Dichlorobenzene	ND	16	μg/m3	**			**		
1,4-Dichlorobenzene	ND	16	μg/m3	"	"		"	"	
Freon 12	ND	16	μg/m3	20.	21			3.00	
Freon 11	44	16	μg/m3	"	27			"	
Freon 113	ND	16	μg/m3	**	"		"	"	
1,1-Dichloroethane	ND	8	μg/m3	20	21				
1,2-Dichloroethane	ND	8	μg/m3	**			u.	**	
1,1-Dichloroethene	ND	8	μg/m3	"	"		"	"	
cis-1,2-Dichloroethene	ND	8	μg/m3	300	.00		TO THE REAL PROPERTY.	200	
rans-1,2-Dichloroethene	ND	8	μg/m3					· ·	
Ethylbenzene	ND	8	μg/m3				"		
Isopropylbenzene	ND	8	μg/m3	20.1	21		.00	200	
4-Isopropyltoluene	ND	8	μg/m3	,,			**		
Methylene chloride	ND	8	μg/m3	"	"		"		
Naphthalene	ND	40	μg/m3		"		"	011	
n-Propylbenzene	ND	8	μg/m3		m i		//m²	in.	
Styrene	ND	8	μg/m3	"	9		"	"	
1,1,1,2-Tetrachloroethane	ND	8	μg/m3	,,	,,			"	
1,1,2,2-Tetrachloroethane	ND	16	μg/m3	**	***				
Tetrachloroethene	104	8	μg/m3	"	"		"		
Foluene	ND	8	μg/m3		11		п	11	
1,1,1-Trichloroethane	ND	8	μg/m3	m.	11				
1,1,2-Trichloroethane	ND	8	μg/m3		"		"	,,	
Frichloroethene	ND	8	μg/m3	,,	,,			,,	
1,2,4-Trimethylbenzene	ND	8	μg/m3 μg/m3		"				
1,3,5-Trimethylbenzene	ND	8	μg/m3 μg/m3				"	,,	

Jones Environmental, Inc.

4214

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Colby Wakeman Lab Director

Project: POLA Berths 191-194

Project Number: 12736.024 Project Manager: Mark Withrow

Reported 12/18/22 12:33

LB59-3 JEI220355-01(Soil Gas)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Vola	tile Organ	ic Comp	ounds by	EPA 8260				
Vinyl chloride	ND	8	μg/m3	ĵ.	QC2212058		12/13/22	EPA 8260	
m,p-Xylene	27	16	μg/m3		**		"	"	
o-Xylene	ND	8	μg/m3	.19	31		**	**	
Methyl-tert-butylether	ND	40	μg/m3	10	"		.,	"	
Ethyl-tert-butylether	ND	40	$\mu g/m3$	"	,,		"	"	
Di-isopropylether	ND	40	µg/m3	30.1				200	
tert-amylmethylether	ND	40	μg/m3	"	**		"	"	
tert-Butylalcohol	ND	400	μg/m3	"	**		"	"	
Gasoline Range Organics (C4-C12)	ND	2000	μg/m3	310.7	m:		in:	3.00	
n-Hexane (LCC)	ND	80	µg/m3		"		**	"	
n-Pentane (LCC)	ND	80	μg/m3	"	"		"	"	
Isopropanol (LCC)	ND	80	µg/m3					SM:	
n-Propanol (LCC)	ND	80	μg/m3	,,	,,		'n	"	
Surrogate: Toluene-d8	99.06	% 60	- 140						
Surrogate: Dibromofluoromethane	74.07 9	60	- 140						
Surrogate: 4-Bromofluorobenzene	96.12 9	60	- 140						

Jones Environmental, Inc.

524

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: POLA Berths 191-194

Project Number: 12736.024 Project Manager: Mark Withrow Reported 12/18/22 12:33

LB58-3 JEI220355-02(Soil Gas)

			220355-02	(Soli Gas)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Vola	tile Organ	ic Comp	ounds by	EPA 8260				
Benzene	ND	8	$\mu g/m3$	1	QC2212058		12/13/22	EPA 8260	
Bromodichloromethane	ND	8	$\mu g/m3$				"	0	
Bromoform	ND	8	$\mu g/m3$.0	11		11	.11	
n-Butylbenzene	ND	12	μg/m3	10	"			"	
sec-Butylbenzene	ND	12	$\mu g/m3$	"			"	"	
tert-Butylbenzene	ND	12	µg/m3	20	0 :		000	ार	
Carbon tetrachloride	ND	8	μg/m3	**			"		
Chlorobenzene	ND	8	μg/m3	**			"	u	
Chloroform	ND	8	μg/m3	11	30		n	386	
Dibromochloromethane	ND	8	μg/m3		"		"	"	
1,2-Dibromoethane (EDB)	ND	8	μg/m3	**	"		"	"	
1,2-Dichlorobenzene	ND	16	μg/m3	90.7	11		100	en:	
1,3-Dichlorobenzene	ND	16	μg/m3	**			u	"	
1,4-Dichlorobenzene	ND	16	μg/m3	**	"			"	
Freon 12	ND	16	μg/m3				110	300	
Freon 11	ND	16	μg/m3		39 1				
Freon 113	ND	16	μg/m3	**	"			"	
1,1-Dichloroethane	ND	8	μg/m3	20.					
1,2-Dichloroethane	ND	8	μg/m3	**			u	**	
1,1-Dichloroethene	ND	8	μg/m3	"				"	
cis-1,2-Dichloroethene	ND	8	μg/m3	39.7	20.1			300	
trans-1,2-Dichloroethene	ND	8	μg/m3	0			i e		
Ethylbenzene	ND	8	μg/m3	**			**		
Isopropylbenzene	ND	8	μg/m3	.00.1			122	300	
4-Isopropyltoluene	ND	8	μg/m3	"			u		
Methylene chloride	ND	8	μg/m3		**		**		
Naphthalene	ND	40	μg/m3		21		n	OH:	
n-Propylbenzene	ND	8	μg/m3	"	m:			n n	
Styrene	ND	8	μg/m3	**	11		11	"	
1,1,1,2-Tetrachloroethane	ND	8	μg/m3	"	"			**	
1,1,2,2-Tetrachloroethane	ND	16	μg/m3	"	m:			111	
Tetrachloroethene	50	8	μg/m3		"		"	"	
Говиене	ND	8	μg/m3		11		π	11	
1,1,1-Trichloroethane	ND	8	μg/m3	11	m :			. 11	
1,1,2-Trichloroethane	ND	8	μg/m3	"	"			"	
Frichloroethene	ND	8	μg/m3	,,	,,			"	
1,2,4-Trimethylbenzene	ND	8	μg/m3		m i		in.	in in	
1,3,5-Trimethylbenzene	ND	8	μg/m3				**	,,	

Jones Environmental, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: POLA Berths 191-194

Project Number: 12736.024 Project Manager: Mark Withrow Reported 12/18/22 12:33

LB58-3 JEI220355-02(Soil Gas)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Vola	itile Organ	ic Comp	ounds by	EPA 8260				
Vinyl chloride	ND	8	μg/m3	ĵ.	QC2212058		12/13/22	EPA 8260	
m,p-Xylene	ND	16	μg/m3				"	"	
o-Xylene	ND	8	μg/m3	319	11		**	.11	
Methyl-tert-butylether	ND	40	μg/m3	- 10	"		.,	"	
Ethyl-tert-butylether	ND	40	$\mu g/m3$	"	"		"	u	
Di-isopropylether	ND	40	µg/m3	30.0				211	
tert-amylmethylether	ND	40	μg/m3	"	**		"	"	
tert-Butylalcohol	ND	400	μg/m3	"	"		"	n	
Gasoline Range Organics (C4-C12)	ND	2000	$\mu g/m3$	***	110		(m.		
n-Hexane (LCC)	ND	80	µg/m3		"		**	"	
n-Pentane (LCC)	ND	80	$\mu g/m3$	"	"		"	"	
Isopropanol (LCC)	ND	80	µg/m3	.00.00				en.	
n-Propanol (LCC)	ND	80	μg/m3	,,	,,		'n	u u	
Surrogate: Toluene-d8	100.75	% 60	- 140						
Surrogate: Dibromofluoromethane	69.76	% 60	- 140						
Surrogate: 4-Bromofluorobenzene	94.61	% 60	- 140						

Jones Environmental, Inc.

524

Project: POLA Berths 191-194

Project Number: 12736.024 Project Manager: Mark Withrow

Reported 12/18/22 12:33

LB57-3 JEI220355-03(Soil Gas)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Analyte	Controlled of the Controlled o		ACD-WAVE	The American Control of		ricparcu	Allalyzed	Method	Notes
		tile Organ	ic Comp	ounds by	EPA 8260				
Benzene	ND	8	$\mu g/m3$	1	QC2212058		12/13/22	EPA 8260	
Bromodichloromethane	ND	8	$\mu g/m3$				"	"	
Bromoform	ND	8	$\mu g/m3$	(10)	31		***	.11	
n-Butylbenzene	ND	12	$\mu g/m3$		"		"	"	
sec-Butylbenzene	ND	12	$\mu g/m3$	"	"		"	"	
ert-Butylbenzene	ND	12	$\mu g/m3$	30.			0.00	200	
Carbon tetrachloride	ND	8	μg/m3	"	"		"	"	
Chlorobenzene	ND	8	μg/m3	"	"		"	"	
Chloroform	ND	8	μg/m3	30.7	10		in.	310	
Dibromochloromethane	ND	8	μg/m3	"	"		"	"	
1,2-Dibromoethane (EDB)	ND	8	μg/m3	"	"		"	"	
1,2-Dichlorobenzene	ND	16	μg/m3	90.0	**			:11	
1,3-Dichlorobenzene	ND	16	μg/m3	**			**		
1,4-Dichlorobenzene	ND	16	μg/m3	"	"		"	"	
Freon 12	ND	16	μg/m3	20.	21			3.00	
Freon 11	ND	16	μg/m3	"	27			"	
Freon 113	ND	16	μg/m3	**	"		"	"	
1,1-Dichloroethane	ND	8	μg/m3	20					
1,2-Dichloroethane	ND	8	μg/m3	**			u.	**	
1,1-Dichloroethene	ND	8	μg/m3	"	"		"	"	
cis-1,2-Dichloroethene	ND	8	μg/m3	300	.00		TO THE REAL PROPERTY.	200	
rans-1,2-Dichloroethene	ND	8	μg/m3					· ·	
Ethylbenzene	ND	8	μg/m3				"		
Isopropylbenzene	ND	8	μg/m3	20.1	21		.00	200	
4-Isopropyltoluene	ND	8	μg/m3	,,			**		
Methylene chloride	ND	8	μg/m3	"	"		"		
Naphthalene	ND	40	μg/m3		"		"	011	
n-Propylbenzene	ND	8	μg/m3		w		//m²	in.	
Styrene	ND	8	μg/m3	"	9		"	"	
1,1,1,2-Tetrachloroethane	ND	8	μg/m3	,,	,,		"	"	
1,1,2,2-Tetrachloroethane	ND	16	μg/m3	п	11				
Tetrachloroethene	ND	8	μg/m3	"	"		"		
Foluene	ND	8	μg/m3	,,	"		п		
1,1,1-Trichloroethane	ND	8	μg/m3	an c			/m		
1,1,2-Trichloroethane	ND	8	μg/m3 μg/m3	,,	,,		"	"	
Frichloroethene	ND	8		,,	,,			,,	
1,2,4-Trimethylbenzene	ND	8	μg/m3		**				
1,3,5-Trimethylbenzene	ND	8	μg/m3 μg/m3				"	,,	

Jones Environmental, Inc.

4214

Project: POLA Berths 191-194

Project Number: 12736.024 Project Manager: Mark Withrow Reported 12/18/22 12:33

LB57-3 JEI220355-03(Soil Gas)

Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Volati	le Organ	ic Comp	ounds by	EPA 8260				
Vinyl chloride	ND	8	μg/m3	ĵ.	QC2212058		12/13/22	EPA 8260	
m,p-Xylene	ND	16	μg/m3	"	"		"	"	
o-Xylene	ND	8	μg/m3	319	**		**	**	
Methyl-tert-butylether	ND	40	μg/m3	- 10	"			**	
Ethyl-tert-butylether	ND	40	$\mu g/m3$	"	"		"	"	
Di-isopropylether	ND	40	μg/m3	30.0	1000		0.00		
tert-amylmethylether	ND	40	μg/m3		**		"	"	
tert-Butylalcohol	ND	400	μg/m3	**	**		"	"	
Gasoline Range Organics (C4-C12)	ND	2000	μg/m3		W.1		in.	300	
n-Hexane (LCC)	ND	80	μg/m3	"	"		"	"	
n-Pentane (LCC)	ND	80	μg/m3	**	"		"		
Isopropanol (LCC)	ND	80	μg/m3		71.				
n-Propanol (LCC)	ND	80	μg/m3	"	"		u	w	
Surrogate: Toluene-d8	99.73 %	60	- 140						
Surrogate: Dibromofluoromethane	76.95 %	60	- 140						
Surrogate: 4-Bromofluorobenzene	96.31 %	60	- 140						

Jones Environmental, Inc.

524

Project: POLA Berths 191-194

Project Number: 12736.024 Project Manager: Mark Withrow

Reported 12/18/22 12:33

LB56-3 JEI220355-04(Soil Gas)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Analyte	V-200001-11		2000	L-EAST-STOCKER		Trepared	Milaryzea	Method	11010
		CALIFO LE CONTROL	New 18-12-1-80	ounds by			(- ====) (ALWAIA	115 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1	
Benzene	ND	8	$\mu g/m3$	1	QC2212058		12/13/22	EPA 8260	
Bromodichloromethane	ND	8	$\mu g/m3$	"			"	"	
Bromoform	ND	8	$\mu g/m3$.00	311		**	"	
n-Butylbenzene	ND	12	μg/m3		"		,,	"	
sec-Butylbenzene	ND	12	$\mu g/m3$	"	"		"	"	
tert-Butylbenzene	ND	12	$\mu g/m3$	30.0	W:			200	
Carbon tetrachloride	ND	8	$\mu g/m3$	"	"		"	"	
Chlorobenzene	ND	8	$\mu g/m3$	"	"		"	"	
Chloroform	ND	8	$\mu g/m3$	21.	n :		in.		
Dibromochloromethane	ND	8	μg/m3	"	"		"	"	
1,2-Dibromoethane (EDB)	ND	8	$\mu g/m3$	"	"		"	"	
1,2-Dichlorobenzene	ND	16	μg/m3	90.0	11			en.	
1,3-Dichlorobenzene	ND	16	μg/m3	"	"		**	"	
1,4-Dichlorobenzene	ND	16	μg/m3	"	"		"	**	
Freon 12	ND	16	$\mu g/m3$	22.0	u				
Freon 11	ND	16	μg/m3	"	10			"	
Freon 113	ND	16	μg/m3	"	"		"	"	
1,1-Dichloroethane	ND	8	μg/m3	20.7	21		.192		
1,2-Dichloroethane	ND	8	μg/m3	,,			u		
1,1-Dichloroethene	ND	8	μg/m3	"	"		"	"	
cis-1,2-Dichloroethene	ND	8	μg/m3	200	21			3.00	
trans-1,2-Dichloroethene	ND	8	μg/m3	30	"		0.0	· ·	
Ethylbenzene	ND	8	μg/m3	"	"		"		
Isopropylbenzene	ND	8	μg/m3	.0.1	.11				
4-Isopropyltoluene	ND	8	μg/m3	,,			n	n	
Methylene chloride	ND	8	μg/m3	"	"		"	"	
Naphthalene	ND	40	μg/m3		**		"	011	
n-Propylbenzene	ND	8	μg/m3	**	***		2.00	***	
Styrene	ND	8	μg/m3	"	n		n	n	
1,1,1,2-Tetrachloroethane	ND	8	μg/m3	"	"		"	**	
1,1,2,2-Tetrachloroethane	ND	16	μg/m3	"	***		/m	700	
Tetrachloroethene	13	8	μg/m3	"	"		"	"	
Toluene	ND	8	μg/m3	n	"		п	n	
1,1,1-Trichloroethane	ND	8	μg/m3		***		/inf	700	
1,1,2-Trichloroethane	ND	8	μg/m3	"	"		"	"	
Trichloroethene	ND	8	μg/m3	,,	"			"	
1,2,4-Trimethylbenzene	10	8	μg/m3	11	***			· m	
1,3,5-Trimethylbenzene	ND	8	μg/m3		"		"	"	

Jones Environmental, Inc.

6211

Project: POLA Berths 191-194

Project Number: 12736.024 Project Manager: Mark Withrow Reported 12/18/22 12:33

LB56-3 JEI220355-04(Soil Gas)

Analyte	Result R	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Volat	ile Organ	ic Comp	ounds by	EPA 8260				
Vinyl chloride	ND	8	μg/m3	1	QC2212058		12/13/22	EPA 8260	
m,p-Xylene	17	16	μg/m3				"	"	
o-Xylene	ND	8	μg/m3	.11	31		**		
Methyl-tert-butylether	ND	40	μg/m3	10	"		.,	"	
Ethyl-tert-butylether	ND	40	$\mu g/m3$	"			"		
Di-isopropylether	ND	40	µg/m3	20	0.0		0.00	Sec	
tert-amylmethylether	ND	40	μg/m3	"	**		"	"	
tert-Butylalcohol	ND	400	μg/m3	"	**		"	"	
Gasoline Range Organics (C4-C12)	ND	2000	μg/m3		m:		in:		
n-Hexane (LCC)	ND	80	µg/m3	**	"		**	"	
n-Pentane (LCC)	ND	80	μg/m3	"	"		"	"	
Isopropanol (LCC)	ND	80	µg/m3		***			en.	
n-Propanol (LCC)	ND	80	μg/m3	,,			u		
Surrogate: Toluene-d8	98.53 %	60	- 140						
Surrogate: Dibromofluoromethane	71.32 %	60	- 140						
Surrogate: 4-Bromofluorobenzene	95.76 %	6 60	- 140						

Jones Environmental, Inc.

524

Project: POLA Berths 191-194

Project Number: 12736.024 Project Manager: Mark Withrow

Reported 12/18/22 12:33

Volatile Organic Compounds by EPA 8260 - Quality Control

	D	Reporting		Spike	Source Result	N/DEG	%REC Limits	DDD	%REC Limits	N
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limits	Notes
Batch QC2212058 - EPA 8260										
CCV 1										
Benzene	5	8	%	5		96	80 - 120		120	
Chlorobenzene	5	8	%	.5		102	80 - 120		120	
1,1-Dichloroethene	4	8	%	5		81	80 - 120		120	
cis-1,2-Dichloroethene	5	8	%	5		92	80 - 120		120	
Ethylbenzene	5	8	%	.5		99	80 - 120		120	
Tetrachloroethene	6	8	%	5		110	80 - 120		120	
Toluene	5	8	%	5		96	80 - 120		120	
1,1,1-Trichloroethane	4	8	%	5		72*	80 - 120		120	
Trichloroethene	5	8	%	5		100	80 - 120		120	
1,2,4-Trimethylbenzene	5	8	%	5		101	80 - 120		120	
Vinyl chloride	5	8	%	5		110	80 - 120		120	

CS 1							
Benzene	5.84	8	%	5	117	70 - 130	
Chlorobenzene	5.95	8	%	5	119	70 - 130	
1,1-Dichloroethene	4.44	8	%	5	89	60 - 140	
cis-1,2-Dichloroethene	5.35	8	%	5	107	70 - 130	
Ethylbenzene	5.51	8	%	5	110	70 - 130	
Tetrachloroethene	5.85	8	%	.5	117	70 - 130	
Toluene	5.66	8	%	5	113	70 - 130	
1,1,1-Trichloroethane	3.81	8	%	5	76	70 - 130	
Trichloroethene	6.02	8	%	5	120	70 - 130	
1,2,4-Trimethylbenzene	5.60	8	%	5	112	70 - 130	
Vinyl chloride	2.20	8	%	5	44^	60 - 140	
Surrogate: Toluene-d8		99.47 %	60 - 140				
Surrogate: Dibromofluoromethane		88.48 %	60 - 140				
Surrogate: 4-Bromofluorobenzene		99.28 %	60 - 140				
CSD 1							
Benzene	5.55	8	%	5	111	4.99	
Chlorobenzene	5.88	8	%	5	118	1.23	

Jones Environmental, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jell

Project: POLA Berths 191-194

Project Number: 12736.024 Project Manager: Mark Withrow

Reported 12/18/22 12:33

Volatile Organic Compounds by EPA 8260 - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	%REC Limits	Notes
	Resuit	Limit	Units	Level	Result	70REC	Limits	KPD	Limits	Notes
Batch QC2212058 - EPA 8260										
LCSD 1										
1,1-Dichloroethene	4.18	8	%	5		84		6.03		
cis-1,2-Dichloroethene	4.68	8	%	.5		94		13.50		
Ethylbenzene	5.62	8	%	5		112		2.00		
Tetrachloroethene	6.00	8	%	5		120		2.47		
Toluene	5.46	8	%	.5		109		3.53		
1,1,1-Trichloroethane	3.31	8	%	5		66*		14.16		
Trichloroethene	5.61	8	%	5		112		7.07		
1,2,4-Trimethylbenzene	5.64	8	%	5		113		0.62		
Vinyl chloride	2.34	8	%	5		47^		6.17		
Surrogate: Toluene-d8		99.33 %	60 - 140							
Surrogate: Dibromofluoromethane		81.41 %	60 - 140							
Surrogate: 4-Bromofluorobenzene		96.86 %	60 - 140							
Surroguic. 4-Dromojiaorobenzene		20.00 20	00 - 140							
Method Blank 1										
Benzene	ND	8	μg/m3							
Bromodichloromethane	ND	8	µg/m3							
Bromoform	ND	8	μg/m3							
n-Butylbenzene	ND	12	μg/m3							
sec-Butylbenzene	ND	12	μg/m3							
tert-Butylbenzene	ND	12	μg/m3							
Carbon tetrachloride	ND	8	μg/m3							
Chlorobenzene	ND	8	μg/m3							
Chloroform	ND	8	μg/m3							
Dibromochloromethane	ND	8	μg/m3							
1,2-Dibromoethane (EDB)	ND	8	μg/m3							
1,2-Dichlorobenzene	ND	16	μg/m3							
1,3-Dichlorobenzene	ND	16	μg/m3							
1,4-Dichlorobenzene	ND	16	μg/m3							
Freon 12	ND	16	μg/m3							
Freon 11	ND	16	μg/m3							
Freon 113	ND	16	μg/m3							
1,1-Dichloroethane	ND	8	μg/m3							
1,2-Dichloroethane	ND	8	μg/m3							
1,1-Dichloroethene	ND	8	μg/m3							
cis-1,2-Dichloroethene	ND	8	μg/m3							
trans-1,2-Dichloroethene	ND	8	μg/m3							

Jones Environmental, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gall

Project: POLA Berths 191-194

Project Number: 12736.024 Project Manager: Mark Withrow Reported 12/18/22 12:33

Volatile Organic Compounds by EPA 8260 - Quality Control

	I	Reporting		Spike	Source		%REC		%REC	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limits	Notes

Batch QC2212058 - EPA 8260

Method Blank 1				
Ethylbenzene	ND	8	μg/m3	
Isopropylbenzene	ND	8	μg/m3	
4-Isopropyltoluene	ND	8	μg/m3	
Methylene chloride	ND	8	μg/m3	
Naphthalene	ND	40	μg/m3	
n-Propylbenzene	ND	8	μg/m3	
Styrene	ND	8	μg/m3	
1,1,1,2-Tetrachloroethane	ND	8	μg/m3	
1,1,2,2-Tetrachloroethane	ND	16	μg/m3	
Tetrachloroethene	ND	8	μg/m3	
Toluene	ND	8	μg/m3	
1,1,1-Trichloroethane	ND	8	μg/m3	
1,1,2-Trichloroethane	ND	8	μg/m3	
Trichloroethene	ND	8	μg/m3	
1,2,4-Trimethylbenzene	ND	8	μg/m3	
1,3,5-Trimethylbenzene	ND	8	μg/m3	
Vinyl chloride	ND	8	μg/m3	
m,p-Xylene	ND	16	μg/m3	
o-Xylene	ND	8	μg/m3	
Methyl-tert-butylether	ND	40	μg/m3	
Ethyl-tert-butylether	ND	40	μg/m3	
Di-isopropylether	ND	40	μg/m3	
tert-amylmethylether	ND	40	μg/m3	
tert-Butylalcohol	ND	400	μg/m3	
Gasoline Range Organics (C4-C12)	ND	2000	μg/m3	
n-Hexane (LCC)	ND	80	μg/m3	
n-Pentane (LCC)	ND	80	μg/m3	
Isopropanol (LCC)	ND	80	μg/m3	
n-Propanol (LCC)	ND	80	μg/m3	
Surrogate: Toluene-d8		99.39 %	60 - 140	
Surrogate: Dibromofluoromethane		78.50 %	60 - 140	
Surrogate: 4-Bromofluorobenzene		94.40 %	60 - 140	
Sample Blank 1				
Benzene	ND	8	μg/m3	
Bromodichloromethane	ND	8	μg/m3	

Jones Environmental, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Colby Wakeman Lab Director

Project: POLA Berths 191-194

Project Number: 12736.024 Project Manager: Mark Withrow Reported 12/18/22 12:33

Volatile Organic Compounds by EPA 8260 - Quality Control

	1	Reporting		Spike	Source		%REC		%REC	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limits	Notes

Ratch	00221	2058 -	FDA	8260
Daten	11.22	4020 -	CFA	0400

Cample Blank 1			
Sample Blank 1			
Bromoform	ND	8	μg/m3
n-Butylbenzene	ND	12	μg/m3
sec-Butylbenzene	ND	12	$\mu g/m3$
tert-Butylbenzene	ND	12	μg/m3
Carbon tetrachloride	ND	8	μg/m3
Chlorobenzene	ND	8	μg/m3
Chloroform	ND	8	μg/m3
Dibromochloromethane	ND	8	μg/m3
1,2-Dibromoethane (EDB)	ND	8	μg/m3
1,2-Dichlorobenzene	ND	16	μg/m3
1,3-Dichlorobenzene	ND	16	μg/m3
1,4-Dichlorobenzene	ND	16	μg/m3
Freon 12	ND	16	μg/m3
Freon 11	ND	16	μg/m3
Freon 113	ND	16	μg/m3
1,1-Dichloroethane	ND	8	μg/m3
1,2-Dichloroethane	ND	8	μg/m3
1,1-Dichloroethene	ND	8	μg/m3
cis-1,2-Dichloroethene	ND	8	μg/m3
trans-1,2-Dichloroethene	ND	8	μg/m3
Ethylbenzene	ND	8	μg/m3
Isopropylbenzene	ND	8	μg/m3
4-Isopropyltoluene	ND	8	μg/m3
Methylene chloride	ND	8	μg/m3
Naphthalene	ND	40	μg/m3
n-Propylbenzene	ND	8	μg/m3
Styrene	ND	8	μg/m3
1,1,1,2-Tetrachloroethane	ND	8	μg/m3
1,1,2,2-Tetrachloroethane	ND	16	μg/m3
Tetrachloroethene	ND	8	μg/m3
Toluene	ND	8	μg/m3
1,1,1-Trichloroethane	ND	8	μg/m3
1,1,2-Trichloroethane	ND	8	μg/m3
Trichloroethene	ND	8	μg/m3
1,2,4-Trimethylbenzene	ND	8	μg/m3
1,3,5-Trimethylbenzene	ND	8	μg/m3
Vinyl chloride	ND	8	μg/m3

Jones Environmental, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Colby Wakeman Lab Director

Project: POLA Berths 191-194

Project Number: 12736.024 Project Manager: Mark Withrow Reported 12/18/22 12:33

Volatile Organic Compounds by EPA 8260 - Quality Control

	1	Reporting		Spike	Source		%REC		%REC	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limits	Notes

Batch QC2212058 - EPA 8260

Sample Blank 1				
m,p-Xylene	ND	16	μg/m3	
o-Xylene	ND	8	μg/m3	
Methyl-tert-butylether	ND	40	μg/m3	
Ethyl-tert-butylether	ND	40	μg/m3	
Di-isopropylether	ND	40	μg/m3	
tert-amylmethylether	ND	40	μg/m3	
tert-Butylalcohol	ND	400	μg/m3	
Gasoline Range Organics (C4-C12)	ND	2000	μg/m3	
n-Hexane (LCC)	ND	80	μg/m3	
n-Pentane (LCC)	ND	80	μg/m3	
Isopropanol (LCC)	ND	80	μg/m3	
n-Propanol (LCC)	ND	80	μg/m3	
Surrogate: Toluene-d8		98.97 %	60 - 140	
Surrogate: Dibromofluoromethane		76.68 %	60 - 140	
Surrogate: 4-Bromofluorobenzene		96.91 %	60 - 140	

Jones Environmental, Inc.

felh

Leighton Consulting

Project: POLA Berths 191-194

17781 Cowan Project Number: 12736.024
Irvine, CA Project Manager: Mark Withrow

Reported 12/18/22 12:33

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry

RPD Relative Percent Difference

E Estimated Concentration; concentration exceeds calibration range.

LCC Leak Check Compound

MDL Compound Reported to Method Detection Limit

- * Recovery outside of acceptable limits. LCS recovery and LCS/LCSD % RSD were within QC limits, therefore data was accepted.
- ^ Recovery outside of acceptable limits. CCV recovery and LCS/LCSD % RSD were within QC limits, therefore data was accepted.

Jones Environmental, Inc.

felh

11007 Forest PI. Santa Fe Springs, CA 90670 (714) 449-9937 reports@jonesenv.com www.jonesenv.com

Soil-Gas Chain-of-Custody Record

Client Leignton Client Address 177 Project Name POLA Project Address Wilmin Report To Mark W Email/Phone	Ber lach gtor	Cou ths + Str	191		Client Project # 12736. Turn Around Re Immediate Attent Rush 24 Hours-1 Rush 48 Hours-1 Rush 96 Hours-2 Normal - No Sun	equested tion-200% 100% 75% 50% charge	Tr n-pentar n-heptar	racer ine ne ine	quest		Range Organics is	ASTM D1946, Methane/Fixed Gas/H ₂ S & Ke BD D L P P P P P P P P P P P P P P P P P	ID_	ed		JET220355 Page of Sample Container: Summa If different than above, see Notes.
			dison	Jones	□ 20 ug/m³ 💉 8 □ _ ug/m	ug/m ³	ya'ug/m³ □	ug/L 🛮 ppmV	Matri)			01946,	Section Ven	of Care	5	
Sample ID	Purge Number	Purge Volume (mL)	Date	Sample Collection Time	Jones ID (Lab Use Only)	Purge Rate (mL/min)	Pump ID	Magnehelic ID	Sol Gas	8280B	Gasoline	ASTM	Manage		No.	otes & Special Instructions
LB59-3	3	3250	12/13	9:53	JEI220355-01	500	Zarak	11800	SG	W	X		4	2		
LB58-3	1			10:03	-02		Venom	M100.007	1	1	1			1		
LB57-3				10:19	-03		Zarak	M100,500								
LB56-3	V	4	+	10:22	प	1	. /	M100,501	1	V	1		7	1		
														-		
													-	+		
Relinquished By (Signature)		Printed Nam			Received By (9 ignature)			Dele	ted Na					İ		
1800 DZ 7		There	sa Pu	MCa:V	Company	nn	0	- M	adli	son		nes	>	4	Total Numb	per of Containers
Relinquished By (Signature)	/ (Printed Nam Casey	2 Ellis	1032 Time		MVITONN (Signature)	nental		/13/ ted Na	100	2		32	re	acknowledgem	on this Chain of Custody form constitutes ent that the above analyses have been the information provided herein is correct and accurate.
JEL		12/13/2	2	1400		Page 17	of 18		_							

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

	SAMPLE RECE	IPTF	ORIVI		Jones	ID:	FIZ	20355
PROJECT: POLA Berths 191-	1940			EIVED	ED): BY: Other	12/1	3/2	022
TEMPERATURE: Thermometer ID: T-	2	(Correc	ted Ten	np.)	Calibra	tion D	ue: 07	/12/2023
Temperature Cooler #1	_°C ± the CF(+0.5°C)			_°C		Blan	k	Sample
Temperature Cooler #2	_°C ± the CF(+0.5°C)			_°C		Blan	k	Sample
Temperature Criteria: 0 ≤ 6°C (NO frozen If criteria is not met:	containers)	Criteri	a Met?	□ Үе	25	□ No		
Sample Received on ice?			Yes		No			- 1
Sample received Chilled on sam	e day of sampling?		Yes		No			
- N. C. S. (N.C.)	NC No.				Check	ked By	/: <u> </u>	
Temperature Non-Conformance (NC): □ Sample not received on ice □ sample not received chilled □ Sample received chilled, but not on	NC No	pling						
SAMPLE CONDITION:					YE	S	NO*	N/A
Chain of Custody (COC) received filled ou	t completely				t		□*	
Total number of containers received man							- *	
Sample container label(s) consistent with					b		_*	
Sample container(s) intact and in good of	ondition			******	E	1	*	
Proper containers and sufficient volume	for analyses request	ed on C	OC		Æ	1	-*	
Proper preservative indicated on COC/co						1	_*	D/
Volatile analysis container(s) free of head						1	\square^*	
Custody Seals Intact on Cooler/Sample]	- *	Þ
CONTAINER TYPE:								
	queous:			Air/	Soil Gas	5:		
5035 Kits:	Amber Bottle: VOAs:	A. T	_		Tedl	ar Bag	g:	
Glass Jar:	Poly Bottle:					6 hr		
Sleeve: Other:	5030 Kits:					72 hr 5 Day		
other.	Other:					ma: (L)	i.	L)
*Comple	te Non-Conformance	e if chec	ked			Checke	ed by:	

562-646-1611

SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan

Irvine, CA 92614

Attn: Mark Withrow

B191-194 Project:

Client Ref. No.:

Report date:

JEL Ref. No.:

Date Sampled:

12/06/22

12/14/22

ST-21305

12736.024

Date Received: 12/06/22 Date Analyzed: 12/7-9/22

Physical State: Soil & Water

ANALYSES REQUESTED

Soil:

- 1. EPA 8015M - Extended Range Hydrocarbons
- EPA 8260B Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics 2.
- 3. EPA 6010B and EPA 7471A - CAM 17 Metals

Water:

- 1. EPA 8015M - Extended Range Hydrocarbons
- EPA 8260B by 5030B Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics 2.
- 3. EPA 6010B and EPA 7470A - CAM 17 Metals

Approval:

Douglas A. Fowler, M.S. Senior Chemist

714-449-9937 SANT 562-646-1611 WWW

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan

Irvine, CA 92614

Attn: Mark Withrow

Project: B191-194

Report date: 12/14/2022

Jones Ref. No.: ST-21305 Client Ref. No.: 12736.024

Date Sampled: 12/6/2022

Date Received: 12/6/2022 **Date Analyzed:** 12/8/2022

Physical State: Soil

	E	PA 8015M -	Total Petrolo	eum Hydroca	rbons		
Sample ID:	LB50-0.5	B50-2.5	LB50-5	LB58-0.5	LB58-2.5		
Jones ID:	ST-21305-01	ST-21305-02	ST-21305-03	ST-21305-05	ST-21305-06	Reporting Limit	Units
Carbon Chain Range							
C13 - C22	117	90.4	93.9	176	ND	10.0	mg/kg
C23 - C40	2470	2930	3020	4380	ND	10.0	mg/kg
Dilution Factor	5	10	10	10	1		
Surrogate Recovery:						QC Limi	ts
Hexacosane	77%	59%	56%	55%	99%	50 - 140	
Batch:	FID7_	FID7_	FID7_	FID7_	FID7_		
Daten.	120822_01	120822_01	120822_01	120822_01	120822_01		

714-449-9937 562-646-1611 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

Report date:

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan Jones Ref. No.: ST-21305

Irvine, CA 92614 Client Ref. No.: 12736.024

Attn: Mark Withrow Date Sampled: 12/6/2022

Date Received: 12/6/2022

Physical State: Soil

12/14/2022

	E	PA 8015M -	Total Petrol	eum Hydroca	rbons		
Sample ID:	LB59-0.5	LB59-2.5	LB56-0.5	LB56-2.5	LB57-0.5		
Jones ID:	ST-21305-07	ST-21305-08	ST-21305-09	ST-21305-10	ST-21305-11	Reporting Limit	<u>Units</u>
Carbon Chain Range							
C13 - C22	204	ND	32.7	ND	ND	10.0	mg/kg
C23 - C40	5760	ND	1050	ND	ND	10.0	mg/kg
Dilution Factor	10	1	1	1	1		
Surrogate Recovery:						QC Limi	<u>ts</u>
Hexacosane	54%	78%	92%	88%	84%	50 - 140	N.
Batch:	FID7_ 120822_01	FID7_ 120822_01	FID7_ 120822_01	FID7_ 120822_01	FID7_ 120822_01		

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan

Irvine, CA 92614

Attn: Mark Withrow

Project: B191-194

Report date: 12/14/2022 **Jones Ref. No.:** ST-21305

Jones Ref. No.: ST-21305 Client Ref. No.: 12736.024

Date Sampled: 12/6/2022

Date Received: 12/6/2022 **Date Analyzed:** 12/8/2022

Physical State: Soil

	E	PA 8015M -	Total Petrole	eum Hydroca	rbons		
Sample ID:	LB57-2.5	LB54-0.5	LB54-2.5	LB55-0.5	LB55-2.5		
Jones ID:	ST-21305-12	ST-21305-13	ST-21305-14	ST-21305-15	ST-21305-16	Reporting Limit	Units
Carbon Chain Range							
C13 - C22	ND	1710	ND	281	ND	10.0	mg/kg
C23 - C40	ND	14600	ND	8940	ND	10.0	mg/kg
Dilution Factor	1	20	1	10	1		
Surrogate Recovery:						QC Limi	ts
Hexacosane	80%	50%	68%	53%	74%	50 - 140	
Ratch:	FID7_	FID7_	FID7_	FID7_	FID7_		
Batch:	120822_01	120822_01	120822_01	120822_01	120822_01		

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan

Irvine, CA 92614

Attn: Mark Withrow

Project: B191-194

Report date: 12/14/2022 **Jones Ref. No.:** ST-21305

Client Ref. No.: 12736.024

Date Sampled: 12/6/2022

Date Received: 12/6/2022 **Date Analyzed:** 12/8/2022

Physical State: Soil

	E	PA 8015M -	Total Petrole	eum Hydroca	rbons		
Sample ID:	LB53-0.5	LB53-2.5	LB52-0.5	LB52-2.5	LB52-5		
Jones ID:	ST-21305-18	ST-21305-19	ST-21305-20	ST-21305-21	ST-21305-22	Reporting Limit	Units
Carbon Chain Range							
C13 - C22	690	27.1	551	223	ND	10.0	mg/kg
C23 - C40	8660	479	5960	9790	ND	10.0	mg/kg
Dilution Factor	10	1	10	10	1		
Surrogate Recovery:						QC Limi	<u>ts</u>
Hexacosane	56%	79%	63%	54%	97%	50 - 140	T.
Batch:	FID7_	FID7_	FID7_	FID7_	FID7_		
	120822_01	120822_01	120822_01	120822_01	120822_01		

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan

Irvine, CA 92614

Attn: Mark Withrow

Project: B191-194

Report date: 12/14/2022

Jones Ref. No.: ST-21305 Client Ref. No.: 12736.024

Date Sampled: 12/6/2022

Date Received: 12/6/2022 **Date Analyzed:** 12/8/2022

Physical State: Soil

EPA 8015M - Total Petroleum Hydrocarbons

Sample ID:	LB51-0.5	LB51-2.5		
Jones ID:	ST-21305-23	ST-21305-24	Reporting Limit	Units
Carbon Chain Range				
C13 - C22	39.0	ND	10.0	mg/kg
C23 - C40	513	ND	10.0	mg/kg
Dilution Factor	1	1		
Surrogate Recovery:			QC Lim	its
Hexacosane	74%	53%	50 - 14	0
Batch:	FID8_ 120822_01	FID8_ 120822_01		

714-449-9937 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

Report date:

Jones Ref. No.:

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan

Irvine, CA 92614

Attn: Mark Withrow

Project: B191-194

Date Sampled: 12/6/2022

Client Ref. No.: 12736.024

12/14/2022

ST-21305

Date Received: 12/6/2022 **Date Analyzed:** 12/8/2022

Physical State: Soil

EPA 8	8015M -	Total	Petroleum	Hydrocarbons
-------	---------	-------	-----------	--------------

Sample ID:	METHOD BLANK #1	METHOD BLANK #2		
Jones ID:	MB1- 120822FID7	MB1- 120822FID8	Reporting Limit	Units
Carbon Chain Range			Acporting Zamin	
C13 - C22	ND	ND	10.0	mg/kg
C23 - C40	ND	ND	10.0	mg/kg
Dilution Factor	1	1		
Surrogate Recovery:			QC Limit	ts
Hexacosane	133%	123%	50 - 140	
Batch:	FID7_ 120822_01	FID8_ 120822_01		

Report date:

Jones Ref. No.:

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan

Irvine, CA 92614

Attn: Mark Withrow

Project: B191-194

Mark Withrow Date Sampled: 12/6/2022

Date Received: 12/6/2022 **Date Analyzed:** 12/8/2022

Client Ref. No.: 12736.024

12/14/2022

ST-21305

Physical State: Soil

BATCH: FID7_120822_01 Prepared: 12/7/2022 Analyzed: 12/8/2022

EPA 8015M - Total Petroleum Hydrocarbons

	Result	Spike Lev	vel % Recovery	% RPD	% Recovery Limits	Units
LCS:	LCS1-12082	2FID7	SAMPLE SPIKED:	CLEAN SOIL		
Analyte:					10.775	
Diesel	465	500	93%		60 - 140	mg/kg
Surrogate Recovery:						
Hexacosane			134%		50 - 140	
LCSD:	LCSD1-1208	822FID7	SAMPLE SPIKED:	CLEAN SOIL		
Analyte:						
Diesel	485	500	97%	4.2%	60 - 140	mg/kg
Surrogate Recoveries:						
Hexacosane			129%		50 - 140	
CCV:	CCV1-12082	22FID7				
Analyte:						
Diesel	1140	1000	114%		80 - 120	mg/kg
Surrogate Recoveries:						
Hexacosane			139%		50 - 140	

LCS = Laboratory Control Sample

LCSD= Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference

714-449-9937 11007 FOREST PLACE 562-646-1611 SANTA FE SPRINGS, CA 90670 805-399-0060 WWW.JONESENV.COM

Report date:

Jones Ref. No.:

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan

Irvine, CA 92614

Attn: Mark Withrow

Project: B191-194

Mark Withrow Date Sampled: 12/6/2022

Date Received: 12/6/2022 **Date Analyzed:** 12/8/2022

Client Ref. No.: 12736.024

12/14/2022

ST-21305

Physical State: Soil

BATCH: FID8_120822_01 Prepared: 12/8/2022 Analyzed: 12/8/2022

EPA 8015M - Total Petroleum Hydrocarbons

	Result	Spike Lev	vel % Recover	y % RPD	% Recovery Limits	Units
LCS:	LCS1-12082	2FID8	SAMPLE SPIKED:	CLEAN SOIL		
Analyte:	the earl				10.00	
Diesel	547	500	109%		60 - 140	mg/kg
Surrogate Recovery:						
Hexacosane			116%		50 - 140	
LCSD:	LCSD1-1208	322FID8	SAMPLE SPIKED:	CLEAN SOIL		
Analyte:						
Diesel	561	500	112%	2.5%	60 - 140	mg/kg
Surrogate Recoveries:						
Hexacosane			111%		50 - 140	
CCV:	CCV1-12082	22FID8				
Analyte:						
Diesel	1200	1000	120%		80 - 120	mg/kg
Surrogate Recoveries:						
Hexacosane			109%		50 - 140	

LCS = Laboratory Control Sample

LCSD= Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference

11007 FOREST PLACE 714-449-9937 SANTA FE SPRINGS, CA 90670 562-646-1611 WWW.JONESENV.COM

Report date:

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Leighton Consulting, Inc.

17781 Cowan **Client Address:** Jones Ref. No.: ST-21305 Client Ref. No.: 12736.024

Irvine, CA 92614

Mark Withrow **Date Sampled:** 12/6/2022 Attn:

Date Received: 12/6/2022 B191-194 Date Analyzed: 12/9/2022 Project:

Physical State: Soil

12/14/2022

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	LB50-2.5	LB50-5	LB58-2.5	LB59-2.5	LB56-2.5		
Jones ID:	ST-21305-02	ST-21305-03	ST-21305-06	ST-21305-08	ST-21305-10	Reporting Limit	Units
Analytes:							
Benzene	ND	ND	ND	ND	ND	1.0	μg/kg
Bromobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Bromodichloromethane	ND	ND	ND	ND	ND	1.0	μg/kg
Bromoform	ND	ND	ND	ND	ND	1.0	μg/kg
n-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
sec-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
tert-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Carbon tetrachloride	ND	ND	ND	ND	ND	1.0	μg/kg
Chlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Chloroform	ND	ND	ND	ND	ND	1.0	μg/kg
2-Chlorotoluene	ND	ND	ND	ND	ND	1.0	μg/kg
4-Chlorotoluene	ND	ND	ND	ND	ND	1.0	μg/kg
Dibromochloromethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	1.0	μg/kg
Dibromomethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloroethane (EDC)	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
2,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	LB50-2.5	LB50-5	LB58-2.5	LB59-2.5	LB56-2.5		
Jones ID:	ST-21305-02	ST-21305-03	ST-21305-06	ST-21305-08	ST-21305-10	Reporting Limit	Units
Analytes:						12000	
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg
Ethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Freon 11	ND	ND	ND	ND	ND	5.0	μg/kg
Freon 12	ND	ND	ND	ND	ND	5.0	μg/kg
Freon 113	ND	ND	ND	ND	ND	5.0	μg/kg
Hexachlorobutadiene	ND	ND	ND	ND	ND	1.0	μg/kg
Isopropylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
4-Isopropyltoluene	ND	ND	ND	ND	ND	1.0	μg/kg
Methylene chloride	ND	ND	ND	ND	ND	1.0	μg/kg
Naphthalene	ND	ND	ND	ND	ND	5.0	μg/kg
n-Propylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Styrene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Tetrachloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
Toluene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	3.0	μg/kg
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	3.0	μg/kg
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Trichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Vinyl chloride	ND	ND	ND	ND	ND	1.0	μg/kg
m,p-Xylene	ND	ND	ND	ND	ND	2.0	μg/kg
o-Xylene	ND	ND	ND	ND	ND	1.0	μg/kg
Methyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Ethyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Di-isopropylether	ND	ND	ND	ND	ND	5.0	μg/kg
tert-amylmethylether	ND	ND	ND	ND	ND	5.0	μg/kg
tert-Butylalcohol	ND	ND	ND	ND	ND	50.0	μg/kg
Gasoline Range Organics (C4-C12)	ND	ND	ND	ND	ND	0.20	mg/kg
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						OC Limi	
Dibromofluoromethane	89%	91%	93%	90%	88%	60 - 140	
Toluene-ds	99%	103%	96%	97%	96%	60 - 140	
4-Bromofluorobenzene	99%	88%	105%	101%	99%	60 - 140	
Batch:	VOC7-120922-	VOC7-120922-	VOC7-120922-	VOC7-120922-	VOC7-120922-		

11007 FOREST PLACE 714-449-9937 SANTA FE SPRINGS, CA 90670 562-646-1611 WWW.JONESENV.COM

Report date:

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Leighton Consulting, Inc.

17781 Cowan **Client Address:** Jones Ref. No.: ST-21305 Client Ref. No.: 12736.024

Irvine, CA 92614

Mark Withrow **Date Sampled:** 12/6/2022 Attn:

> Date Received: 12/6/2022

B191-194 Date Analyzed: 12/9/2022 Project:

Physical State: Soil

12/14/2022

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	LB57-2.5	LB54-2.5	LB55-2.5	LB53-2.5	LB52-2.5		
Jones ID:	ST-21305-12	ST-21305-14	ST-21305-16	ST-21305-19	ST-21305-21	Reporting Limit	Units
Analytes:							
Benzene	ND	ND	ND	ND	ND	1.0	μg/kg
Bromobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Bromodichloromethane	ND	ND	ND	ND	ND	1.0	μg/kg
Bromoform	ND	ND	ND	ND	ND	1.0	μg/kg
n-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
sec-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
tert-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Carbon tetrachloride	ND	ND	ND	ND	ND	1.0	μg/kg
Chlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Chloroform	ND	ND	ND	ND	ND	1.0	μg/kg
2-Chlorotoluene	ND	ND	ND	ND	ND	1.0	μg/kg
4-Chlorotoluene	ND	ND	ND	ND	ND	1.0	μg/kg
Dibromochloromethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	1.0	μg/kg
Dibromomethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloroethane (EDC)	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
2,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	LB57-2.5	LB54-2.5	LB55-2.5	LB53-2.5	LB52-2.5		
Jones ID:	ST-21305-12	ST-21305-14	ST-21305-16	ST-21305-19	ST-21305-21	Reporting Limit	Units
Analytes:						10000	
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg
Ethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Freon 11	ND	ND	ND	ND	ND	5.0	μg/kg
Freon 12	ND	ND	ND	ND	ND	5.0	μg/kg
Freon 113	ND	ND	ND	ND	ND	5.0	μg/kg
Hexachlorobutadiene	ND	ND	ND	ND	ND	1.0	μg/kg
Isopropylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
4-Isopropyltoluene	ND	ND	ND	ND	ND	1.0	μg/kg
Methylene chloride	ND	ND	ND	ND	ND	1.0	μg/kg
Naphthalene	ND	ND	ND	ND	ND	5.0	μg/kg
n-Propylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Styrene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Tetrachloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
Toluene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	3.0	μg/kg
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	3.0	μg/kg
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Trichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,4-Trimethylbenzene	ND	ND	ND	ND			μg/kg
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Vinyl chloride	ND	ND	ND	ND	ND	1.0	μg/kg
m,p-Xylene	ND	ND	ND	ND	ND	2.0	μg/kg
o-Xylene	ND	ND	ND	ND	ND	1.0	μg/kg
Methyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Ethyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Di-isopropylether	ND		ND ND ND	5.0	μg/kg μg/kg		
tert-amylmethylether	ND	ND	ND	ND	ND	5.0	μg/kg
tert-Butylalcohol	ND	ND	ND	ND	ND	50.0	μg/kg
tert-Butylaiconor	110	110	I,D	11D	ND	50.0	HE/NE
Gasoline Range Organics (C4-C12)	ND	ND	ND	ND	ND	0.20	mg/kg
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						QC Limi	
Dibromofluoromethane	91%	90%	92%	92%	87%	60 - 140	
Toluene-d ₈	97%	97%	97%	97%	96%	60 - 140	1
4-Bromofluorobenzene	101%	101%	102%	101%	104%	60 - 140	

ND = Value less than reporting limit

01

Batch:

VOC7-120922- VOC7-120922- VOC7-120922- VOC7-120922- VOC7-120922-

01

01

LB52-5

Sample ID:

714-449-9937 562-646-1611 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Leighton Consulting, Inc. Report date: 12/14/2022

Client Address: 17781 Cowan Jones Ref. No.: ST-21305
Irvine, CA 92614 Client Ref. No.: 12736.024

Attn: Mark Withrow Date Sampled: 12/6/2022

Project: B191-194 Date Received: 12/6/2022

Date Analyzed: 12/9/2022

Physical State: Soil

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

LB51-2.5

Jones ID:	ST-21305-22	ST-21305-24	Reporting Limit	Units
Analytes:				
Benzene	ND	ND	1.0	μg/kg
Bromobenzene	ND	ND	1.0	μg/kg
Bromodichloromethane	ND	ND	1.0	μg/kg
Bromoform	ND	ND	1.0	μg/kg
n-Butylbenzene	ND	ND	1.0	μg/kg
sec-Butylbenzene	ND	ND	1.0	μg/kg
tert-Butylbenzene	ND	ND	1.0	μg/kg
Carbon tetrachloride	ND	ND	1.0	μg/kg
Chlorobenzene	ND	ND	1.0	μg/kg
Chloroform	ND	ND	1.0	μg/kg
2-Chlorotoluene	ND	ND	1.0	μg/kg
4-Chlorotoluene	ND	ND	1.0	μg/kg
Dibromochloromethane	ND	ND	1.0	μg/kg
1,2-Dibromo-3-chloropropane	ND	ND	1.0	μg/kg
1,2-Dibromoethane (EDB)	ND	ND	1.0	μg/kg
Dibromomethane	ND	ND	1.0	μg/kg
1,2- Dichlorobenzene	ND	ND	1.0	μg/kg
1,3-Dichlorobenzene	ND	ND	1.0	μg/kg
1,4-Dichlorobenzene	ND	ND	1.0	μg/kg
1,1-Dichloroethane	ND	ND	1.0	μg/kg
1,2-Dichloroethane (EDC)	ND	ND	1.0	μg/kg
1,1-Dichloroethene	ND	ND	1.0	μg/kg
cis-1,2-Dichloroethene	ND	ND	1.0	μg/kg
trans-1,2-Dichloroethene	ND	ND	1.0	μg/kg
1,2-Dichloropropane	ND	ND	1.0	μg/kg
1,3-Dichloropropane	ND	ND	1.0	μg/kg
2,2-Dichloropropane	ND	ND	1.0	μg/kg
1,1-Dichloropropene	ND	ND	1.0	μg/kg
cis-1,3-Dichloropropene	ND	ND	1.0	μg/kg

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Jones ID:	ST-21305-22	ST-21305-24	Reporting Limit	Units
Analytes:				
trans-1,3-Dichloropropene	ND	ND	1.0	μg/kg
Ethylbenzene	ND	ND	1.0	μg/kg
Freon 11	ND	ND	5.0	μg/kg
Freon 12	ND	ND	5.0	μg/kg
Freon 113	ND	ND	5.0	μg/kg
Hexachlorobutadiene	ND	ND	1.0	μg/kg
Isopropylbenzene	ND	ND	1.0	μg/kg
4-Isopropyltoluene	ND	ND	1.0	μg/kg
Methylene chloride	ND	ND	1.0	μg/kg
Naphthalene	ND	ND	5.0	μg/kg
n-Propylbenzene	ND	ND	1.0	μg/kg
Styrene	ND	ND	1.0	μg/kg
1,1,1,2-Tetrachloroethane	ND	ND	1.0	μg/kg
1,1,2,2-Tetrachloroethane	ND	ND	1.0	μg/kg
Tetrachloroethene	ND	ND	1.0	μg/kg
Toluene	ND	ND	1.0	μg/kg
1,2,3-Trichlorobenzene	ND	ND	3.0	μg/kg
1,2,4-Trichlorobenzene	ND	ND	3.0	μg/kg
1,1,1-Trichloroethane	ND	ND	1.0	μg/kg
1,1,2-Trichloroethane	ND	ND	1.0	μg/kg
Trichloroethene	ND	ND	1.0	μg/kg
1,2,3-Trichloropropane	ND	ND	1.0	μg/kg
1,2,4-Trimethylbenzene	ND	ND	1.0	μg/kg
1,3,5-Trimethylbenzene	ND	ND	1.0	μg/kg
Vinyl chloride	ND	ND	1.0	μg/kg
m,p-Xylene	ND	ND	2.0	μg/kg
o-Xylene	ND	ND	1.0	μg/kg
Methyl-tert-butylether	ND	ND	5.0	μg/kg
Ethyl-tert-butylether	ND	ND	5.0	μg/kg
Di-isopropylether	ND	ND	5.0	μg/kg
tert-amylmethylether	ND	ND	5.0	μg/kg
tert-Butylalcohol	ND	ND	50.0	μg/kg
Gasoline Range Organics (C4-C12)	ND	ND	0.20	mg/kg
Dilution Factor	1	1		
Surrogate Recoveries:			QC Limit	ts
Dibromofluoromethane	90%	89%	60 - 140	
Toluene-ds	97%	97%	60 - 140	1
4-Bromofluorobenzene	106%	105%	60 - 140	
Batch:	VOC7-120922-			
	01	01		

Client: Leighton Consulting, Inc. Report date: 12/14/2022

Client Address: 17781 Cowan Jones Ref. No.: ST-21305

Irvine, CA 92614 Client Ref. No.: 12736.024

Attn: Mark Withrow Date Sampled: 12/6/2022

Date Received: 12/6/2022

Project: B191-194 **Date Analyzed:** 12/9/2022

Physical State: Soil

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

	METHOD		
Sample ID:	BLANK #1		
Jones ID:	120922-		
VIII. COLOR DE LA	V7MB1	Reporting Limit	Units
Analytes:			
Benzene	ND	1.0	μg/kg
Bromobenzene	ND	1.0	μg/kg
Bromodichloromethane	ND	1.0	μg/kg
Bromoform	ND	1.0	μg/kg
n-Butylbenzene	ND	1.0	μg/kg
sec-Butylbenzene	ND	1.0	μg/kg
tert-Butylbenzene	ND	1.0	μg/kg
Carbon tetrachloride	ND	1.0	μg/kg
Chlorobenzene	ND	1.0	μg/kg
Chloroform	ND	1.0	μg/kg
2-Chlorotoluene	ND	1.0	μg/kg
4-Chlorotoluene	ND	1.0	μg/kg
Dibromochloromethane	ND	1.0	μg/kg
1,2-Dibromo-3-chloropropane	ND	1.0	μg/kg
1,2-Dibromoethane (EDB)	ND	1.0	μg/kg
Dibromomethane	ND	1.0	μg/kg
1,2- Dichlorobenzene	ND	1.0	μg/kg
1,3-Dichlorobenzene	ND	1.0	μg/kg
1,4-Dichlorobenzene	ND	1.0	μg/kg
1,1-Dichloroethane	ND	1.0	μg/kg
1,2-Dichloroethane	ND	1.0	μg/kg
1,1-Dichloroethene	ND	1.0	μg/kg
cis-1,2-Dichloroethene	ND	1.0	μg/kg
trans-1,2-Dichloroethene	ND	1.0	μg/kg
1,2-Dichloropropane	ND	1.0	μg/kg
1,3-Dichloropropane	ND	1.0	μg/kg
2,2-Dichloropropane	ND	1.0	μg/kg
1,1-Dichloropropene	ND	1.0	μg/kg
cis-1,3-Dichloropropene	ND	1.0	μg/kg

EPA 8260B by 5035 – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	METHOD BLANK #1	
Jones ID:	120922- V7MB1	Reporting Limit Unit
Analytes:	17.77	Reporting Dinit
trans-1,3-Dichloropropene	ND	1.0 μg/kg
Ethylbenzene	ND	1.0 µg/kj
Freon 11	ND	5.0 μg/kj
Freon 12	ND	5.0 μg/kg
Freon 113	ND	5.0 μg/kg
Hexachlorobutadiene	ND	1.0 µg/kj
Isopropylbenzene	ND	1.0 µg/kj
4-Isopropyltoluene	ND	1.0 µg/kj
Methylene chloride	ND	1.0 µg/kj
Naphthalene	ND	5.0 μg/kg
n-Propylbenzene	ND	1.0 µg/kj
Styrene	ND	1.0 µg/kj
1,1,1,2-Tetrachloroethane	ND	1.0 µg/kj
1,1,2,2-Tetrachloroethane	ND	1.0 µg/kg
Tetrachloroethene	ND	1.0 μg/kj
Toluene	ND	1.0 μg/kg
1,2,3-Trichlorobenzene	ND	3.0 µg/kg
1,2,4-Trichlorobenzene	ND	3.0 µg/kg
1,1,1-Trichloroethane	ND	1.0 µg/kg
1,1,2-Trichloroethane	ND	1.0 μg/kg
Trichloroethene	ND	1.0 µg/kg
1,2,3-Trichloropropane	ND	1.0 μg/kg
1,2,4-Trimethylbenzene	ND	1.0 μg/kg
1,3,5-Trimethylbenzene	ND	1.0 μg/kg
Vinyl chloride	ND	1.0 µg/kg
m,p-Xylene	ND	2.0 μg/kg
o-Xylene	ND	1.0 μg/kg
Methyl-tert-butylether	ND	5.0 μg/kg
Ethyl-tert-butylether	ND	5.0 μg/kg
Di-isopropylether	ND	5.0 μg/kg
tert-amylmethylether	ND	5.0 μg/kg
tert-Butylalcohol	ND	50.0 μg/kg
Gasoline Range Organics (C4-C12)	ND	0.20 mg/k
Dilution Factor	1	
Surrogate Recoveries:		OC Limits
Dibromofluoromethane	87%	60 - 140
Toluene-ds	101%	60 - 140
4-Bromofluorobenzene	104%	60 - 140
Batch:	VOC7-120922-	

ND = Value less than reporting limit

01

Batch:

714-449-9937 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

Report date:

Jones Ref. No.:

Client Ref. No.:

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan

Irvine, CA 92614

Attn: Mark Withrow

Project: B191-194

Date Sampled: 12/6/2022

12/14/2022

ST-21305

12736.024

Date Received: 12/6/2022 **Date Analyzed:** 12/9/2022

Physical State: Soil

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

GC#:	VO	C7-120922-01				
Jones ID:	120922-V7LCS1	120922-V7LCSD1			120922-V7CCV1	
	LCS	LCSD		Acceptability		Acceptability
<u>Parameter</u>	Recovery (%)	Recovery (%)	RPD	Range (%)	CCV	Range (%)
Vinyl chloride	87%	85%	2%	60 - 140	113%	80 - 120
1,1-Dichloroethene	88%	83%	6.0%	60 - 140	85%	80 - 120
Cis-1,2-Dichloroethene	85%	93%	8.0%	70 - 130	85%	80 - 120
1,1,1-Trichloroethane	85%	85%	0.5%	70 - 130	82%	80 - 120
Benzene	102%	105%	2.7%	70 - 130	105%	80 - 120
Trichloroethene	88%	86%	2.2%	70 - 130	85%	80 - 120
Toluene	110%	110%	0.6%	70 - 130	109%	80 - 120
Tetrachloroethene	90%	94%	4.3%	70 - 130	91%	80 - 120
Chlorobenzene	110%	111%	1.4%	70 - 130	110%	80 - 120
Ethylbenzene	100%	101%	1.7%	70 - 130	110%	80 - 120
1,2,4 Trimethylbenzene	94%	100%	5.6%	70 - 130	99%	80 - 120
Gasoline Range Organics (C4-C12)	102%	104%	2.6%	70 - 130	106%	
Surrogate Recovery:						
Dibromofluoromethane	86%	86%		60 - 140	99%	60 - 140
Toluene-d ₈	102%	100%		60 - 140	114%	60 - 140
4-Bromofluorobenzene	109%	109%		60 - 140	129%	60 - 140

LCS = Laboratory Control Sample

LCSD = Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 20%

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan

Irvine, CA 92614

Attn: Mark Withrow

Project: B191-194

Report date: 12/14/2022 **Jones Ref. No.:** ST-21305

Client Ref. No.: 12736.024

Date Sampled: 12/6/2022

Date Received: 12/6/2022 **Date Analyzed:** 12/7-8/2022

Physical State: Soil

EPA 6010B - CAM 17 Metals by ICP-OES

Sample ID:	LB50-0.5	B50-2.5	LB50-5	LB58-0.5	LB58-2.5		
Jones ID:	ST-21305-01	ST-21305-02	ST-21305-03	ST-21305-05	ST-21305-06	Reporting Limit	Units
Analytes:							
Silver, Ag	ND	ND	ND	ND	ND	0.5	mg/kg
Arsenic, As	ND	ND	ND	ND	938*	5.0	mg/kg
Barium, Ba	83.8	90.8	59.2	51.2	65.0	0.5	mg/kg
Beryllium, Be	ND	ND	ND	ND	ND	0.5	mg/kg
Cadmium, Cd	1.2	1.1	1.0	1.1	6.7	0.5	mg/kg
Cobalt, Co	5.4	4.5	3.7	4.9	3.7	0.5	mg/kg
Chromium, Cr	14.1	12.6	9.0	10.3	85.2	0.5	mg/kg
Copper, Cu	17.3	17.6	14.5	10.4	2010*	0.5	mg/kg
Molybdenum, Mo	ND	ND	0.5	ND	ND	0.5	mg/kg
Nickel, Ni	14.9	13.3	11.1	10.8	14.7	0.5	mg/kg
Lead, Pb	20.2	25.4	22.9	12.5	514	0.5	mg/kg
Antimony, Sb	ND	ND	ND	ND	6.7	5.0	mg/kg
Selenium, Se	ND	ND	ND	ND	ND	5.0	mg/kg
Thallium, Tl	ND	ND	ND	ND	ND	5.0	mg/kg
Vanadium, V	25.5	21.7	19.2	23.2	20.3	0.5	mg/kg
Zinc, Zn	56.1	59.2	55.3	166	1070*	0.5	mg/kg
Dilution Factor	1	1	1	1	1/5*		
Batch ID:	122120701	I22120701	122120701	122120701	I22120701/ I22120801*		

EDA 7471 A	- Mercury by Cold Vanor	Atomic Abcorntion

Sample ID:	LB50-0.5	B50-2.5	LB50-5	LB58-0.5	LB58-2.5		
Jones ID:	ST-21305-01	ST-21305-02	ST-21305-03	ST-21305-05	ST-21305-06	Reporting Limit	Units
Mercury, Hg	0.069	0.104	0.099	0.053	0.059	0.020	mg/kg
Dilution Factor	1	1	1	1	1		
Batch ID:	H22120701	H22120701	H22120701	H22120701	H22120701		

Report date:

Jones Ref. No.:

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Leighton Consulting, Inc.

17781 Cowan Client Address:

Irvine, CA 92614

Mark Withrow Attn:

Date Received: B191-194 Date Analyzed: 12/7-8/2022 Project:

EPA 6010B - CAM 17 Metals by ICP-OES

Physical State: Soil

Client Ref. No.: 12736.024

Date Sampled: 12/6/2022

12/14/2022

ST-21305

12/6/2022

Sample ID:	LB59-0.5	LB59-2.5	LB56-0.5	LB56-2.5	LB57-0.5		
Jones ID:	ST-21305-07	ST-21305-08	ST-21305-09	ST-21305-10	ST-21305-11	Reporting Limit	Units
Analytes:							
Silver, Ag	ND	ND	ND	ND	ND	0.5	mg/kg
Arsenic, As	ND	ND	ND	ND	ND	5.0	mg/kg
Barium, Ba	49.7	29.4	51.8	31.8	80.8	0.5	mg/kg
Beryllium, Be	ND	ND	ND	ND	ND	0.5	mg/kg
Cadmium, Cd	1.0	1.1	1.2	0.8	1.4	0.5	mg/kg
Cobalt, Co	4.1	3.0	4.5	3.4	5.2	0.5	mg/kg
Chromium, Cr	8.7	8.8	10.4	7.2	12.3	0.5	mg/kg
Copper, Cu	26.5	9.3	16.6	3.9	30.3	0.5	mg/kg
Molybdenum, Mo	ND	ND	ND	ND	ND	0.5	mg/kg
Nickel, Ni	11.8	6.8	8.9	4.6	10.4	0.5	mg/kg
Lead, Pb	14.1	18.2	38.6	1.2	96.7	0.5	mg/kg
Antimony, Sb	ND	ND	ND	ND	ND	5.0	mg/kg
Selenium, Se	ND	ND	ND	ND	ND	5.0	mg/kg
Thallium, Tl	ND	ND	ND	ND	ND	5.0	mg/kg
Vanadium, V	22.7	20.9	23.9	15.2	26.5	0.5	mg/kg
Zinc, Zn	74.0	62.6	66.2	24.6	93.3	0.5	mg/kg
Dilution Factor	1	1	1	1	1		
Batch ID:	122120701	122120701	122120701	122120701	122120701		

EDA 7471 A	- Mercury by Co	Id Vanou Atamic	Abcomtion
P.FA /4/1A	- VIPTURE DV CO	III VADOL ATOMIL	ADSOLDIIOH

Sample ID:	LB59-0.5	LB59-2.5	LB56-0.5	LB56-2.5	LB57-0.5		
Jones ID:	ST-21305-07	ST-21305-08	ST-21305-09	ST-21305-10	ST-21305-11	Reporting Limit	Units
Mercury, Hg	0.032	0.055	0.206	0.023	0.481	0.020	mg/kg
Dilution Factor	1	1	1	1	1		
Batch ID:	H22120701	H22120701	H22120701	H22120701	H22120701		

Report date:

12/14/2022

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan Jones Ref. No.: ST-21305

Irvine, CA 92614 Client Ref. No.: 12736.024

Attn: Mark Withrow Date Sampled: 12/6/2022

Project: B191-194 Date Received: 12/6/2022

Date Analyzed: 12/7-8/2022

Physical State: Soil

EPA 6010B - CAM 17 Metals by ICP-OES Sample ID: LB57-2.5 LB54-0.5 LB54-2.5 LB55-0.5 LB55-2.5 Jones ID: ST-21305-12 ST-21305-13 ST-21305-14 ST-21305-15 ST-21305-16 Reporting Limit Units Analytes: 0.5 Silver, Ag ND ND ND ND ND mg/kg Arsenic, As ND ND ND ND ND 5.0 mg/kg 30.6 0.5 Barium, Ba 33.9 78.3 83.3 35.1 mg/kg Beryllium, Be ND ND ND ND ND 0.5 mg/kg Cadmium, Cd 1.3 0.7 2.0 0.9 0.5 0.9 mg/kg Cobalt, Co 3.4 5.6 2.8 6.6 3.8 0.5 mg/kg Chromium, Cr 7.8 12.6 17.1 8.3 0.5 6.9 mg/kg 25.3 85.9 4.7 0.5 Copper, Cu 6.8 35.8 mg/kg Molybdenum, Mo ND ND ND ND ND 0.5 mg/kg Nickel, Ni 4.4 16.2 3.4 15.4 4.6 0.5 mg/kg Lead, Pb 25.0 58.0 2.1 0.5 5.7 6.6 mg/kg Antimony, Sb ND ND ND ND ND 5.0 mg/kg Selenium, Se ND ND ND ND ND 5.0 mg/kg Thallium, Tl ND ND ND ND ND 5.0 mg/kg Vanadium, V 18.6 27.5 16.1 32.2 17.8 0.5 mg/kg Zinc, Zn 0.5 27.7 63.4 23.9 152 20.2 mg/kg **Dilution Factor** 1 1 1 1 1 Batch ID: 122120701 122120701 122120701 122120701 122120701

EPA 7471A - Mercury by Cold Vapor Atomic Absorption								
Sample ID:	LB57-2.5	LB54-0.5	LB54-2.5	LB55-0.5	LB55-2.5			
Jones ID:	ST-21305-12	ST-21305-13	ST-21305-14	ST-21305-15	ST-21305-16	Reporting Limit	<u>Units</u>	
Mercury, Hg Dilution Factor	0.090	0.472	0.032	0.101	0.070	0.020	mg/kg	
Batch ID:	H22120701	H22120701	H22120701	H22120701	H22120701			

714-449-9937 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan

Irvine, CA 92614

Attn: Mark Withrow

Project: B191-194

Report date: 12/14/2022 **Jones Ref. No.:** ST-21305

Client Ref. No.: 12736.024

Date Sampled: 12/6/2022

Date Received: 12/6/2022 **Date Analyzed:** 12/7-8/2022

Physical State: Soil

EPA 6010B - CAM 17 Metals by ICP-OES							
Sample ID:	LB53-0.5	LB53-2.5	LB52-0.5	LB52-2.5	LB52-5		
Jones ID:	ST-21305-18	ST-21305-19	ST-21305-20	ST-21305-21	ST-21305-22	Reporting Limit	Units
Analytes:							
Silver, Ag	ND	ND	ND	ND	ND	0.5	mg/kg
Arsenic, As	ND	ND	ND	ND	9.3	5.0	mg/kg
Barium, Ba	76.3	74.3	61.2	41.7	164	0.5	mg/kg
Beryllium, Be	ND	ND	ND	ND	ND	0.5	mg/kg
Cadmium, Cd	1.5	1.5	1.4	0.8	3.3	0.5	mg/kg
Cobalt, Co	5.5	4.7	5.0	3.6	8.8	0.5	mg/kg
Chromium, Cr	13.2	15.8	11.7	5.8	21.3	0.5	mg/kg
Copper, Cu	52.5	44.1	89.4	14.8	377	0.5	mg/kg
Molybdenum, Mo	ND	ND	ND	ND	ND	0.5	mg/kg
Nickel, Ni	16.3	7.9	15.1	13.8	13.0	0.5	mg/kg
Lead, Pb	30.9	97.6	34.0	5.6	171	0.5	mg/kg
Antimony, Sb	ND	12.4	ND	ND	9.4	5.0	mg/kg
Selenium, Se	ND	ND	ND	ND	ND	5.0	mg/kg
Thallium, Tl	ND	ND	ND	ND	ND	5.0	mg/kg
Vanadium, V	30.7	24.4	25.4	22.0	37.2	0.5	mg/kg
Zinc, Zn	145	81.8	106	28.8	173	0.5	mg/kg
Dilution Factor	1	1	1	1	1		
Batch ID:	122120701	122120701	122120701	122120701	122120701		

EPA 7471A - Mercury by Cold Vapor Atomic Absorption								
Sample ID:	LB53-0.5	LB53-2.5	LB52-0.5	LB52-2.5	LB52-5			
Jones ID:	ST-21305-18	ST-21305-19	ST-21305-20	ST-21305-21	ST-21305-22	Reporting Limit	<u>Units</u>	
Mercury, Hg <u>Dilution Factor</u>	0.096	0.330	0.126	0.040	0.138	0.020	mg/kg	
Batch ID:	H22120701	H22120701	H22120701	H22120701	H22120701			

Report date:

Jones Ref. No.:

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan

Irvine, CA 92614

Attn: Mark Withrow

Project: B191-194

Client Ref. No.: 12736.024

Date Sampled: 12/6/2022 **Date Received:** 12/6/2022

12/14/2022

ST-21305

Date Analyzed: 12/7-8/2022

Physical State: Soil

EPA 6010B - CAM 17 Metals by ICP-OES

Sample ID:	LB51-0.5	LB51-2.5		
Jones ID:	ST-21305-23	ST-21305-24	Reporting Limit	<u>Units</u>
Analytes:				
Silver, Ag	ND	ND	0.5	mg/kg
Arsenic, As	9.2	ND	5.0	mg/kg
Barium, Ba	95.9	22.5	0.5	mg/kg
Beryllium, Be	ND	ND	0.5	mg/kg
Cadmium, Cd	1.9	0.8	0.5	mg/kg
Cobalt, Co	6.0	3.1	0.5	mg/kg
Chromium, Cr	21.6	7.4	0.5	mg/kg
Copper, Cu	148	3.0	0.5	mg/kg
Molybdenum, Mo	1.0	ND	0.5	mg/kg
Nickel, Ni	14.8	3.8	0.5	mg/kg
Lead, Pb	41.3	1.0	0.5	mg/kg
Antimony, Sb	ND	ND	5.0	mg/kg
Selenium, Se	ND	ND	5.0	mg/kg
Thallium, Tl	ND	ND	5.0	mg/kg
Vanadium, V	31.0	19.4	0.5	mg/kg
Zinc, Zn	153	17.7	0.5	mg/kg
Dilution Factor	1	1		
Batch ID:	122120801	122220801		

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

Sample ID: LB51-0.5 LB51-2.5 ST-21305-23 ST-21305-24 Jones ID: Reporting Limit Units Mercury, Hg 0.141 0.041 0.020 mg/kg **Dilution Factor** 1 1

ND = Value less than reporting limit

H22120801

H22120801

Batch ID:

ND

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan Jones Ref. No.: ST-21305

Irvine, CA 92614 Client Ref. No.: 12736.024

Attn: Mark Withrow Date Sampled: 12/6/2022

Date Received: 12/6/2022

12/14/2022

Project: B191-194 Date Analyzed: 12/7-8/2022

Physical State: Soil

0.5

mg/kg

Report date:

EPA 6010B - CAM 17 Metals by ICP-OES **Batch ID:** 122120701 Prepared: 12/7/2022 Analyzed: 12/7/2022 Analytes: Result Reporting Limit Units I221207-MB1 METHOD BLANK: Silver, Ag ND 0.5 mg/kg 5.0 Arsenic, As ND mg/kg Barium, Ba ND 0.5 mg/kg 0.5 Beryllium, Be ND mg/kg Cadmium, Cd ND 0.5 mg/kg Cobalt, Co ND 0.5 mg/kg Chromium, Cr ND 0.5 mg/kg Copper, Cu ND 0.5 mg/kg Molybdenum, Mo ND 0.5 mg/kg 0.5 Nickel, Ni ND mg/kg Lead, Pb 0.5 mg/kg ND Antimony, Sb ND 5.0 mg/kg Selenium, Se ND 5.0 mg/kg 5.0 Thallium, Tl ND mg/kg Vanadium, V ND 0.5 mg/kg

ND- Not Detected

Zinc, Zn

Jones Ref. No.:

Client Ref. No.:

Date Sampled:

12/14/2022

ST-21305

12736.024

12/6/2022

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan

Irvine, CA 92614

Attn: Mark Withrow

Project: B191-194 Date Received: 12/6/2022

Date Analyzed: 12/7-8/2022

Physical State: Soil

		EPA 6010B - CAM 17	Metals by ICP-	OES		
Batch ID:	I22120701	Prepared	12/7/2022	Analyzed:	12/7/2022	
Analytes:	Result	Spike Level	% REC	% RPD	% REC Limits	Units
LCS:	I221207-LCS1					
Barium, Ba	204	200	102%		80 - 120	mg/kg
Cobalt, Co	51.2	50.0	102%		80 - 120	mg/kg
Lead, Pb	52.0	50.0	104%		80 - 120	mg/kg
Selenium, Se	185	200	93%		80 - 120	mg/kg
Zinc, Zn	44.1	50.0	88%		80 - 120	mg/kg
LCSD:	I221207-LCSD	1				
Barium, Ba	206	200	103%	1.0%	80 - 120	mg/kg
Cobalt, Co	49.6	50.0	99%	3.2%	80 - 120	mg/kg
Lead, Pb	49.7	50.0	99%	4.5%	80 - 120	mg/kg
Selenium, Se	175	200	88%	5.6%	80 - 120	mg/kg
Zinc, Zn	44.4	50.0	89%	0.7%	80 - 120	mg/kg
CCV:	I221207-CCV1					
Barium, Ba	1.03	1.00	103%		90-110	mg/L
Cobalt, Co	1.04	1.00	104%		90-110	mg/L
Lead, Pb	1.06	1.00	106%		90-110	mg/L
Selenium, Se	1.04	1.00	104%		90-110	mg/L
Zinc, Zn	1.03	1.00	103%		90-110	mg/L

CCV = Continuing Calibration Verification

LCS = Laboratory Control Sample

LCSD= Laboratory Control Sample Duplicate

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 20%

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan Jones Ref. No.: ST-21305

Irvine, CA 92614 Client Ref. No.: 12736.024

Attn: Mark Withrow Date Sampled: 12/6/2022

Date Received: 12/6/2022

12/14/2022

Project: B191-194 Date Analyzed: 12/7-8/2022

Physical State: Soil

EPA 6010B - CAM 17 Metals by ICP-OES **Batch ID:** 122120801 Prepared: 12/8/2022 Analyzed: 12/8/2022 Analytes: Result Reporting Limit Units I221208-MB1 METHOD BLANK: ND 0.5 Silver, Ag mg/kg 5.0 Arsenic, As ND mg/kg Barium, Ba ND 0.5 mg/kg 0.5 Beryllium, Be ND mg/kg Cadmium, Cd ND 0.5 mg/kg Cobalt, Co ND 0.5 mg/kg Chromium, Cr ND 0.5 mg/kg Copper, Cu ND 0.5 mg/kg Molybdenum, Mo ND 0.5 mg/kg 0.5 Nickel, Ni ND mg/kg Lead, Pb 0.5 mg/kg ND Antimony, Sb ND 5.0 mg/kg Selenium, Se 5.0 ND mg/kg 5.0 Thallium, Tl ND mg/kg Vanadium, V ND 0.5 mg/kg Zinc, Zn ND 0.5 mg/kg

ND- Not Detected

714-449-9937 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

Report date:

Jones Ref. No.:

Client Ref. No.:

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan

Irvine, CA 92614

Attn: Mark Withrow

Project: B191-194

Date Sampled: 12/6/2022

Date Received: 12/6/2022 **Date Analyzed:** 12/7-8/2022

12/14/2022

ST-21305

12736.024

Physical State: Soil

		EPA 6010B - CAM	17 Metals by ICP-	OES		
Batch ID:	122120801	Prepare	ed: 12/8/2022	Analyzed:	12/8/2022	
Analytes:	Result	Spike Level	% REC	% RPD	% REC Limits	Units
LCS:	I221208-LCS1					
Barium, Ba	232	200	116%		80 - 120	mg/kg
Cobalt, Co	55.3	50.0	111%		80 - 120	mg/kg
Lead, Pb	57.5	50.0	115%		80 - 120	mg/kg
Selenium, Se	218	200	109%		80 - 120	mg/kg
Zinc, Zn	48.3	50.0	97%		80 - 120	mg/kg
LCSD:	I221208-LCSD	1				
Barium, Ba	223	200	112%	4.0%	80 - 120	mg/kg
Cobalt, Co	54.9	50.0	110%	0.7%	80 - 120	mg/kg
Lead, Pb	56.8	50.0	114%	1.2%	80 - 120	mg/kg
Selenium, Se	218	200	109%	0.2%	80 - 120	mg/kg
Zinc, Zn	46.5	50.0	93%	3.8%	80 - 120	mg/kg
CCV:	I221208-CCV1					
Barium, Ba	1.02	1.00	102%		90-110	mg/L
Cobalt, Co	1.05	1.00	105%		90-110	mg/L
Lead, Pb	1.07	1.00	107%		90-110	mg/L
Selenium, Se	1.06	1.00	106%		90-110	mg/L
Zinc, Zn	0.99	1.00	99%		90-110	mg/L

CCV = Continuing Calibration Verification

LCS = Laboratory Control Sample

LCSD= Laboratory Control Sample Duplicate

RPD = Relative Percent Difference; Acceptability range for RPD is $\leq 20\%$

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Leighton Consulting, Inc.

17781 Cowan **Client Address:**

Irvine, CA 92614

Mark Withrow Attn:

Project:

B191-194

Report date: 12/14/2022

Jones Ref. No.: ST-21305

Client Ref. No.: 12736.024

Date Sampled: 12/6/2022

Date Received: 12/6/2022

Date Analyzed: 12/7-8/2022

Physical State: Soil

Batch ID:	H22120701		Prepared:	12/7/2022	Analyzed:	12/8/2022	
Analytes:	Result	Spike Level	% REC	% RPD	% REC Limits	Reporting Limit	Units
METHOD BLANK:	H221207-MB1						
Mercury, Hg	ND					0.020	mg/kg
LCS:	H221207-LCS1						
Mercury, Hg	1.00	1.00	100%		80 - 120		mg/kg
LCSD:	H221207-LCSD	1		-12			
Mercury, Hg	0.98	1.00	98%	2.0%	80 - 120		mg/kg
CCV:	H221207-CCV1						
Mercury, Hg	4.96	5.00	99%		90-110		μg/L

ND= Not Detected

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 20%

LCS = Laboratory Control Sample

LCSD= Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

Jones Ref. No.:

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan

Irvine, CA 92614

Attn: Mark Withrow

Project: B191-194

Client Ref. No.: 12736.024

12/14/2022

ST-21305

Date Sampled: 12/6/2022 **Date Received:** 12/6/2022

Date Analyzed: 12/7-8/2022

Physical State: Soil

Batch ID:	H22120801		Prepared:	12/8/2022	Analyzed:	12/8/2022	
Analytes:	Result	Spike Level	% REC	% RPD	% REC Limits	Reporting Limit	Units
METHOD BLANK:	H221208-MB1						
Mercury, Hg	ND					0.020	mg/kg
LCS:	H221208-LCS1						
Mercury, Hg	1.05	1.00	105%		80 - 120		mg/kg
LCSD:	H221208-LCSD	1					
Mercury, Hg	1.04	1.00	104%	1.0%	80 - 120		mg/kg
CCV:	H221208-CCV1						
Mercury, Hg	5.23	5.00	105%		90-110		μg/L

ND= Not Detected

RPD = Relative Percent Difference; Acceptability range for RPD is $\leq 20\%$

LCS = Laboratory Control Sample

LCSD= Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

714-449-9937 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan

Irvine, CA 92614

Attn: Mark Withrow

Project: B191-194

Report date: 12/14/2022

Jones Ref. No.: ST-21305 Client Ref. No.: 12736.024

Date Sampled: 12/6/2022

Date Received: 12/6/2022 **Date Analyzed:** 12/7/2022

Physical State: Water

EPA 8015M - Total Petroleum Hydrocarbons

Sample ID:	LB50-GW	LB55-GW	LB51-GW		
Jones ID:	ST-21305-04	ST-21305-17	ST-21305-25	Reporting Limit	Units
Carbon Chain Range					
C13 - C22	ND	ND	ND	1.0	mg/L
C23 - C40	ND	ND	ND		mg/L
Dilution Factor	1	1	1		
Surrogate Recovery:				QC Limits	
Hexacosane	134%	138%	97%	50 - 140	
Batch:	FID7_ 120722_01	FID7_ 120722_01	FID7_ 120722_01		

Jones Ref. No.:

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan

Irvine, CA 92614

Attn: Mark Withrow

Project: B191-194

Date Sampled: 12/6/2022

Client Ref. No.: 12736.024

12/14/2022

ST-21305

Date Received: 12/6/2022 **Date Analyzed:** 12/7/2022

Physical State: Water

EPA 8015M - Total Petroleum Hydrocarbons

Sample ID: METHOD BLANK #1

MB1-

Jones ID: Reporting Limit Units

Carbon Chain Range

C13 - C22 ND 1.0 mg/L C23 - C40 ND 1.0 mg/L

Dilution Factor

Surrogate Recovery:
Hexacosane 92% 90 50 - 140

Batch: FID7_ 120722 01

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan Jones Ref. No.: ST-21305

Irvine, CA 92614 Client Ref. No.: 12736.024

Attn: Mark Withrow Date Sampled: 12/6/2022

Date Received: 12/6/2022

Project: B191-194 **Date Analyzed:** 12/7/2022

Physical State: Water

12/14/2022

BATCH: FID7_120722_01 Prepared: 12/7/2022 Analyzed: 12/7/2022

EPA 8015M - Total Petroleum Hydrocarbons

	Result	Spike Le	vel % F	Recovery	% RPD	% Recovery Limits	Units
LCS:	LCS1-12072	2FID7	SAMPLE SPIKED:		CLEAN WATER		
Analyte:							
Diesel	393	500		79%		60 - 140	mg/L
Surrogate Recovery:							
Hexacosane				135%		50 - 140	
LCSD:	LCSD1-120	722FID7	SAMPLE SPIKED:		CLEAN WATER		
Analyte:							
Diesel	407	500		81%	3.5%	60 - 140	mg/L
Surrogate Recoveries:							
Hexacosane			- 1	133%		50 - 140	
CCV:	CCV1-1207	22FID7					
Analyte:							
Diesel	1200	1000	- 1	120%		80 - 120	mg/L
Surrogate Recoveries:							
Hexacosane			(1	123%		50 - 140	

LCS = Laboratory Control Sample

LCSD= Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference

714-449-9937 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Leighton Consulting, Inc. Report date: 12/14/2022

Client Address: 17781 Cowan Jones Ref. No.: ST-21305
Irvine, CA 92614 Client Ref. No.: 12736.024

Attn: Mark Winthrow Date Sampled: 12/6/2022

Project: B191-194 Date Received: 12/6/2022

Date Analyzed: 12/9/2022

Physical State: Water

EPA 8260B by 5030 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	LB50-GW	LB55-GW	LB51-GW		
Jones ID:	ST-21305-04	ST-21305-17	ST-21305-25	Reporting Limit	Units
Analytes:					
Benzene	ND	ND	ND	0.5	μg/L
Bromobenzene	ND	ND	ND	0.5	μg/L
Bromodichloromethane	ND	ND	ND	0.5	μg/L
Bromoform	ND	ND	ND	0.5	μg/L
n-Butylbenzene	ND	ND	ND	0.5	μg/L
sec-Butylbenzene	ND	ND	ND	0.5	μg/L
tert-Butylbenzene	ND	ND	ND	0.5	μg/L
Carbon tetrachloride	ND	ND	ND	0.5	μg/L
Chlorobenzene	ND	ND	ND	0.5	μg/L
Chloroform	ND	ND	ND	0.5	μg/L
2-Chlorotoluene	ND	ND	ND	0.5	μg/L
4-Chlorotoluene	ND	ND	ND	0.5	μg/L
Dibromochloromethane	ND	ND	ND	0.5	μg/L
1,2-Dibromo-3-chloropropane	ND	ND	ND	0.5	μg/L
1,2-Dibromoethane (EDB)	ND	ND	ND	0.5	μg/L
Dibromomethane	ND	ND	ND	0.5	μg/L
1,2- Dichlorobenzene	ND	ND	ND	0.5	μg/L
1,3-Dichlorobenzene	ND	ND	ND	0.5	μg/L
1,4-Dichlorobenzene	ND	ND	ND	0.5	μg/L
1,1-Dichloroethane	ND	ND	ND	0.5	μg/L
1,2-Dichloroethane	ND	ND	ND	0.5	μg/L
1,1-Dichloroethene	ND	ND	ND	0.5	μg/L
cis-1,2-Dichloroethene	3.3	ND	ND	0.5	μg/L
trans-1,2-Dichloroethene	ND	ND	ND	0.5	μg/L
1,2-Dichloropropane	ND	ND	ND	0.5	μg/L
1,3-Dichloropropane	ND	ND	ND	0.5	μg/L
2,2-Dichloropropane	ND	ND	ND	0.5	μg/L
1,1-Dichloropropene	ND	ND	ND	0.5	μg/L
cis-1,3-Dichloropropene	ND	ND	ND	0.5	μg/L

EPA 8260B by 5030 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	LB50-GW	LB55-GW	LB51-GW		
Jones ID:	ST-21305-04	ST-21305-17	ST-21305-25	Reporting Limit	Units
Analytes:				-	
trans-1,3-Dichloropropene	ND	ND	ND	0.5	μg/L
Ethylbenzene	ND	ND	ND	0.5	μg/L
Freon 11	ND	ND	ND	2.5	μg/L
Freon 12	ND	ND	ND	2.5	μg/L
Freon 113	ND	ND	ND	2.5	μg/L
Hexachlorobutadiene	ND	ND	ND	0.5	μg/L
Isopropylbenzene	ND	ND	ND	0.5	μg/L
4-Isopropyltoluene	ND	ND	ND	0.5	μg/L
Methylene chloride	ND	ND	ND	0.5	μg/L
Naphthalene	ND	ND	ND	2.5	μg/L
n-Propylbenzene	ND	ND	ND	0.5	μg/L
Styrene	ND	ND	ND	0.5	μg/L
1,1,1,2-Tetrachloroethane	ND	ND	ND	0.5	μg/L
1,1,2,2-Tetrachloroethane	ND	ND	ND	0.5	μg/L
Tetrachloroethene	0.7	ND	ND	0.5	μg/L
Toluene	ND	ND	ND	0.5	μg/L
1,2,3-Trichlorobenzene	ND	ND	ND	1.5	μg/L
1,2,4-Trichlorobenzene	ND	ND	ND	1.5	μg/L
1,1,1-Trichloroethane	ND	ND	ND	0.5	μg/L
1,1,2-Trichloroethane	ND	ND	ND	0.5	μg/L
Trichloroethene	2.9	ND	ND	0.5	μg/L
1,2,3-Trichloropropane	ND	ND	ND	0.5	μg/L
1,2,4-Trimethylbenzene	ND	ND	ND	0.5	μg/L
1,3,5-Trimethylbenzene	ND	ND	ND	0.5	μg/L
Vinyl chloride	ND	ND	ND	0.5	μg/L
m,p-Xylene	ND	ND	ND	1.0	μg/L
o-Xylene	ND	ND	ND	0.5	μg/L
Methyl-tert-butylether	5.0	ND	6.7	2.5	μg/L
Ethyl-tert-butylether	ND	ND	ND	2.5	μg/L
Di-isopropylether	ND	ND	ND	2.5	μg/L
tert-amylmethylether	ND	ND	ND	2.5	μg/L
tert-Butylalcohol	ND	ND	ND	25.0	μg/L μg/L
tert-Butylaiconor	ND	ND	ND	23.0	μg/L
Gasoline Range Organics (C4-C12)	ND	ND	ND	0.10	mg/L
Dilution Factor	1	1	1		
Surrogate Recoveries:				QC Limits	
Dibromofluoromethane	96%	96%	92%	60 - 140	
Toluene-ds	92%	91%	93%	60 - 140	
4-Bromofluorobenzene	97%	92%	91%	60 - 140	
Batch:	VOC5-120922-	VOC5-120922-	VOC5-120922-		
Daten.	01	01	01		

Client: Leighton Consulting, Inc. Report date: 12/14/2022

Client Address: 17781 Cowan Jones Ref. No.: ST-21305

Irvine, CA 92614 Client Ref. No.: 12736.024

Attn: Date Sampled: 12/6/2022

Date Received: 12/6/2022

Project: B191-194 **Date Analyzed:** 12/9/2022

Physical State: Water

EPA 8260B by 5030 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

c I ID	METHOD		
Sample ID:	BLANK #1		
Jones ID:	120922-		
VIII III A	V5MB1	Reporting Limit	Units
Analytes:			
Benzene	ND		μg/L
Bromobenzene	ND	0.5	$\mu g/L$
Bromodichloromethane	ND	0.5	$\mu g/L$
Bromoform	ND	0.5	$\mu g/L$
n-Butylbenzene	ND	0.5	μg/L
sec-Butylbenzene	ND	0.5	μg/L
tert-Butylbenzene	ND	0.5	$\mu g/L$
Carbon tetrachloride	ND	0.5	μg/L
Chlorobenzene	ND	0.5	μg/L
Chloroform	ND	0.5	μg/L
2-Chlorotoluene	ND	0.5	μg/L
4-Chlorotoluene	ND	0.5	μg/L
Dibromochloromethane	ND		μg/L
1,2-Dibromo-3-chloropropane	ND	0.5	μg/L
1,2-Dibromoethane (EDB)	ND	0.5	μg/L
Dibromomethane	ND	0.5	μg/L
1,2- Dichlorobenzene	ND	0.5	μg/L
1,3-Dichlorobenzene	ND		μg/L
1,4-Dichlorobenzene	ND	0.5	μg/L
1,1-Dichloroethane	ND	0.5	μg/L
1,2-Dichloroethane	ND	0.5	μg/L
1,1-Dichloroethene	ND	0.5	μg/L
cis-1,2-Dichloroethene	ND		μg/L
trans-1,2-Dichloroethene	ND	0.5	μg/L
1,2-Dichloropropane	ND	0.5	μg/L
1,3-Dichloropropane	ND	0.5	μg/L
2,2-Dichloropropane	ND		μg/L
1,1-Dichloropropene	ND		μg/L
cis-1,3-Dichloropropene	ND		μg/L

EPA 8260B by 5030 – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	METHOD BLANK #1	
Jones ID:	120922-	B
	V5MB1	Reporting Limit Units
Analytes:		24
trans-1,3-Dichloropropene	ND	0.5 μg/L
Ethylbenzene	ND	0.5 μg/L
Freon 11	ND	2.5 μg/L
Freon 12	ND	2.5 μg/L
Freon 113	ND	2.5 μg/L
Hexachlorobutadiene	ND	0.5 μg/L
Isopropylbenzene	ND	0.5 μg/L
4-Isopropyltoluene	ND	0.5 μg/L
Methylene chloride	ND	0.5 μg/L
Naphthalene	ND	2.5 μg/L
n-Propylbenzene	ND	0.5 μg/L
Styrene	ND	0.5 μg/L
1,1,1,2-Tetrachloroethane	ND	0.5 μg/L
1,1,2,2-Tetrachloroethane	ND	0.5 μg/L
Tetrachloroethene	ND	0.5 μg/L
Toluene	ND	0.5 μg/L
1,2,3-Trichlorobenzene	ND	1.5 μg/L
1,2,4-Trichlorobenzene	ND	1.5 μg/L
1,1,1-Trichloroethane	ND	0.5 μg/L
1,1,2-Trichloroethane	ND	0.5 μg/L
Trichloroethene	ND	0.5 μg/L
1,2,3-Trichloropropane	ND	0.5 μg/L
1,2,4-Trimethylbenzene	ND	0.5 μg/L
1,3,5-Trimethylbenzene	ND	0.5 μg/L
Vinyl chloride	ND	0.5 μg/L
m,p-Xylene	ND	1.0 μg/L
o-Xylene	ND	0.5 μg/L
Methyl-tert-butylether	ND	2.5 μg/L
Ethyl-tert-butylether	ND	2.5 μg/L
Di-isopropylether	ND	2.5 μg/L
tert-amylmethylether	ND	2.5 μg/L
tert-Butylalcohol	ND	25.0 μg/L
Gasoline Range Organics (C4-C12)	ND	0.10 mg/L
Dilution Factor	1	
Surrogate Recoveries:		OC Limits
Dibromofluoromethane	98%	60 - 140
Toluene-ds	91%	60 - 140
4-Bromofluorobenzene	96%	60 - 140
Batch:	VOC5-120922-	
<u> </u>	01	

ND = Value less than reporting limit

714-449-9937 562-646-1611 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan Jones Ref. No.: ST-21305

Irvine, CA 92614 Client Ref. No.: 12736.024

Attn: Mark Winthrow Date Sampled: 12/6/2022

Date Received: 12/6/2022

Report date: 12/14/2022

Project: B191-194 Date Analyzed: 12/9/2022

Physical State: Water

EPA 8260B by 5030 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

GC#:	VOC5-1	20922-01				
Jones ID:	120922-V5LCS1	120922-V5LCSD1			120922-V5CCV1	
	LCS	LCSD		Acceptability		Acceptability
<u>Parameter</u>	Recovery (%)	Recovery (%)	RPD	Range (%)	CCV	Range (%)
Vinyl chloride	67%	72%	8.0%	60 - 140	91%	80 - 120
1,1-Dichloroethene	89%	93%	4.8%	60 - 140	86%	80 - 120
Cis-1,2-Dichloroethene	79%	90%	12.4%	70 - 130	98%	80 - 120
1,1,1-Trichloroethane	95%	97%	1.7%	70 - 130	101%	80 - 120
Benzene	100%	101%	1.5%	70 - 130	106%	80 - 120
Trichloroethene	102%	107%	5.4%	70 - 130	108%	80 - 120
Toluene	89%	92%	4.0%	70 - 130	91%	80 - 120
Tetrachloroethene	83%	86%	4.0%	70 - 130	85%	80 - 120
Chlorobenzene	103%	106%	3.5%	70 - 130	113%	80 - 120
Ethylbenzene	88%	93%	5.2%	70 - 130	96%	80 - 120
1,2,4 Trimethylbenzene	89%	98%	10.2%	70 - 130	96%	80 - 120
Gasoline Range Organics (C4-C12)	91%	96%	5.2%	70 - 130		
Surrogate Recovery:						
Dibromofluoromethane	92%	94%		60 - 140	97%	60 - 140
Toluene-ds	82%	86%		60 - 140	90%	60 - 140
4-Bromofluorobenzene	88%	92%		60 - 140	101%	60 - 140

LCS = Laboratory Control Sample

LCSD = Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 20%

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan

Irvine, CA 92614

Attn: Mark Withrow

Project: B191-194

Report date: 12/14/2022 **Jones Ref. No.:** ST-21305

Client Ref. No.: 12736.024

Date Sampled: 12/6/2022

Date Received: 12/6/2022 **Date Analyzed:** 12/7&9/2022

Physical State: Water

EPA 6010B - CAM 17 Trace Metals by ICP-OES

Sample ID:	LB50-GW	LB55-GW	LB51-GW		
Jones ID:	ST-21305-04	ST-21305-17	ST-21305-25	Reporting Limit	Units
Analytes:					
Silver, Ag	ND	ND	ND	10	μg/L
Arsenic, As	ND	ND	ND	100	μg/L
Barium, Ba	50	82	52	10	μg/L
Beryllium, Be	ND	ND	ND	10	μg/L
Cadmium, Cd	ND	ND	ND	10	μg/L
Cobalt, Co	ND	ND	ND	10	μg/L
Chromium, Cr	ND	ND	ND	10	μg/L
Copper, Cu	ND	ND	ND	10	μg/L
Molybdenum, Mo	22	18	31	10	μg/L
Nickel, Ni	ND	ND	ND	10	μg/L
Lead, Pb	ND	ND	ND	10	μg/L
Antimony, Sb	ND	ND	ND	100	μg/L
Selenium, Se	ND	ND	ND	100	μg/L
Thallium, Tl	ND	ND	ND	100	μg/L
Vanadium, V	ND	12	ND	10	μg/L
Zinc, Zn	32	24	20	10	μg/L
Dilution Factor	1	1	1		
Batch:	122120701	122120701	122120701		

EPA 7470A - Mercury by Cold Vapor Atomic Absorption

Sample ID:	LB50-GW	LB55-GW	LB51-GW		
Jones ID:	ST-21305-04	ST-21305-17	ST-21305-25	Reporting Limit	Units
Mercury, Hg	ND	ND	ND	0.10	μg/L
Dilution Factor	1	1	1		
Batch:	H22120901	H22120901	H22120901		

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan Jones Ref. No.:

Irvine, CA 92614 Client Ref. No.: 12736.024

Attn: Mark Withrow Date Sampled: 12/6/2022

Date Received: 12/6/2022

12/14/2022

ST-21305

Project: B191-194 Date Analyzed: 12/7&9/2022

Physical State: Water

EPA 601	0B - CA	M 17	Trace	Metals	by I	CP-OES
---------	---------	------	-------	--------	------	--------

BATCH:	122120701		Prepared:	12/7/2022	Analyzed:	12/7/2022	
Analytes:	Result	Spike Level	% REC	% REC Limits	% RPD	Reporting Limit	Units
METHOD BLANK:	I221207-MB1						
Silver, Ag	ND					10	μg/L
Arsenic, As	ND					100	μg/L
Barium, Ba	ND					10	μg/L
Beryllium, Be	ND					10	μg/L
Cadmium, Cd	ND					10	μg/L
Cobalt, Co	ND					10	μg/L
Chromium, Cr	ND					10	μg/L
Copper, Cu	ND					10	μg/L
Molybdenum, Mo	ND					10	μg/L
Nickel, Ni	ND					10	μg/L
Lead, Pb	ND					10	μg/L
Antimony, Sb	ND					100	μg/L
Selenium, Se	ND					100	μg/L
Thallium, Tl	ND					100	μg/L
Vanadium, V	ND					10	μg/L
Zinc, Zn	ND					10	μg/L

ND= Not Detected

Jones Ref. No.:

Client Ref. No.:

12/14/2022

ST-21305

12736.024

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan

Irvine, CA 92614

Attn: Date Sampled: 12/6/2022

Project: B191-194 Date Received: 12/6/2022

Date Analyzed: 12/7&9/2022

Physical State: Water

	EP	EPA 6010B - CAM 17 Trace Metals by ICP-OES													
ВАТСН:	122120701	Prepared:	12/7/2022	Analyzed:	12/7/2022										
Analytes:	Result	Spike Level	% REC	% RPD	% REC Limits	Units									
LCS:	I221207-LCS1														
Barium, Ba	4200	4000	105%		80 - 120	μg/L									
Cobalt, Co	1020	1000	102%		80 - 120	μg/L									
Lead, Pb	1030	1000	103%		80 - 120	μg/L									
Selenium, Se	3640	4000	91%		80 - 120	μg/L									
Zinc, Zn	899	1000	90%		80 - 120	μg/L									
LCSD:	I221207-LCSD	1													
Barium, Ba	4090	4000	102%	2.7%	80 - 120	μg/L									
Cobalt, Co	1000	1000	100%	2.0%	80 - 120	μg/L									
Lead, Pb	1010	1000	101%	2.0%	80 - 120	μg/L									
Selenium, Se	3530	4000	88%	3.1%	80 - 120	μg/L									
Zinc, Zn	879	1000	88%	2.2%	80 - 120	μg/L									
CCV:	I221207-CCV1														
Barium, Ba	1040	1000	104%		90-110	μg/L									
Cobalt, Co	1050	1000	105%		90-110	μg/L									
Lead, Pb	1060	1000	106%		90-110	μg/L									
Selenium, Se	1040	1000	104%		90-110	μg/L									
Zinc, Zn	1030	1000	103%		90-110	μg/L									

CCV = Continuing Calibration Verification

LCS = Laboratory Control Sample

LCSD= Laboratory Control Sample Duplicate

ND= Not Detected

RPD = Relative Percent Difference; Acceptability range for RPD is $\leq 15\%$

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan Jones Ref. No.: ST-21305

Irvine, CA 92614 Client Ref. No.: 12736.024

Attn: Mark Withrow Date Sampled: 12/6/2022

Date Received: 12/6/2022

12/14/2022

Project: B191-194 Date Analyzed: 12/7&9/2022

Physical State: Water

	EPA 7470A - Mercury by Cold Vapor Atomic Absorption													
ВАТСН:	H22120901		Prepared:	12/8/2022	Analyzed:	12/9/2022								
Analytes:	Result	Spike Level	% REC	% RPD	% REC Limits	Reporting Limit	Units							
METHOD BLANK:	H221209-MB1													
Mercury, Hg	ND	_				0.10	μg/L							
LCS:	H221209-LCS1													
Mercury, Hg	4.471	3.65	122%1		80 - 120		μg/L							
LCSD:	H221209-LCSD	1												
Mercury, Hg	4.521	3.65	124%	1.2%	80 - 120		μg/L							
CCV:	H221209-CCV1													
Mercury, Hg	3.92	3.65	107%		90-110		μg/L							

ND= Not Detected

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 15%

LCS = Laboratory Control Sample

LCSD= Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

1 = LCS/LCSD recoveries exceeded range but were accepted since samples were ND.

11007 Forest Pl. Santa Fe Springs, CA 90670 (714) 449-9937 reports@joneserv.com

Chain-of-Custody Record

Turn	Around	Requested:	

Project Address Project Address Finall tungrarp Sampler			AS - Ac S5 - St BS - Br G - Gla AB - Ar P - Plant SOB! - MeOH - HNO3 -	7 3G. Cole Container Abbrevia cetate Sleeve ainless Steel ass Sleeve ass aber Bottle	2 O 24 or / Prese ations	ervative	Aqueous (A), Free Praduct (FP)	RRUE RENO OTL GOESS HAT S	sh 24 4 4 5 10 6 10 6 10 10 10 10 10 10 10 10 10 10 10 10 10	4 4 - 0 EPA \$105 NO 210 PA - 2 , P-	SEAN SLEON SUNCESTING	100° 50% 25% 10% charge WASOLTS VJE	е	uested		Containore	CONTAINETS	Jones Project # ST- 2 \$ 30° Page of Report Options EDD EDF*-10% Surcharge *Global ID		
Sample ID	Sample Collection Date	Sample Collection Time	Laboratory Samp	ole ID	Preserval	tive	Sample Container	Sample Matrix: Soil (5), Sludge (SL)	本は	Talk	HOL	0	PA				1 1 2	Number of	Notes & Special Instructio	ns
LB50 - 0.5	12/6/22	0125	ST-21300	5-01	Ire		9/455	5		X	X									
L B50 - 2.5	1	0735	ST-21305	-02			qlass	5		X	X	X					L	1		
LB50-5		750	ST_21305	-03			9/455	5		X	X	X					4	ł I		
L B50 - GW			ST-21305				glass/pag	A	4	X	X	X	X				8	7		
LB58-0.5		0832	ST-21305-	05			9/65	5		X	X	4	化中				1			
LB 58-2.5			ST-2130S-				4/455	5		X	×	X					4			
LB59-0.5			ST-21305		1		2/455	s		X	X.	X	ţLī					1		
LB59- 2.5		1	ST-21305				9/65	5		X	X	X			П		(+		
L856 - 0.5			St-21305.				1(45	5		X	X		460				1			
LB56 -2.5 Tes	V		ST-21305		1		9/455	5		X	X						L	-1		
elinquished By (Signature)		Printed	rvarne		Received B	y (Sign	Tocal	4				An	nted Na	me 130	CITO	9		T	otal Number of Containers	
ompany LCI elinquished By (Signature)		Date (2/6) Printed	122 142			7.	ratory (Sign		5			2 - L			Time	24	3	cons	nt signature on this Chain of Custo islitutes acknowledgement that the les have been regested, and the in rovided herein is correct and accur	above formation

maithrup leightongrays.com

949 - 7911 21011

Client

Email

Project Address

Relinquished By (Signature)

Company

Printed Name

Time.

Date:

Santa Fe Sprin reports@ www.

7-11 Ice	Sample Container	Sample Soll (S), Slu	X Tale	HAL X	* UOCs	4671		Number	Notes & Special Instructions
Sample Container / Pre Abbreviations AS - Acetale Sleeve SS - Stainless Steel Sleev BS - Brass Sleeve G - Glass AB - Amber Bottle P - Plastic SOBI - Sodium Bisuifate MeOH - Methanol HCI - Hydrochloric Acid HNO3 - Nitric Acid O - Other (See Notes)		e Matrix: Sluge (SL), Aqueous (A), Free Product (FP)	22 Motals c6108/2000	1-4 d,0 EPA 8015	EPA	S EPA	uested	of Containers	Report Options EDD EDF* - 10% Surcharge *Global ID
11007 Forest PL nta Fe Springs, CA 90670 (714) 449-9937 reports@jonesenv.com www.jonesenv.com Date 12 / C / 2 2 Client Project #			urn / Imr Ru Ru Ru Ru	Arou medi sh 2 sh 4 sh 7 sh 9	and ate A 4 Ho 8 Ho 2 Ho 6 Ho	Requested: Attention - 200% ours - 100% ours - 50% ours - 25% ours - 10% ours - 10%	Cust	ody	Record LAB USE ONLY Jones Project # ST-21305 Page

Printed Name

Time

Date

Client signature on this Chain of Custody form

constitutes acknowledgement that the above analyses have been reqested, and the information provided herein is correct and accurate.

949 - 394-2194 Report To Sampler Mark Without TCO				SOBI - Sodium Bisulfate MeOH - Methanol HCI - Hydrochloric Acid HNO3 - Nitric Acid O - Other (See Notes)				0 P 4-	5	n		of Containers	*Global ID
Sample ID	Sample Collection Date	Sample Collection Time	Laboratory Sample ID	Preservative	Sample Container	Sample Soil (S), Silv	17					Number	Notes & Special Instructions
LB57-0.5	12/6/22	0944	St_21305-11	Tee	glass	5	X	X	*	4531		1	
LB57-2.5	1	0946	ST-21305-12		glass	5	X	X	X			4	
LB54-0.5		1006	ST-21305-13		21055	5	X	X	*	700		1	
LB54-2.5		1016	ST-21305-14		poly	5	X	X	X			4	
LB55 - 0.5		1028	ST-21305-15		91455	5	X	X	*	TE		1	
LB55-2.5		1032	51-21305-14		21455	5	X	×	X			4	
1B55- GW		1045	ST-21305-17		glass a	A	X	X	X	X		8	
L853 -0.5		1110	ST-21305-18		1(455	5	X	×	*	TED		ı	
LB53-2.5		1115	ST-21305-19		pily	5	X	V	+			4	
LB52-0.5	1	1138	ST-21365-20	V	glass t	405	X	X	+	TER		ı	
Relinquished By (Signature)		Printed The	ura Duna-	Received By (Si	gnature)						USECTOR		Total Number of Containers
Company		126	IV 1423	Company	(12-6-26	1424	-	ent signature on this Chain of Custody form

Received By Laboratory (Signature)

Company

Page 43 of 45

Santa F

11007 Forest PI e Springs, CA 90670	Chain-of-Custody	Record
(714) 449-9937 ports@jonesenv.com	Turn Around Requested:	
www.jonesenv.com	□ Immediate Attention - 200% □ Rush 24 Hours - 100%	LAB USE ONLY
te	□ Rush 48 Hours - 50%	Jones Project #
17/-1-2	- Fresh 72 House 259/	

Project Name B191-194 Project Address Email Multhroweleightongroup.com Phone (949) 394-2194 Report To Sampler Mark W. Hum TCD Sample Collection Collection Date Time Laboratory Sa					Client Project # 12736-024 Sample Container / Preservative Abbreviations AS - Acetate Sleeve SS - Stainless Steel Sleeve BS - Brass Sleeve G - Glass AB - Amber Bottle P - Plastic SOBI - Sodium Bisulfate MeOH - Methanol HCI - Hydrochloric Acid HN03 - Nitric Acid O - Other (See Notes) Sample			Matrix: ldge (SL), Aqueous (A), Free Product (FP)	22 motels 60108/20 Nave 52	ush 4 dish 7 dish 9 dis	8 Hot 22 Hot 66 Hot 1- No.	ours - ours - ours - o Sur	THE RESERVE OF THE PARTY OF THE		estec			of Containers	Jones Project # ST-21305 Page 3 of 3 Report Options EDD EDF*-10% Surcharge *Global ID
Sample ID	Coll	ection	Collection	Laboratory Sam	ple ID	Preservative	Sample Container	Sample Soil (S), Sit	1+1	HAL	7.00	2						Number	Notes & Special Instructions
1852-25	izl	6/22	1140	ST-2136		Ice	poly	5	×	¥	×							4	
LB52-5			1142	°ST-21309	7-22		poly	5	1	×	+							4	
LB51-0.5			1152	ST-21305			poly	5	X	x	+	TEX						1	
LB51-25			1154	ST-21305	-24		poly	5	1	×	X							4	
LB51-GW	-	4		ST-21305		9	glass y mly	A	X	+	*	X						8	
Relinquished By (Signature) Printed Name Cucresa Dunce Company Date Time 12/1/22 Relinquished By (Signature) Printed Name			23	23 TEL 12 4 Received By Laboratory (Signature) Printed					MV\Q e -\Q-\Q ated Nam	2	Time	124	W.	Total Number of Containers Client signature on this Chain of Custody form constitutes acknowledgement that the above analyses have been regested, and the information					
Company Date: Time				Company Page 44-of 45 Date Time							provided herein is correct and accurate.								

714-449-9937 562-646-1611 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

SAMPLE RE	CEIPT F	ORM		Jones ID	: ST-2	21305
PROJECT: B191-194	DATE/TIME	REC	EIVE	-	16/22 AN	1424
TEMPERATURE: Thermometer ID: T-2 Temperature Cooler #1 \bigcirc °C \pm the CF(+0.5) Temperature Cooler #2 \bigcirc °C \pm the CF(+0.5) Temperature Criteria: $0 \le 6$ °C (NO frozen containers) If criteria is not met:	°C) 0	Sa Met?	_°C	E	on Due: 0 Blank (Blank No	Sample Sample
Sample Received on ice? Sample received Chilled on same day of sampling	35 0	Yes Yes	0	No No Checked	d Bv:	ANO
Temperature Non-Conformance (NC): NC No. Sample not received on ice sample not received chilled Sample received chilled, but not on the same day of sample received chilled, but not on the same day of sample received chilled, but not on the same day of sample received chilled, but not on the same day of sample received chilled, but not on the same day of sample received chilled, but not on the same day of sample received chilled.	ampling			, and		
SAMPLE CONDITION:				YES	NO*	N/A
Chain of Custody (COC) received filled out completely				Ø	□*	
Total number of containers received match COC				ø	□ *	
Sample container label(s) consistent with COC				ø	□*	
Sample container(s) intact and in good condition				Ø	□ *	
Proper containers and sufficient volume for analyses reque	ested on C	OC		7	0*	
Proper preservative indicated on COC/container for analys	es request	ted		d	□*	
Volatile analysis container(s) free of headspace (EPA 8260 wat	er)			Ø	-*	
Custody Seals Intact on Cooler/Sample				<u></u>	□*	N
CONTAINER TYPE: Solid: Aqueous: 5035 Kits: 12 Glass Jar: 15 Sleeve: 7 Other: 5030 Kits: Other: Other:	3	_	Air/	6 I 72	hr Day	_

*Complete Non-Conformance if checked

W

(1L) _____ (6L) _

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan

Irvine, CA 92614

Attn: Mark Withrow

B191-194 Project:

Report date: 12/29/2022 Jones Ref. No.: ST-21305

Client Ref. No.: 12736.024

Date Sampled: 12/6/2022

Date Received: 12/6/2022 Date Analyzed: 12/28/2022

Physical State: Soil

ANALYSES REQUESTED

Soil:

- EPA 8260B by 5035 Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics 1.
- EPA 8082 Polychlorinated Biphenyls (PCBs) by GC/ECD 2.
- 3. STLC CA-Waste Extraction Test (CA-WET) by EPA 6010B by ICP-OES
- TCLP by EPA 6010B by ICP-OES 4.

Approval:

Juan Camacho, M.S.

Stationary Lab Technical Manager

11007 FOREST PLACE 714-449-9937 SANTA FE SPRINGS, CA 90670 562-646-1611 WWW.JONESENV.COM

Report date:

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Leighton Consulting, Inc.

17781 Cowan **Client Address:** Jones Ref. No.: ST-21305 Client Ref. No.: 12736.024

Irvine, CA 92614

Mark Withrow **Date Sampled:** 12/6/2022 Attn:

Date Received: 12/6/2022

B191-194 Date Analyzed: 12/28/2022 Project:

Physical State: Soil

12/29/2022

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	LB58-0.5	LB59-0.5	LB56-0.5	LB57-0.5	LB54-0.5		
Jones ID:	ST-21305-05	ST-21305-07	ST-21305-09	ST-21305-11	ST-21305-13	Reporting Limit	Units
Analytes:							
Benzene	ND	ND	ND	ND	ND	1.0	μg/kg
Bromobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Bromodichloromethane	ND	ND	ND	ND	ND	1.0	μg/kg
Bromoform	ND	ND	ND	ND	ND	1.0	μg/kg
n-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
sec-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
tert-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Carbon tetrachloride	ND	ND	ND	ND	ND	1.0	μg/kg
Chlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Chloroform	ND	ND	ND	ND	ND	1.0	μg/kg
2-Chlorotoluene	ND	ND	ND	ND	ND	1.0	μg/kg
4-Chlorotoluene	ND	ND	ND	ND	ND	1.0	μg/kg
Dibromochloromethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	1.0	μg/kg
Dibromomethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloroethane (EDC)	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
2,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	LB58-0.5	LB59-0.5	LB56-0.5	LB57-0.5	LB54-0.5		
Jones ID:	ST-21305-05	ST-21305-07	ST-21305-09	ST-21305-11	ST-21305-13	Reporting Limit	Units
Analytes:						12000	
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg
Ethylbenzene	40.5	10.9	ND	ND	6.0	1.0	μg/kg
Freon 11	ND	ND	ND	ND	ND	5.0	μg/kg
Freon 12	ND	ND	ND	ND	ND	5.0	μg/kg
Freon 113	ND	ND	ND	ND	ND	5.0	μg/kg
Hexachlorobutadiene	ND	ND	ND	ND	ND	1.0	μg/kg
Isopropylbenzene	ND	ND	ND	ND	5.5	1.0	μg/kg
4-Isopropyltoluene	ND	ND	ND	ND	8.8	1.0	μg/kg
Methylene chloride	ND	ND	ND	ND	ND	1.0	μg/kg
Naphthalene	ND	ND	ND	ND	339	5.0	μg/kg
n-Propylbenzene	ND	ND	ND	ND	6.7	1.0	μg/kg
Styrene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Tetrachloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
Toluene	1.1	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	3.0	μg/kg
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	3.0	μg/kg
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Trichloroethene	ND	ND	ND	ND	1.0	1.0	μg/kg
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,4-Trimethylbenzene	ND	ND	ND	ND	69.7	1.0	μg/kg
1,3,5-Trimethylbenzene	ND	ND	ND	ND	22.9	1.0	μg/kg
Vinyl chloride	ND	ND	ND	ND	ND	1.0	μg/kg
m,p-Xylene	289	81.3	ND	ND	5.2	2.0	μg/kg
o-Xylene	59.6	17.5	ND	ND	4.4	1.0	μg/kg
Methyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Ethyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Di-isopropylether	ND	ND	ND	ND	ND	5.0	μg/kg
tert-amylmethylether	ND	ND	ND	ND	ND	5.0	μg/kg
tert-Butylalcohol	ND	ND	ND	ND	ND	50.0	μg/kg
Gasoline Range Organics (C4-C12)	0.35	ND	ND	ND	3.11	0.20	mg/kg
Dilution Factor	1	- 1	1	1	1		
Surrogate Recoveries:						OC Limit	
Dibromofluoromethane	92%	91%	91%	93%	92%	60 - 140	
Toluene-ds	108%	102%	101%	101%	100%	60 - 140	
4-Bromofluorobenzene	88%	89%	90%	93%	111%	60 - 140	
Batch:	VOC7-122822-	VOC7-122822-	VOC7-122822-	VOC7-122822-	VOC7-122822-		
The second secon	01	01	01	01	01		

11007 FOREST PLACE 714-449-9937 SANTA FE SPRINGS, CA 90670 562-646-1611 WWW.JONESENV.COM

Report date:

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Leighton Consulting, Inc.

17781 Cowan **Client Address:** Jones Ref. No.: ST-21305 Client Ref. No.: 12736.024

Irvine, CA 92614

Mark Withrow **Date Sampled:** 12/6/2022 Attn:

Date Received: 12/6/2022

12/29/2022

B191-194 Date Analyzed: 12/28/2022 Project:

> **Physical State:** Soil

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	LB55-0.5	LB53-0.5	LB52-0.5	LB51-0.5		
Jones ID:	ST-21305-15	ST-21305-18	ST-21305-20	ST-21305-23	Reporting Limit	Units
Analytes:						
Benzene	ND	ND	ND	ND	1.0	μg/kg
Bromobenzene	ND	ND	ND	ND	1.0	μg/kg
Bromodichloromethane	ND	ND	ND	ND	1.0	μg/kg
Bromoform	ND	ND	ND	ND	1.0	μg/kg
n-Butylbenzene	ND	ND	ND	ND	1.0	μg/kg
sec-Butylbenzene	ND	ND	ND	ND	1.0	μg/kg
tert-Butylbenzene	ND	ND	ND	ND	1.0	μg/kg
Carbon tetrachloride	ND	ND	ND	ND	1.0	μg/kg
Chlorobenzene	ND	ND	ND	ND	1.0	μg/kg
Chloroform	ND	ND	ND	ND	1.0	μg/kg
2-Chlorotoluene	ND	ND	ND	ND	1.0	μg/kg
4-Chlorotoluene	ND	ND	ND	ND	1.0	μg/kg
Dibromochloromethane	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	1.0	μg/kg
Dibromomethane	ND	ND	ND	ND	1.0	μg/kg
1,2- Dichlorobenzene	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichlorobenzene	ND	ND	ND	ND	1.0	μg/kg
1,4-Dichlorobenzene	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethane	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloroethane (EDC)	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethene	ND	ND	ND	ND	1.0	μg/kg
cis-1,2-Dichloroethene	ND	ND	ND	ND	1.0	μg/kg
trans-1,2-Dichloroethene	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloropropane	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichloropropane	ND	ND	ND	ND	1.0	μg/kg
2,2-Dichloropropane	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloropropene	ND	ND	ND	ND	1.0	μg/kg
cis-1,3-Dichloropropene	ND	ND	ND	ND	1.0	μg/kg

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

LB52-0.5

LB51-0.5

LB55-0.5

LB53-0.5

Sample 1D.	LD33-0.3	LD33-0.3	LD32-0.3	LD31-0.3		
Jones ID:	ST-21305-15	ST-21305-18	ST-21305-20	ST-21305-23	Reporting Limit	Units
Analytes:						
trans-1,3-Dichloropropene	ND	ND	ND	ND	1.0	μg/kg
Ethylbenzene	ND	ND	ND	ND	1.0	μg/kg
Freon 11	ND	ND	ND	ND	5.0	μg/kg
Freon 12	ND	ND	ND	ND	5.0	μg/kg
Freon 113	ND	ND	ND	ND	5.0	μg/kg
Hexachlorobutadiene	ND	ND	ND	ND	1.0	μg/kg
Isopropylbenzene	ND	ND	ND	ND	1.0	μg/kg
4-Isopropyltoluene	ND	ND	ND	ND	1.0	μg/kg
Methylene chloride	ND	ND	ND	ND	1.0	μg/kg
Naphthalene	28.4	32.8	ND	ND	5.0	μg/kg
n-Propylbenzene	ND	ND	ND	ND	1.0	μg/kg
Styrene	ND	ND	ND	ND	1.0	μg/kg
1,1,2-Tetrachloroethane	ND	ND	ND	ND	1.0	μg/kg
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	1.0	μg/kg
Tetrachloroethene	10.9	ND	ND	ND	1.0	μg/kg
Toluene	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichlorobenzene	ND	ND	ND	ND	3.0	μg/kg
1,2,4-Trichlorobenzene	ND	ND	ND	ND	3.0	μg/kg
1,1,1-Trichloroethane	ND	ND	ND	ND	1.0	μg/kg
1,1,2-Trichloroethane	ND	ND	ND	ND	1.0	μg/kg
Trichloroethene	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichloropropane	ND	ND	ND	ND	1.0	μg/kg
1,2,4-Trimethylbenzene	ND	10.2	ND	ND	1.0	μg/kg
1,3,5-Trimethylbenzene	ND	6.8	ND	ND	1.0	μg/kg
Vinyl chloride	ND	ND	ND	ND	1.0	μg/kg
m,p-Xylene	ND	ND	ND	ND	2.0	μg/kg
o-Xylene	ND	ND	ND	ND	1.0	μg/kg
Methyl-tert-butylether	ND	ND	ND	ND	5.0	μg/kg
Ethyl-tert-butylether	ND	ND	ND	ND	5.0	μg/kg
Di-isopropylether	ND	ND	ND	ND	5.0	μg/kg
tert-amylmethylether	ND	ND	ND	ND	5.0	μg/kg
tert-Butylalcohol	ND	ND	ND	ND	50.0	μg/kg
Gasoline Range Organics (C4-C12)	ND	0.52	ND	ND	0.20	mg/kg
Dilution Factor	1	1	1	1		
Surrogate Recoveries:					QC Limits	
Dibromofluoromethane	82%	92%	90%	91%	60 - 140	
Toluene-d ₈	108%	110%	115%	115%	60 - 140	
4-Bromofluorobenzene	100%	89%	83%	74%	60 - 140	
Batch:	VOC7-122822-	VOC7-122822-	VOC7-122822-	VOC7-122822-		
	01	01	01	01		

ND = Value less than reporting limit

Sample ID:

714-449-9937 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Leighton Consulting, Inc. Report date: 12/29/2022

Client Address: 17781 Cowan Jones Ref. No.: ST-21305

Irvine, CA 92614 Client Ref. No.: 12736.024

Attn: Mark Withrow Date Sampled: 12/6/2022

Date Received: 12/6/2022

Project: B191-194 **Date Analyzed:** 12/28/2022

Physical State: Soil

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

	METHOD		
Sample ID:	BLANK #1		
I ID.	122822-		
Jones ID:	V7MB1	Reporting Limit	Units
Analytes:			
Benzene	ND	1.0	μg/kg
Bromobenzene	ND	1.0	μg/kg
Bromodichloromethane	ND	1.0	μg/kg
Bromoform	ND	1.0	μg/kg
n-Butylbenzene	ND	1.0	μg/kg
sec-Butylbenzene	ND	1.0	μg/kg
tert-Butylbenzene	ND	1.0	μg/kg
Carbon tetrachloride	ND	1.0	μg/kg
Chlorobenzene	ND	1.0	μg/kg
Chloroform	ND	1.0	μg/kg
2-Chlorotoluene	ND	1.0	μg/kg
4-Chlorotoluene	ND	1.0	μg/kg
Dibromochloromethane	ND	1.0	μg/kg
1,2-Dibromo-3-chloropropane	ND	1.0	μg/kg
1,2-Dibromoethane (EDB)	ND	1.0	μg/kg
Dibromomethane	ND	1.0	μg/kg
1,2- Dichlorobenzene	ND	1.0	μg/kg
1,3-Dichlorobenzene	ND	1.0	μg/kg
1,4-Dichlorobenzene	ND	1.0	μg/kg
1,1-Dichloroethane	ND	1.0	μg/kg
1,2-Dichloroethane	ND	1.0	μg/kg
1,1-Dichloroethene	ND	1.0	μg/kg
cis-1,2-Dichloroethene	ND	1.0	μg/kg
trans-1,2-Dichloroethene	ND	1.0	μg/kg
1,2-Dichloropropane	ND	1.0	μg/kg
1,3-Dichloropropane	ND	1.0	μg/kg
2,2-Dichloropropane	ND	1.0	μg/kg
1,1-Dichloropropene	ND	1.0	μg/kg
cis-1,3-Dichloropropene	ND	1.0	μg/kg

EPA 8260B by 5035 – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	METHOD BLANK #1		
	122822-		
Jones ID:	V7MB1	Reporting Limit Un	iits
Analytes:			
trans-1,3-Dichloropropene	ND	1.0 μg/	/kg
Ethylbenzene	ND		kg
Freon 11	ND	5.0 μg/	/kg
Freon 12	ND	5.0 μg/	/kg
Freon 113	ND	5.0 μg/	/kg
Hexachlorobutadiene	ND		/kg
Isopropylbenzene	ND		/kg
4-Isopropyltoluene	ND		/kg
Methylene chloride	ND		/kg
Naphthalene	ND		/kg
n-Propylbenzene	ND		/kg
Styrene	ND		/kg
1,1,1,2-Tetrachloroethane	ND	1.0 μg/	
1,1,2,2-Tetrachloroethane	ND		/kg
Tetrachloroethene	ND		/kg
Toluene	ND		/kg
1,2,3-Trichlorobenzene	ND		/kg
1,2,4-Trichlorobenzene	ND		/kg
1,1,1-Trichloroethane	ND		/kg
1,1,2-Trichloroethane	ND		/kg
Trichloroethene	ND		/kg
1,2,3-Trichloropropane	ND		/kg
1,2,4-Trimethylbenzene	ND		/kg
1,3,5-Trimethylbenzene	ND		/kg
Vinyl chloride	ND		/kg
m,p-Xylene	ND		/kg
o-Xylene	ND		/kg
Methyl-tert-butylether	ND		/kg
Ethyl-tert-butylether	ND		/kg
Di-isopropylether	ND		/kg
tert-amylmethylether	ND		/kg
tert-Butylalcohol	ND	50.0 μg	kg
Gasoline Range Organics (C4-C12)	ND	0.20 mg	/kg
Dilution Factor	1-		
Surrogate Recoveries:		OC Limits	
Dibromofluoromethane	90%	60 - 140	
Toluene-ds	101%	60 - 140	
4-Bromofluorobenzene	95%	60 - 140	
Batch:	VOC7-122822-		

ND = Value less than reporting limit

01

Batch:

714-449-9937 562-646-1611 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

Report date:

Jones Ref. No.:

Client Ref. No.:

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan

Irvine, CA 92614

Attn: Mark Withrow

Project: B191-194

Date Sampled: 12/6/2022

12/29/2022

ST-21305

12736.024

Date Received: 12/6/2022 **Date Analyzed:** 12/28/2022

Physical State: Soil

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

GC#:	VC	C7-122822-01				
Jones ID:	122822-V7LCS1	122822-V7LCSD1			122822-V7CCV1	
	LCS	LCSD		Acceptability		Acceptability
Parameter	Recovery (%)	Recovery (%)	RPD	Range (%)	CCV	Range (%)
Vinyl chloride	68%	67%	1.3%	60 - 140	97%	80 - 120
1,1-Dichloroethene	103%	92%	10.5%	60 - 140	97%	80 - 120
Cis-1,2-Dichloroethene	84%	78%	6.7%	70 - 130	83%	80 - 120
1,1,1-Trichloroethane	88%	82%	7.3%	70 - 130	96%	80 - 120
Benzene	106%	97%	9.0%	70 - 130	116%	80 - 120
Trichloroethene	101%	94%	7.1%	70 - 130	103%	80 - 120
Toluene	98%	87%	11.4%	70 - 130	114%	80 - 120
Tetrachloroethene	95%	89%	6.5%	70 - 130	102%	80 - 120
Chlorobenzene	103%	97%	6.1%	70 - 130	113%	80 - 120
Ethylbenzene	91%	84%	7.7%	70 - 130	113%	80 - 120
1,2,4 Trimethylbenzene	88%	79%	10.2%	70 - 130	116%	80 - 120
Gasoline Range Organics (C4-C12)	96%	87%	9.6%	70 - 130	115%	
Surrogate Recovery:						
Dibromofluoromethane	87%	88%		60 - 140	93%	60 - 140
Toluene-ds	101%	100%		60 - 140	114%	60 - 140
4-Bromofluorobenzene	106%	107%		60 - 140	127%	60 - 140

LCS = Laboratory Control Sample

LCSD = Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 20%

Jones Ref. No.:

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan

Irvine, CA 92614

Attn: Mark Withrow

Project: B191-194

Date Sampled: 12/6/2022

Client Ref. No.: 12736.024

12/29/2022

ST-21305

Date Received: 12/6/2022 **Date Analyzed:** 12/20/2022

Physical State: Soil

EPA 8082 – I	Polychlorinated B	iphenyls	(PCBs)	by	GC/ECD

Sample ID:	LB50-0.5	LB50-5	LB58-0.5	LB59-0.5	LB56-0.5		
Jones ID:	ST-21305-01	ST-21305-03	ST-21305-05	ST-21305-07	ST-21305-09	Reporting Limit	<u>Units</u>
Analytes:							
Aroclor 1016	ND	ND	ND	ND	ND	50	μg/kg
Aroclor 1221	ND	ND	ND	ND	ND	50	μg/kg
Aroclor 1232	ND	ND	ND	ND	ND	50	μg/kg
Aroclor 1242	ND	ND	ND	ND	ND	50	μg/kg
Aroclor 1248	ND	ND	ND	ND	ND	50	μg/kg
Aroclor 1254	ND	ND	ND	ND	ND	50	μg/kg
Aroclor 1260	ND	ND	ND	ND	ND	50	μg/kg
Aroclor 1262	ND	ND	ND	ND	ND	50	μg/kg
Aroclor 1268	ND	ND	ND	ND	ND	50	μg/kg
Dilution Factor:	1	1	1	1	1		
Surrogate Recoveries:						QC Limi	t <u>s</u>
TCMX	73%	75%	55%	64%	56%	30 - 120	
Decachlorobiphenyl	75%	86%	51%	45%	70%	30 - 120	
Batch:	ECD4_ 122022 01	ECD4_ 122022_01	ECD4_ 122022_01	ECD4_ 122022 01	ECD4_ 122022 01		

714-449-9937 562-646-1611 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

Report date:

Jones Ref. No.:

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Leighton Consulting, Inc.

17781 Cowan

Irvine, CA 92614

Attn: Mark Withrow

Project: B191-194

Project Address:

Client Address:

Date Sampled: 12/6/2022

Client Ref. No.: 12736.024

12/29/2022

ST-21305

Date Received: 12/6/2022 **Date Analyzed:** 12/20/2022

Date Analyzed: 12/2 Physical State: Soil

EPA 8082 - Polychlorinated Biphenyls (PCBs) by GC/ECD

Sample ID:	LB54-0.5	LB55-0.5	LB53-0.5	LB52-0.5	LB52-2.5		
Jones ID:	ST-21305-13	ST-21305-15	ST-21305-18	ST-21305-20	ST-21305-21	Reporting Limit	Units
Analytes:							
Aroclor 1016	ND	ND	ND	ND	ND	50	μg/kg
Aroclor 1221	ND	ND	ND	ND	ND	50	μg/kg
Aroclor 1232	ND	ND	ND	ND	ND	50	μg/kg
Aroclor 1242	ND	ND	ND	ND	ND	50	μg/kg
Aroclor 1248	ND	ND	ND	ND	ND	50	μg/kg
Aroclor 1254	ND	ND	ND	ND	ND	50	μg/kg
Aroclor 1260	ND	ND	ND	ND	ND	50	μg/kg
Aroclor 1262	ND	ND	ND	ND	ND	50	μg/kg
Aroclor 1268	ND	ND	ND	ND	ND	50	μg/kg
Dilution Factor:	1	1	1	1.	1		
Surrogate Recoveries:						QC Limi	<u>ts</u>
TCMX		65%	37%	51%	57%	30 - 120	
Decachlorobiphenyl		70%	75%	•		30 - 120	
Batch:	ECD4_ 122022_01	ECD4_ 122022_01	ECD4_ 122022_01	ECD4_ 122022_01	ECD4_ 122022_01		

ND = Value less than reporting limit

■ = Sample matrix prevented adequate surrogate recovery

Client:	Leighton Consulting, Inc.	Report date:	12/29/2022
		The state of the s	CO0000 GAR TYPE A SHOULD RECEIVE

 Client Address:
 17781 Cowan
 Jones Ref. No.:
 ST-21305

 Irvine, CA 92614
 Client Ref. No.:
 12736.024

Attn: Date Sampled: 12/6/2022

Date Received: 12/6/2022

Project: B191-194 Date Analyzed: 12/20/2022

Project Address: Physical State: Soil

	EPA 8082 - Polychlorinated Biphe	nyls (PCBs) by GC/ECD		
Sample ID:	METHOD BLANK #1	TRAYER		
Jones ID:	MB1- 122022ECD4	Reporting Limit	<u>Units</u>	
Analytes:				
Aroclor 1016	ND	50	μg/kg	
Aroclor 1221	ND	50	μg/kg	
Aroclor 1232	ND	50	μg/kg	
Aroclor 1242	ND	50	μg/kg	
Aroclor 1248	ND	50	μg/kg	
Aroclor 1254	ND	50	μg/kg	
Aroclor 1260	ND	50	μg/kg	
Aroclor 1262	ND	50	μg/kg	
Aroclor 1268	ND	50	μg/kg	
Dilution Factor:	1			
Surrogate Recoveries:		QC Limi	its	
TCMX	119%	30 - 120		
Decachlorobiphenyl	114%	30 - 120		
Batch:	ECD4_			

ND = Value less than reporting limit

122022 01

714-449-9937 562-646-1611 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan

Irvine, CA 92614

Attn: Mark Withrow

Project: B191-194

Report date: 12/29/2022

Jones Ref. No.: ST-21305

Client Ref. No.: 12736.024

Date Sampled: 12/6/2022

Date Received: 12/6/2022 **Date Analyzed:** 12/20/2022

Date Analyzed: 12/20/2 Physical State: Soil

BATCH:	ECD4_122	022_01	Prepared:	2/19/2022	Analyzed:	12/20/2022	
	EPA	8082 – Polychlo	orinated Bipheny	ls (PCBs) b	y GC/ECD		
	Result	Spike Level	9/	Recovery	% RPD	% Recovery Limits	Units
LCS:	LCS1-122022ECD4		SAMPLE S	SAMPLE SPIKED: CLEAN SOIL			
Analytes:							
Aroclor 1016	490	500		98%		50 - 120	ppb
Aroclor 1260	515	500		103%		50 - 120	ppb
Surrogate Recoveries:							
TCMX				104%		30 - 120	
Decachlorobiphenyl				111%		30 - 120	

LCSD:	LCSD1-12202	22ECD4	SAMPLE SPIKED:	CLEAN SOIL		
Aroclor 1016	502	500	100%	2.4%	50 - 120	ppb
Aroclor 1260	525	500	105%	1.9%	50 - 120	ppb
Surrogate Recovery:						
TCMX			106%		30 - 120	
Decachlorobiphenyl			118%		30 - 120	

CCV:	CCV1-122022ECD4				
Analytes: Aroclor 1016 Aroclor 1260	760 799	700 700	109% 114%	80-120 80-120	ppb
Surrogate Recoveries:		700	11476	80-120	ppb
TCMX			115%	80-120	
Decachlorobiphenyl			119%	80-120	

LCS= Laboratory Control Sample

LCSD= Laboratory Control Sample Duplicate

CCV= Continuing Calibration Verification

RPD = Relative Percent Difference

714-449-9937 562-646-1611 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

Report date:

Jones Ref. No.:

Date Sampled:

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan

Irvine, CA 92614

Attn: Mark Withrow

Date Received: 12/6/2022

Project: B191-194 Date Analyzed: 12/21&28/2022

Physical State: Soil

Client Ref. No.: 12736.024

12/29/2022

ST-21305

12/6/2022

STLC CA-Waste Extraction Test (CA-WET) by EPA 6010B by ICP-OES

Sample ID: LB58-2.5

Jones ID:	ST-21305-06	Reporting Limit	Units
Analytes:			
Arsenic, As	ND	0.10	mg/L
Chromium, Cr	0.02	0.01	mg/L
Copper, Cu	0.98	0.01	mg/L
Lead, Pb	3.47	0.01	mg/L
Dilution Factor	1		

Batch: 122122702

11007 FOREST PLACE 714-449-9937 SANTA FE SPRINGS, CA 90670 562-646-1611 WWW.JONESENV.COM

Report date:

Jones Ref. No.:

Date Sampled:

Client Ref. No.: 12736.024

12/29/2022

ST-21305

12/6/2022

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Leighton Consulting, Inc.

17781 Cowan Client Address:

Irvine, CA 92614

Mark Withrow Attn:

Date Received: 12/6/2022 B191-194 12/21&28/2022 Project: Date Analyzed:

Physical State: Soil

STLC CA-Waste Extraction Test (CA-WET) by EPA 6010B by ICP-OES

Sample ID: LB57-0.5 LB55-0.5 LB53-2.5

Jones ID: ST-21305-11 ST-21305-15 ST-21305-19 Reporting Limit Units

Analytes:

Lead, Pb ND 0.01 1.44 2.02 mg/L **Dilution Factor** 1 1

Batch: 122121901 122121901 122121901

Report date:

Jones Ref. No.:

Date Sampled:

Client Ref. No.: 12736.024

12/29/2022

ST-21305

12/6/2022

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan

Irvine, CA 92614

Attn: Mark Withrow

Date Received: 12/6/2022

Project: B191-194 Date Analyzed: 12/21&28/2022

Physical State: Soil

STLC CA-Waste Extraction Test (CA-WET) by EPA 6010B by ICP-OES

Sample ID: LB52-5

Jones ID: ST-21305-22 Reporting Limit Units

Analytes:

 Copper, Cu
 5.30
 0.01
 mg/L

 Lead, Pb
 6.68
 0.01
 mg/L

 Dilution Factor
 1
 1

Batch: 122122702

ND = Value less than reporting limit

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan

Irvine, CA 92614

Attn: Mark Withrow

Project: B191-194

Date Sampled: 12/6/2022

Report date:

Jones Ref. No.:

Date Received: 12/6/2022 Date Analyzed: 12/21&28/2022

Client Ref. No.: 12736.024

12/29/2022

12/29/2022

Physical State: Soil

BATCH:	122121901		Prepared:	12/19/2022	Analyzed:	12/21/2022	
Analytes:	Result	Spike Level	% REC	% RPD	% REC Limits	Reporting Limit	Units
Method Blank:	I221219-MB1						
Arsenic, As	ND					0.10	mg/L
Chromium, Cr	ND					0.01	mg/L
Copper, Cu	ND					0.01	mg/L
Lead, Pb	ND					0.01	mg/L
LCS:	1221219-LCS1						
Arsenic, As	3.81	4.00	95%		80 - 120		mg/L
Chromium, Cr	0.43	0.40	108%		80 - 120		mg/L
Copper, Cu	0.60	0.50	120%		80 - 120		mg/L
Lead, Pb	1.02	1.00	102%		80 - 120		mg/L
LCSD:	I221219-LCSD	1					
Arsenic, As	3.80	4.00	95%	0.3%	80 - 120		mg/L
Chromium, Cr	0.43	0.40	108%	0.2%	80 - 120		mg/L
Copper, Cu	0.61	0.50	122%	1.7%	80 - 120		mg/L
Lead, Pb	1.02	1.00	102%	0.2%	80 - 120		mg/L
CCV:	1221219-CCV1						
Arsenic, As	1.03	1.00	103%		90-110		mg/L
Chromium, Cr	1.01	1.00	101%		90-110		mg/L
Copper, Cu	1.10	1.00	110%		90-110		mg/L
Lead, Pb	1.05	1.00	105%		90-110		mg/L

ND= Not Detected

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 20%

LCS = Laboratory Control Sample

LCSD= Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan Jones Ref. No.:

Irvine, CA 92614 Client Ref. No.: 12736.024

Attn: Mark Withrow Date Sampled: 12/6/2022

Date Received: 12/6/2022

Report date:

Project: B191-194 Date Analyzed: 12/21&28/2022

Physical State: Soil

12/29/2022

12/29/2022

BATCH:	122122702		Prepared:	12/27/2022	Analyzed:	12/28/2022	
Analytes:	Result	Spike Level	% REC	% RPD	% REC Limits	Donoralio e Lincia	***
Method Blank:	1221227-MB2	Spike Levei	70 REC	% KPD	% REC LIMITS	Reporting Limit	Units
	ND					0.10	mg/L
Arsenic, As Chromium, Cr	ND					0.01	mg/L
	ND					0.01	mg/L
Copper, Cu Lead, Pb	ND ND					0.01	mg/L
Lead, Pb	ND					0.01	mg/L
LCS:	I221227-LCS2						
Arsenic, As	4.20	4.00	105%		80 - 120		mg/L
Chromium, Cr	0.41	0.40	103%		80 - 120		mg/L
Copper, Cu	0.57	0.50	114%		80 - 120		mg/L
Lead, Pb	1.06	1.00	106%		80 - 120		mg/L
LCSD:	1221227-LCSD	2					
Arsenic, As	4.27	4.00	107%	1.7%	80 - 120		mg/L
Chromium, Cr	0.42	0.40	104%	1.0%	80 - 120		mg/L
Copper, Cu	0.57	0.50	114%	0.4%	80 - 120		mg/L
Lead, Pb	1.08	1.00	108%	1.9%	80 - 120		mg/L
CCV:	1221227-CCV2						
Arsenic, As	1.05	1.00	105%		90-110		mg/L
Chromium, Cr	1.07	1.00	107%		90-110		mg/L
Copper, Cu	1.07	1.00	107%		90-110		mg/L
Lead, Pb	1.04	1.00	104%		90-110		mg/L

ND= Not Detected

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 20%

LCS = Laboratory Control Sample

LCSD= Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

714-449-9937 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

Report date:

Jones Ref. No.:

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan

Irvine, CA 92614

Attn: Mark Withrow Date Sampled: 12/6/2022

Date Received: 12/6/2022

Project: B191-194 Date Analyzed: 12/21/2022

Physical State: Soil

Client Ref. No.: 12736.024

12/29/2022

ST-21305

TCLP by EPA 6010B by ICP-OES

Sample ID: LB58-2.5

Jones ID: ST-21305-06 Reporting Limit Units

Analytes:

 Arsenic, As
 ND
 0.10
 mg/L

 Lead, Pb
 ND
 0.01
 mg/L

 Dilution Factor
 1
 0.01
 mg/L

Batch: 122122101

ND = Value less than reporting limit

Report date:

Jones Ref. No.:

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan

Irvine, CA 92614

Mark Withrow Date Sampled: 12/6/2022 Attn:

Date Received: 12/6/2022 B191-194 12/21/2022

Project: Date Analyzed:

Physical State: Soil

Client Ref. No.: 12736.024

12/29/2022

ST-21305

TCLP by EPA 6010B by ICP-OES

Sample ID: LB52-5

Jones ID: ST-21305-22 Reporting Limit Units

Analytes:

0.01 Lead, Pb 4.81 mg/L **Dilution Factor** 1

Batch: 122122101

ND = Value less than reporting limit

Report date:

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Leighton Consulting, Inc.

Client Address: 17781 Cowan Jones Ref. No.: ST-21305

Irvine, CA 92614 Client Ref. No.: 12736.024

Attn: Mark Withrow Date Sampled: 12/6/2022

Date Received: 12/6/2022

12/29/2022

Project: B191-194 **Date Analyzed:** 12/21/2022

Physical State: Soil

	TCLP by EPA 6010B by ICP-OES											
BATCH:	I22122101		Prepared:	12/21/2022	Analyzed:	12/21/2022						
Analytes:	Result	Spike Level	% REC	% RPD	% REC Limits	Reporting Limit	Units					
Method Blank:	I221221-MB1											
Arsenic, As	ND					0.10	mg/L					
Lead, Pb	ND					0.01	mg/L					
LCS:	I221221-LCS1						-					
Arsenic, As	3.94	4.00	99%		80 - 120		mg/L					
Lead, Pb	0.86	1.00	86%		80 - 120		mg/L					
LCSD:	1221221-LCSD	1										
Arsenic, As	3.95	4.00	99%	0.3%	80 - 120		mg/L					
Lead, Pb	0.85	1.00	85%	1.2%	80 - 120		mg/L					
CCV:	I221221-CCV1											
Arsenic, As	0.99	1.00	99%		90-110		mg/L					
Lead, Pb	1.01	1.00	101%		90-110		mg/L					

ND= Not Detected

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 20%

LCS = Laboratory Control Sample

LCSD= Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

Leighton Consulting

muithrow o leightungroup, com

Sampler

Sample

Collection

Date

12/6/12

TLD

Sample

Collection

Time

0725

0735

750

0805

0832

0835

Project Name

Project Address

Email

Report To

Mark Withour

Sample ID

LB50 - 0.5

LB50 - 2.5

LB50-GW

LB58-0.5

LB 58-2.5

LB59-0.5

LB50 - 5

11007 Forest PL Santa Fe Springs, CA 90670 (714) 449-9937 reports@jonesenv.com www.jonesenv.com

Client Project #

12/6/22

AS - Acetate Sleeve SS - Stainless Steel Sleeve

BS - Brass Sleeve G - Glass

AB - Amber Bottle P - Plastic

HNO3 - Nitric Acid O - Other (See Notes)

Laboratory Sample ID

ST-21305-01

ST-21305-02

CT_21305-03

ST-21305-04

ST-21305-05

0852 ST-21305-07

0854 ST-21305-08

SOBI - Sodium Bisulfate MeOH - Methanol

HCI - Hydrochloric Acid

Preservative

12736.024

Sample Container / Preservative Abbreviations

Date

		C	h	la	ir)-(0	-	C	u	st	0	dy	Record
		o Im o Ru o Ru o Ru	medi sh 2 ish 4 ish 7	ate A 4 Ho 8 Ho 2 Ho	Atten ours -	tion - 100° 50% 25%	200							Jones Project #
4	-)	X No	rmal	- No	Sur	charg	ge							Page
ervalive	ĺ		090	215	A	nalys	is R	equ	este	d				of 3
e V	Sample Matrix: Soil (S), Sludge (SL), Aquecus (A), Free Product (FP)	TPH MY EPA 8620B- TCO	THE 22 Metals 60108/7000	TPH-9, 2-0 EPA 8019	EPA	AHS EPA 8270S	EPA 8260B-GRO-[Added 12-15-16 JC]	EPA 8082-PCBs-[Added 12-15-16 JC]	8270C PAHs SIM-[Added 12-15-16 JC]	STLC-[Added 12-15-16 JC]	TCLP-[Added 12-15-16 JC]		of Containers	Report Options EDD EDF*-10% Surcharge *Global ID
Sample Container	Sample Matrix: Soil (S), Sludge (SL)	4	THE	2	>	9	EPA 82	EPA 80	8270C P.	STLC-[TCLP-[Number	Notes & Special Instructions
9/455	5		X	×			X	X	X				1	
glass	5		X	X	X								4	
9 455	5		X	X	X			x	X				4	
glass/paly	A		X	X	X	X							8	
glas	5		X	X	*	TEP	X	X	X				1	
4/455	5		X	×	X					x	х		4	STLC-As, Cr, Cu, Pb TCLP-As, Pb
9/455	5		X	X.	×	TUT	X	x	x				1	
9/455	2		X	X	X								4	
1/455	5		X	X	*	7407	X	Х	X				1	

LI

Total Number of Containers

Client signature on this Chain of Custody form

constitutes acknowledgement that the above analyses have been reqested, and the information provided herein is correct and accurate.

LB59- 2.5		0854	ST-21305-08	3	9/455	2	X	X	X						
LB56 - 0.5		0918	51-21305-09		1/455	5	X	X	*	740)	X	X	X		
1857 2.5 to	V	0924	ST-21305-10) \	9/455	5	X	X	1						
Relinquished By (Signature)		Printed		Received By	(Signature)	1			An	nted N	(U)	80	TO	207	· ·
Company LCI		Date (2/6	Time	Sompany	TEL				Da	te o-Z	2		Time 14	24	
Relinquished By (Signature)		Printed		Received By	Laboratory (Sign				Pri	nted Na	arne				
Company		Date:	Time	Company	Page 21	of 24			Da	te		THE TOTAL	Time		

Company

Time

Company

Chain-of-Custody Record

Chain-or-Custo	uy Necoi
Turn Around Requested:	

Phone 949 - 394 - 2194 Report To Sampler Mark Withren TCO Sample Collection Date Sample Collection Date Sample Collection Date Sample Collection Time Sample Collection Date Sample Collection Date Sample Collection Time Laboratory Sample ID Preservative Container Sample Collection Time LB57 - 0.5 12/6/72 0944 ST-2/305-17 12/6/72 0944 ST-2/305-12 98 38 As Amber Bottle P - Pisstic SOBI - Sodium Bisulfiste MeCH - Methanol HCI - Hydrochloric Acid HCI - Hydrochloric	05
Phone 949 - 394 - 2194 Report To Sampler Mark Withnen Sample Collection Date 3	
LB57-0.5 12/6/22 0944 ST_21305-11 Ites glass 5 X X X X X X X X X 1 STLC-P6 LB57-2.5 10946 ST-21305-12 glass 5 X X X X 4 4	
LB57-2.5 0946 ST-21305-12 glass 5 X X X 4	lions
100	
100	
LB54-0.5 1006 ST-21305-13 91055 5 X X X X X X X X	
LB54-2.5 1016 ST-21305-14 pdg 5 x x x 4 4	
LB55 - 0.5 1028 ST-21305-15 91055 5 X X X X X X X I STLC-P6	
LB55-2.5 1032 51-21305-10 31455 5 x x x 4	
1B55-GW 1045 ST-21305-17 91655 A X X X X	
L653-0.5 1110 ST21305-18 1455 5 X X X X X I	
LB53-2.5 1115 ST-21305-19 pm 5 X X X X 4 STLC-P6	
LB52-0.5 V 1138 ST-21305-20 V 2/255 TOG X X X X I	
Relinquished By (Signature) Printed Name Received By (Signature) Printed Name Total Number of Containers Company Date Time Company Date Time	
LCC 12(6/VC 1427) JEL 12-0-2C 1424 Client signature on this Chain of Cu Reclinquished By (Signature) Printed Name Client signature on this Chain of Cu constitutes acknowledgement that analyses have been regested, and the	

11007 Forest PI Santa Fe Springs, CA 90670

(714) 449-9937

Chain-of-Custody Record

Chain-oi-Ci	uslody	Recor
Turn Around Requested:		

Project Name Blq1-194 Project Address Email Muithonele (949) 394-2196 Report To Mark Without Mithout Mith Without Mith With Mith Without Mith Without Mith Without Mith Without Mith Wi	nsultin-)		AS - Ac SS - St BS - Br G - Gla AB - Ar P - Plat SOBI - MeOH HCI- + HNO3-	mber Bottle	servative	Aqueous (A), Free Product (FP)	22 motels 6010 B/20 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ish 2 ish 4 ish 7 ish 9 ish 9	4 Ho 6 Ho 7 O728 W 3	Sur STOSIM A STOSIM S	100° 50% 25% 10% charg	% ge is R	12-15-16 JC DD	STLC-[Added 12-15-16 JC]	ICLP-[Added 12-15-16 JC]		Containers	P R EC	3 eport O	oject# 1305 of 3	
Sample ID	Sample Collection Date	Sample Collection Time	Laboratory San	ple ID	Preservative	Sample Container	Sample Matrix: Soil (S), Studge (SL),	7414	TIPH	UXS	MM	EPA 826	EPA 808.	8270C P.	STLC-[Ac	TCLP-[Ad		Number of		otes & Spe	cial Instructions	
1852-25	12/6/22	1140	ST-2136	5-21	700	poly	5	×	×	×			X	X				4				
LB52-5			°ST-21309		N/I	poly	5	K	×	+					X	х		4	STLO	-Cu, Pb	TCLP-Pb	
LB51-0.5		1152	ST-21305	- 23		poly	5	X	x	+	TEST	X						1				
LB51-25		1154	ST-21305	-24		poly	5	X	x	X								4				
LB51-GW	Ŋ	1206	ST-21305	-25	V	glass 1 poly	A	X	+	X	X							8	3			
Relinquished By (Signature)			resa Dunco		Received By (Sig	Spature)	<u></u>				B	to the second second	ame A	126	0	Tex	THE		Total Nun	nber of Cont	ainers	
Company LCT Relinquished By (Signature) Company		Date 126 Printed	Time /2 /4	23	Received By Lab	ooratory (Sign		pr m) m m m m				ted Na	2 Z	,	Time (4	24			constitutes a	been regest	Chain of Custody for ement that the abor- ted, and the informance and accurate.	ve

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

CLIENT: LOGNATIN CONSULTING PROJECT: BIGING DATE/TIME (LAB RECEIVED): 12/6/22 - 14241 PROJECT: BIGING DONES COURIER DUPS / FEDEX / USPS DOTHER TEMPERATURE: Thermometer ID: T-2 (Corrected Temp.) Calibration Due: 07/12/2022 Temperature Cooler #1 D. D°C ± the CF(+0.5°C) D. 9°C Blank Sample Temperature Cooler #2 D. O°C ± the CF(+0.5°C) D. 9°C Blank Sample Temperature Criteria: 0 ≤ 6°C (NO frozen containers) Criteria Met? Yes No If criteria is not met: Sample Received on ice? Pyes No Sample received Chilled on same day of sampling? Pyes No Checked By: Temperature Non-Conformance (NC): NC No. Sample not received on ice
Temperature Cooler #1
Sample received Chilled on same day of sampling? Yes No Checked By: 400 Temperature Non-Conformance (NC): NC No. Sample not received on ice
Temperature Non-Conformance (NC): NC No
□ sample not received chilled □ Sample received chilled, but not on the same day of sampling
SAMPLE CONDITION: YES NO* N/A
Chain of Custody (COC) received filled out completely
Total number of containers received match COC
Sample container label(s) consistent with COC
Sample container(s) intact and in good condition
Proper containers and sufficient volume for analyses requested on COC
Proper preservative indicated on COC/container for analyses requested
Volatile analysis container(s) free of headspace (EPA 8260 water)
Custody Seals Intact on Cooler/Sample
CONTAINER TYPE:
Solid: Aqueous: Air / Soil Gas: 5035 Kits: 12 Amber Bottle: 6 Todler Bag:
Glass Jar: 15 VOAs: Tedlar Bag:
Sleeve: Poly Bottle: 72 hr
Other: 5030 Kits: 5 Day
Other: Summa: (1L) (6L)

*Complete Non-Conformance if checked

Checked by:	W
	Part of the second

14 December 2022

Colby Wakeman
Jones Environmental
11007 Forest Place
Santa Fe Springs, CA 90670

RE: B191-194

Enclosed are the results of analyses for samples received by the laboratory on 12/07/22 13:22. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Joann Marroquin

Director of Operations

Jones Environmental

Project: B191-194

11007 Forest Place

Project Number: ST-21305 Project Manager: Colby Wakeman

Santa Fe Springs CA, 90670

Reported: 12/14/22 14:28

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LB50-GW	T223523-01	Water	12/06/22 08:05	12/07/22 13:22
LB55-GW	T223523-02	Water	12/06/22 10:45	12/07/22 13:22
LB51-GW	T223523-03	Water	12/06/22 12:06	12/07/22 13:22

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jones Environmental

11007 Forest Place

Santa Fe Springs CA, 90670

Project: B191-194

Project Number: ST-21305

Project Manager: Colby Wakeman

Reported:

12/14/22 14:28

DETECTIONS SUMMARY

Sample ID:

LB50-GW

Laboratory ID:

T223523-01

No Results Detected

Sample ID:

LB55-GW

Laboratory ID:

T223523-02

No Results Detected

Sample ID:

LB51-GW

Laboratory ID:

T223523-03

EBST-G II	Labora	tory ID.	1223323-03		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Benzo (a) anthracene	1.98	1.00	ug/l	EPA 8270C SIM	
Benzo (b) fluoranthene	3.78	1.00	ug/l	EPA 8270C SIM	
Benzo (k) fluoranthene	1.02	1.00	ug/l	EPA 8270C SIM	
Benzo (a) pyrene	1.22	1.00	ug/l	EPA 8270C SIM	
Chrysene	3.02	1.00	ug/l	EPA 8270C SIM	
Fluoranthene	1.22	1.00	ug/l	EPA 8270C SIM	
Pyrene	1.56	1.00	ug/l	EPA 8270C SIM	

SunStar Laboratories, Inc.

Joann Marroquen

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jones Environmental

Project: B191-194

11007 Forest Place

Project Number: ST-21305

Santa Fe Springs CA, 90670

Project Manager: Colby Wakeman

Reported:

12/14/22 14:28

LB50-GW T223523-01 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Self-tended Self-Self-Self-Self-Self-Self-Self-Self-	SunStar L	aborator	ies, Inc.					
Polynuclear Aromatic Compo	ounds by GC/MS with Selected I	on Monito	ring						
Acenaphthene	ND	1.00	ug/l	1	22L0148	12/09/22	12/13/22	EPA 8270C	

Acenaphthene	ND	1.00	ug/l	1	22L0148	12/09/22	12/13/22	EPA 8270C SIM	
Acenaphthylene	ND	1.00	30	**	20.7		11	n	
Anthracene	ND	1.00	*				**		
Benzo (a) anthracene	ND	1.00	"				"		
Benzo (b) fluoranthene	ND	1.00					**		
Benzo (k) fluoranthene	ND	1.00		**	*	*	**	296	
Benzo (g,h,i) perylene	ND	1.00		"					
Benzo (a) pyrene	ND	1.00	"	n	"	"	n	n	
Chrysene	ND	1.00	.01	**	*	*	**		
Dibenz (a,h) anthracene	ND	1.00		**			**	OM:	
Fluoranthene	ND	1.00	0	**	*		*		
Fluorene	ND	1.00		**		"	*		
indeno (1,2,3-cd) pyrene	ND	1.00	0	· ·			ж		
Naphthalene	ND	1.00						•	
Phenanthrene	ND	1.00	"		•	•			
Pyrene	ND	1.00	0	10		*		**	
Surrogate: Terphenyl-dl4		64.1%	33-1-	41	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jones Environmental

Project: B191-194

11007 Forest Place

Project Number: ST-21305

Santa Fe Springs CA, 90670

Project Manager: Colby Wakeman

Reported: 12/14/22 14:28

LB55-GW

T223523-02 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Polynuclear Aromatic Compo	unds by GC/MS with Selected	SunStar La		es, Inc.					
Acenaphthene	ND	1.00	1.04		22L0148	12/09/22	12/13/22	EPA 8270C	
Acenaphulene	ND	1.00	ug/l		221.0148	12/09/22	12/13/22	SIM	
Acenaphthylene	ND	1.00			**		231	7040	

	2 (25)	ালে দ	-0-		7,777,535	071.50075	0.75 0.74 737-4	SIM	
Acenaphthylene	ND	1.00	0.0	•	***	**	**		
Anthracene	ND	1.00	,,	"		*			
Benzo (a) anthracene	ND	1.00		"	,,	"		•	
Benzo (b) fluoranthene	ND	1.00		**	ж	.00	**:	2000	
Benzo (k) fluoranthene	ND	1.00			n	n		u u	
Benzo (g,h,i) perylene	ND	1.00	"			*	*	•	
Benzo (a) pyrene	ND	1.00	"	"			"		
Chrysene	ND	1.00		**		m	**	700	
Dibenz (a,h) anthracene	ND	1.00	,,	•			*	•	
Fluoranthene	ND	1.00			,,	"		•	
Indeno (1,2,3-cd) pyrene	ND	1.00		**			*		
Fluorene	ND	1.00		**	**	**	**		
Naphthalene	ND	1.00	,						
Phenanthrene	ND	1.00					+		
Pyrene	ND	1.00	9	11.	***				
Surrogate: Terphenyl-dl4		62.0 %	33-1	41	*	*	*		

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jones Environmental

Project: B191-194

11007 Forest Place

Project Number: ST-21305

Santa Fe Springs CA, 90670

Project Manager: Colby Wakeman

Reported:

12/14/22 14:28

LB51-GW T223523-03 (Water)

		Donostino							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Acenaphthene	ND	1.00	ug/l	I	22L0148	12/09/22	12/13/22	EPA 8270C SIM
Acenaphthylene	ND	1.00		**	**		**	
Anthracene	ND	1.00	,,	•				
Benzo (a) anthracene	1.98	1.00	"		"		"	
Benzo (b) fluoranthene	3.78	1.00		**			**	3.00
Benzo (k) fluoranthene	1.02	1.00	20	**	3900		77.	
Benzo (g,h,i) perylene	ND	1.00		**	**		**	
Benzo (a) pyrene	1.22	1.00	n .		H		**	
Chrysene	3.02	1.00					*	•
Dibenz (a,h) anthracene	ND	1.00	"	•	*		"	
Fluoranthene	1.22	1.00	20	*			**	
ndeno (1,2,3-cd) pyrene	ND	1.00	.01	**	W.		**	3,00
Fluorene	ND	1.00	n	**	H	*	**	
Naphthalene	ND	1.00	,,		**		*	
Phenanthrene	ND	1.00	"	"	77		*	4
Pyrene	1.56	1.00	20	**		.00		

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jones Environmental

Project: B191-194

11007 Forest Place

Project Number: ST-21305

Reported:

Santa Fe Springs CA, 90670

Project Manager: Colby Wakeman

12/14/22 14:28

Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (22L0148-BLK1)				Prepared: 12/09/	22 Analyzed: 12	2/13/22		
Acenaphthene	ND	1.00	ug/I					
Acenaphthylene	ND	1.00						
Anthracene	ND	1.00						
Benzo (a) anthracene	ND	1.00						
Benzo (b) fluoranthene	ND	1.00						
Benzo (k) fluoranthene	ND	1.00	**					
Benzo (g,h,i) perylene	ND	1.00						
Benzo (a) pyrene	ND	1.00						
Chrysene	ND	1.00						
Dibenz (a,h) anthracene	ND	1.00						
Fluoranthene	ND	1.00	**					
Indeno (1,2,3-cd) pyrene	ND	1.00						
Fluorene	ND	1.00	*					
Naphthalene	ND	1.00						
Phenanthrene	ND	1.00						
Pyrene	ND	1.00						
Surrogate: Terphenyl-dl4	19.4		"	20.0	97.2	33-141		
LCS (22L0148-BS1)				Prepared: 12/09/	22 Analyzed: 12	2/13/22		
Acenaphthene	11.4	1.00	ug/l	20.0	56.9	50-130		
Pyrene	10.4	1.00	*	20.0	51.8	41.8-88		
Surrogate: Terphenyl-dl4	19.8		"	20.0	98.8	33-141		
LCS Dup (22L0148-BSD1)				Prepared: 12/09/	22 Analyzed: 12	2/13/22		
Acenaphthene	12.2	1.00	ug/l	20.0	60.9	50-130	6.79	31
Pyrene	10.2	1.00		20.0	50.9	41.8-88	1.75	30
Surrogate: Terphenyl-dl4	20.3			20.0	102	33-141		

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jones Environmental Project: B191-194

11007 Forest Place Project Number: ST-21305 Reported:
Santa Fe Springs CA, 90670 Project Manager: Colby Wakeman 12/14/22 14:28

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

JONES ENVIRONMENTAL, INC.

11007 Forest Pl. Santa Fe Springs, CA 90670 (714) 449-9937 Fax (714) 449-9685 www.jonesenv.com

T223523 Chain-of-Custody Record

Turn Around Requested: Report Options □ Immediate Attention Jones Project # EDD Leighton Consulting 12/7/2022 Rush 24 Hours EDF* - 10% Surcharge_ **Project Name** n Rush 48 Hours Client Project # *Global ID n Rush 72 Hours B191-194 12736.024 Page X Normal **Project Address** Sample Container / Preservative of **Analysis Requested** Abbreviations AS - Acetate Sleeve Sample Condition as Recieved: SS - Stainless Steel Sleeve Email Chilled wes po no BS - Brass Sleeve Sealed pyes pno G - Glass reports@jonesenv.com AB - Amber Bottle Phone P - Plastic (747) 449-9937 SOBI - Sodium Bisulfate **EPA 8270 SIM** MeOH - Methanol of Containers Report To Sampler HCI - Hydrochloric Acid Colby Wakeman HNO3 - Nitric Acid O - Other (See Notes) Sample PAHS Sample ID Sample Date Collection Laboratory Sample ID Preservative Notes & Special Instructions Container Time LB50-GW 12/6/2022 805 Α X N ST-21305-04 LB55-GW 12/6/2022 1045 X N A ST-21305-17 LB51-GW 12/6/2022 1206 A X N ST-21305-25 Printed Name Received By (Signature) Printed Name Total Number of Containers Company Client signature on this Chain of Custody form. Received By Laboratory (Signature) constitutes acknowledgement that the above analyses have been requested, and the information provided herein is correct and accurate

SAMPLE RECEIVING REVIEW SHEET

Batch/Work Order #:	
Client Name: Jones	Project: Leighton Consulting - B191-194
Delivered by:	☐ GLS ☐ FedEx ☐ Other
If Courier, Received by:	Date/Time Courier Received: 12.7.22 12.39
Lab Received by:	Date/Time Lab Received: 12 · 7 · 2 2 1332
Total number of coolers received: Thermometer ID:	SC-1 Calibration due : <u>8/2/23</u>
Temperature: Cooler #1 2.5 °C +/- the CF (+ 0.1°C)	= 2.6 °C corrected temperature
Temperature: Cooler #2 °C +/- the CF (+ 0.1°C)	= °C corrected temperature
Temperature: Cooler #3 °C +/- the CF (+ 0.1°C)	= °C corrected temperature
Temperature criteria = ≤ 6°C (no frozen containers) Within crit	teria? Yes No N/A
If NO: Samples received on ice? ☐Yes If on ice, samples received same day collected? ☐Yes →	No → Complete Non-Conformance Sheet No → Complete Non-Conformance Sheet
Custody seals intact on cooler/sample	□Yes □No* ⋈N/A
Sample containers intact	Yes □No*
Sample labels match Chain of Custody IDs	⊠Yes □No*
Total number of containers received match COC	ĭYes □No*
Proper containers received for analyses requested on COC	
Proper preservative indicated on COC/containers for analyses	requested Yes No* No*
Complete shipment received in good condition with correct ter containers, labels, volumes preservatives and within method sp holding times	
* Complete Non-Conformance Receiving Sheet if checked Cool	er/Sample Review - Initials and date: 013 12.8.22
Comments:	

WORK ORDER

T223523

Client: Jones Environmental

Project Manager:

Joann Marroquin

Project: B191-194

Project Number:

ST-21305

Report To:

Jones Environmental

Colby Wakeman

11007 Forest Place

Santa Fe Springs, CA 90670

Date Due:

12/14/22 17:00 (5 day TAT)

Received By:

Dave Berner

cerved by.

ave beiner

Date Received:

12/07/22 13:22

Logged In By:

Rebecca Traficanto

Date Logged In:

12/08/22 13:54

Samples Received at:

2.6°C

Custody Seals

No Rece

Received On Ice No

Containers Intact COC/Labels Agree

No

Preservation Confin No

Due	TAT	Expires	Comments	
/ater] Sampled 12/06/2	2 08:05 (G	MT-08:00) Pacific		
12/14/22 15:00	5	12/13/22 08:05		
ater] Sampled 12/06/2	2 10:45 (G	MT-08:00) Pacific		
12/14/22 15:00	5	12/13/22 10:45		
/ater] Sampled 12/06/2	2 12:06 (G	MT-08:00) Pacific		
12/14/22 15:00	5	12/13/22 12:06		
	/ater] Sampled 12/06/2 12/14/22 15:00 /ater] Sampled 12/06/2 12/14/22 15:00 /ater] Sampled 12/06/2	/ater] Sampled 12/06/22 08:05 (G 12/14/22 15:00 5 /ater] Sampled 12/06/22 10:45 (G 12/14/22 15:00 5 /ater] Sampled 12/06/22 12:06 (G	/ater] Sampled 12/06/22 08:05 (GMT-08:00) Pacific 12/14/22 15:00 5 12/13/22 08:05 /ater] Sampled 12/06/22 10:45 (GMT-08:00) Pacific 12/14/22 15:00 5 12/13/22 10:45 /ater] Sampled 12/06/22 12:06 (GMT-08:00) Pacific	/ater] Sampled 12/06/22 08:05 (GMT-08:00) Pacific 12/14/22 15:00 5 12/13/22 08:05 /ater] Sampled 12/06/22 10:45 (GMT-08:00) Pacific 12/14/22 15:00 5 12/13/22 10:45 /ater] Sampled 12/06/22 12:06 (GMT-08:00) Pacific

27 December 2022

Colby Wakeman
Jones Environmental
11007 Forest Place
Santa Fe Springs, CA 90670

RE: B191-194

Enclosed are the results of analyses for samples received by the laboratory on 12/19/22 15:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Joann Marroquin

Director of Operations

Jones Environmental

Santa Fe Springs CA, 90670

Project: B191-194

11007 Forest Place

Project Number: ST-21305

Project Manager: Colby Wakeman

Reported: 12/27/22 16:45

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LB50-0.5	T223645-01	Soil	12/06/22 07:25	12/19/22 15:30
LB50-5	T223645-02	Soil	12/06/22 07:50	12/19/22 15:30
LB58-0.5	T223645-03	Soil	12/06/22 08:32	12/19/22 15:30
LB59-0.5	T223645-04	Soil	12/06/22 08:52	12/19/22 15:30
LB56-0.5	T223645-05	Soil	12/06/22 09:18	12/19/22 15:30
LB54-0.5	T223645-06	Soil	12/06/22 10:06	12/19/22 15:30
LB55-0.5	T223645-07	Soil	12/06/22 10:28	12/19/22 15:30
LB53-0.5	T223645-08	Soil	12/06/22 11:10	12/19/22 15:30
LB52-0.5	T223645-09	Soil	12/06/22 11:38	12/19/22 15:30
LB52-2.5	T223645-10	Soil	12/06/22 11:40	12/19/22 15:30

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jones Environmental

11007 Forest Place

Santa Fe Springs CA, 90670

Project: B191-194

Project Number: ST-21305

Project Manager: Colby Wakeman

Reported:

12/27/22 16:45

DETECTIONS SUMMARY

Sample ID: LB50-0.5	Labora	tory ID:	T223645-01		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Benzo (a) anthracene	77	50	ug/kg	EPA 8270C SIM	O-05, R-07
Benzo (g,h,i) perylene	93	50	ug/kg	EPA 8270C SIM	O-05, R-07
Chrysene	57	50	ug/kg	EPA 8270C SIM	O-05, R-07
Fluoranthene	60	50	ug/kg	EPA 8270C SIM	O-05, R-07
Sample ID: LB50-5	Labora	tory ID:	T223645-02		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Acenaphthylene	70	50	ug/kg	EPA 8270C SIM	O-05, R-07
Anthracene	120	50	ug/kg	EPA 8270C SIM	O-05, R-07
Benzo (a) anthracene	150	50	ug/kg	EPA 8270C SIM	O-05, R-07
Benzo (b) fluoranthene	140	100	ug/kg	EPA 8270C SIM	O-05, R-07
Benzo (g,h,i) perylene	160	50	ug/kg	EPA 8270C SIM	O-05, R-07
Chrysene	120	50	ug/kg	EPA 8270C SIM	O-05, R-07
Fluoranthene	200	50	ug/kg	EPA 8270C SIM	O-05, R-07
Indeno (1,2,3-cd) pyrene	60	50	ug/kg	EPA 8270C SIM	O-05, R-07
Phenanthrene	140	50	ug/kg	EPA 8270C SIM	O-05, R-07
Pyrene	220	100	ug/kg	EPA 8270C SIM	O-05, R-07
Sample ID: LB58-0.5	Labora	tory ID:	T223645-03		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Benzo (a) anthracene	110	50	ug/kg	EPA 8270C SIM	O-05, R-07
Benzo (g,h,i) perylene	100	50	ug/kg	EPA 8270C SIM	O-05, R-07
Chrysene	93	50	ug/kg	EPA 8270C SIM	O-05, R-07
Phenanthrene	77	50	ug/kg	EPA 8270C SIM	O-05, R-07
Pyrene	110	100	ug/kg	EPA 8270C SIM	O-05, R-07

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jones Environmental

Project: B191-194

11007 Forest Place

Project Number: ST-21305

Santa Fe Springs CA, 90670

Project Manager: Colby Wakeman

Reported: 12/27/22 16:45

Sample ID:	LB59-0.5	Laborat	tory ID:	T223645-04		
			Reporting			
Analyte		Result	Limit	Units	Method	Note
Benzo (a) ai	nthracene	73	50	ug/kg	EPA 8270C SIM	O-05, R-0
Benzo (g,h,i	i) perylene	140	50	ug/kg	EPA 8270C SIM	O-05, R-0'
Chrysene		160	50	ug/kg	EPA 8270C SIM	O-05, R-0
Fluoranthen	ne	57	50	ug/kg	EPA 8270C SIM	O-05, R-0
Phenanthrer	ne	60	50	ug/kg	EPA 8270C SIM	O-05, R-0
Sample ID:	LB56-0.5	Laborat	tory ID:	T223645-05		
			Reporting			
Analyte		Result	Limit	Units	Method	Note
Benzo (a) ar	nthracene	7.0	5.0	ug/kg	EPA 8270C SIM	O-0
Benzo (g,h,i	i) perylene	11	5.0	ug/kg	EPA 8270C SIM	O-0
Chrysene		12	5.0	ug/kg	EPA 8270C SIM	O-0.
Fluoranthen	ne	8.3	5.0	ug/kg	EPA 8270C SIM	O-0:
Phenanthren	ne	7.0	5.0	ug/kg	EPA 8270C SIM	O-0
Sample ID:	LB54-0.5	Laborat	ory ID:	T223645-06		
			Reporting			
Analyte		Result	Limit	Units	Method	Note
Acenaphthy	lene	400	50	ug/kg	EPA 8270C SIM	O-05, R-0
Anthracene		370	50	ug/kg	EPA 8270C SIM	O-05, R-0
	nthracene	570	50	ug/kg	EPA 8270C SIM	O-05, R-0
Benzo (a) ai						
Benzo (g,h,i	i) perylene	310	50	ug/kg	EPA 8270C SIM	O-05, R-0
Contract Con	i) perylene	310 1100	50 50	ug/kg ug/kg	EPA 8270C SIM EPA 8270C SIM	
Benzo (g,h,i						O-05, R-0
Benzo (g,h,i Chrysene	ne	1100	50	ug/kg	EPA 8270C SIM	O-05, R-0 O-05, R-0
Benzo (g,h,i Chrysene Fluoranthen	ne e	1100 1800	50 50	ug/kg ug/kg	EPA 8270C SIM EPA 8270C SIM	O-05, R-0 O-05, R-0 O-05, R-0
Benzo (g,h,i Chrysene Fluoranthen Naphthalene	ne e	1100 1800 9300	50 50 50	ug/kg ug/kg ug/kg	EPA 8270C SIM EPA 8270C SIM EPA 8270C SIM	O-05, R-07 O-05, R-07 O-05, R-07 O-05, R-07 O-05, R-07
Benzo (g,h,i Chrysene Fluoranthen Naphthalene Phenanthrer Pyrene	ne e	1100 1800 9300 1600	50 50 50 50 100	ug/kg ug/kg ug/kg ug/kg	EPA 8270C SIM EPA 8270C SIM EPA 8270C SIM EPA 8270C SIM	O-05, R-0 O-05, R-0 O-05, R-0 O-05, R-0
Benzo (g,h,i Chrysene Fluoranthen Naphthalene Phenanthrer Pyrene	ne e e ne	1100 1800 9300 1600 1700	50 50 50 50 100	ug/kg ug/kg ug/kg ug/kg ug/kg	EPA 8270C SIM EPA 8270C SIM EPA 8270C SIM EPA 8270C SIM	O-05, R-0 O-05, R-0 O-05, R-0 O-05, R-0
Benzo (g,h,i Chrysene Fluoranthen Naphthalene Phenanthrer Pyrene	ne e e ne	1100 1800 9300 1600 1700	50 50 50 50 100	ug/kg ug/kg ug/kg ug/kg ug/kg	EPA 8270C SIM EPA 8270C SIM EPA 8270C SIM EPA 8270C SIM	O-05, R-0' O-05, R-0' O-05, R-0' O-05, R-0'
Benzo (g,h,i Chrysene Fluoranthen Naphthalene Phenanthren Pyrene Sample ID:	LB55-0.5	1100 1800 9300 1600 1700	50 50 50 50 100 tory ID:	ug/kg ug/kg ug/kg ug/kg ug/kg Ug/kg	EPA 8270C SIM EPA 8270C SIM EPA 8270C SIM EPA 8270C SIM EPA 8270C SIM	O-05, R-0 O-05, R-0 O-05, R-0 O-05, R-0
Benzo (g,h,i Chrysene Fluoranthen Naphthalene Phenanthren Pyrene Sample ID:	LB55-0.5	1100 1800 9300 1600 1700 Laborat	50 50 50 50 100 tory ID:	ug/kg ug/kg ug/kg ug/kg ug/kg	EPA 8270C SIM EPA 8270C SIM EPA 8270C SIM EPA 8270C SIM EPA 8270C SIM EPA 8270C SIM	O-05, R-0' O-05, R-0' O-05, R-0' O-05, R-0'

Joann Marroquen

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jones Environmental

Project: B191-194

11007 Forest Place

Project Number: ST-21305

Santa Fe Springs CA, 90670

Project Manager: Colby Wakeman

Reported: 12/27/22 16:45

Sample ID:	LB55-0.5	Labora	tory ID:	T223645-07		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Benzo (a) a	nthracene	580	50	ug/kg	EPA 8270C SIM	O-05, R-07
Benzo (g,h,	i) perylene	170	50	ug/kg	EPA 8270C SIM	O-05, R-07
Chrysene		670	50	ug/kg	EPA 8270C SIM	O-05, R-07
Fluoranther	ne	3500	50	ug/kg	EPA 8270C SIM	O-05, R-07
Indeno (1,2	,3-cd) pyrene	90	50	ug/kg	EPA 8270C SIM	O-05, R-07
Phenanthre	ne	4500	50	ug/kg	EPA 8270C SIM	O-05, R-07
Pyrene		3100	100	ug/kg	EPA 8270C SIM	O-05, R-07
Sample ID:	LB53-0.5	Labora	tory ID:	T223645-08		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Acenaphthy	vlene	170	50	ug/kg	EPA 8270C SIM	O-05, R-07
Anthracene		430	50	ug/kg	EPA 8270C SIM	O-05, R-07
Benzo (a) a	nthracene	690	50	ug/kg	EPA 8270C SIM	O-05, R-07
Benzo (b) f	luoranthene	1200	100	ug/kg	EPA 8270C SIM	O-05, R-07
Benzo (k) f	luoranthene	480	100	ug/kg	EPA 8270C SIM	O-05, R-07
Benzo (g,h,	i) perylene	570	50	ug/kg	EPA 8270C SIM	O-05, R-07
Benzo (a) p	yrene	640	100	ug/kg	EPA 8270C SIM	O-05, R-07
Chrysene		1200	50	ug/kg	EPA 8270C SIM	O-05, R-07
Fluoranther	ne	1100	50	ug/kg	EPA 8270C SIM	O-05, R-07
Indeno (1,2	,3-cd) pyrene	490	50	ug/kg	EPA 8270C SIM	O-05, R-07
Phenanthre	ne	460	50	ug/kg	EPA 8270C SIM	O-05, R-07
Pyrene		1600	100	ug/kg	EPA 8270C SIM	O-05, R-07
Sample ID:	LB52-0.5	Labora	tory ID:	T223645-09		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Acenaphthy	vlene	500	50	ug/kg	EPA 8270C SIM	O-05, R-07
Anthracene		1200	50	ug/kg	EPA 8270C SIM	O-05, R-07
Benzo (a) a	nthracene	1500	50	ug/kg	EPA 8270C SIM	O-05, R-07
Benzo (b) f	luoranthene	3500	100	ug/kg	EPA 8270C SIM	O-05, R-07
Benzo (k) f	luoranthene	990	100	ug/kg	EPA 8270C SIM	O-05, R-07
Benzo (g,h,	i) perylene	1200	50	ug/kg	EPA 8270C SIM	O-05, R-07
Benzo (a) p	yrene	1800	100	ug/kg	EPA 8270C SIM	O-05, R-07
Chrysene		3000	50	ug/kg	EPA 8270C SIM	O-05, R-07

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jones Environmental

Project: B191-194

11007 Forest Place

Project Number: ST-21305

Santa Fe Springs CA, 90670

Project Manager: Colby Wakeman

Reported:

12/27/22 16:45

Sample ID: LB52-0.5	Labora	tory ID:	T223645-09		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Dibenz (a,h) anthracene	320	50	ug/kg	EPA 8270C SIM	O-05, R-07
Fluoranthene	1600	50	ug/kg	EPA 8270C SIM	O-05, R-07
Indeno (1,2,3-cd) pyrene	1200	50	ug/kg	EPA 8270C SIM	O-05, R-07
Phenanthrene	290	50	ug/kg	EPA 8270C SIM	O-05, R-07
Pyrene	6300	100	ug/kg	EPA 8270C SIM	O-05, R-07
Sample ID: LB52-2.5	Labora	tory ID:	T223645-10		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Benzo (a) anthracene	50	50	ug/kg	EPA 8270C SIM	O-05, R-07
	83	50	ug/kg	EPA 8270C SIM	O-05, R-07

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jones Environmental

Project: B191-194

11007 Forest Place Santa Fe Springs CA, 90670 Project Number: ST-21305 Project Manager: Colby Wakeman Reported:

12/27/22 16:45

LB50-0.5 T223645-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Delemento de como de Como	mounds by CC/MS with Salasta	J. T M '4.							

Acenaphthene	ND	100	ug/kg	10	22L0269	12/20/22	12/21/22	EPA 8270C SIM	O-05, R-07
Acenaphthylene	ND	50		"	· ·	- 11	m.		O-05, R-07
Anthracene	ND	50		"			**		O-05, R-07
Benzo (a) anthracene	77	50	0	**		,,	"		O-05, R-07
Benzo (b) fluoranthene	ND	100	0.0		*		**		O-05, R-07
Benzo (k) fluoranthene	ND	100		**	*	**	**		O-05, R-07
Benzo (g,h,i) perylene	93	50	н	6	*	*	96		O-05, R-07
Benzo (a) pyrene	ND	100	n	**	**		*		O-05, R-07
Chrysene	57	50			"		**		O-05, R-07
Dibenz (a,h) anthracene	ND	50				-		•	O-05, R-07
Fluoranthene	60	50	.00	*	H -	**			O-05, R-07
Fluorene	ND	100	w.	- 11			**		O-05, R-07
Indeno (1,2,3-cd) pyrene	ND	50		- 11	**		*		O-05, R-07
Naphthalene	ND	50		**		•	•	•	O-05, R-07
Phenanthrene	ND	50		**	390		**		O-05, R-07
Pyrene	ND	100	•	**	in.	**		**	O-05, R-07
Surrogate: Terphenyl-dl4		126 %	18-1.	37		"	"	**	O-05, R-07

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jones Environmental

Project: B191-194

11007 Forest Place

Project Number: ST-21305

Santa Fe Springs CA, 90670

Project Manager: Colby Wakeman

Reported: 12/27/22 16:45

LB50-5

T223645-02 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		SunStar L	aboratorie	s, Inc.					
Polynuclear Aromatic Compounds b	y GC/MS with Selected	d Ion Monito	oring						
Acenaphthene	ND	100	ug/kg	10	22L0269	12/20/22	12/21/22	EPA 8270C SIM	O-05, R-07
Acenaphthylene	70	50				**			O-05, R-07
Anthracene	120	50	N .						O-05, R-07
Benzo (a) anthracene	150	50	'n	•			*		O-05, R-07
Benzo (b) fluoranthene	140	100	"	**	**				O-05, R-07
Benzo (k) fluoranthene	ND	100							O-05, R-07
Benzo (g,h,i) perylene	160	50	9		n	**	*		O-05, R-07
Benzo (a) pyrene	ND	100	0.	4.	100		100		O-05, R-07
Chrysene	120	50	и-	7			*		O-05, R-07
Dibenz (a,h) anthracene	ND	50					*		O-05, R-07
Fluoranthene	200	50	н				*		O-05, R-07
Fluorene	ND	100							O-05, R-07
Indeno (1,2,3-cd) pyrene	60	50	90.4			**	W.		O-05, R-07
Naphthalene	ND	50	u ·		· ·				O-05, R-07
Phenanthrene	140	50	w		**				O-05, R-07
Pyrene	220	100	"				*		O-05, R-07
Surrogate: Terphenyl-dl4		121 %	18-1.	37	*		*	n	O-05, R-07

SunStar Laboratories, Inc.

Joann Marroquen

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jones Environmental

Project: B191-194

11007 Forest Place

Project Number: ST-21305

Santa Fe Springs CA, 90670

Project Manager: Colby Wakeman

Reported:

12/27/22 16:45

LB58-0.5 T223645-03 (Soil)

to the second second		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Acenaphthene	ND	100	ug/kg	10	22L0269	12/20/22	12/21/22	EPA 8270C	O-05, R-07
NN 2-70.00 € 072-01 (392.0)			0 0					SIM	200000 4000 B
Acenaphthylene	ND	50		•	**	*	*		O-05, R-07
Anthracene	ND	50		"					O-05, R-07
Benzo (a) anthracene	110	50		**	"		**	•	O-05, R-07
Benzo (b) fluoranthene	ND	100					*		O-05, R-07
Benzo (k) fluoranthene	ND	100	.0	"	m.		**		O-05, R-07
Benzo (g,h,i) perylene	100	50	n		in .		*		O-05, R-07
Benzo (a) pyrene	ND	100		"	*		-		O-05, R-07
Chrysene	93	50		"			*		O-05, R-07
Dibenz (a,h) anthracene	ND	50	0	"	39.7				O-05, R-07
Fluoranthene	ND	50	н			*	*		O-05, R-07
Fluorene	ND	100	0	**	*			•	O-05, R-07
Indeno (1,2,3-cd) pyrene	ND	50	"			*	"		O-05, R-07
Naphthalene	ND	50		**	200		Pt.		O-05, R-07
Phenanthrene	77	50		**					O-05, R-07
Pyrene	110	100	Ü	- 11					O-05, R-07

SunStar Laboratories, Inc.

Joann Marroquen

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jones Environmental

Project: B191-194

11007 Forest Place

Project Number: ST-21305

Santa Fe Springs CA, 90670

Project Manager: Colby Wakeman

Reported: 12/27/22 16:45

LB59-0.5

T223645-04 (Soil)

	Reporting							
Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	SunStar L	aboratori	ies. Inc.					
	Result			The state of the s			Reporting Result Limit Units Dilution Batch Prepared Analyzed SunStar Laboratories, Inc.	

Acenaphthene	ND	100	ug/kg	10	22L0269	12/20/22	12/21/22	EPA 8270C SIM	O-05, R-07
Acenaphthylene	ND	50		*		**	**		O-05, R-07
Anthracene	ND	50		**		**		•	O-05, R-07
Benzo (a) anthracene	73	50		*	"				O-05, R-07
Benzo (b) fluoranthene	ND	100				*	**		O-05, R-07
Benzo (k) fluoranthene	ND	100	.0	**	m.		**		O-05, R-07
Benzo (g,h,i) perylene	140	50	n	**	**				O-05, R-07
Benzo (a) pyrene	ND	100		**	**				O-05, R-07
Chrysene	160	50		"					O-05, R-07
Dibenz (a,h) anthracene	ND	50	n	"		*	**		O-05, R-07
Fluoranthene	57	50	**			*	**		O-05, R-07
Fluorene	ND	100	n	*		**	**		O-05, R-07
Indeno (1,2,3-cd) pyrene	ND	50	"	*		"			O-05, R-07
Naphthalene	ND	50	n	**					O-05, R-07
Phenanthrene	60	50	.0						O-05, R-07
Pyrene	ND	100	n:	14	in .		**		O-05, R-07
Surrogate: Terphenyl-dl4		167 %	18-1.	37	"	"	"		O-05, R-07, S-06

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jones Environmental

Project: B191-194

11007 Forest Place

Fluoranthene

Naphthalene

Phenanthrene

Indeno (1,2,3-cd) pyrene

Fluorene

Pyrene

Project Number: ST-21305

Santa Fe Springs CA, 90670

Project Manager: Colby Wakeman

Reported: 12/27/22 16:45

LB56-0.5

T223645-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polynuclear Aromatic Compounds	by GC/MS with Selecte	d Ion Monito	ring						
Acenaphthene	ND	10	ug/kg	1	22L0269	12/20/22	12/21/22	EPA 8270C SIM	O-05
Acenaphthylene	ND	5.0			*	**	W		O-05
Anthracene	ND	5.0		"	'n	**			O-05
Benzo (a) anthracene	7.0	5.0	"		"				O-05
Benzo (b) fluoranthene	ND	10				**	**		O-05
Benzo (k) fluoranthene	ND	10	.0	"	n-		**	u	0-05
Benzo (g,h,i) perylene	11	5.0	n	*					O-05
Benzo (a) pyrene	ND	10		"	**				O-05
Chrysene	12	5.0							O-05
Dibenz (a,h) anthracene	ND	5.0	n		19		*		O-05

Surrogate: Terphenyl-dl4 110 % 18-137 " " " O-05

5.0

10

5.0

5.0

5.0

10

8.3

ND

ND

ND

7.0

ND

SunStar Laboratories, Inc.

Joann Marroquen

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

0-05

O-05

0-05

0-05

0-05

0-05

Jones Environmental

Santa Fe Springs CA, 90670

Project: B191-194

11007 Forest Place

Project Number: ST-21305

Project Manager: Colby Wakeman

Reported:

12/27/22 16:45

LB54-0.5 T223645-06 (Soil)

1									
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

		SunStar L	aboratorie	s, Inc.					
Polynuclear Aromatic Compounds	by GC/MS with Selected	I Ion Monito	oring						
Acenaphthene	ND	100	ug/kg	10	22L0269	12/20/22	12/21/22	EPA 8270C SIM	O-05, R-07
Acenaphthylene	400	50	.00			**		•	O-05, R-07
Anthracene	370	50	n .						O-05, R-07
Benzo (a) anthracene	570	50	'n		**		*	**	O-05, R-07
Benzo (b) fluoranthene	ND	100			(11)		"		O-05, R-07
Benzo (k) fluoranthene	ND	100		"	"				O-05, R-07
Benzo (g,h,i) perylene	310	50	.0		99	**	*		O-05, R-07
Benzo (a) pyrene	ND	100	30 1	- 11	0.00	**	100	**	O-05, R-07
Chrysene	1100	50		**	**		*		O-05, R-07
Dibenz (a,h) anthracene	ND	50				"	•		O-05, R-07
Fluoranthene	1800	50	9		97	**	*	•	O-05, R-07
Fluorene	ND	100	n.				H		O-05, R-07
Indeno (1,2,3-cd) pyrene	ND	50	n I	16			**		O-05, R-07
Naphthalene	9300	50		,,		**	,		O-05, R-07
Phenanthrene	1600	50			"		*		O-05, R-07
Pyrene	1700	100			*		*		O-05, R-07
Surrogate: Terphenyl-dl4		147 %	18-1.	37			*		O-05, R-07, S-06

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jones Environmental

Project: B191-194

11007 Forest Place

Project Number: ST-21305

Santa Fe Springs CA, 90670

Project Manager: Colby Wakeman

Reported:

12/27/22 16:45

LB55-0.5 T223645-07 (Soil)

to the second second		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Acenaphthene	380	100	ug/kg	10	22L0269	12/20/22	12/21/22	EPA 8270C SIM	O-05, R-07
Acenaphthylene	120	50		•	N+	**	*		O-05, R-07
Anthracene	980	50	n .				**		O-05, R-07
Benzo (a) anthracene	580	50			**		*		O-05, R-07
Benzo (b) fluoranthene	ND	100			(11)		"		O-05, R-07
Benzo (k) fluoranthene	ND	100		"	"				O-05, R-07
Benzo (g,h,i) perylene	170	50	.00		90	**	м.		O-05, R-07
Benzo (a) pyrene	ND	100	w	- 11	1.00	**	W		O-05, R-07
Chrysene	670	50	0	**	**				O-05, R-07
Dibenz (a,h) anthracene	ND	50	*		*	"		"	O-05, R-07
Fluoranthene	3500	50					*		O-05, R-07
Fluorene	ND	100	0.		**		H	•	O-05, R-07
Indeno (1,2,3-cd) pyrene	90	50	n i	-	700	**	*		O-05, R-07
Naphthalene	ND	50		**		**	**		O-05, R-07
Phenanthrene	4500	50		*			**		O-05, R-07
Pyrene	3100	100		**	*		*		O-05, R-07
Surrogate: Terphenyl-dl4		164 %	18-1.	37			*	u	O-05, R-07,

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jones Environmental

Project: B191-194

11007 Forest Place

Project Number: ST-21305

Santa Fe Springs CA, 90670

Project Manager: Colby Wakeman

Reported:

12/27/22 16:45

LB53-0.5 T223645-08 (Soil)

Reporting Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Note:										
Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Note:	the second second		Reporting							
	Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

		SunStar L	aboratorie	s, Inc.					
Polynuclear Aromatic Compounds	by GC/MS with Selected	l Ion Monito	ring						
Acenaphthene	ND	100	ug/kg	10	22L0269	12/20/22	12/21/22	EPA 8270C SIM	O-05, R-07
Acenaphthylene	170	50				**			O-05, R-07
Anthracene	430	50	.11						O-05, R-07
Benzo (a) anthracene	690	50	n ·	•			*		O-05, R-07
Benzo (b) fluoranthene	1200	100	"	*				**	O-05, R-07
Benzo (k) fluoranthene	480	100			*	**	* -		O-05, R-07
Benzo (g,h,i) perylene	570	50		**	**	29	*	*	O-05, R-07
Benzo (a) pyrene	640	100			**	*			O-05, R-07
Chrysene	1200	50	.00				34		O-05, R-07
Dibenz (a,h) anthracene	ND	50		o		*	ж.	**	O-05, R-07
Fluoranthene	1100	50	0				*		O-05, R-07
Fluorene	ND	100	,,		**	19			O-05, R-07
Indeno (1,2,3-cd) pyrene	490	50	n						O-05, R-07
Naphthalene	ND	50	"	**	in .	,,,	**	**	O-05, R-07
Phenanthrene	460	50		*	m.	**	*		O-05, R-07
Pyrene	1600	100		**	ir	**	"		O-05, R-07
Surrogate: Terphenyl-dl4		177 %	18-1.	37			"	"	O-05, R-07,

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jones Environmental

Project: B191-194

11007 Forest Place

Project Number: ST-21305

Santa Fe Springs CA, 90670

Project Manager: Colby Wakeman

Reported: 12/27/22 16:45

LB52-0.5

T223645-09 (Soil)

the second secon		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

		SunStar L	aboratorie	s, Inc.					
Polynuclear Aromatic Compounds	by GC/MS with Selected	Ion Monito	oring						
Acenaphthene	ND	100	ug/kg	10	22L0269	12/20/22	12/21/22	EPA 8270C SIM	O-05, R-07
Acenaphthylene	500	50				**			O-05, R-07
Anthracene	1200	50							O-05, R-07
Benzo (a) anthracene	1500	50	'n		n		*		O-05, R-07
Benzo (b) fluoranthene	3500	100	"	*	**	"			O-05, R-07
Benzo (k) fluoranthene	990	100		**	*				O-05, R-07
Benzo (g,h,i) perylene	1200	50		**	*	**	**		O-05, R-07
Benzo (a) pyrene	1800	100		,	**	*	14		O-05, R-07
Chrysene	3000	50	0.0				pt.		O-05, R-07
Dibenz (a,h) anthracene	320	50	0	0	w	*	ж.	**	O-05, R-07
Fluoranthene	1600	50	n	11	n	n	W.	п	O-05, R-07
Fluorene	ND	100	0.5						O-05, R-07
Indeno (1,2,3-cd) pyrene	1200	50					"		O-05, R-07
Naphthalene	ND	50							O-05, R-07
Phenanthrene	290	50	20		10		**		O-05, R-07
Pyrene	6300	100	**		n		H		O-05, R-07
Surrogate: Terphenyl-dl4		168 %	18-1.	37	*	*	*		O-05, R-07, S-06

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Jones Environmental

Project: B191-194

11007 Forest Place

Project Number: ST-21305

Reported:

Santa Fe Springs CA, 90670

Project Manager: Colby Wakeman

12/27/22 16:45

LB52-2.5 T223645-10 (Soil)

the second second		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		SunStar L	aboratorie	s, Inc.					
Polynuclear Aromatic Compounds I	by GC/MS with Selected	l Ion Monito	oring						
Acenaphthene	ND	100	ug/kg	10	22L0269	12/20/22	12/21/22	EPA 8270C SIM	O-05, R-07
Acenaphthylene	ND	50	•			**			O-05, R-07
Anthracene	ND	50	20	**		**	*		O-05, R-07
Benzo (a) anthracene	50	50		*	"				O-05, R-07
Benzo (b) fluoranthene	ND	100				*	**		O-05, R-07
Benzo (k) fluoranthene	ND	100	.0		m.	**	n:		O-05, R-07
Benzo (g,h,i) perylene	83	50	n	**	/#				O-05, R-07
Benzo (a) pyrene	ND	100		**	*			••	O-05, R-07
Chrysene	ND	50					**		O-05, R-07
Dibenz (a,h) anthracene	ND	50			**	**	*		O-05, R-07
Fluoranthene	ND	50		**	'n	**	*		O-05, R-07
Fluorene	ND	100	"				**		O-05, R-07
Indeno (1,2,3-cd) pyrene	ND	50	.0		(m c		19.		O-05, R-07
Naphthalene	ND	50	100	**			*	**	O-05, R-07
Phenanthrene	ND	50	m.	**				**	O-05, R-07
Pyrene	ND	100	n		*	"			O-05, R-07
Surrogate: Terphenyl-dl4		179 %	18-1.	37	"	"	29	"	O-05, R-07,

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Joann Marroquin

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Jones Environmental

Project: B191-194

11007 Forest Place

Project Number: ST-21305

Reported:

Santa Fe Springs CA, 90670

Project Manager: Colby Wakeman

12/27/22 16:45

Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (22L0269-BLK1)				Prepared: 12/20/	22 Analyzed: 13	2/21/22		
Acenaphthene	ND	10	ug/kg					
Acenaphthylene	ND	5.0	.11					
Anthracene	ND	5.0						
Benzo (a) anthracene	ND	5.0						
Benzo (b) fluoranthene	ND	10	"					
Benzo (k) fluoranthene	ND	10	*					
Benzo (g,h,i) perylene	ND	5.0						
Benzo (a) pyrene	ND	10						
Chrysene	ND	5.0						
Dibenz (a,h) anthracene	ND	5.0						
Fluoranthene	ND	5.0						
Fluorene	ND	10	- 0					
Indeno (1,2,3-cd) pyrene	ND	5.0	**					
Naphthalene	ND	5.0						
Phenanthrene	ND	5.0						
Pyrene	ND	10						
Surrogate: Terphenyl-dl4	332			333	99.6	18-137		
LCS (22L0269-BS1)				Prepared: 12/20/	22 Analyzed: 1	2/21/22		
Acenaphthene	279	10	ug/kg	333	83.6	50-130		
Pyrene	211	10		333	63.2	33.8-100		
Surrogate: Terphenyl-dl4	394		**	333	118	18-137		
LCS Dup (22L0269-BSD1)				Prepared: 12/20/	22 Analyzed: 1	2/21/22		
Acenaphthene	281	10	ug/kg	333	84.2	50-130	0.715	31
Pyrene	232	10		333	69.6	33.8-100	9.64	30
Surrogate: Terphenyl-dl4	424			333	127	18-137		

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Joann Marroquin

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Jones Environmental Project: B191-194
11007 Forest Place Project Number: ST-21305 Reported:
Santa Fe Springs CA, 90670 Project Manager: Colby Wakeman 12/27/22 16:45

Notes and Definitions

S-06	The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.
R-07	Reporting limit for this compound(s) has been raised to account for dilution necessary due to high levels of interfering compound(s) and/or matrix affect.
O-05	This sample was extracted outside of the EPA recommended holding time.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

SunStar Laboratories, Inc.

Joann Marroquin

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

T223645

(714) 449-9937 Fax (714) 449-9685 www.jonesenv.com

Chain-of-Custody Record

Client Leighton Consulting Project Name				Date 12/19/2 Client Pro 12736	oject#	Turi	□ Ru	media ush 24 ush 48	Reque te Atter Hours Hours Hours			EDD	0% Surcha				Jones Project #
B191-194 Project Address					Container / Pre	servative	X No	ormal		A	nalvs	sis Red	uested				Page 1 of 1
Email reports@jonesenv.com Phone (747) 449-9937 Report To Colby Wakeman	Sampler			SS - Sta BS - Bra G - Glas AB - Arr P - Plas SOBI - : MeOH - HCI - H HNO3 -	ber Bottle		Matrix: udge (SL), Aqueous (A), Free Product (FP)	EPA 8270 SIM							1 1	of Containers	Sample Condition as Recieved: Chilled of yes on no Sealed of yes of no
Sample ID	Date	Sample Collection Time	Laboratory Sam	nple ID	Preservative	Sample Container	Sample Soil (S), Sh	PAHS E								Number	Notes & Special Instructions
LB50-0.5 \	12/6/2022	725	0/		N	Р	S	х									ST-21305-01
LB50-5 2	12/6/2022	750	02		N	Р	S	х									ST-21305-03
LB58-0.5 3	12/6/2022	832	03		N	Р	s	х									ST-21305-05
LB59-0.5 4	12/6/2022	852	04		N	Р	s	х									ST-21305-07
LB56-0.5 5	12/6/2022	918	05		N	Р	s	х									ST-21305-09
LB54-0.5 (12/6/2022	1006	06		N	Р	s	х									ST-21305-13
LB55-0.5 1	12/6/2022	1028	07		N	Р	s	х									ST-21305-15
LB53-0.5 §	12/6/2022	1110	08		N	Р	s	х									ST-21305-18
LB52-0.5 9	12/6/2022	1138	09		N	Р	s	х									ST-21305-20
LB52-2.5 16	12/6/2022	1140	10		N	Р	s	х									ST-21305-21
Relinquished By (Signature) Company Company Company	<u>C</u>	Printed Date [2 - [9] Printed Traw Date:	Time	136	Received By	Chy Ste Laboratory (S	Signatu	λ			Printed	79-22 Name	Time		ß	analy	Total Number of Containers ient signature on this Chain of Custody form onstitutes acknowledgement that the above uses have been requested, and the information provided herein is correct and accurate.
SunStew		12-19-			5	un St	ar		Labo			119/		12;	30		

SAMPLE RECEIVING REVIEW SHEET

Batch/Work Order #:	7223	645	_				
Client Name:	Jones	* * * * * * * * * * * * * * * * * * *	Project: Lei	ghton Con	sulting	- 8191	-194
Delivered by:	Client	SunStar Courie	er GLS	☐ FedEx	Oth	ner	
If Courier, Received by:		Travis	Date/Time C Received:		12/19	/22	14:36
Lab Received by:		Paul	Date/Time La Received:		12/19	122	15:30
Total number of coolers re	eceived:	Thermometer ID	:SC-1	Calil	bration du	ie: <u>8/2/2</u>	23
Temperature: Cooler #1	2.6 0€	C +/- the CF (+ 0.1°C)) = 2.7	² °C corre	cted tempera	ature	
Temperature: Cooler #2	°C	C +/- the CF (+ 0.1°C)) =	°C corre	cted tempera	ature	
Temperature: Cooler #3	°C	C +/- the CF (+ 0.1°C)) =	°C corre	cted tempera	ature	
Temperature criteria = 5 (no frozen containers)	≤6°C	Within c	riteria?	Ves	□No	□N/A	
	:0	□Yes		□No →	•		
Samples received If on ice, samples collected?		e day	→ Acceptable	Comple □No →	te Non-Co	onformanc onformanc	
If on ice, samples	received sam	e day	→ Acceptable	Comple □No →	te Non-Co		
If on ice, samples collected?	received sam	e day	→ Acceptable	Comple □No → Comple	te Non-Co te Non-Co	onformanc	
If on ice, samples collected? Custody seals intact on co	received sam	e day ☐Yes =	→ Acceptable	Comple No -> Comple Comple	te Non-Co	onformanc	
If on ice, samples collected? Custody seals intact on co	received sam poler/sample	e day ☐Yes =	→ Acceptable	Comple No → Comple Yes	te Non-Co	onformanc	
If on ice, samples collected? Custody seals intact on co Sample containers intact Sample labels match Chair	received sam	e day ☐Yes =	→ Acceptable	Comple No → Comple Yes Yes Yes	te Non-Co te Non-Co No*	onformanc	
If on ice, samples collected? Custody seals intact on co Sample containers intact Sample labels match Chair Total number of containers	received sam coler/sample in of Custody rs received ma	e day ☐Yes =		Comple No → Comple Yes Yes Yes Yes	te Non-Co te Non-Co No* No*	onformanc	
If on ice, samples collected? Custody seals intact on collected Sample containers intact Sample labels match Chair Total number of containers Proper containers received	oler/sample in of Custody rs received mad d for analyses ated on COC/o	IDs atch COC requested on COC containers for analyse andition with correct to	es requested temperatures,	Comple No → Comple Yes Yes Yes Yes Yes Yes	te Non-Co te Non-Co No* No* No* No* No*	onformanc □N/A	
If on ice, samples collected? Custody seals intact on collected Sample containers intact Sample labels match Chair Total number of containers Proper containers received Proper preservative indicated Complete shipment received containers, labels, volume	oler/sample on of Custody rs received mand for analyses ated on COC/or ored in good cor es preservative	IDs atch COC requested on COC containers for analyse andition with correct to	es requested temperatures,	Comple No → Comple Yes Yes Yes Yes Yes Yes Yes Y	te Non-Co te Non-Co No* No* No* No* No* No*	onformanc □N/A □N/A	

Page 1 of

Printed: 12/20/2022 9:16:17AM

WORK ORDER

T223645

Client: Jones Environmental

Project: B191-194

Project Manager:

Joann Marroquin

Project Number:

ST-21305

Report To:

Jones Environmental Colby Wakeman

11007 Forest Place

Santa Fe Springs, CA 90670

Date Due:

12/28/22 17:00 (5 day TAT)

Received By:

Paul Berner

Logged In By:

Rebecca Traficanto

Date Received:

12/19/22 15:30

Date Logged In:

12/20/22 09:08

Samples Received at:

Custody Seals

2.7°C

Yes

Received On Ice

Containers Intact COC/Labels Agree Yes Preservation Confin No

Analysis	Due	TAT	Expires	Comments	
T223645-01 LB50-0.5 [(US &	Soil] Sampled 12/06/22 0	7:25 (GMT	-08:00) Pacific Tin	ne	
8270C PAH SIM	12/28/22 15:00	5	12/20/22 07:25		
T223645-02 LB50-5 [Se (US &	oil] Sampled 12/06/22 07:	50 (GMT-0	8:00) Pacific Time		
8270C PAH SIM	12/28/22 15:00	5	12/20/22 07:50		
T223645-03 LB58-0.5 [(US &	Soil] Sampled 12/06/22 0	8:32 (GMT	-08:00) Pacific Tir	ne	
8270C PAH SIM	12/28/22 15:00	5	12/20/22 08:32		
T223645-04 LB59-0.5 [(US &	Soil] Sampled 12/06/22 0	8:52 (GMT	-08:00) Pacific Tin	ne	
8270C PAH SIM	12/28/22 15:00	5	12/20/22 08:52		
T223645-05 LB56-0.5 [(US &	Soil] Sampled 12/06/22 09	9:18 (GMT	-08:00) Pacific Tin	ne	
8270C PAH SIM	12/28/22 15:00	5	12/20/22 09:18		
T223645-06 LB54-0.5 [(US &	Soil] Sampled 12/06/22 10	0:06 (GMT	-08:00) Pacific Tin	ne	
8270C PAH SIM	12/28/22 15:00	5	12/20/22 10:06		
T223645-07 LB55-0.5 [(US &	Soil] Sampled 12/06/22 10	0:28 (GMT	-08:00) Pacific Tin	ne	
8270C PAH SIM	12/28/22 15:00	5	12/20/22 10:28		

WORK ORDER

T223645

Client: Jones Environmental

Project: B191-194

8270C PAH SIM

Project Manager: Joann Marroquin

Project Number: ST-21305

TAT Comments Analysis Due Expires T223645-08 LB53-0.5 [Soil] Sampled 12/06/22 11:10 (GMT-08:00) Pacific Time (US & 8270C PAH SIM 12/28/22 15:00 12/20/22 11:10 5 T223645-09 LB52-0.5 [Soil] Sampled 12/06/22 11:38 (GMT-08:00) Pacific Time (US & 8270C PAH SIM 12/28/22 15:00 5 12/20/22 11:38 T223645-10 LB52-2.5 [Soil] Sampled 12/06/22 11:40 (GMT-08:00) Pacific Time (US &

12/20/22 11:40

5

12/28/22 15:00

APPENDIX C

SCAQMD RULE 1166, SCAQMD RULE 1455, and SCAQMD RULE 403

RULE 1166. VOLATILE ORGANIC COMPOUND EMISSIONS FROM DECONTAMINATION OF SOIL

(a) Applicability

This rule sets requirements to control the emission of Volatile Organic Compounds (VOC) from excavating, grading, handling and treating VOC-contaminated soil as a result of leakage from storage or transfer operations, accidental spillage, or other deposition.

(b) Definitions

- (1) EXCAVATION is the process of digging out and removing materials, including any material necessary to that process such as the digging out and removal of asphalt or concrete necessary to expose, dig out and remove known VOC contaminated soil.
- (2) GRADING is the process of leveling off to produce a smooth surface including the removal of any material necessary to that process such as asphalt and concrete necessary to expose known VOC contaminated soil.
- (3) SOIL DECONTAMINATION MEASURE is any process approved by the Executive Officer to remediate, destroy, remove, or encapsulate VOC and VOC-contaminated soil.
- (4) UNDERGROUND STORAGE TANK means any one or combination of tanks, including pipes connected thereto, which is used for the storage of organic liquid which is more than 50% beneath the surface of the ground.
- (5) VOC CONTAMINATED SOIL is a soil which registers a concentration of 50 ppm or greater of Volatile Organic Compounds as measured before suppression materials have been applied and at a distance of no more than three inches from the surface of the excavated soil with an organic vapor analyzer calibrated with hexane.
- (6) VOC CONTAMINATED SOIL MITIGATION PLAN is a plan to minimize VOC emissions to the atmosphere during excavation and any subsequent handling of VOC-contaminated soil.

- (7) VOLATILE ORGANIC COMPOUND (VOC) is any volatile compound of carbon, excluding methane, carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates, ammonium carbonate, and exempt compounds. Exempt compounds are defined in Rule 102—Definition Of Terms.
- (8) VOLATILE ORGANIC MATERIALS include gasoline, diesel, crude oil, lubricant, waste oil, adhesive, paint, stain, solvent, resin, monomer, and/or any other material containing VOC.

(c) Requirements

- (1) A person excavating an underground storage tank and/or transfer piping storing or previously storing VOC materials, or excavating or grading soil containing VOC materials shall:
 - (A) Apply for, obtain and operate pursuant to a mitigation plan approved by the Executive Officer prior to commencement of excavation or handling. The mitigation plan general requirement and application requirements are found in Attachment A to this rule. A copy of the approved plan must be on site during the entire excavation period.
 - (B) Notify the Executive Officer at least 24 hours prior to excavation using a form approved by the Executive Officer which is fully completed.
 - If the excavation does not commence on start date, renotification is required.
 - An alternative notification procedure may be authorized for multiple excavations within a single facility, with prior written approval from the Executive Officer.
 - (C) Monitor for VOC contamination pursuant to subdivision (e), at least once every 15 minutes commencing at the beginning of excavation or grading and record all VOC concentration readings in a format approved by the Executive Officer; and
 - (D) When VOC-contaminated soil is detected during excavation or grading:
 - (i) Implement the approved mitigation plan (Attachment A).
 - (ii) Notify the Executive Officer within 24 hours of detection of VOC-contaminated soil.

- (iii) Monitor and record VOC concentration readings as prescribed in the plan. Monitoring records must be kept available on site.
- (iv) Keep calibration records for all monitoring instruments available on site.
- (2) A person handling VOC-contaminated soil at or from an excavation or grading site shall:
 - (A) Segregate VOC-contaminated stockpiles from non-VOC contaminated stockpiles such that mixing of the stockpiles does not take place.
 - (B) Spray VOC-contaminated soil stockpiles with water and/or approved vapor suppressant and cover them with plastic sheeting for all periods of inactivity lasting more than one hour.
 - (C) Conduct a daily visual inspection of all covered VOC contaminated soil_stockpiles to ensure the integrity of the plastic covered surfaces. A daily inspection record must be maintained on site.
 - (D) Comply with the provisions in subparagraph (c) (1)(A) and clause (c)(1)(D)(i).
 - (E) Maintain a record of the identification and business addresses of the generator, transporter and storage/treatment facilities. Such record shall be signed by each party at the time custody is transferred.
 - (F) Treat or remove contaminated soil from an excavation or grading site within 30 days from the time of excavation.
- (3) If the VOC concentration in the excavated soil is measured at greater than 1000 ppm, spray the soil with water or vapor suppressant and:
 - (A) As soon as possible, but not more than 15 minutes, place the soil in sealed containers, or
 - (B) As soon as possible, but not more than 15 minutes, load into trucks, moisten with additional water, cover and transport off site, or
 - (C) Implement other alternative storage methods approved in writing by the Executive Officer.

- (4) A person treating VOC-contaminated soil shall:
 - (A) Obtain a permit to construct and operate treatment equipment, as applicable, from the Executive Officer, and
 - (B) Implement VOC-contaminated soil decontamination measures, as approved by the Executive Officer in writing, which result in Best Available Control Technology applied during all segments, and which include, but are not limited to, at least one of the following:
 - (i) Installation and operation of an underground VOC collection system and a disposal system prior to excavation.
 - (ii) Collection and disposal of the VOC from the excavated soil on-site using equipment approved by the Executive Officer.
 - (iii) Any equivalent VOC-contaminated soil control measure previously approved in writing by the Executive Officer.
- (5) A person shall not engage in or allow any on-site or off-site spreading, grading or screening of VOC-contaminated soil, which results in uncontrolled evaporation of VOC to the atmosphere.
- (6) Loading trucks for contaminated soil must meet the following:
 - (A) The truck and trailer shall be adequately tarped prior to leaving the site; no excavated materials shall extend above the sides or rear of the truck or trailer to prevent soil spillage during transport, and
 - (B) The exterior of the truck, trailer and tires shall be cleaned off prior to the truck leaving the site.

(d) Exemptions

- (1) The provisions of this rule shall not apply to the following:
 - (A) Excavation, handling, and treating of less than one (1) cubic yard of contaminated soil.
 - (B) Removal of soil for sampling purposes.
 - (C) Accidental spillage of five (5) gallons or less of VOC containing material.

(2) The provisions of paragraphs (c)(1) and (c)(2) shall not apply to soil excavation or handling as a result of an emergency as declared by an authorized health officer, agricultural commissioner, fire protection officer, or other authorized agency officer. Whenever possible, the Executive Officer shall be notified by telephone prior to commencing such excavation. The Executive Officer shall be notified in writing no later than 48 hours following such excavation. Written notification shall include written emergency declaration from the authorized officer.

(e) Test Methods

- (1) A person shall measure excavated soils for volatile organic compounds to determine contamination by:
 - (A) Using an organic vapor analyzer calibrated with hexane, complying with 40 CFR Part 60 Appendix A, EPA Reference Method 21 Section 3 or any equivalent method with prior approval in writing by the Executive Officer. If other calibrating gases are used, then the measured readings shall be correlated to and expressed as hexane.
 - (B) Placing the probe inlet at a distance of no more than three inches from the surface of the excavated soil and while slowly moving the probe across the soil surface, observe the instrument readout. If an increased meter reading is observed, continue to sample the excavated soil until the maximum meter reading is obtained. Leave the probe inlet at this maximum reading location for approximately double the instrument response time. If the maximum observed meter reading is greater than the 50 ppm standard in the regulation, record and report the results.
- (2) The presence of VOC in stored or spillage materials shall be determined by SCAQMD Method 313 [Determination of Presence of Volatile Organic Compounds (VOC) in Headspace] and/or Method 304 (Determination of Volatile Organic Compounds in Various Materials) contained in the SCAQMD "Laboratory Methods of Analysis for Enforcement Samples" manual.

(f) Enforcement

- (1) Violation of any provision of this rule or the violation of the approved mitigation plan shall be grounds for the Executive Officer to amend or revoke the mitigation plan, in addition to penalties provided by the Health & Safety Code.
- (2) If the owner or operator is served with a Notice of Violation for creating a public nuisance, the owner or operator shall suspend operation until the public nuisance is mitigated to the satisfaction of the Executive Officer.

ATTACHMENT A GENERAL MITIGATION PLANS REQUIREMENTS

VOC Contaminated Soil Mitigation Plans shall be written to minimize VOC emissions to the atmosphere during excavation, grading, handling and treatment of VOC contaminated soil. VOC Contaminated Soil Mitigation Plans shall consist of three types: Various Locations, Site Specific and Facility Treatment.

- (1) General Requirements
 - (A) A plan is not transferable.
 - (B) A person responsible for the excavation, grading or handling of VOC contaminated soil must be completely familiar with the plan and must adhere to the plan requirement. The Executive Officer may require that the plan be signed by the owner and/or operator.
 - (C) A plan may be amended upon renewal.
 - (D) Permission to excavate, grade or handle VOC contaminated soil may be withdrawn by the District upon a finding by the Executive Officer that the excavation, grading or handling of the VOC contaminated soil is causing a public nuisance or violating other AOMD rules or regulations.
- (2) Various Location Plans:
 - (A) Shall be limited to the excavation of 2000 cubic yards or less of VOC contaminated soil in any consecutive 12 month period at the same site.
 - (B) Shall not be used in conjunction with any other various location plan at the same site within a consecutive 12-month period.
 - (C) Shall expire after one year from issuance unless renewed.
 - (D) Shall not be issued for nor used for operations that involve grading, soil treatment or remediation, or landfills.
- (3) Site Specific Plans:
 - (A) Shall be for excavation of greater than 2000 cubic yards of VOC contaminated soil.
 - (B) Shall be issued for specific excavation or grading locations for a period not to exceed two years.
 - (C) Shall not be renewable.

- (4) Facility Treatment Plans:
 - (A) Shall be issued for a treatment facility at a permanent location.
 - (B) Shall expire after one year from issuance unless renewed.
- (5) Applications for Site Specific Plans shall contain as a minimum:
 - (A) Reasons for excavation or grading.
 - (B) Cause of VOC soil contamination and history of the site.
 - (C) Description of tanks or piping associated with the soil contamination.
 - (D) An estimate of the amount of contaminated soil.
 - (E) The operating schedule for excavation and removal.
 - (F) Description of how the excavation or grading will be conducted.
 - (G) Description of mitigation measures for dust, odors and VOC.
 - (H) Details of disposal of VOC contaminated soil, including the ultimate receptor.
 - (I) Description of monitoring equipment and techniques.
 - (J) A map showing the facility layout, property line, and surrounding area up to 2500 feet away, and including any schools, residential areas or other sensitive receptors such as hospitals or locations where children or elderly people live or work.
 - (K) Designation of a person who can conduct a site inspection with the Executive Officer prior to issuance of the plan.
- (6) Applications for Facility Treatment Plans shall at a minimum:
 - (A) Include a list of all AQMD permits to construct or operate which have been issued for that treatment and control equipment.
 - (B) Provide for the implementation of VOC-contaminated soil decontamination measures, as approved by the Executive Officer in writing, which result in Best Available Control Technology during all operations.
 - (C) Provide a map showing the facility layout including the location of all proposed VOC and non-VOC contaminated soil stockpiles.
 - (D) Specify the total amount of VOC contaminated soil proposed to be stockpiled on site.
 - (E) Provide for VOC contaminated soil stockpiles to be kept moist with water or suppressant and be covered to prevent fugitive emissions.

- (F) Provide for VOC contaminated soil stockpiles to be segregated from non-VOC contaminated soil stockpiles.
- (G) Provide for maintenance of records for stockpiles according to the source name, address and dates of reception.
- (H) Provide for records of the generator, transporter and storage/treatment facilities and indicate their identification and business addresses. Such records shall be signed by each party at the time custody is transferred.
- (I) Provide a map showing the facility layout, property line, and surrounding area up to 2500 feet away, and including any schools, residential area or other sensitive receptors such as hospitals, or locations where children or elderly people live or work.
- (J) Designation of a person who can conduct a site inspection with the Executive Officer prior to issuance of the plan.
- (K) Specify the operating schedule and maximum amount of VOC-contaminated soil proposed to be remediated on a daily basis.
- (7) In approving a plan, the Executive Officer require reasonable conditions deemed necessary to ensure the operations comply with the plan and AQMD rules. The conditions may include, but shall not be limited to, procedures for ensuring responsibility for the implementation of the plan, accessibility to the site for AQMD staff, notification of actions required by the plan, identification of emission receptors, monitoring and testing, suppression and covering of stockpiles, prevention of public nuisance from VOC or dust emissions, prevention of fugitive emissions of VOC contaminated soil, loading of truck trailers, and disposal and treatment.
- (8) In approving a plan, the Executive Officer may require any records deemed necessary to be maintained by the operator to demonstrate compliance with the plan. Such records shall be retained for at least 2 years and be made available to the Executive officer upon request.

RULE 1466. CONTROL OF PARTICULATE EMISSIONS FROM SOILS WITH TOXIC AIR CONTAMINANTS

(a) Purpose

The purpose of this rule is to minimize the amount of off-site fugitive dust emissions containing toxic air contaminants by reducing particulate emissions in the ambient air as a result of earth-moving activities, including, dredging, excavating, grading, earth-cutting and filling, loading, unloading, handling, mechanized land clearing, treating, stockpiling, transferring, and removing of soil that contains applicable toxic air contaminants, from sites that meet the applicability requirements of subdivision (b).

(b) Applicability

- (1) This rule shall apply to any owner or operator conducting earth-moving activities of soil with applicable toxic air contaminant(s) as defined in paragraph (c)(16) that have been identified as contaminant(s) of concern at a site that has been designated and notified by:
 - (A) The U.S. Environmental Protection Agency (U.S. EPA) as a Superfund National Priorities List site:
 - (B) The California Department of Toxic Substances Control (DTSC) as a Brownfield or Cleanup Program site;
 - (C) The State Water Resources Control Board (State Water Board) or Regional Water Quality Control Board (Regional Water Board) as a Site Cleanup Program site;
 - (D) A county, local, or state regulatory agency as a Hazardous Material Release site, as defined in California Health and Safety Code Section 25260; or
 - (E) The Executive Officer pursuant to subdivision (i).
- (2) This rule shall not apply to:
 - (A) Earth-moving activities of soil with applicable toxic air contaminant(s) of less than 50 cubic yards; or
 - (B) Removal of soil for sampling purposes.

(c) Definitions

(1) ADEQUATELY WET means the condition of being sufficiently mixed or penetrated with water to prevent the release of particulates or visible emissions. The process by which an adequately wet condition is achieved is by using a dispenser

- or water hose with a nozzle that permits the use of a fine, low-pressure spray or mist.
- (c) ADJACENT ATHLETIC AREA means any outdoor athletic field or park where youth organized sports occur that is in physical contact or separated solely by a public roadway or other public right-of-way to a SCHOOL.
 - (3) ADJOINING means in physical contact with or separated solely by a public roadway or other public right-of-way.
 - (4) CHEMICAL STABILIZERS means any non-toxic chemicals that are used to bind soil together to control FUGITIVE DUST emissions.
 - (5) DISTURBED SURFACE AREA means a portion of the earth's surface which has been physically moved, uncovered, destabilized, or otherwise modified from its undisturbed natural soil condition, thereby increasing the potential for FUGITIVE DUST. This definition excludes those areas which have:
 - (A) Been restored to a natural state, such that the vegetative ground cover and soil characteristics are similar to adjacent or nearby natural conditions;
 - (B) Been paved or otherwise covered by a permanent structure; or
 - (C) Sustained a vegetative ground cover of at least 70 percent of the native cover for a particular area for at least 30 days.
 - (6) DUST SUPPRESSANTS means water or hygroscopic materials, other than CHEMICAL STABILIZERS, that are used as a treatment material to reduce FUGITIVE DUST emissions.
 - (7) EARTH-MOVING ACTIVITIES means, for the purpose of this rule, any activity on a site that meets the applicability requirements of subdivision (b) where SOIL WITH APPLICABLE TOXIC AIR CONTAMINANT(S) is being moved or uncovered, including: dredging, excavating, grading, earth-cutting and filling operations, loading, unloading, handling, mechanized land clearing, treating, transferring, removing, and adding to or removing from STOCKPILES, and vehicular movement of equipment associated with these activities. EARTH-MOVING ACTIVITIES do not include vehicular movement from: delivery vehicles, passenger vehicles transporting personnel to and from the site, vehicles used for administrative purposes, vehicles transporting personnel for the purposes of soil sampling and conducting ambient PM₁₀ monitoring requirements, watering trucks, and equipment used exclusively on a portion(s) of the site where there is no SOIL WITH APPLICABLE TOXIC AIR CONTAMINANT(S).

- (c) (8) FUGITIVE DUST means, for the purpose of this rule, any solid particulate matter that is in contact with ambient air and has the potential to become airborne, other than solid particulate matter that is emitted from an exhaust stack.
 - (9) JOINT USE AGREEMENT PROPERTY means a shared public facility in which a formal agreement exists between a SCHOOL and another government entity setting forth the terms and conditions for shared use.
 - (10) OWNER OR OPERATOR means any firm, business establishment, association, partnership, corporation or individual, whether acting as principal, agent, employee, contractor, or other capacity.
 - (11) PAVED ROAD means a public or private improved street, highway, alley, public way, or easement that is covered by typical roadway materials, but excludes access roadways that connect a facility with a public paved roadway and are not open to through traffic. Public paved roads are those open to public access and that are owned by any federal, state, county, municipal, or any other governmental or quasi-governmental agencies. Private paved roads are any PAVED ROADS not defined as public.
 - (12) PROPERTY LINE means the boundary of an area where a person has the legal use or possession of the property. Where such property is divided into one or more subtenancies, the property line(s) shall refer to the boundaries dividing the areas of all sub-tenancies.
 - (13) SCHOOL means any public or private education center, including juvenile detention facilities with classrooms, used for the education of more than 12 children at the education center in kindergarten through grade 12. A SCHOOL also includes an Early Learning and Developmental Program by the U.S. Department of Education or any state or local early learning and development programs such as preschools, Early Head Starts, Head Start, First Five, and Child Development Centers. A SCHOOL does not include any private education center in which education is primarily conducted in private homes. A SCHOOL includes any building or structure, playground, athletic field, or other area of school property.
 - (14) SLAG means, for the purpose of this rule, the by-product material that is separated from metals during smelting or refining of ore.
 - (15) SOIL means dirt, sand, gravel, clay, SLAG, and aggregate material less than two inches in length or diameter, and other organic or inorganic particulate matter.
 - (16) SOIL WITH APPLICABLE TOXIC AIR CONTAMINANT(S) means, for the purpose of this rule, SOIL that has been identified by the U.S. EPA, the DTSC, the

State Water Board, the Regional Water Board, or a county, local, or state regulatory agency, to contain one or more of the applicable toxic air contaminants listed in Table I that exceed action levels as specified by the designating agency, or soil that has been identified by the Executive Officer to contain one or more of the toxic air contaminants listed in Rule 1401 – New Source Review of Toxic Air Contaminants (Table I) or Hazardous Air Pollutants Identified as Toxic Air Contaminants as listed in California Code of Regulations Section 93001, excluding volatile organic compounds regulated under Rule 1166 – Volatile Organic Compound Emissions from Decontamination of Soil.

- (c) STABILIZED SURFACE means any previously DISTURBED SURFACE AREA or STOCKPILE, which through the application of CHEMICAL STABILIZERS or DUST SUPPRESSANTS, shows visual or other evidence of surface crusting and is resistant to WIND-DRIVEN FUGITIVE DUST, and is demonstrated to be stabilized. Stabilization can be demonstrated by one or more of the applicable test methods contained in the most current version of the South Coast AQMD *Rule 403 Fugitive Dust Implementation Handbook* or in Volumes I and II of South Coast AQMD's *Dust Control in the Coachella Valley*.
 - (18) STOCKPILE means any accumulation of SOIL, which is not fully enclosed and which attains a height of three feet or more and a total surface area of 150 square feet or more.
 - (19) TRACK-OUT means, for the purpose of this rule, any SOIL that adheres to and agglomerates on the exterior surface of motor vehicles, haul trucks, and equipment (including tires) that has been released onto a PAVED ROAD and that can be removed by a vacuum sweeper under normal operating conditions.
 - (20) WIND-DRIVEN FUGITIVE DUST means visible emissions from any DISTURBED SURFACE AREA, which is generated by wind action alone.

(d) Monitoring Requirements

- (1) When on-site earth-moving activities occur, the owner or operator shall conduct continuous direct-reading near real-time ambient monitoring of PM_{10} concentrations pursuant to paragraph (d)(3).
- (2) If the PM_{10} concentration exceeds 25 micrograms per cubic meter, as measured pursuant to paragraph (d)(3) and as determined pursuant to paragraph (d)(9), the owner or operator shall cease on-site earth-moving activities, apply dust suppressant to fugitive dust sources, or implement other dust control measures as

- necessary until the PM_{10} concentration is equal to or less than 25 micrograms per cubic meter averaged over 30 minutes.
- (d) The owner or operator conducting on-site earth-moving activities shall install PM_{10} monitors and conduct ambient PM_{10} monitoring:
 - (A) In accordance with a U.S. EPA-approved equivalent method for PM₁₀ monitoring or using a Rule 1466 Approved PM₁₀ Monitor;
 - (B) Using a minimum of two monitors, placing each monitor as close to the property line as feasible, where:
 - (i) One or more monitors is in the seasonal prevailing wind direction upwind of the area(s) of on-site earth-moving activity, indicative of background PM₁₀ levels, and not generally influenced by fugitive dust sources from the site; and
 - (ii) One or more monitors is in the seasonal prevailing wind direction downwind of the area(s) of on-site earth-moving activity;
 - (C) Using PM_{10} monitors that are identical in: make and model, settings, and configuration; and
 - (D) Using ambient PM_{10} monitors that are operated, maintained, and calibrated in accordance with appropriate U.S. EPA-published documents for U.S. EPA-approved equivalent methods for PM_{10} and manufacturer's instructions.
 - (4) On and before December 31, 2021, the owner or operator shall collect ambient PM₁₀ data with a data acquisition system (DAS) that is capable of logging direct-reading near real-time data providing the date, time, and PM₁₀ concentration in micrograms per cubic meter every 10 minutes or less.
 - On and after January 1, 2022, the owner or operator shall collect ambient PM_{10} data with a DAS that is capable of logging direct-reading near real-time data providing the date and time, calibrated to Pacific Standard Time (PST), and PM_{10} concentration in micrograms per cubic meter every 1 minute or less.
 - (6) On and after January 1, 2022, the owner or operator shall operate PM_{10} monitors with the heated sampler inlet on.
 - (7) On and after January 1, 2022, prior to conducting any on-site earth-moving activities, and weekly thereafter, the owner operator shall conduct intra-instrument precision tests with the PM₁₀ monitors in accordance with *Appendix 2 Procedures to Demonstrate Intra-Instrument Precision*, or make available documentation and supporting data certifying that such intra-instrument precision tests were run by an

equipment rental company or other third party, that demonstrate an intra-instrument precision of:

- (d) (7) (A) No more than 25 percent as calculated pursuant to Step 7a in *Appendix* 2 when ambient PM₁₀ concentrations are equal to or greater than 15 micrograms per cubic meter; or
 - (B) No more than 5 micrograms per cubic meter as calculated pursuant to Step 7b in *Appendix 2* when ambient PM₁₀ concentrations are less than 15 micrograms per cubic meter.
 - (8) On and after January 1, 2022, each day prior to conducting on-site earth-moving activities, the owner or operator shall conduct a passing zero check on each PM_{10} monitor in accordance with:
 - (A) Steps 4 and 5 of *Appendix 2* that demonstrates an average PM_{10} concentration of 0 ± 3 micrograms per cubic meter; or
 - (B) Manufacturer's instructions if a monitor is operated using an auto-zero check procedure that directs filtered particle-free air into the measurement chamber.
 - (9) The owner or operator shall calculate the PM_{10} concentration as a 120-minute rolling average, where:
 - (A) The initial average starts at the commencement of on-site earth-moving activities and ends 120 minutes after the commencement of on-site earth-moving activities;
 - (B) On and before December 31, 2021, the averages subsequent to the initial average specified in subparagraph (d)(9)(A) are to be calculated every 10 minutes and cover the previous 120-minute period;
 - (C) On and after January 1, 2022, the averages subsequent to the initial average specified in subparagraph (d)(9)(A) are to be calculated every 1 minute and cover the previous 120-minute period;
 - (D) The PM₁₀ concentration is calculated by subtracting the results of the upwind monitor(s) from the downwind monitor(s) for the same averaging period;
 - (i) If the wind direction is in the seasonal prevailing wind direction, then the monitor(s) described pursuant to clause (d)(3)(B)(i) shall be designated as the upwind monitor(s) and the monitor(s) described pursuant to clause (d)(3)(B)(ii) shall be designated as the downwind monitor(s); and

- (d) (9) (ii) If there is greater than $a \pm 90$ degree change in wind direction from the seasonal prevailing wind direction, then the monitor(s) described pursuant to clause (d)(3)(B)(i) shall be designated as the downwind monitor(s) and the monitor(s) described pursuant to clause (d)(3)(B)(ii) shall be designated as the upwind monitor(s);
 - (E) If there is more than one upwind monitor, the upwind result is the average concentration of all upwind monitors for the same rolling averaging period;
 - (F) If there is more than one downwind monitor, the downwind result is the maximum concentration of any of the downwind monitors for the same rolling averaging period;
 - (G) On and before December 31, 2021, when on-site earth-moving activities resume after ceasing pursuant to paragraph (d)(2), the average shall start when on-site earth-moving activities resume and shall end 120 minutes after on-site earth-moving activities resume, and the subsequent averages are to be calculated every 10 minutes and shall cover the previous 120-minute period; and
 - (H) On and after January 1, 2022, when on-site earth-moving activities resume after ceasing pursuant to paragraph (d)(2), the average shall start when on-site earth-moving activities resume and shall end 120 minutes after on-site earth-moving activities resume, and the subsequent averages are to be calculated every one minute and shall cover the previous 120-minute period.
 - (10) An owner or operator that elects to move the monitors accordingly when there is a change in wind direction in place of meeting the requirements specified in clauses (d)(3)(B)(i), (d)(3)(B)(ii), (d)(9)(D)(i), and (d)(9)(D)(ii), shall:
 - (A) Place a minimum of one upwind monitor in the upwind direction of the area(s) of on-site earth-moving activity, indicative of background PM_{10} levels, and not generally influenced by fugitive dust sources from the site;
 - (B) Place a minimum of one downwind monitor in the downwind direction of the area(s) of on-site earth-moving activity; and
 - (C) Move the monitor(s) in subparagraph (d)(10)(A) to the new upwind location and the monitor(s) in subparagraph (d)(10)(B) to the new downwind location when there is a change in wind direction.
 - (11) In the event that a DAS fails to log ambient PM_{10} data pursuant to paragraph (d)(5) or that the data management system integrated with the PM_{10} monitor(s) and

DAS(s) fails to calculate PM_{10} concentrations pursuant to subparagraph (d)(9)(C) due to a technical issue beyond the reasonable control of an owner or operator, including, but not limited to, internet connection disruptions and computer malfunctions, the owner or operator shall:

- (d) (11) (A) Restore the DAS or data management system to working condition as soon as practicable and no later than the start of the next working day; and
 - (B) Manually record the PM₁₀ concentration from the monitor(s) associated with the non-operational DAS once every 10 minutes or less and calculate the PM₁₀ concentration pursuant to the averages specified in subparagraph (d)(9)(B) until the DAS is restored or calculate the PM₁₀ concentration pursuant to the averages specified in subparagraph (d)(9)(B) until the data management system is restored.
 - (12) When conducting ambient PM₁₀ monitoring as required in paragraph (d)(1), the owner or operator shall monitor wind direction and speed using a minimum of one stationary anemometer or wind sensor that:
 - (A) Is sited over open, level terrain within the project site with minimal obstructions to the wind flow at a minimum height of eight feet above grade;
 - (B) Meets the performance criteria of:
 - (i) Wind direction accuracy of \pm 7 degrees and resolution of 1 degree; and
 - (ii) Wind speed accuracy of 2 miles per hour (mph) or \pm 5 percent of the observed wind speed, whichever is greater, and resolution of 1 mph;
 - (C) Has a National Institute of Standards and Technology (NIST) Traceability certification:
 - (D) Is equipped with a data logger that records wind direction and speed data once every 1 minute or less and archives the recorded wind direction and speed data, including the date and time, calibrated to PST; and
 - (E) Is operated, calibrated, and maintained in accordance with manufacturer's specifications, but no less frequent than once every 6 months of cumulative operation.
 - (13) The Executive Officer may approve a PM_{10} monitor to be added as a Rule 1466 Approved PM_{10} Monitor if the PM_{10} monitor meets the specifications listed in *Appendix 1 Rule 1466 Approved PM_{10} Monitors*. The request for a PM_{10} monitor to be added as a Rule 1466 Approved PM_{10} Monitor shall:
 - (A) Be submitted to Rule1466ApprovedMonitors@aqmd.gov;

- (d) (13) (B) Include a description of the PM_{10} monitor, any accessories, and all monitor specifications; and
 - (C) Include documentation demonstrating compliance with each specification listed in *Appendix 1*.
- (e) Requirements to Minimize Fugitive Dust Emissions
 - On and before December 31, 2021, an owner or operator shall not conduct on-site earth-moving activities unless the area is surrounded with fencing that is a minimum of 6 feet tall and at least as tall as the height of the tallest stockpile, with a windscreen that has a porosity of 50 ± 5 percent. A section of the perimeter surrounding an on-site earth-moving activity area may be excluded from this requirement if that section:
 - (A) Has a solid physical barrier, such as a solid wall or other solid feature that minimizes air flow, that is a minimum of 6 feet tall but at least 6 inches taller than the height of the tallest stockpile; or
 - (B) Does not have on-site earth-moving activity occurring within 300 feet from the perimeter of that section.
 - On and after January 1, 2022, an owner or operator shall not conduct on-site earth-moving activities unless the area is surrounded with fencing that is a minimum of 6 feet tall but at least 6 inches taller than the height of the tallest stockpile, with a windscreen that has a porosity of 50 ± 5 percent or a mesh windscreen that has a shade value or opacity of 85 ± 5 percent. A section of the perimeter surrounding an on-site earth-moving activity area may be excluded from this requirement if that section meets the conditions as specified in subparagraph (e)(1)(A) or (e)(1)(B).
 - (3) An owner or operator conducting on-site earth-moving activities shall:
 - (A) Adequately wet to the depth of earth-moving activity and allow time for penetration; and
 - (B) Adequately wet at frequencies to prevent the generation of visible dust plumes.
 - (4) An owner or operator that is moving vehicles on, within, or off a site shall:
 - (A) Post signs at all entrances of the site to designate the speed limit as 15 mph;
 - (B) Stabilize the surface of all vehicular traffic and parking areas by applying gravel, paving, chemical stabilizers pursuant to paragraph (e)(13), or dust suppressant;
 - (C) Not allow any track-out outside of the property line that is 25 feet or more in cumulative length. Remove any track-out at a minimum frequency of

once each day using a vacuum equipped with a filter(s) rated by the manufacturer to achieve a 99.97 percent control efficiency for 0.3 micron particles;

- (e) (4) (D) Clean the soil from the exterior of trucks, trailers, and tires prior to the truck leaving the site, without the use of forced air; and
 - (E) Utilize at least one of the following measures at each vehicle egress from the site to a public road:
 - (i) Install a pad consisting of washed gravel (minimum-size: 1 inch), maintained in a clean condition, to a depth of at least 6 inches and extending at least 30 feet wide and at least 50 feet long;
 - (ii) Pave the surface extending at least 100 feet from the property line and at least 30 feet wide;
 - (iii) Utilize a wheel shaker/wheel spreading device consisting of raised dividers (rails, pipes, or grates) at least 24 feet long and 30 feet wide; or
 - (iv) Install and utilize a wheel washing system to remove soil from tires and vehicle undercarriages.
 - (5) An owner or operator conducting on-site earth-moving activities shall ensure that stockpiles with any soil with applicable toxic air contaminant(s) be:
 - (A) Segregated from non-contaminated stockpiles;
 - (B) Labelled with "South Coast AQMD Rule 1466 Control of Particulate Emissions from Soils with Toxic Air Contaminant(s) Applicable Soil";
 - (C) Maintained to avoid steep sides or faces that exceed the angle of repose;
 - (D) No more than 400 cubic yards of soil;
 - (E) Maintained to minimize fugitive dust emissions containing toxic air contaminants by applying chemical stabilizers pursuant to paragraph (e)(13), applying dust suppressant, or completely covering pursuant to paragraph (e)(14); and
 - (F) Either chemically stabilized pursuant to paragraph (e)(13) and/or completely covered pursuant to paragraph (e)(14) at all times when earthmoving activities and ambient PM_{10} monitoring are not occurring.
 - (6) An owner or operator conducting truck and trailer loading activities of soil containing applicable toxic air contaminant(s) shall:
 - (A) Apply dust suppressant to material prior to loading;
 - (B) Empty the loader bucket slowly so that no visible dust plumes are generated;

- (e) (6) (C) Minimize the drop height from the loader bucket;
 - (D) Maintain at least 6 inches of space between the soil and the top of the truck bed and trailer while transporting within a site; and
 - (E) Completely cover the truck bed and trailer prior to leaving the site.
 - (7) An owner or operator conducting truck and trailer unloading activities of soil containing applicable toxic air contaminant(s) shall:
 - (A) Apply dust suppressant to material prior to unloading; and
 - (B) Empty the trailer slowly so that no visible dust plumes are generated.
 - (8) The owner or operator shall immediately remove any spilled soil.
 - (9) The owner or operator shall cease on-site earth-moving activities if the wind speed is greater than 15 mph averaged over a 15-minute period or the instantaneous wind speed exceeds 25 mph.
 - (10) During on-site earth-moving activities, the owner or operator shall have an on-site dust control supervisor that:
 - (A) Is employed by or contracted with the owner or operator;
 - (B) Is located on the site during working hours;
 - (C) Is in a position to expeditiously employ sufficient dust control measures to ensure compliance with all rule requirements;
 - (D) Has completed the South Coast AQMD Fugitive Dust Control Class and has been issued a valid Certificate of Completion for the class; and
 - (E) Has the following credentials, if asbestos is an applicable toxic air contaminant:
 - (i) Successfully completed the Asbestos Abatement Contractor/Supervisor course pursuant to the Asbestos Hazard Emergency Response Act (AHERA), and obtained and maintained accreditation as an AHERA Asbestos Abatement Contractor/Supervisor; and
 - (ii) Trained on the provisions of 40 CFR Part 61.145, 61.146, 61.147 and 61.152 (Asbestos NESHAP provisions) and Part 763, and has the means to comply with these provisions.
 - (11) An owner or operator shall apply a chemical stabilizer pursuant to paragraph (e)(13) and/or use a cover pursuant to paragraph (e)(14) on potential sources of fugitive dust when earth-moving activities are not occurring in the specific location(s) containing the potential source(s) of fugitive dust.

- (e) (12) An owner or operator shall inspect daily, including days when no on-site earthmoving activities are occurring, labeled stockpiles pursuant to subparagraph (e)(5)(B) and stabilized or covered stockpiles pursuant to (e)(5)(F).
 - (A) For a stabilized stockpile, such inspections shall include a demonstration of stabilization by one or more of the applicable test methods contained in the most current version of the South Coast AQMD *Rule 403 Fugitive Dust Implementation Handbook* or Volumes I and II of South Coast AQMD's *Dust Control in the Coachella Valley*.
 - (B) For a covered stockpile, such inspections shall include a visual inspection of all seams and plastic cover surfaces to ensure that no portion of the soil is exposed to the atmosphere.
 - (13) When utilizing a chemical stabilizer, an owner or operator shall:
 - (A) Ensure the chemical stabilizer meets any specifications, criteria, or tests required by any federal, state, or local agency or any applicable law, rule, or regulation; and
 - (B) Unless otherwise indicated, use a sufficient concentration of the chemical stabilizer and an application frequency sufficient to maintain a stabilized surface and no less than what is specified by the manufacturer for the period of inactivity.
 - (14) When using a cover for stockpiles, an owner or operator shall ensure the cover:
 - (A) Is at least 10 mil thick plastic sheeting that overlaps a minimum of 24 inches; and
 - (B) Is anchored and secured so that no portion of the soil is exposed to the atmosphere.
 - (15) An owner or operator that is conducting earth-moving activities of soil with applicable toxic air contaminant(s) at a school, joint use agreement property, adjacent athletic area, or at a site that is adjoining a school, joint use agreement property, or adjacent athletic area shall:
 - (A) Only conduct earth-moving activities at a school or at a site that is adjoining a school outside of the hours between 7:30 a.m. and 4:30 p.m. on days when the school is in session;
 - (B) Not conduct earth-moving activities at a school, joint use agreement property, adjacent athletic area, or at a site that is adjoining a school, joint use agreement property, or adjacent athletic area if there is a school sponsored activity or youth organized sports taking place at that site;

Rule 1466 (cont.)

- (e) (15) (C) Handle excavated soils with applicable toxic air contaminant(s) by:
 - (i) Immediately placing soil in a leak-tight container whereby any contained solids or liquids are prevented from escaping or spilling out;
 - (ii) Directly loading soil in truck beds, trailers, and bins for transport, applying chemical stabilizer pursuant to paragraph (e)(13) or dust suppressant, and completely covering prior to transporting; or
 - (iii) Stockpiling pursuant to paragraph (e)(5), in a fenced area that is not accessible to the general public, and locked when not in use; and
 - (D) Within five days of its excavation, remove all soil with applicable toxic air contaminant(s) from the site.

(f) Notification Requirements

- (1) The owner or operator shall electronically submit an initial notification to the Executive Officer, using a format approved by the Executive Officer, of the intent to conduct any on-site earth-moving activities.
 - (A) Initial notifications shall be submitted:
 - (i) At least 72 hours but no more than 30 days prior to conducting any earth-moving activities on any site meeting the applicability requirements of subdivision (b); or
 - (ii) As soon as the information becomes available but no later than 48 hours after the information becomes available that on-site earthmoving activities of soil with applicable toxic air contaminant(s) exceed 50 cubic yards.
 - (B) Initial notifications shall include the following requirements:
 - (i) Name, address, telephone number, and e-mail address of the owner or operator;
 - (ii) Name, telephone number, and e-mail address of the on-site dust control supervisor;
 - (iii) Project name and, if applicable, the project identification number from the designating agency;
 - (iv) Project location (address and/or coordinates);
 - (v) Identify whether the site is a school, joint use agreement property, adjacent athletic area, or is adjoining a school, joint use agreement property, or adjacent athletic area;

Rule 1466 (cont.)

- (f) (1) (B) (vi) A map indicating the specific location(s) of each on-site earth-moving activity and the concentrations of the applicable toxic air contaminant(s) and location of PM_{10} monitors;
 - (vii) A description of the on-site earth-moving activities, estimated volume of soil with applicable toxic air contaminant(s), and a schedule that includes the anticipated start and completion dates of on-site earth-moving activities;
 - (viii) Current and/or previous type of operation(s) and use(s) at the site;
 - (ix) Applicable exemption(s); and
 - (x) Whether the notice being provided is a revised notification.
 - (2) Notification Updates

Initial notifications pursuant to paragraph (f)(1) shall be updated when any of the following conditions arise:

(A) Earlier Start Date

A change in the start date of on-site earth-moving activities to an earlier date shall be reported to the South Coast AQMD no later than 72 hours before any on-site earth-moving activities begin.

(B) Later Start Date

A delay in the start date of on-site earth-moving activities shall be reported to the South Coast AQMD as soon as the information becomes available, but no later than the original start date.

(C) Change in Exemption Status

Any change(s) in exemption status pursuant to subdivision (k) shall be reported to the South Coast AQMD as soon as the information becomes available, but no later than 48 hours after the information becomes available.

(D) Completion Date

The completion date of on-site earth-moving activities shall be reported to the South Coast AQMD no later than 48 hours after on-site earth-moving activities are completed.

Within 72 hours of an exceedance of the PM_{10} emission limit specified in paragraph (d)(2), the owner or operator shall electronically submit a notification to the Executive Officer, using a format approved by the Executive Officer, of the exceedance and shall include the following information:

- (f) (3) (A) Name, address, telephone number, and e-mail address of the owner or operator;
 - (B) Name, telephone number, and e-mail address of the on-site dust control supervisor;
 - (C) Project name and, if applicable, the project identification number from the designating agency;
 - (D) Project location (address and/or coordinates);
 - (E) PM₁₀ monitoring results and wind direction and speed results pursuant to subdivision (d), including location of monitors, result, date and time of exceedance(s), 12 hours before first exceedance, and 12 hours after last exceedance;
 - (F) On-site earth-moving activities occurring at the date and time of exceedance(s); and
 - (G) Dust control measure(s) taken to mitigate fugitive dust.

(g) Signage Requirements

When conducting on-site earth-moving activities, the owner or operator shall install and maintain project signage.

- (1) Unless otherwise approved in writing by the Executive Officer, signage shall:
 - (A) Be installed at all entrances and at intervals of 1,000 feet or less along the property line or perimeter of the site, with a minimum of one sign along each side;
 - (B) Be located between 6 and 8 feet above grade from the bottom of the sign;
 - (C) Display lettering at least 4 inches tall with text contrasting with the sign background; and
 - (D) Display the following information:
 - (i) Local or toll-free phone number for the site contact or pre-recorded notification center that is accessible 24 hours a day; and
 - (ii) Warning statement:

"THIS SITE CONTAINS SOILS THAT CONTAIN THE FOLLOWING CHEMICALS: [LIST APPLICABLE TOXIC AIR CONTAMINANT(S)]

TO REPORT ANY DUST LEAVING THE SITE PLEASE CALL [FACILITY CONTACT AND PHONE NUMBER] OR THE SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT AT 1-800-CUT-SMOG".

Rule 1466 (cont.)

- (g) (2) If signage pursuant to paragraph (g)(1) exceeds 48 inches by 96 inches, the owner or operator or designating agency shall include the warning statement referenced in clause (g)(1)(D)(ii), displaying lettering at least 4 inches tall with text contrasting with the sign background, but may use 2.5 inch tall lettering to list applicable toxic air contaminant(s). All other signage requirements set forth in paragraph (g)(1) shall remain the same. If signage continues to exceed 48 inches by 96 inches with these parameters, the owner or operator or designating agency may use alternative signage as set forth in paragraph (g)(3).
 - (3) The owner or operator or designating agency may use alternative signage approved by the Executive Officer pursuant to subdivision (j). Notwithstanding subdivision (j), the request shall include a visual representation of the alternative sign, including proposed lettering height, and locations and, at a minimum, the alternative signage shall:
 - (A) Display text contrasting with the sign background; and
 - (B) Display the following warning statement:

 "THIS SITE CONTAINS SOILS THAT CONTAIN THE FOLLOWING
 CHEMICALS: [LIST APPLICABLE TOXIC AIR CONTAMINANT(S)]

 TO REPORT ANY DUST LEAVING THE SITE PLEASE CALL
 THE SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT AT
 1-800-CUT-SMOG".
 - (4) The owner or operator may be excluded from installing and maintaining project signage pursuant to subparagraph (g)(1)(A) at any entrance(s) or interval(s) along the property line or perimeter of the site that is not visible and not accessible to the public unless the site is a school, joint use agreement property, or adjacent athletic area or the site is adjoining a school, joint use agreement property, or adjacent athletic area.

(h) Recordkeeping Requirements

The owner or operator shall maintain records for a period of not less than 3 years and shall make such records available to the Executive Officer upon request. At a minimum, records shall be maintained daily and shall include:

- (1) Inspections of all stabilized or covered stockpiles containing soils with applicable toxic air contaminant(s) and all re-stabilization, cover repair, and label maintenance activities, including dates and times the specific activities were conducted;
- (2) Results of wind and PM_{10} monitoring, including: ambient PM_{10} data; rolling average PM_{10} concentrations and calculations; wind direction and speed

corresponding to the rolling average PM_{10} concentrations; movement of monitoring instruments corresponding to wind direction changes; instrument make and model; settings; proof of valid calibration in accordance with manufacturer's recommended schedule; configuration; calibration, correction, and correlation factors; maintenance; operator training; daily instrument performance check records and manual zero or auto-check results; weekly zero calibration records and intra-instrument precision test data and calculation results; and all instrument logs for all monitoring instruments;

- (h) (3) All instrument maintenance activities, including: zero calibration, cleaning, filter replacement, and performance checks, including dates and times of the specific procedures;
 - (4) Documentation of all DAS and data management system failures, including date and time of the failure, date and time of the correction, the technical issue(s) causing the failure, and activities performed to restore the failed DAS or data management system to working condition;
 - (5) On-site earth-moving activities conducted and the corresponding volume of soil with applicable toxic air contaminant(s);
 - (6) Names and business addresses of the transporting and receiving facilities, and a copy of the shipping manifest;
 - (7) Complaints called in, including the name of complainant and contact information, date and time, on-site earth-moving activities occurring at the date and time, complaint, and action taken to mitigate the source of the complaint; and
 - (8) A copy of all submitted notifications for the project.

(i) Executive Officer Designated Sites

- (1) The Executive Officer may designate a site if the Executive Officer has evidence that the site contains soil with applicable toxic air contaminant(s) as defined in paragraph (c)(16), after consultation with U.S. EPA, DTSC, the State Water Resources Control Board, the Regional Water Quality Control Board, and/or local, county, or state regulatory agencies, and consideration of the following:
 - (A) Site history, including current and/or previous type(s) of operation(s) and use(s) at the site and regulatory history;
 - (B) Concentration(s) of applicable toxic air contaminant(s) in the soil;
 - (C) Background concentration(s) of applicable toxic air contaminant(s);
 - (D) Volume of soil with applicable toxic air contaminant(s);

Rule 1466 (cont.)

- (i) (1) Distance to a residence, park, school, joint use agreement property, adjacent athletic area, or a site adjoining a school, joint use agreement property, or adjacent athletic area;
 - (F) Meteorological data;
 - (G) Health risk information or other data provided by the owner or operator, if available: and
 - (H) Ambient monitoring data and other applicable data, if available.
 - (2) Prior to making a determination, the Executive Officer will notify the owner or operator in writing that the site may be subject to this rule.
 - (A) In the event the owner or operator exercises this opportunity to demonstrate that this rule does not apply, the owner or operator shall submit information to the Executive Officer within 14 days of the notification substantiating why the site should be excluded from this rule.
 - (B) Upon final determination, the Executive Officer will notify the owner or operator in writing if the site is subject to this rule.
 - (3) During the determination period, the owner or operator shall comply with the provisions of this rule or cease all on-site earth-moving activities until a determination is made.

(j) Alternative Provisions

- (1) If requesting an alternative provision pursuant to paragraph (g)(3), the owner or operator or designating agency shall submit the request in writing at least 30 days prior to conducting any earth-moving activities and include all information to the Executive Officer to substantiate its position.
- (2) The Executive Officer may request additional information from the owner or operator or designating agency.
- (3) The owner or operator or designating agency shall submit all requested information within 14 days of the request for additional information.
- (4) The Executive Officer will review the request for an alternative provision and will approve or reject the data and notify the owner or operator or designating agency in writing. Approved alternative provisions may not be used retroactively.
- (5) Alternative provisions that were approved and notified in writing by the Executive Officer before June 4, 2021 shall be deemed compliant with the requirements of the applicable provisions of the rule, shall remain in effect only for the period of time and for the specific project for which they were granted, and shall not be renewed or extended.

(k) Exemptions

- (1) The owner or operator may be exempt from one or more provisions of this rule provided there is written confirmation that the designating agency under subparagraphs (b)(1)(A) through (b)(1)(D) has consulted with the Executive Officer and has determined that the provision(s) are not needed based on information specified in subparagraphs (i)(1)(A) through (i)(1)(H).
- On-site earth-moving activities performed within an enclosed system vented to South Coast AQMD permitted air pollution control equipment shall be exempt from all requirements except: subparagraphs (e)(4)(C) through (e)(4)(E), subparagraphs (e)(6)(D) and (e)(6)(E), and subdivisions (f), (g), and (h).
- (3) Linear trenching for natural gas, power, sewer, and water projects on roadways with soil with applicable toxic air contaminant(s), directly loaded into a truck bed, trailer, or bin for transport, shall be exempt from all requirements except: paragraphs (e)(3) through (e)(9), paragraphs (e)(13) and (e)(15), and subdivisions (f), (h), and (i).
- On-site earth-moving activities consisting only of excavation activities of soil with applicable toxic air contaminant(s) of less than 500 cubic yards, directly loaded into a truck bed, trailer, or bin for transport, shall be exempt from all requirements except: paragraphs (e)(3) through (e)(9), paragraphs (e)(13) and (e)(15), and subdivisions (f), (h), and (i).
- (5) On-site earth-moving activities conducted during emergency life-threatening situations, or in conjunction with any officially declared disaster or state of emergency as declared by an authorized health officer, agricultural commissioner, fire protection officer, or other authorized agency officer shall be exempt from all requirements. The Executive Officer shall be notified electronically no later than 48 hours following such on-site earth-moving activities. Written notification shall include written emergency declaration from the authorized officer.
- On-site earth-moving activities conducted by essential service utilities to provide electricity, natural gas, telephone, water, or sewer during periods of service outages and emergency disruptions shall be exempt from all requirements. The Executive Officer shall be notified electronically no later than 48 hours following such on-site earth-moving activities.

Table I – Applicable Toxic Air Contaminants

CAS Number	Substance	
7440-38-2	arsenic and arsenic compounds (inorganic)	
	including, but not limited to:	
	arsenic compounds (inorganic)	
7784-42-1	arsine	
1332-21-4	Asbestos	
7440-43-9	cadmium and cadmium compounds	
57-74-9	chlordane	
	dibenzo-p-dioxins (chlorinated)	
1746-01-6	tetrachlorodibenzo-p-dioxin, 2,3,7,8-	
40321-76-4	pentachlorodibenzo-p-dioxin, 1,2,3,7,8-	
39227-28-6	hexachlorodibenzo-p-dioxin, 1,2,3,4,7,8-	
57653-85-7	hexachlorodibenzo-p-dioxin, 1,2,3,6,7,8-	
19408-74-3	hexachlorodibenzo-p-dioxin, 1,2,3,7,8,9-	
35822-46-9	heptachlorodibenzo-p-dioxin, 1,2,3,4,6,7,8-	
3268-87-9	octachlorodibenzo-p-dioxin, 1,2,3,4,6,7,8,9-	
41903-57-5	total tetrachlorodibenzo-p-dioxin	
36088-22-9	total pentachlorodibenzo-p-dioxin	
34465-46-8	total hexachlorodibenzo-p-dioxin	
37871-00-4	total heptachlorodibenzo-p-dioxin	
72-54-8	dichlorodiphenyldichloroethane	
72-55-9	dichlorodiphenyldichloroethylene	
50-29-3	dichlorodiphenyltrichloroethane	

Table I – Applicable Toxic Air Contaminants (cont.)

CAS Number	Substance	
18540-29-9	chromium (hexavalent) and chromium compounds	
	including, but not limited to:	
10294-40-3	barium chromate	
13765-19-0	calcium chromate	
7758-97-6	lead chromate	
10588-01-9	sodium dichromate	
7789-06-2	strontium chromate	
13530-65-9	zinc chromate	
7439-92-1	lead and lead compounds (inorganic, including elemental lead)	
	including, but not limited to:	
lead compounds (inorganic)		
301-04-2	lead acetate	
7758-97-6	lead chromate	
7446-27-7	lead phosphate	
1335-32-6	lead subacetate	
7439-97-6	mercury and mercury compounds (inorganic)	
	including, but not limited to:	
7487-94-7	mercuric chloride	
593-74-8	methyl mercury	

 $Table\ I-Applicable\ Toxic\ Air\ Contaminants\ (cont.)$

CAS Number	Substance	
7440-02-0	nickel and nickel compounds	
	including, but not limited to:	
373-02-4	nickel acetate	
3333-67-3	nickel carbonate	
13463-39-3	nickel carbonyl	
12054-48-7	nickel hydroxide	
1313-99-1	nickel oxide	
12035-72-2	nickel subsulfide	
1271-28-9	nickelocene	
	refinery dust from the pyrometallurgical process	
1336-36-3	polychlorinated biphenyls (PCBs)	
32598-13-3	3,3',4,4'-tetrachlorobiphenyl (PCB 77)	
70362-50-4	3,4,4',5-tetrachlorobiphenyl (PCB 81)	
32598-14-4	2,3,3',4,4'-pentachlorobiphenyl (PCB 105)	
74472-37-0	2,3,4,4',5-pentachlorobiphenyl (PCB 114)	
31508-00-6	2,3',4,4',5-pentachlorobiphenyl (PCB 118)	
65510-44-3	2,3',4,4',5'-pentachlorobiphenyl (PCB 123)	
57465-28-8	3,3',4,4',5-pentachlorobiphenyl (PCB 126)	
38380-08-4	2,3,3',4,4',5-hexachlorobiphenyl (PCB 156)	
69782-90-7	2,3,3',4,4',5'-hexachlorobiphenyl (PCB 157)	
52663-72-6	2,3',4,4',5,5'-hexachlorobiphenyl (PCB 167)	
32774-16-6	3,3',4,4',5,5'-hexachlorobiphenyl (PCB 169)	
39635-31-9	2,3,3'4,4',5,5'-heptachlorobiphenyl (PCB 189)	

Table I – Applicable Toxic Air Contaminants (cont.)

CAS Number	Substance		
	polycyclic aromatic hydrocarbons (PAHs)		
56-55-3	benzo[a]anthracene		
50-32-8	benzo[a]pyrene		
205-99-2	benzo[b]fluoranthene		
207-08-9	benzo[k]fluoranthene		
218-01-9	chrysene		
53-70-3	dibenz[a,h]anthracene		
193-39-5	indeno[1,2,3-c,d]pyrene		

Appendix 1 – Rule 1466 Approved PM₁₀ Monitors

The Executive Officer may approve PM₁₀ monitors that meet the following physical and performance requirements.

1. Physical Requirements

- 1.1. PM_{10} monitors shall be continuous direct-reading near-real time monitors and shall monitor particulate matter less than 10 microns.
- 1.2. PM_{10} monitors shall be equipped with:
 - 1.2.a. Omni-directional heated sampler inlet;
 - 1.2.b. Sample pump with active flow control mechanism;
 - 1.2.c. Enclosure;
 - 1.2.d. Data logger capable of logging each data point with average concentration, time, date, and data point number; and
 - 1.2.e. Conductive tubing that minimizes particle loss for any external tubing used to carry sampled air prior to measurement.

2. Performance Requirements

- 2.1 PM_{10} monitors shall have the following minimum performance standards:
 - 2.1.a. Range: $0 10,000 \,\mu \text{g/m}^3$;
 - 2.1.b. Accuracy, determined through factory testing against a U.S. EPA Federal Reference Method or Federal Equivalent Method, for a minimum of 30 measurements each averaged over 24 hours, to show:
 - 2.1.b.i. \pm 5% of reading \pm precision; or
 - 2.1.b.ii. Coefficient of determination (\mathbb{R}^2) of ≥ 0.95 through simple linear regression;
 - 2.1.c. Resolution: $1.0 \,\mu\text{g/m}^3$;
 - 2.1.d. Flow control accuracy of \pm 5% of factory setpoint; and
 - 2.1.e. Measurement Cycle: User selectable (30 minute and 2 hour).
- 2.2 Monitors that have a valid *Monitoring Certification Scheme* certification meeting the latest version of the *Monitoring Certification Scheme* (*MCERTS*): Performance Standard for Indicative Ambient Particulate Monitors may be exempt from meeting the performance requirements listed above, but shall meet all stated physical requirements.

3. Quality Assurance/Quality Control Requirements

In order to ensure the validity of the PM_{10} measurements performed, there shall be appropriate Quality Assurance/Quality Control (QA/QC). It is the responsibility of the owner or operator to adequately supplement QA/QC Plans to include the following critical features: instrument calibration, instrument maintenance, operator training, and daily instrument performance checks.

<u>Appendix 2 – Procedures to Demonstrate Intra-Instrument Precision</u>

An owner or operator shall perform the following procedures to demonstrate the intra-instrument precision of all PM_{10} monitors as required in paragraph (d)(7).

- 1. Ensure monitors are identical in make and model, settings, and configuration.
- 2. Ensure monitor inlets are at the same height and located within 4 meters of each other but no less than 1 meter apart for the duration of the test.
- 3. Power on the monitors and turn on the heated sampler inlet. Allow the monitors to warm-up per manufacturer's recommendations or when readings have stabilized.
- 4. For each monitor, conduct a zero calibration in accordance with manufacturer's instructions, then conduct a manual zero check by removing any sampling inlet and installing a filter, rated by the manufacturer to achieve a 99.97 percent control efficiency for 0.3 micron particles, on the inlet of the monitor for a minimum of 10 minutes. If the monitors are operated using an auto-zero check procedure that directs filtered particle-free air into the measurement chamber, conduct the zero check in accordance with manufacturer's instructions.
- 5. Log the PM_{10} concentration reading every minute, and calculate and record the average of the readings of the manual zero check. The average of the manual zero check readings shall be 0 ± 3 micrograms per cubic meter before proceeding to Step 6. If conducting an auto-zero check, the monitor shall pass the zero check in accordance with manufacturer's instructions before proceeding to Step 6. If any monitors fail either the manual zero check or the auto-zero check, the owner or operator shall conduct a zero calibration in accordance with manufacturer's instructions and/or correct any issue(s) causing the failure, followed by conducting a passing zero check on the PM_{10} monitor(s) in accordance with Steps 4 and 5.
- 6. Remove the filter and install the monitor inlet as required. After waiting 10 minutes, operate the monitors simultaneously and log the PM_{10} concentration reading every minute for a minimum of 60 minutes.

- 7. Calculate the intra-instrument precision using either of the following equations:
 - a. Intra-instrument precision in relative standard deviation or correlation of variation (%) when ambient PM_{10} concentrations are greater than or equal to 15 micrograms per cubic meter:

$$P = \frac{S_t}{C_t} \times 100\%$$

where,

P = Intra-instrument precision in percent (%);

 S_t = Standard deviation of the averaged PM₁₀ concentration readings from all tested monitors over the time t of testing duration, to be calculated as:

$$S_t = \sqrt{\frac{\sum (x_i - \bar{x})^2}{(n-1)}}$$

where,

 x_i = Mean of the PM₁₀ concentration readings for a tested monitor over time t of testing duration,

 \bar{x} = Mean of the averaged PM₁₀ concentration readings from all tested monitors over the time t of testing duration, and

n =Number of tested monitors; and

 C_t = Mean of the averaged PM₁₀ concentration readings from all tested monitors over the time t of testing duration; or

b. Intra-instrument precision in absolute value (micrograms per cubic meter) when ambient PM₁₀ concentrations are less than 15 micrograms per cubic meter:

$$P = S_t$$

where,

P = Intra-instrument precision in micrograms per cubic meter, and

 S_t = Standard deviation of the averaged PM₁₀ concentration readings from all tested monitors over the time t of testing duration.

8. Record the results of the calculations.

(Adopted May 7, 1976) (Amended November 6, 1992) (Amended July 9, 1993) (Amended February 14, 1997) (Amended December 11, 1998)(Amended April 2, 2004) (Amended June 3, 2005)

RULE 403. FUGITIVE DUST

(a) Purpose

The purpose of this Rule is to reduce the amount of particulate matter entrained in the ambient air as a result of anthropogenic (man-made) fugitive dust sources by requiring actions to prevent, reduce or mitigate fugitive dust emissions.

(b) Applicability

The provisions of this Rule shall apply to any activity or man-made condition capable of generating fugitive dust.

(c) Definitions

- (1) ACTIVE OPERATIONS means any source capable of generating fugitive dust, including, but not limited to, earth-moving activities, construction/demolition activities, disturbed surface area, or heavy- and light-duty vehicular movement.
- (2) AGGREGATE-RELATED PLANTS are defined as facilities that produce and / or mix sand and gravel and crushed stone.
- (3) AGRICULTURAL HANDBOOK means the region-specific guidance document that has been approved by the Governing Board or hereafter approved by the Executive Officer and the U.S. EPA. For the South Coast Air Basin, the Board-approved region-specific guidance document is the Rule 403 Agricultural Handbook dated December 1998. For the Coachella Valley, the Board-approved region-specific guidance document is the Rule 403 Coachella Valley Agricultural Handbook dated April 2, 2004.
- (4) ANEMOMETERS are devices used to measure wind speed and direction in accordance with the performance standards, and maintenance and calibration criteria as contained in the most recent Rule 403 Implementation Handbook.
- (5) BEST AVAILABLE CONTROL MEASURES means fugitive dust control actions that are set forth in Table 1 of this Rule.

- (6) BULK MATERIAL is sand, gravel, soil, aggregate material less than two inches in length or diameter, and other organic or inorganic particulate matter.
- (7) CEMENT MANUFACTURING FACILITY is any facility that has a cement kiln at the facility.
- (8) CHEMICAL STABILIZERS are any non-toxic chemical dust suppressant which must not be used if prohibited for use by the Regional Water Quality Control Boards, the California Air Resources Board, the U.S. Environmental Protection Agency (U.S. EPA), or any applicable law, rule or regulation. The chemical stabilizers shall meet any specifications, criteria, or tests required by any federal, state, or local water agency. Unless otherwise indicated, the use of a non-toxic chemical stabilizer shall be of sufficient concentration and application frequency to maintain a stabilized surface.
- (9) COMMERCIAL POULTRY RANCH means any building, structure, enclosure, or premises where more than 100 fowl are kept or maintained for the primary purpose of producing eggs or meat for sale or other distribution.
- (10) CONFINED ANIMAL FACILITY means a source or group of sources of air pollution at an agricultural source for the raising of 3,360 or more fowl or 50 or more animals, including but not limited to, any structure, building, installation, farm, corral, coop, feed storage area, milking parlor, or system for the collection, storage, or distribution of solid and liquid manure; if domesticated animals, including horses, sheep, goats, swine, beef cattle, rabbits, chickens, turkeys, or ducks are corralled, penned, or otherwise caused to remain in restricted areas for commercial agricultural purposes and feeding is by means other than grazing.
- (11) CONSTRUCTION/DEMOLITION ACTIVITIES means any on-site mechanical activities conducted in preparation of, or related to, the building, alteration, rehabilitation, demolition or improvement of property, including, but not limited to the following activities: grading, excavation, loading, crushing, cutting, planing, shaping or ground breaking.
- (12) CONTRACTOR means any person who has a contractual arrangement to conduct an active operation for another person.
- (13) DAIRY FARM is an operation on a property, or set of properties that are contiguous or separated only by a public right-of-way, that raises cows or

- produces milk from cows for the purpose of making a profit or for a livelihood. Heifer and calf farms are dairy farms.
- (14) DISTURBED SURFACE AREA means a portion of the earth's surface which has been physically moved, uncovered, destabilized, or otherwise modified from its undisturbed natural soil condition, thereby increasing the potential for emission of fugitive dust. This definition excludes those areas which have:
 - (A) been restored to a natural state, such that the vegetative ground cover and soil characteristics are similar to adjacent or nearby natural conditions;
 - (B) been paved or otherwise covered by a permanent structure; or
 - (C) sustained a vegetative ground cover of at least 70 percent of the native cover for a particular area for at least 30 days.
- (15) DUST SUPPRESSANTS are water, hygroscopic materials, or non-toxic chemical stabilizers used as a treatment material to reduce fugitive dust emissions.
- (16) EARTH-MOVING ACTIVITIES means the use of any equipment for any activity where soil is being moved or uncovered, and shall include, but not be limited to the following: grading, earth cutting and filling operations, loading or unloading of dirt or bulk materials, adding to or removing from open storage piles of bulk materials, landfill operations, weed abatement through disking, and soil mulching.
- (17) DUST CONTROL SUPERVISOR means a person with the authority to expeditiously employ sufficient dust mitigation measures to ensure compliance with all Rule 403 requirements at an active operation.
- (18) FUGITIVE DUST means any solid particulate matter that becomes airborne, other than that emitted from an exhaust stack, directly or indirectly as a result of the activities of any person.
- (19) HIGH WIND CONDITIONS means that instantaneous wind speeds exceed 25 miles per hour.
- (20) INACTIVE DISTURBED SURFACE AREA means any disturbed surface area upon which active operations have not occurred or are not expected to occur for a period of 20 consecutive days.
- (21) LARGE OPERATIONS means any active operations on property which contains 50 or more acres of disturbed surface area; or any earth-moving operation with a daily earth-moving or throughput volume of 3,850 cubic

- meters (5,000 cubic yards) or more three times during the most recent 365-day period.
- (22) OPEN STORAGE PILE is any accumulation of bulk material, which is not fully enclosed, covered or chemically stabilized, and which attains a height of three feet or more and a total surface area of 150 or more square feet.
- (23) PARTICULATE MATTER means any material, except uncombined water, which exists in a finely divided form as a liquid or solid at standard conditions.
- (24) PAVED ROAD means a public or private improved street, highway, alley, public way, or easement that is covered by typical roadway materials, but excluding access roadways that connect a facility with a public paved roadway and are not open to through traffic. Public paved roads are those open to public access and that are owned by any federal, state, county, municipal or any other governmental or quasi-governmental agencies. Private paved roads are any paved roads not defined as public.
- (25) PM₁₀ means particulate matter with an aerodynamic diameter smaller than or equal to 10 microns as measured by the applicable State and Federal reference test methods.
- (26) PROPERTY LINE means the boundaries of an area in which either a person causing the emission or a person allowing the emission has the legal use or possession of the property. Where such property is divided into one or more sub-tenancies, the property line(s) shall refer to the boundaries dividing the areas of all sub-tenancies.
- (27) RULE 403 IMPLEMENTATION HANDBOOK means a guidance document that has been approved by the Governing Board on April 2, 2004 or hereafter approved by the Executive Officer and the U.S. EPA.
- (28) SERVICE ROADS are paved or unpaved roads that are used by one or more public agencies for inspection or maintenance of infrastructure and which are not typically used for construction-related activity.
- (29) SIMULTANEOUS SAMPLING means the operation of two PM₁₀ samplers in such a manner that one sampler is started within five minutes of the other, and each sampler is operated for a consecutive period which must be not less than 290 minutes and not more than 310 minutes.
- (30) SOUTH COAST AIR BASIN means the non-desert portions of Los Angeles, Riverside, and San Bernardino counties and all of Orange

- County as defined in California Code of Regulations, Title 17, Section 60104. The area is bounded on the west by the Pacific Ocean, on the north and east by the San Gabriel, San Bernardino, and San Jacinto Mountains, and on the south by the San Diego county line.
- (31) STABILIZED SURFACE means any previously disturbed surface area or open storage pile which, through the application of dust suppressants, shows visual or other evidence of surface crusting and is resistant to wind-driven fugitive dust and is demonstrated to be stabilized. Stabilization can be demonstrated by one or more of the applicable test methods contained in the Rule 403 Implementation Handbook.
- (32) TRACK-OUT means any bulk material that adheres to and agglomerates on the exterior surface of motor vehicles, haul trucks, and equipment (including tires) that have been released onto a paved road and can be removed by a vacuum sweeper or a broom sweeper under normal operating conditions.
- (33) TYPICAL ROADWAY MATERIALS means concrete, asphaltic concrete, recycled asphalt, asphalt, or any other material of equivalent performance as determined by the Executive Officer, and the U.S. EPA.
- (34) UNPAVED ROADS means any unsealed or unpaved roads, equipment paths, or travel ways that are not covered by typical roadway materials. Public unpaved roads are any unpaved roadway owned by federal, state, county, municipal or other governmental or quasi-governmental agencies. Private unpaved roads are all other unpaved roadways not defined as public.
- (35) VISIBLE ROADWAY DUST means any sand, soil, dirt, or other solid particulate matter which is visible upon paved road surfaces and which can be removed by a vacuum sweeper or a broom sweeper under normal operating conditions.
- (36) WIND-DRIVEN FUGITIVE DUST means visible emissions from any disturbed surface area which is generated by wind action alone.
- (37) WIND GUST is the maximum instantaneous wind speed as measured by an anemometer.

(d) Requirements

(1) No person shall cause or allow the emissions of fugitive dust from any active operation, open storage pile, or disturbed surface area such that:

- (A) the dust remains visible in the atmosphere beyond the property line of the emission source; or
- (B) the dust emission exceeds 20 percent opacity (as determined by the appropriate test method included in the Rule 403 Implementation Handbook), if the dust emission is the result of movement of a motorized vehicle.
- (2) No person shall conduct active operations without utilizing the applicable best available control measures included in Table 1 of this Rule to minimize fugitive dust emissions from each fugitive dust source type within the active operation.
- (3) No person shall cause or allow PM_{10} levels to exceed 50 micrograms per cubic meter when determined, by simultaneous sampling, as the difference between upwind and downwind samples collected on high-volume particulate matter samplers or other U.S. EPA-approved equivalent method for PM_{10} monitoring. If sampling is conducted, samplers shall be:
 - (A) Operated, maintained, and calibrated in accordance with 40 Code of Federal Regulations (CFR), Part 50, Appendix J, or appropriate U.S. EPA-published documents for U.S. EPA-approved equivalent method(s) for PM₁₀.
 - (B) Reasonably placed upwind and downwind of key activity areas and as close to the property line as feasible, such that other sources of fugitive dust between the sampler and the property line are minimized.
- (4) No person shall allow track-out to extend 25 feet or more in cumulative length from the point of origin from an active operation. Notwithstanding the preceding, all track-out from an active operation shall be removed at the conclusion of each workday or evening shift.
- (5) No person shall conduct an active operation with a disturbed surface area of five or more acres, or with a daily import or export of 100 cubic yards or more of bulk material without utilizing at least one of the measures listed in subparagraphs (d)(5)(A) through (d)(5)(E) at each vehicle egress from the site to a paved public road.
 - (A) Install a pad consisting of washed gravel (minimum-size: one inch) maintained in a clean condition to a depth of at least six inches and extending at least 30 feet wide and at least 50 feet long.

- (B) Pave the surface extending at least 100 feet and at least 20 feet wide.
- (C) Utilize a wheel shaker/wheel spreading device consisting of raised dividers (rails, pipe, or grates) at least 24 feet long and 10 feet wide to remove bulk material from tires and vehicle undercarriages before vehicles exit the site.
- (D) Install and utilize a wheel washing system to remove bulk material from tires and vehicle undercarriages before vehicles exit the site.
- (E) Any other control measures approved by the Executive Officer and the U.S. EPA as equivalent to the actions specified in subparagraphs (d)(5)(A) through (d)(5)(D).
- (6) Beginning January 1, 2006, any person who operates or authorizes the operation of a confined animal facility subject to this Rule shall implement the applicable conservation management practices specified in Table 4 of this Rule.

(e) Additional Requirements for Large Operations

- (1) Any person who conducts or authorizes the conducting of a large operation subject to this Rule shall implement the applicable actions specified in Table 2 of this Rule at all times and shall implement the applicable actions specified in Table 3 of this Rule when the applicable performance standards can not be met through use of Table 2 actions; and shall:
 - (A) submit a fully executed Large Operation Notification (Form 403
 N) to the Executive Officer within 7 days of qualifying as a large operation;
 - (B) include, as part of the notification, the name(s), address(es), and phone number(s) of the person(s) responsible for the submittal, and a description of the operation(s), including a map depicting the location of the site;
 - (C) maintain daily records to document the specific dust control actions taken, maintain such records for a period of not less than three years; and make such records available to the Executive Officer upon request;

- (D) install and maintain project signage with project contact signage that meets the minimum standards of the Rule 403 Implementation Handbook, prior to initiating any earthmoving activities;
- (E) identify a dust control supervisor that:
 - (i) is employed by or contracted with the property owner or developer;
 - (ii) is on the site or available on-site within 30 minutes during working hours;
 - (iii) has the authority to expeditiously employ sufficient dust mitigation measures to ensure compliance with all Rule requirements;
 - (iv) has completed the AQMD Fugitive Dust Control Class and has been issued a valid Certificate of Completion for the class; and
- (F) notify the Executive Officer in writing within 30 days after the site no longer qualifies as a large operation as defined by paragraph (c)(18).
- (2) Any Large Operation Notification submitted to the Executive Officer or AQMD-approved dust control plan shall be valid for a period of one year from the date of written acceptance by the Executive Officer. Any Large Operation Notification accepted pursuant to paragraph (e)(1), excluding those submitted by aggregate-related plants and cement manufacturing facilities must be resubmitted annually by the person who conducts or authorizes the conducting of a large operation, at least 30 days prior to the expiration date, or the submittal shall no longer be valid as of the expiration date. If all fugitive dust sources and corresponding control measures or special circumstances remain identical to those identified in the previously accepted submittal or in an AQMD-approved dust control plan, the resubmittal may be a simple statement of no-change (Form 403NC).

(f) Compliance Schedule

The newly amended provisions of this Rule shall become effective upon adoption. Pursuant to subdivision (e), any existing site that qualifies as a large operation will have 60 days from the date of Rule adoption to comply with the notification and recordkeeping requirements for large operations. Any Large Operation

Notification or AQMD-approved dust control plan which has been accepted prior to the date of adoption of these amendments shall remain in effect and the Large Operation Notification or AQMD-approved dust control plan annual resubmittal date shall be one year from adoption of this Rule amendment.

(g) Exemptions

- (1) The provisions of this Rule shall not apply to:
 - (A) Dairy farms.
 - (B) Confined animal facilities provided that the combined disturbed surface area within one continuous property line is one acre or less.
 - (C) Agricultural vegetative crop operations provided that the combined disturbed surface area within one continuous property line and not separated by a paved public road is 10 acres or less.
 - (D) Agricultural vegetative crop operations within the South Coast Air Basin, whose combined disturbed surface area includes more than 10 acres provided that the person responsible for such operations:
 - (i) voluntarily implements the conservation management practices contained in the Rule 403 Agricultural Handbook;
 - (ii) completes and maintains the self-monitoring form documenting sufficient conservation management practices, as described in the Rule 403 Agricultural Handbook; and
 - (iii) makes the completed self-monitoring form available to the Executive Officer upon request.
 - (E) Agricultural vegetative crop operations outside the South Coast Air Basin whose combined disturbed surface area includes more than 10 acres provided that the person responsible for such operations:
 - (i) voluntarily implements the conservation management practices contained in the Rule 403 Coachella Valley Agricultural Handbook; and
 - (ii) completes and maintains the self-monitoring form documenting sufficient conservation management practices, as described in the Rule 403 Coachella Valley Agricultural Handbook; and
 - (iii) makes the completed self-monitoring form available to the Executive Officer upon request.

- (F) Active operations conducted during emergency life-threatening situations, or in conjunction with any officially declared disaster or state of emergency.
- (G) Active operations conducted by essential service utilities to provide electricity, natural gas, telephone, water and sewer during periods of service outages and emergency disruptions.
- (H) Any contractor subsequent to the time the contract ends, provided that such contractor implemented the required control measures during the contractual period.
- (I) Any grading contractor, for a phase of active operations, subsequent to the contractual completion of that phase of earthmoving activities, provided that the required control measures have been implemented during the entire phase of earth-moving activities, through and including five days after the final grading inspection.
- (J) Weed abatement operations ordered by a county agricultural commissioner or any state, county, or municipal fire department, provided that:
 - (i) mowing, cutting or other similar process is used which maintains weed stubble at least three inches above the soil; and
 - (ii) any discing or similar operation which cuts into and disturbs the soil, where watering is used prior to initiation of these activities, and a determination is made by the agency issuing the weed abatement order that, due to fire hazard conditions, rocks, or other physical obstructions, it is not practical to meet the conditions specified in clause (g)(1)(H)(i). The provisions this clause shall not exempt the owner of any property from stabilizing, in accordance with paragraph (d)(2), disturbed surface areas which have been created as a result of the weed abatement actions.
- (K) sandblasting operations.
- (2) The provisions of paragraphs (d)(1) and (d)(3) shall not apply:
 - (A) When wind gusts exceed 25 miles per hour, provided that:

- (i) The required Table 3 contingency measures in this Rule are implemented for each applicable fugitive dust source type, and;
- (ii) records are maintained in accordance with subparagraph (e)(1)(C).
- (B) To unpaved roads, provided such roads:
 - (i) are used solely for the maintenance of wind-generating equipment; or
 - (ii) are unpaved public alleys as defined in Rule 1186; or
 - (iii) are service roads that meet all of the following criteria:
 - (a) are less than 50 feet in width at all points along the road;
 - (b) are within 25 feet of the property line; and
 - (c) have a traffic volume less than 20 vehicle-trips per day.
- (C) To any active operation, open storage pile, or disturbed surface area for which necessary fugitive dust preventive or mitigative actions are in conflict with the federal Endangered Species Act, as determined in writing by the State or federal agency responsible for making such determinations.
- (3) The provisions of (d)(2) shall not apply to any aggregate-related plant or cement manufacturing facility that implements the applicable actions specified in Table 2 of this Rule at all times and shall implement the applicable actions specified in Table 3 of this Rule when the applicable performance standards of paragraphs (d)(1) and (d)(3) can not be met through use of Table 2 actions.
- (4) The provisions of paragraphs (d)(1), (d)(2), and (d)(3) shall not apply to:
 - (A) Blasting operations which have been permitted by the California Division of Industrial Safety; and
 - (B) Motion picture, television, and video production activities when dust emissions are required for visual effects. In order to obtain this exemption, the Executive Officer must receive notification in writing at least 72 hours in advance of any such activity and no nuisance results from such activity.
- (5) The provisions of paragraph (d)(3) shall not apply if the dust control actions, as specified in Table 2, are implemented on a routine basis for

- each applicable fugitive dust source type. To qualify for this exemption, a person must maintain records in accordance with subparagraph (e)(1)(C).
- (6) The provisions of paragraph (d)(4) shall not apply to earth coverings of public paved roadways where such coverings are approved by a local government agency for the protection of the roadway, and where such coverings are used as roadway crossings for haul vehicles provided that such roadway is closed to through traffic and visible roadway dust is removed within one day following the cessation of activities.
- (7) The provisions of subdivision (e) shall not apply to:
 - (A) officially-designated public parks and recreational areas, including national parks, national monuments, national forests, state parks, state recreational areas, and county regional parks.
 - (B) any large operation which is required to submit a dust control plan to any city or county government which has adopted a District-approved dust control ordinance.
 - (C) any large operation subject to Rule 1158, which has an approved dust control plan pursuant to Rule 1158, provided that all sources of fugitive dust are included in the Rule 1158 plan.
- (8) The provisions of subparagraph (e)(1)(A) through (e)(1)(C) shall not apply to any large operation with an AQMD-approved fugitive dust control plan provided that there is no change to the sources and controls as identified in the AQMD-approved fugitive dust control plan.

(h) Fees

Any person conducting active operations for which the Executive Officer conducts upwind/downwind monitoring for PM_{10} pursuant to paragraph (d)(3) shall be assessed applicable Ambient Air Analysis Fees pursuant to Rule 304.1. Applicable fees shall be waived for any facility which is exempted from paragraph (d)(3) or meets the requirements of paragraph (d)(3).

Source Category	Category Control Measure Guidance	
Backfilling	 O1-1 Stabilize backfill material when not actively handling; and O1-2 Stabilize backfill material during handling; and O1-3 Stabilize soil at completion of activity. 	 ✓ Mix backfill soil with water prior to moving ✓ Dedicate water truck or high capacity hose to backfilling equipment ✓ Empty loader bucket slowly so that no dust plumes are generated ✓ Minimize drop height from loader bucket
Clearing and grubbing	 Maintain stability of soil through pre-watering of site prior to clearing and grubbing; and Stabilize soil during clearing and grubbing activities; and Stabilize soil immediately after clearing and grubbing activities. 	 ✓ Maintain live perennial vegetation where possible ✓ Apply water in sufficient quantity to prevent generation of dust plumes
Clearing forms	 Use water spray to clear forms; or Use sweeping and water spray to clear forms; or Use vacuum system to clear forms. 	✓ Use of high pressure air to clear forms may cause exceedance of Rule requirements
Crushing	 O4-1 Stabilize surface soils prior to operation of support equipment; and O4-2 Stabilize material after crushing. 	 ✓ Follow permit conditions for crushing equipment ✓ Pre-water material prior to loading into crusher ✓ Monitor crusher emissions opacity ✓ Apply water to crushed material to prevent dust plumes

Source Category	Control Measure	Guidance
Cut and fill	05-1 Pre-water soils prior to cut and fill activities; and05-2 Stabilize soil during and after cut and fill activities.	 ✓ For large sites, pre-water with sprinklers or water trucks and allow time for penetration ✓ Use water trucks/pulls to water soils to depth of cut prior to subsequent cuts
Demolition – mechanical/manual	 O6-1 Stabilize wind erodible surfaces to reduce dust; and O6-2 Stabilize surface soil where support equipment and vehicles will operate; and O6-3 Stabilize loose soil and demolition debris; and O6-4 Comply with AQMD Rule 1403. 	✓ Apply water in sufficient quantities to prevent the generation of visible dust plumes
Disturbed soil	07-1 Stabilize disturbed soil throughout the construction site; and 07-2 Stabilize disturbed soil between structures	 ✓ Limit vehicular traffic and disturbances on soils where possible ✓ If interior block walls are planned, install as early as possible ✓ Apply water or a stabilizing agent in sufficient quantities to prevent the generation of visible dust plumes
Earth-moving activities	08-1 Pre-apply water to depth of proposed cuts; and 08-2 Re-apply water as necessary to maintain soils in a damp condition and to ensure that visible emissions do not exceed 100 feet in any direction; and 08-3 Stabilize soils once earth-moving activities are complete.	 ✓ Grade each project phase separately, timed to coincide with construction phase ✓ Upwind fencing can prevent material movement on site ✓ Apply water or a stabilizing agent in sufficient quantities to prevent the generation of visible dust plumes

Source Category	Control Measure	Guidance
Importing/exporting of bulk materials	 O9-1 Stabilize material while loading to reduce fugitive dust emissions; and O9-2 Maintain at least six inches of freeboard on haul vehicles; and O9-3 Stabilize material while transporting to reduce fugitive dust emissions; and O9-4 Stabilize material while unloading to reduce fugitive dust emissions; and O9-5 Comply with Vehicle Code Section 23114. 	 ✓ Use tarps or other suitable enclosures on haul trucks ✓ Check belly-dump truck seals regularly and remove any trapped rocks to prevent spillage ✓ Comply with track-out prevention/mitigation requirements ✓ Provide water while loading and unloading to reduce visible dust plumes
Landscaping	10-1 Stabilize soils, materials, slopes	 ✓ Apply water to materials to stabilize ✓ Maintain materials in a crusted condition ✓ Maintain effective cover over materials ✓ Stabilize sloping surfaces using soil binders until vegetation or ground cover can effectively stabilize the slopes ✓ Hydroseed prior to rain season
Road shoulder maintenance	 11-1 Apply water to unpaved shoulders prior to clearing; and 11-2 Apply chemical dust suppressants and/or washed gravel to maintain a stabilized surface after completing road shoulder maintenance. 	 ✓ Installation of curbing and/or paving of road shoulders can reduce recurring maintenance costs ✓ Use of chemical dust suppressants can inhibit vegetation growth and reduce future road shoulder maintenance costs

Source Category	Control Measure	Guidance
Screening	 12-1 Pre-water material prior to screening; and 12-2 Limit fugitive dust emissions to opacity and plume length standards; and 12-3 Stabilize material immediately after screening. 	 ✓ Dedicate water truck or high capacity hose to screening operation ✓ Drop material through the screen slowly and minimize drop height ✓ Install wind barrier with a porosity of no more than 50% upwind of screen to the height of the drop point
Staging areas	13-1 Stabilize staging areas during use; and 13-2 Stabilize staging area soils at project completion.	✓ Limit size of staging area ✓ Limit vehicle speeds to 15 miles per hour ✓ Limit number and size of staging area entrances/exists
Stockpiles/ Bulk Material Handling	14-1 Stabilize stockpiled materials. 14-2 Stockpiles within 100 yards of off-site occupied buildings must not be greater than eight feet in height; or must have a road bladed to the top to allow water truck access or must have an operational water irrigation system that is capable of complete stockpile coverage.	 ✓ Add or remove material from the downwind portion of the storage pile ✓ Maintain storage piles to avoid steep sides or faces

Source Category	Control Measure	Guidance
Traffic areas for construction activities	 15-1 Stabilize all off-road traffic and parking areas; and 15-2 Stabilize all haul routes; and 15-3 Direct construction traffic over established haul routes. 	 ✓ Apply gravel/paving to all haul routes as soon as possible to all future roadway areas ✓ Barriers can be used to ensure vehicles are only used on established parking areas/haul routes
Trenching	 16-1 Stabilize surface soils where trencher or excavato and support equipment will operate; and 16-2 Stabilize soils at the completion of trenching activities. 	 ✓ Pre-watering of soils prior to trenching is an effective preventive measure. For deep trenching activities, pre-trench to 18 inches soak soils via the pre-trench and resuming trenching ✓ Washing mud and soils from equipment at the conclusion of trenching activities can prevent crusting and drying of soil on equipment
Truck loading	17-1 Pre-water material prior to loading; and 17-2 Ensure that freeboard exceeds six inches (CVC 23114)	 ✓ Empty loader bucket such that no visible dust plumes are created ✓ Ensure that the loader bucket is close to the truck to minimize drop height while loading
Turf Overseeding	18-1 Apply sufficient water immediately prior to conducting turf vacuuming activities to meet opac and plume length standards; and	✓ Haul waste material immediately off-site
	18-2 Cover haul vehicles prior to exiting the site.	

Source Category	Control Measure	Guidance	
Unpaved roads/parking lots	19-1 Stabilize soils to meet the applicable performance standards; and	✓ Restricting vehicular access to established unpaved travel paths and parking lots can	
	19-2 Limit vehicular travel to established unpaved roads (haul routes) and unpaved parking lots.	reduce stabilization requirements	
Vacant land	20-1 In instances where vacant lots are 0.10 acre or larg and have a cumulative area of 500 square feet or more that are driven over and/or used by motor vehicles and/or off-road vehicles, prevent motor vehicle and/or off-road vehicle trespassing, parking and/or access by installing barriers, curbs, fences, gates, posts, signs, shrubs, trees or other effective control measures.		

Table 2
DUST CONTROL MEASURES FOR LARGE OPERATIONS

		UKES FOR LANGE OF EKATIONS
FUGITIVE DUST SOURCE CATEGORY		CONTROL ACTIONS
Earth-moving (except construction cutting and filling areas, and mining operations)	(1a)	Maintain soil moisture content at a minimum of 12 percent, as determined by ASTM method D-2216, or other equivalent method approved by the Executive Officer, the California Air Resources Board, and the U.S. EPA. Two soil moisture evaluations must be conducted during the first three hours of active operations during a calendar day, and two such evaluations each subsequent four-hour period of active operations; OR
	(1a-1)	For any earth-moving which is more than 100 feet from all property lines, conduct watering as necessary to prevent visible dust emissions from exceeding 100 feet in length in any direction.
Earth-moving: Construction fill areas:	(1b)	Maintain soil moisture content at a minimum of 12 percent, as determined by ASTM method D-2216, or other equivalent method approved by the Executive Officer, the California Air Resources Board, and the U.S. EPA. For areas which have an optimum moisture content for compaction of less than 12 percent, as determined by ASTM Method 1557 or other equivalent method approved by the Executive Officer and the California Air Resources Board and the U.S. EPA, complete the compaction process as expeditiously as possible after achieving at least 70 percent of the optimum soil moisture content. Two soil moisture evaluations must be conducted during the first three hours of active operations during a calendar day, and two such evaluations during each subsequent four-hour period of active operations.

Table 2 (Continued)

		able 2 (Continueu)
FUGITIVE DUST SOURCE CATEGORY		CONTROL ACTIONS
Earth-moving: Construction cut areas and mining operations:	(1c)	Conduct watering as necessary to prevent visible emissions from extending more than 100 feet beyond the active cut or mining area unless the area is inaccessible to watering vehicles due to slope conditions or other safety factors.
Disturbed surface areas (except completed grading areas)	(2a/b)	Apply dust suppression in sufficient quantity and frequency to maintain a stabilized surface. Any areas which cannot be stabilized, as evidenced by wind driven fugitive dust must have an application of water at least twice per day to at least 80 percent of the unstabilized area.
Disturbed surface areas: Completed grading areas	(2c)	Apply chemical stabilizers within five working days of grading completion; OR Take actions (3a) or (3c) specified for inactive disturbed surface areas.
Inactive disturbed surface areas	(3a) (3b) (3c)	Apply water to at least 80 percent of all inactive disturbed surface areas on a daily basis when there is evidence of wind driven fugitive dust, excluding any areas which are inaccessible to watering vehicles due to excessive slope or other safety conditions; OR Apply dust suppressants in sufficient quantity and frequency to maintain a stabilized surface; OR Establish a vegetative ground cover within 21 days after active operations have ceased. Ground cover must be of sufficient density to expose less than 30 percent of unstabilized ground within 90 days of planting, and at all times thereafter; OR Utilize any combination of control actions (3a), (3b), and (3c) such that, in total, these actions apply to all inactive disturbed surface areas.

Table 2 (Continued)

		ic 2 (Continued)
FUGITIVE DUST SOURCE CATEGORY		CONTROL ACTIONS
Unpaved Roads	(4a)	Water all roads used for any vehicular traffic at least once per every two hours of active operations [3 times per normal 8 hour work day]; OR
	(4b)	Water all roads used for any vehicular traffic once daily and restrict vehicle speeds to 15 miles per hour; OR
	(4c)	Apply a chemical stabilizer to all unpaved road surfaces in sufficient quantity and frequency to maintain a stabilized surface.
Open storage piles	(5a)	Apply chemical stabilizers; OR
	(5b)	Apply water to at least 80 percent of the surface area of all open storage piles on a daily basis when there is evidence of wind driven fugitive dust; OR
	(5c)	Install temporary coverings; OR
	(5d)	Install a three-sided enclosure with walls with no more than 50 percent porosity which extend, at a minimum, to the top of the pile. This option may only be used at aggregate-related plants or at cement manufacturing facilities.
All Categories	(6a)	Any other control measures approved by the Executive Officer and the U.S. EPA as equivalent to the methods specified in Table 2
		may be used.

TABLE 3
CONTINGENCY CONTROL MEASURES FOR LARGE OPERATIONS

		OL MEASURES FOR LARGE OPERATIONS
FUGITIVE DUST		
SOURCE		CONTROL MEASURES
CATEGORY		
Earth-moving	(1A)	Cease all active operations; OR
	(2A)	Apply water to soil not more than 15 minutes prior to moving such soil.
Disturbed surface areas	(0B)	On the last day of active operations prior to a weekend, holiday, or any other period when active operations will not occur for not more than four consecutive days: apply water with a mixture of chemical stabilizer diluted to not less than 1/20 of the concentration required to maintain a stabilized surface for a period of six months; OR
	(1B)	Apply chemical stabilizers prior to wind event; OR
	(2B)	Apply water to all unstabilized disturbed areas 3 times per day. If there is any evidence of wind driven fugitive dust, watering frequency is increased to a minimum of four times per day; OR
	(3B)	Take the actions specified in Table 2, Item (3c); OR
	(4B)	Utilize any combination of control actions (1B), (2B), and (3B) such that, in total, these actions apply to all disturbed surface areas.
Unpaved roads	(1C)	Apply chemical stabilizers prior to wind event; OR
	(2C)	Apply water twice per hour during active operation; OR
	(3C)	Stop all vehicular traffic.
Open storage piles	(1D)	Apply water twice per hour; OR
	(2D)	Install temporary coverings.
Paved road track-out	(1E)	Cover all haul vehicles; OR
	(2E)	Comply with the vehicle freeboard requirements of Section 23114 of the California Vehicle Code for both public and private roads.
All Categories	(1F)	Any other control measures approved by the Executive Officer and the U.S. EPA as equivalent to the methods specified in Table 3 may be used.

Table 4 (Conservation Management Practices for Confined Animal Facilities)

CATEGORY	SOURCE	CONSERVATION MANAGEMENT PRACTICES
Manure (1a) Cover manure prior to removing material off-site; AND		CONSERVATION MANAGEMENT PRACTICES
Conly applicable to Commercial Poultry		(1) C
are less than 25 miles per hour; AND (Only applicable to Commercial Poultry Ranches) (1d) Utilize coning and drying manure management by removing manure at laying hen houses at least twice per year and maintain a base of no less than 6 inches of dry manure after clean out; or in lieu of complying with conservation management practice (1c), comply with conservation management practice (1d). (1d) Utilize frequent manure removal by removing the manure from laying hen houses at least every seven days and immediately thin bed dry the material. Feedstock Handling Disturbed (3a) Maintain at least 70 percent vegetative cover on vacant portions of the facility; OR (3b) Utilize conservation tillage practices to manage the amount, orientation and distribution of crop and other plant residues on the soil surface year-round, while growing crops (if applicable) in narrow slots or tilled strips; OR (3c) Apply dust suppressants in sufficient concentrations and frequencies to maintain a stabilized surface. Unpaved Roads (4a) Restrict access to private unpaved roads either through signage or physical access restrictions and control vehicular speeds to no more than 15 miles per hour through worker notifications, signage, or any other necessary means; OR (4b) Cover frequently traveled unpaved roads with low silt content material (i.e., asphalt, concrete, recycled road base, or gravel to a minimum depth of four inches); OR		
(Only applicable to Commercial Poultry Ranches) Feedstock Handling Disturbed Surfaces (3a) Maintain at least 70 percent vegetative cover on vacant portions of the facility; OR (3b) Utilize conservation tillage practices to manage the amount, orientation and distribution of crop and other plant residues on the soil surface year-round, while growing crops (if applicable) in narrow slots or tilled strips; OR (4a) Restrict access to private unpaved roads either through signage or physical access restrictions and control vehicular speeds to no more than 15 miles per hour through worker notifications, signage, or any other necessary means; OR (4b) Cover frequently traveled unpaved roads with low silt content material (i.e., asphalt, concrete, recycled road base, or gravel to a minimum depth of four inches); OR	пананнд	
manure at laying hen houses at least twice per year and maintain a base of no less than 6 inches of dry manure after clean out; or in lieu of complying with conservation management practice (1c), comply with conservation management practice (1d). (1d) Utilize frequent manure removal by removing the manure from laying hen houses at least every seven days and immediately thin bed dry the material. Feedstock Handling Disturbed Surfaces (3a) Maintain at least 70 percent vegetative cover on vacant portions of the facility; OR (3b) Utilize conservation tillage practices to manage the amount, orientation and distribution of crop and other plant residues on the soil surface year-round, while growing crops (if applicable) in narrow slots or tilled strips; OR (3c) Apply dust suppressants in sufficient concentrations and frequencies to maintain a stabilized surface. Unpaved Roads (4a) Restrict access to private unpaved roads either through signage or physical access restrictions and control vehicular speeds to no more than 15 miles per hour through worker notifications, signage, or any other necessary means; OR (4b) Cover frequently traveled unpaved roads with low silt content material (i.e., asphalt, concrete, recycled road base, or gravel to a minimum depth of four inches); OR	(Only	•
Commercial Poultry		
Poultry Ranches In lieu of complying with conservation management practice (1c), comply with conservation management practice (1d). (1d) Utilize frequent manure removal by removing the manure from laying hen houses at least every seven days and immediately thin bed dry the material.		, ,
Clc), comply with conservation management practice (1d). (1d) Utilize frequent manure removal by removing the manure from laying hen houses at least every seven days and immediately thin bed dry the material. (2a) Utilize a sock or boot on the feed truck auger when filling feed storage bins. Disturbed Gai	Poultry	· ·
laying hen houses at least every seven days and immediately thin bed dry the material. [2a] Utilize a sock or boot on the feed truck auger when filling feed storage bins. [3a] Maintain at least 70 percent vegetative cover on vacant portions of the facility; OR [3b] Utilize conservation tillage practices to manage the amount, orientation and distribution of crop and other plant residues on the soil surface year-round, while growing crops (if applicable) in narrow slots or tilled strips; OR [3c] Apply dust suppressants in sufficient concentrations and frequencies to maintain a stabilized surface. [4a] Restrict access to private unpaved roads either through signage or physical access restrictions and control vehicular speeds to no more than 15 miles per hour through worker notifications, signage, or any other necessary means; OR [4b] Cover frequently traveled unpaved roads with low silt content material (i.e., asphalt, concrete, recycled road base, or gravel to a minimum depth of four inches); OR	_	(1c), comply with conservation management practice (1d).
thin bed dry the material. (2a) Utilize a sock or boot on the feed truck auger when filling feed storage bins. (3a) Maintain at least 70 percent vegetative cover on vacant portions of the facility; OR (3b) Utilize conservation tillage practices to manage the amount, orientation and distribution of crop and other plant residues on the soil surface year-round, while growing crops (if applicable) in narrow slots or tilled strips; OR (3c) Apply dust suppressants in sufficient concentrations and frequencies to maintain a stabilized surface. Unpaved Roads (4a) Restrict access to private unpaved roads either through signage or physical access restrictions and control vehicular speeds to no more than 15 miles per hour through worker notifications, signage, or any other necessary means; OR (4b) Cover frequently traveled unpaved roads with low silt content material (i.e., asphalt, concrete, recycled road base, or gravel to a minimum depth of four inches); OR		(1d) Utilize frequent manure removal by removing the manure from
Ca Utilize a sock or boot on the feed truck auger when filling feed storage bins.		· · · · · · · · · · · · · · · · · · ·
Handling Disturbed Surfaces (3a) Maintain at least 70 percent vegetative cover on vacant portions of the facility; OR (3b) Utilize conservation tillage practices to manage the amount, orientation and distribution of crop and other plant residues on the soil surface year-round, while growing crops (if applicable) in narrow slots or tilled strips; OR (3c) Apply dust suppressants in sufficient concentrations and frequencies to maintain a stabilized surface. Unpaved Roads (4a) Restrict access to private unpaved roads either through signage or physical access restrictions and control vehicular speeds to no more than 15 miles per hour through worker notifications, signage, or any other necessary means; OR (4b) Cover frequently traveled unpaved roads with low silt content material (i.e., asphalt, concrete, recycled road base, or gravel to a minimum depth of four inches); OR		,
Surfaces (3a) Maintain at least 70 percent vegetative cover on vacant portions of the facility; OR (3b) Utilize conservation tillage practices to manage the amount, orientation and distribution of crop and other plant residues on the soil surface year-round, while growing crops (if applicable) in narrow slots or tilled strips; OR (3c) Apply dust suppressants in sufficient concentrations and frequencies to maintain a stabilized surface. Unpaved Roads (4a) Restrict access to private unpaved roads either through signage or physical access restrictions and control vehicular speeds to no more than 15 miles per hour through worker notifications, signage, or any other necessary means; OR (4b) Cover frequently traveled unpaved roads with low silt content material (i.e., asphalt, concrete, recycled road base, or gravel to a minimum depth of four inches); OR		
Surfaces (3b) Utilize conservation tillage practices to manage the amount, orientation and distribution of crop and other plant residues on the soil surface year-round, while growing crops (if applicable) in narrow slots or tilled strips; OR (3c) Apply dust suppressants in sufficient concentrations and frequencies to maintain a stabilized surface. Unpaved Roads (4a) Restrict access to private unpaved roads either through signage or physical access restrictions and control vehicular speeds to no more than 15 miles per hour through worker notifications, signage, or any other necessary means; OR (4b) Cover frequently traveled unpaved roads with low silt content material (i.e., asphalt, concrete, recycled road base, or gravel to a minimum depth of four inches); OR		3
(3b) Utilize conservation tillage practices to manage the amount, orientation and distribution of crop and other plant residues on the soil surface year-round, while growing crops (if applicable) in narrow slots or tilled strips; OR (3c) Apply dust suppressants in sufficient concentrations and frequencies to maintain a stabilized surface. (4a) Restrict access to private unpaved roads either through signage or physical access restrictions and control vehicular speeds to no more than 15 miles per hour through worker notifications, signage, or any other necessary means; OR (4b) Cover frequently traveled unpaved roads with low silt content material (i.e., asphalt, concrete, recycled road base, or gravel to a minimum depth of four inches); OR		
orientation and distribution of crop and other plant residues on the soil surface year-round, while growing crops (if applicable) in narrow slots or tilled strips; OR (3c) Apply dust suppressants in sufficient concentrations and frequencies to maintain a stabilized surface. Unpaved Roads (4a) Restrict access to private unpaved roads either through signage or physical access restrictions and control vehicular speeds to no more than 15 miles per hour through worker notifications, signage, or any other necessary means; OR (4b) Cover frequently traveled unpaved roads with low silt content material (i.e., asphalt, concrete, recycled road base, or gravel to a minimum depth of four inches); OR	Surfaces	
the soil surface year-round, while growing crops (if applicable) in narrow slots or tilled strips; OR (3c) Apply dust suppressants in sufficient concentrations and frequencies to maintain a stabilized surface. (4a) Restrict access to private unpaved roads either through signage or physical access restrictions and control vehicular speeds to no more than 15 miles per hour through worker notifications, signage, or any other necessary means; OR (4b) Cover frequently traveled unpaved roads with low silt content material (i.e., asphalt, concrete, recycled road base, or gravel to a minimum depth of four inches); OR		· ,
in narrow slots or tilled strips; OR (3c) Apply dust suppressants in sufficient concentrations and frequencies to maintain a stabilized surface. Unpaved Roads (4a) Restrict access to private unpaved roads either through signage or physical access restrictions and control vehicular speeds to no more than 15 miles per hour through worker notifications, signage, or any other necessary means; OR (4b) Cover frequently traveled unpaved roads with low silt content material (i.e., asphalt, concrete, recycled road base, or gravel to a minimum depth of four inches); OR		± ±
(3c) Apply dust suppressants in sufficient concentrations and frequencies to maintain a stabilized surface. (4a) Restrict access to private unpaved roads either through signage or physical access restrictions and control vehicular speeds to no more than 15 miles per hour through worker notifications, signage, or any other necessary means; OR (4b) Cover frequently traveled unpaved roads with low silt content material (i.e., asphalt, concrete, recycled road base, or gravel to a minimum depth of four inches); OR		
Tupaved (4a) Restrict access to private unpaved roads either through signage or physical access restrictions and control vehicular speeds to no more than 15 miles per hour through worker notifications, signage, or any other necessary means; OR (4b) Cover frequently traveled unpaved roads with low silt content material (i.e., asphalt, concrete, recycled road base, or gravel to a minimum depth of four inches); OR		•
Unpaved Roads(4a)Restrict access to private unpaved roads either through signage or physical access restrictions and control vehicular speeds to no more than 15 miles per hour through worker notifications, signage, or any other necessary means; OR(4b)Cover frequently traveled unpaved roads with low silt content material (i.e., asphalt, concrete, recycled road base, or gravel to a minimum depth of four inches); OR		
Roads or physical access restrictions and control vehicular speeds to no more than 15 miles per hour through worker notifications, signage, or any other necessary means; OR (4b) Cover frequently traveled unpaved roads with low silt content material (i.e., asphalt, concrete, recycled road base, or gravel to a minimum depth of four inches); OR	Unpaved	
signage, or any other necessary means; OR (4b) Cover frequently traveled unpaved roads with low silt content material (i.e., asphalt, concrete, recycled road base, or gravel to a minimum depth of four inches); OR	_	
(4b) Cover frequently traveled unpaved roads with low silt content material (i.e., asphalt, concrete, recycled road base, or gravel to a minimum depth of four inches); OR		no more than 15 miles per hour through worker notifications
material (i.e., asphalt, concrete, recycled road base, or gravel to a minimum depth of four inches); OR		
a minimum depth of four inches); OR		
(4C) I reat linnaved roads with water millen chemical dist		•
() III with the result with the result was the result with the result with the result with the result was the result with the result with the result with the result was the result with the result with the result with the result was the result with the result with the result was the result with the result with the result was the result with the result was the result with the result with the result was the result with the result was the result with the result was the result with the result was the result with the result was the result with the result was t		() True disputed rough with water, matter, entermour and
suppressants or other cover to maintain a stabilized surface. For import (5a) Apply dust suppressents in sufficient quantity and frequency to	Equipment	**
Equipment (5a) Apply dust suppressants in sufficient quantity and frequency to maintain a stabilized surface; OR		
(5b) Apply material with low silt content (i.e., asphalt, concrete,	I at King At eas	·
recycled road base, or gravel to a depth of four inches).		

APPENDIX D

Port of Los Angeles Environmental Guidance for Industrial Fill Material, December 2021

ENVIRONMENTAL GUIDANCE FOR INDUSTRIAL FILL MATERIAL

DECEMBER 2021

The City of Los Angeles Harbor Department (Harbor Department) Environmental Management Division (EMD) has prepared and routinely updates this guidance document to ensure that fill materials (i.e., soil, topsoil, CMB, etc.) meet both Harbor Department and regulatory and environmental standards for acceptable industrial land use fill material. In addition, the guidance procedures are intended to both reduce Harbor Department liability and potential future cleanup costs by preventing the inadvertent placement or reuse of contaminated soil/fill material on Port property. The environmental chemical concentrations listed in this section are intended only for industrial land use for the protection of human health and the environment. They are not appropriate in determining suitable soil/fill material for use at former or active regulated/cleanup sites, public access/land use areas, or for worker health & safety protection.

Environmental Suitability of Soil/Fill Material for Industrial Use

The general process steps for determining the environmental suitability of fill material for industrial land use are the following:

- 1. Source Location Identification and Suitability
- 2. Volume Estimation of Soil/Fill Materials
- 3. Sampling Requirements and Sample Frequency Determination
- 4. Chemical Analyses Based on Source
- 5. Representative Sample Collection
- 6. Applicable Samples Analyses
- 7. Comparisons with Allowable Concentrations
- 8. Documentation and Retention

Source Location Identification and Suitability

It is important to know the source location of the soil/fill material, including the former and current land uses of the material. Past activities performed on, or near, the proposed source location can directly affect the quality of the fill material and the suitability of use of the material. Prior use of the source site should be documented and be made available for review.

Also, the unique hydrogeological characteristics of the Port area (i.e., shallow groundwater and proximity to harbor waters) require added attention for the protection of water quality. It is strongly recommended that clean crushed miscellaneous base (CMB) only be used for applications such as road base, paving, container terminal construction, and/or asphalt/concrete parking. CMB should not be used as a substitute for soil as general fill, or within sensitive-use areas including, but not limited to, sites

under regulatory oversight or remediation, park lands, public access areas, and waterfront areas in potential contact with harbor waters.

Volume Estimation of Soil/Fill Material

The volume of soil/fill material determines the sampling frequency required. It is important to have a fairly accurate estimate of the material volume prior to sample collection and analysis. If the volume of soil/fill material cannot be accurately determined, the upper-end estimate of the volume shall be used for purposes of determining sampling frequency.

Sampling Requirements and Sampling Frequency Determination

The minimum sampling frequency and number of total samples of soil/fill material for stockpile sampling are shown in Table 1. All samples should be collected as individual grab samples. Composite samples are not acceptable. Borrow sources that are not contiguous to each other are considered to be separate or different sources and should be tested separately according to the frequencies described in Table 1. In order to distinguish between multiple borrow sources, the sampler/supplier shall provide a "unique identifier" for each stockpile or borrow source sampled (e.g. Stockpile A, Stockpile B, etc.). A site plan (e.g. map) showing the location of the source material and sample locations should be provided. In addition, the results of laboratory analytical chemical data and an approval certification stating the environmental status/condition of the material from the supplier for the sources should also be provided.

Table 1. Sampling Frequency for Each (Separate) Source of Stockpiled Fill Material

Volume of Borrow Area Stockpile	Required Number of Samples per Volume
Up to 1,000 CY	1 sample per 250 CY
1,000 to 5,000 CY	4 samples for first 1000 CY +1 sample per each additional 500 CY
Greater than 5,000 CY	12 samples for first 5,000 CY +1 sample per each additional 1,000 CY

NOTE: CY = Cubic Yard

Source: Information Advisory Clean Imported Fill Material, DTSC, October 2001

The number of samples per volume for sources not yet excavated or stockpiled (i.e., insitu sources) may differ from the table above. This is described further in the Representative Sample Collection section below.

Chemical Analyses Based on Source

Table 2 provides a set of recommended chemical analyses based on the source or origin of the fill material. Except as noted, soil/fill source areas shall NOT be located in:

- a. Industrial/manufacturing areas (with the exception of soils/material generated within the Port of Los Angeles [Port]).
- b. Sites designated for or undergoing environmental cleanup or within a one-mile radius of sites undergoing environmental cleanup.
- c. Sites where hazardous materials were historically used or hazardous wastes were generated (e.g., service or fueling stations, dry cleaners, oil refineries, scrap yards, boatyards, chemical/liquid storage areas, painting facilities, metal processing shops, etc.).

The potential for the proposed borrow site to be located in an area related to items a, b, and/or c above should be determined by the contractor PRIOR to proposing the borrow site to the Harbor Department. At a minimum, the contractor must demonstrate due diligence in obtaining the information (e.g., Phase I, searched on Geotracker and Envirostor, etc.) about historical property land uses at proposed existing and off-site borrow locations prior to placement of the material within the Port.

For both excavated on-site and off-site material, target compounds to be analyzed for testing the suitability of the fill source may be pre-determined or reduced by assessing environmental conditions of the borrow area prior to implementing the excavation. Although, the Harbor Department does not recommend the use of soil/fill material from land adjacent to freeways and highways, mining areas, and/or agricultural lands, Table 2 provides a suggested list of target compounds and sampling tests for such locations.

Table 2. Recommended Chemical Analyses of Material Based on Source/Origin

Fill Source	Target Compounds and Analyses
Land adjacent to or within 250 feet from existing freeway or major highway	 TPH (modified EPA Method 8015) Lead (EPA Method 6010B) PAHs (EPA Method 8310)
Mining area or rock quarry	 Heavy metals (EPA Methods 6020 and 7471A) Asbestos (polarized light microscopy)
Agricultural	 Pesticides and Herbicides (Organochlorine Pesticides: EPA Method 8081A or 8080A; Organophosphorus Pesticides: EPA Method 8141A; Chlorinated Herbicides: EPA Method 8151A) Heavy metals (EPA Methods 6020 and 7471A), including hexavalent chromium (EPA Method 7199)

Fill Source	Target Compounds and Analyses
Acceptable commercial land	 VOCs (EPA Method 8021 or 8260B, as appropriate and combined with collection by EPA Method 5035) Semi-VOCs (EPA Method 8270SIM) TPH (modified EPA Method 8015B) PCBs (EPA Method 8082 or 8080A) Heavy metals including lead (EPA Methods 6020 and 7471A), including hexavalent chromium (EPA Method 7199)

Representative Sample Collection

Soil/fill material samples need to be collected in a manner (both in sample number and depth) that accurately represents the overall environmental chemical quality of the excavation area, borrow site, or stockpile(s). In-situ sampling requirements for in-place fill material is more complex than stockpile sampling, and the proposed plan for characterization shall be determined in advance with consultation/discussions with qualified Port personnel (e.g., Project Manager/Construction Manager). Table 1 is not necessarily appropriate for in-situ sampling. At a minimum, a map showing the borrow site boundaries, depths of proposed excavation, depth horizons that will be used for fill, and proposed number of samples and analyses, must be provided to the Port for initial discussion. Additional information may be requested by the Port based on the information provided. Sampling must be overseen by an environmental professional.

Any and all samples must be collected and properly preserved/stored (e.g., specified temperatures, within appropriate containers and holding times, etc.) until delivery to a California-certified analytical laboratory (e.g., <u>ELAP</u> and/or <u>NELAP</u> certification) for analyses. Appropriate sample handling and preservation procedures are specified in the US EPA "Test Methods for Evaluating Solid Waste-Physical/Chemical Methods (<u>SW-846</u>)." Each collected soil/material sample will be recorded on a chain-of-custody form prior to submittal to the laboratory for analysis.

Applicable Samples Analyses

All soil samples need to be analyzed using the applicable EPA Methods listed in Table 3. If one is aware of, has knowledge of, or suspects possible contaminants in the soil/fill material (e.g., observations of staining, discoloration, and/or odors) that are not included in the list, an analysis of the suspected contaminant(s) should be conducted.

Comparisons with Allowable Concentrations

Table 3 presents the chemical concentrations for soil/ fill material at the Port of Los Angeles. Generally, soil/fill material with sample results below (less than) the permissible chemical concentrations may be used as industrial-use fill within the Port. Soil/fill material with sample results above (greater than) the permissible chemical concentrations material cannot be used as fill and must be properly disposed of, unless directed otherwise. It's important to note that the recommended sampling frequencies in Table 1 and the subsequent sampling results only provide an indication of potential

contamination with the soil/fill material. Slight exceedances in Table 3 limits in some of the samples do not necessarily make the entire stockpile or borrow area unusable. Unless the exceedances are present throughout a number of the samples, a combination of both professional judgment and sectioning-off of the contaminated areas will likely allow use of most of the selected fill material.

In general, the primary target or 'driver' compounds of concern in the Port are TPH, benzene, PCBs, lead, and copper. While there are a number of other chemicals (including human carcinogens) found in the Port, these target compounds are the most prevalent. At a minimum, all samples should be tested for these target compounds.

Please note in Table 3 that any soil/fill sample having undergone chemical analyses with a dilution factor greater than 1 (see Footnote #3) or uses detection limits greater than the permissible concentrations in Table 3 may be rejected due to potentially elevated concentrations of one or more contaminants.

As a reminder, the environmental chemical concentrations listed in Table 3 are intended only for general industrial land use for the protection of human health and the environment. The listed concentrations are not intended to be applicable or to determine suitable soil/fill material for use at former or active regulated/cleanup sites, public/recreation land use areas, or for worker health & safety protection.

Table 3. Permissible Chemical Concentrations in Fill Material¹

Chemicals of Concern (COC) Industrial Land Use	Soil/Fill Material Concentration (mg/kg)	Source
Total Petroleum Hy	drocarbons (TPF	f) (EPA Method 8015M/8015B)
TPH (Total Petroleum Hydrocarbons)	1,000	Cal-EPA SWRCB ²
Gasoline (if present)	180	Cal-EPA SWRCB/DTSC ²
Diesel (if present)	180	Cal-EPA SWRCB/DTSC ²
Heavy	Metals (EPA Method 6	020/7471A)
Antimony	150	10 X STLC ³
Arsenic	8.7	Cal-EPA SWRCB/DTSC ²
Barium	1000	10 X STLC ³
Beryllium	7.5	10 X STLC ³
Cadmium	1.4	Cal-EPA SWRCB/DTSC ²
Chromium VI (EPA Method 7199/3060A)	2.8	Cal-EPA SWRCB/DTSC ²
Total Chromium	100	20 X TCLP/STLC ³
Cobalt	350	Cal-EPA SWRCB/DTSC ²
Copper	69	Cal-EPA SWRCB/DTSC ²
Lead	50	10 X STLC ³
Mercury	0.69	Cal-EPA SWRCB/DTSC ²
Molybdenum	4.4	Cal-EPA SWRCB/DTSC ²
Nickel	200	10 X STLC ³
Selenium	0.23	Cal-EPA SWRCB ²
Silver	3.75	Cal-EPA SWRCB/DTSC ²
Thallium	0.95	Cal-EPA SWRCB ²
Vanadium	240	10 X STLC ³
Zinc	680	Cal-EPA SWRCB/DTSC ²
	BTEX (EPA Method 826	0)
Benzene	0.055	Cal-EPA SWRCB/DTSC ²
Toluene	56	Cal-EPA SWRCB ²
Ethylbenzene	3.9	Cal-EPA SWRCB ²
Xylene	7.2	Cal-EPA SWRCB ²
Naphthalene	0.17	Cal-EPA SWRCB ²
Asbestos (OSHA Method ID-191)	ND	Laboratory Reporting Limit ⁴
Polychlorinated Biphenyls (PCBs) (EPA 8082)	ND	Laboratory Reporting Limit ⁴ /USEPA
Ch	emicals of Conce	ern ⁵
Volatile Organic Compounds (VOCs) (EPA Method 8260)	ND	Laboratory Reporting Limit ⁴
Polynuclear Aromatic Hydrocarbons (PAHs) (EPA Method 8310)	ND	Laboratory Reporting Limit ⁴
Semi Volatile Organic Compounds (SVOCs) (EPA Method8270)	ND	Laboratory Reporting Limit ⁴
Organochlorine Pesticides (EPA Method 8081A)	ND	Laboratory Reporting Limit ⁴
Organophosphorus Pesticides (EPA Method 8141A)	ND	Laboratory Reporting Limit ⁴
Chlorinated Herbicides (EPA Method 8151A)	ND	Laboratory Reporting Limit ⁴
NOTES:		,

NOTES:

- Acceptable Soil/Fill Material concentrations may vary between regulated Sites. Please consult the Port prior to analysis of samples to ensure the correct Laboratory Reporting Limits are achieved.
- Cal-EPA State Water Resources Control Board & Department of Toxic Substances Control Action Goals for Industrial Land Use sites only. The listed concentrations/levels may not be applicable for former or active cleanup sites, public land use, or worker health & safety.

 Soluble Threshold Limit Concentration (STLC) and Toxicity Characteristic Leaching Procedure (TCLP), California Code of Regulations (CCR), Title
- 22, Section 66261.24. Characteristic of Toxicity.
- Laboratory Reporting Limit is based on reporting limits commonly used by Southern California laboratories (DAF=1). Note that for some regulated Sites (to be determined by the Port) target Laboratory Reporting Limits may need to be provided to the laboratory prior to sampling.
- Any other suspected constituents or contaminants not shown on this table should be discussed with the Port.

Documentation and Retention

A written, preferably electronic, record of the sampling protocols, sampling locations, photographs, analytical results, and determination of suitability for industrial land use as fill shall be maintained and made available for staff review, upon request.

Authorization for Soil/Fill Concentrations

The chemical/contaminant criteria utilized in this document for industrial land use soil/fill material were compiled from a number of current sources, standards, regulations, and/or guidance documents including, but not limited to:

- Compliance with applicable laws and regulations;
- California Environmental Protection Agency State Water Resources Control Board (<u>SWRCB</u>) and Department of Toxic Substances Control (<u>DTSC</u>);
- Title 40, Code of Federal Regulations (40 CFR)
- California Health and Safety Code (<u>HSC</u>), Division 20, Chapter 6.5, Hazardous Waste Control Law and California Code of Regulations, Division 4.5, Title 22 <u>CCR</u>;
- Information Advisory Clean Imported Fill Material (DTSC, October 2001);
- User's Guide: Derivation and Application of Environmental Screening Levels (SFRWQCB), 2019);
- Revised Responses to Stakeholder's Comments Memorandum Former GATX Los Angeles Marine Terminal (LAMT), Bertha 171 through 173, Wilmington, CA (Cleanup and Abatement Order No. R4-2008-006), (LARWQCB <u>Geotracker</u>), January 19, 2010); and
- Commonly reported Laboratory Reporting Limits (<u>LRLs</u>) and Method Detection Limits (<u>MDLs</u>) by analytical laboratories in Southern California.

Approval of Soil/Fill Material

An Import Material Checklist (Attachment 1), along with a photograph(s) of the source in which it represents, will be submitted for each proposed fill source. All analytical data submitted to determine the quality and suitability of the soil/fill material will be reviewed by qualified Port personnel. Meeting the concentration criteria listed in Table 3 is essential for the fill or excavated material to be considered minimally acceptable for industrial use as general fill within the Port. This guidance document and its contents may be amended or updated to reflect future changes in Port policies and/or regulatory requirements. The Port reserves the right to observe contractor's sampling activities and data; and independently sample, analyze, and/or verify the results of any analytical data submitted for evaluation.

The Port will not be responsible for any construction schedule delays or costs if the soil/fill material is rejected due to incomplete or inaccurate data submittals, exceedances of permissible chemical concentrations (i.e., sample results fail to meet the criteria requirements in this section), and/or the soil/fill material does not comply with regulatory requirements (e.g., material would be classified as <u>hazardous wastes</u>,

SCAQMD <u>Rule 1166</u> requirements, <u>UST</u> requirements, site-specific plans or directives, etc.). If a third-party (e.g., contractor) brings any soil/fill material into the Port that classifies as hazardous waste (i.e., <u>RCRA</u> and <u>non-RCRA</u>), the third party will be considered the generator of the waste. The third-party (contractor) will be responsible for all costs, including costs incurred by the Port, associated with removal and proper disposal of the waste. Further, the third party will also have signatory responsibility for the hazardous waste uniform manifest.

Acronym List

BTEX Benzene, Toluene, Ethylbenzene, Xylenes Cal-EPA California Environmental Protection Agency

CY Cubic Yard

DTSC Department of Toxic Substances Control

ELAP Environmental Laboratory Accreditation Program

EMD Environmental Management Division ESL Environmental Screening Level

LARWQCB Los Angeles Regional Water Quality Control Board

LRL Laboratory Reporting Limit
MHHW Mean Higher High Water
MDL Method Detection Limit

NELAP National Environmental Laboratory Accreditation Program

OSHA Occupational Safety and Health Administration

PAH Polynuclear Aromatic Hydrocarbons

PCB Polychlorinated Biphenyls POLA Port of Los Angeles

SCAQMD South Coast Air Quality Management District

SFRWQCB San Francisco Regional Water Quality Control Board

STLC Soluble Threshold Limit Concentration SVOC Semi-Volatile Organic Compound SWRCB State Water Resources Control Board

TPH Total Petroleum Hydrocarbons
TTLC Total threshold Limit Concentration

USEPA United Stated Environmental Protection Agency

UST Underground Storage Tank VOC Volatile Organic Compound

References

<u>Asbestos</u> - <u>https://ww2.arb.ca.gov/sites/default/files/classic/toxics/atcm/asb2atcm.htm</u>

Benzene - https://wwwn.cdc.gov/TSP/substances/ToxSubstance.aspx?toxid=14

CCR -

https://govt.westlaw.com/calregs/Browse/Home/California/CaliforniaCodeofRegulations?guid=I77C6B3D0 D4BA11DE8879F88E8B0DAAAE&originationContext=documenttoc&transitionType=Default&contextData=(sc.Default)

<u>Clean Imported Fill Material</u> - <u>https://dtsc.ca.gov/information-advisory-clean-imported-fill-material-fact-sheet/</u>

Copper - https://wwwn.cdc.gov/TSP/substances/ToxSubstance.aspx?toxid=37

DTSC - https://www.dtsc.ca.gov/

ELAP - http://www.waterboards.ca.gov/drinking_water/certlic/labs/index.shtml

<u>Generator</u> - <u>http://www.dtsc.ca.gov/HazardousWaste/Generators.cfm</u>

Geotracker -

http://geotracker.waterboards.ca.gov/view_documents.asp?global_id=SL377432476&enforcement_id=6041012

Hazardous wastes - https://dtsc.ca.gov/defining-hazardous-waste/

Hazardous waste uniform manifest - https://dtsc.ca.gov/hazardous-waste-manifest-information/

HSC.

 $\frac{https://leginfo.legislature.ca.gov/faces/codes_displayexpandedbranch.xhtml?tocCode=HSC\&division=20.}{\&title=\&part=\&chapter=6.5.\&article}$

Laboratory Reporting Limits -

https://www.mywaterquality.ca.gov/monitoring_council/collaboration_network/docs/bvanbuuren_jan2012.pdf

<u>Lead</u> - <u>https://wwwn.cdc.gov/TSP/substances/ToxSubstance.aspx?toxid=22</u>

MDLs - http://water.usgs.gov/owq/OFR 99-193/detection.html

NELAP - http://www.nelac-institute.org/

non-RCRA - https://www.law.cornell.edu/regulations/california/22-CCR-Sec-66261-101#

<u>PCBs</u> - <u>https://wwwn.cdc.gov/TSP/substances/ToxSubstance.aspx?toxid=26</u>

RCRA - https://www.epa.gov/rcra/resource-conservation-and-recovery-act-rcra-regulations

Rule 1166 - http://www.aqmd.gov/home/regulations/compliance/rule-1166-site-specific-and-various-locations-soil-mitigation-plan

SFRWQCB - https://www.waterboards.ca.gov/sanfranciscobay/water issues/programs/esl.html

STLC - http://www.eurofinsus.com/media/161417/hazardous_waste_regulatory_limits.pdf

SWRCB - http://www.swrcb.ca.gov/

 $\underline{SW-846} - \underline{https://www.epa.gov/hw-sw846/sw-846-test-method-8327-and-polyfluoroalkyl-substances-pfas-\underline{liquid-chromatographytandem}$

<u>TPH</u> - <u>https://wwwn.cdc.gov/TSP/ToxFAQs/ToxFAQsDetails.aspx?faqid=423&toxid=75</u>

UST - http://www.waterboards.ca.gov/ust/

 $\underline{20~X~TCLP/STLC} - \underline{https://www.ssalabs.com/wp-content/uploads/2019/06/STLC-TTLC-Regulatory-\underline{Limits.pdf}}$

40 CFR - http://www2.epa.gov/laws-regulations/regulations

ATTACHMENT 1 Import Material Checklist

GENERAL INFORMATION

POLA Project Name: _			Contract Spec No.:
POLA Project Address:			
Source of Import Material* Name/Address of Source:			Unique Identifier (if any):
Origin of Import Material:	Quarry:	Industrial/Commercial:	Other:
Current/Historical Operations	s of the Source: _		
SAMPLING INFORMAT	ΓΙΟΝ		
Sampling Firm Name:			
Firm Address:			
Sampler's Name(s):			d have a Port-Approved sampling plan):
Analytical Laboratory	Name/Addres	ss:	
Laboratory Report Number (s):		
		alytical laboratory data and re	sults provided regarding the subject material ledge and belief.
			Date:
Contractor Signat	ture – Licensed F	Professional	
Diat Control to	Janes Lierand	I Desferacional	Title:
Print Contractor N	vame – Licensed	i Professional	
		l pertinent information, inclory reports, and photograph	uding approved sampling plan (if
applicable), cample localic	map, laborato	ry roporto, and photograph	o for oncomic vormanion
POLA ACCEPTANCE			
Approved	Reject (Expla	uin):	
POLA Authorization Signatur	re	Print Name	Date

APPENDIX E DTSC Clean Fill Material Advisory

Information Advisory Clean Imported Fill Material

DEPARTMENT OF TOXIC SUBSTANCES CONTROL

It is DTSC's mission to restore. protect and enhance the environment. to ensure public health. environmental . quality and economic vitality, by regulating hazardous waste. conducting and **overseeing** cleanups, and developing and promoting pollution prevention.

State of California

California
Environmental
Protection Agency

Executive Summary

This fact sheet has been prepared to ensure that inappropriate fill material is not introduced onto sensitive land use properties under the oversight of the DTSC or applicable regulatory authorities. Sensitive land use properties include those that contain facilities such as hospitals, homes, day care centers, and schools. This document only focuses on human health concerns and ecological issues are not addressed. It identifies those types of land use activities that may be appropriate when determining whether a site may be used as a fill material source area. It also provides guidelines for the appropriate types of analyses that should be performed relative to the former land use, and for the number of samples that should be collected and analyzed based on the estimated volume of fill material that will need to be used. The information provided in this fact sheet is not regulatory in nature, rather is to be used as a guide, and in most situations the final decision as to the acceptability of fill material for a sensitive land use property is made on a case-by-case basis by the appropriate regulatory agency.

Introduction

The use of imported fill material has recently come under scrutiny because of the instances where contaminated soil has been brought onto an otherwise clean site. However, there are currently no established standards in the statutes or regulations that address environmental requirements for imported fill material. Therefore, the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC) has prepared this fact sheet to identify procedures that can be used to minimize the possibility of introducing contaminated soil onto a site that requires imported fill material. Such sites include those that are undergoing site remediation, corrective action, and closure activities overseen by DTSC or the appropriate regulatory agency. These procedures may also apply to construction projects that will result in sensitive land uses. The intent of this fact sheet is to protect people who live on or otherwise use a sensitive land use property. By using this fact sheet as a guide, the reader will minimize the chance of introducing fill material that may result in potential risk to human health or the environment at some future time.

The energy challenge facing California is real. Every Californian needs to take immediate action to reduce energy consumption. For a list of simple ways you can reduce demand and cut your energy costs, see our website at www.dtsc.ca.gov.

Overview

Both natural and manmade fill materials are used for a variety of purposes. Fill material properties are commonly controlled to meet the necessary site specific engineering specifications. Because most sites requiring fill material are located in or near urban areas, the fill materials are often obtained from construction projects that generate an excess of soil, and from demolition debris (asphalt, broken concrete, etc.). However, materials from those types of sites may or may not be appropriate, depending on the proposed use of the fill, and the quality of the assessment and/or mitigation measures, if necessary. Therefore, unless material from construction projects can be demonstrated to be free of contami-

nation and/or appropriate for the proposed use, the use of that material as fill should be avoided.

Selecting Fill Material

In general, the fill source area should be located in nonindustrial areas, and not from sites undergoing an environmental cleanup. Nonindustrial sites include those that were previously undeveloped, or used solely for residential or agricultural purposes. If the source is from an agricultural area, care should be taken to insure that the fill does not include former agricultural waste process byproducts such as manure or other decomposed organic material. Undesirable sources of fill material include industrial and/or commercial sites where hazardous ma-

Fill Source:	Target Compounds
Land near to an existing freeway	Lead (EPA methods 6010B or 7471A), PAHs (EPA method 8310)
Land near a mining area or rock quarry	Heavy Metals (EPA methods 6010B and 7471A), asbestos (polarized light microscopy), pH
Agricultural land	Pesticides (Organochlorine Pesticides: EPA method 8081A or 8080A; Organophosphorus Pesticides: EPA method 8141A; Chlorinated Herbicides: EPA method 8151A), heavy metals (EPA methods 6010B and 7471A)
Residential/acceptable commercial land	VOCs (EPA method 8021 or 8260B, as appropriate and combined with collection by EPA Method 5035), semi-VOCs (EPA method 8270C), TPH (modified EPA method 8015), PCBs (EPA method 8082 or 8080A), heavy metals including lead (EPA methods 6010B and 7471A), asbestos (OSHA Method ID-191)

Other possible analyses include Hexavalent Chromium: EPA method 7199

Recommended Fill Material Sa	impling Schedule
Area of Individual Borrow Area	Sampling Requirements
2 acres or less	Minimum of 4 samples
2 to 4 acres	Minimum of 1 sample every 1/2 acre
4 to 10 acres	Minimum of 8 samples
Greater than 10 acres	Minimum of 8 locations with 4 subsamples per location
Volume of Borrow Area Stockpile	Samples per Volume
Up to 1,000 cubic yards	1 sample per 250 cubic yards
1,000 to 5,000 cubic yards	4 samples for first 1000 cubic yards +1 sample per each additional 500 cubic yards
Greater than 5,000 cubic yards	12 samples for first 5,000 cubic yards + 1

terials were used, handled or stored as part of the business operations, or unpaved parking areas where petroleum hydrocarbons could have been spilled or leaked into the soil. Undesirable commercial sites include former gasoline service stations, retail strip malls that contained dry cleaners or photographic processing facilities, paint stores, auto repair and/or painting facilities. Undesirable industrial facilities include metal processing shops, manufacturing facilities, aerospace facilities, oil refineries, waste treatment plants, etc. Alternatives to using fill from construction sites include the use of fill material obtained from a commercial supplier of fill material or from soil pits in rural or suburban areas. However, care should be taken to ensure that those materials are also uncontaminated.

Documentation and Analysis

In order to minimize the potential of introducing contaminated fill material onto a site, it is necessary

to verify through documentation that the fill source is appropriate and/or to have the fill material analyzed for potential contaminants based on the location and history of the source area. Fill documentation should include detailed information on the previous use of the land from where the fill is taken, whether an environmental site assessment was performed and its findings, and the results of any testing performed. It is recommended that any such documentation should be signed by an appropriately licensed (CA-registered) individual. If such documentation is not available or is inadequate, samples of the fill material should be chemically analyzed. Analysis of the fill material should be based on the source of the fill and knowledge of the prior land use.

Detectable amounts of compounds of concern within the fill material should be evaluated for risk in accordance with the DTSC Preliminary Endangerment Assessment (PEA) Guidance Manual. If metal analyses are performed, only those metals (CAM 17 / Title 22) to which risk levels have been assigned need to be evaluated. At present, the DTSC is working to establish California Screening Levels (CSL) to determine whether some compounds of concern pose a risk. Until such time as these CSL values are established, DTSC recommends that the DTSC PEA Guidance Manual or an equivalent process be referenced. This guidance may include the Regional Water Quality Control Board's (RWQCB) guidelines for reuse of non-hazardous petroleum hydrocarbon contaminated soil as applied to Total Petroleum Hydrocarbons (TPH) only. The RWQCB guidelines should not be used for volatile organic compounds (VOCs) or semi-volatile organic compounds (SVOCS). In addition, a standard laboratory data package, including a summary of the QA/QC (Quality Assurance/Quality Control) sample results should also accompany all analytical reports.

When possible, representative samples should be collected at the borrow area while the potential fill material is still in place, and analyzed prior to removal from the borrow area. In addition to performing the appropriate analyses of the fill material, an appropriate number of samples should also be determined based on the approximate volume or area of soil to be used as fill material. The table above can be used as a guide to determine the number of samples needed to adequately characterize the fill material when sampled at the borrow site.

Alternative Sampling

A Phase I or PEA may be conducted prior to sampling to determine whether the borrow area may have been impacted by previous activities on the property. After the property has been evaluated, any sampling that may be required can be determined during a meeting with DTSC or appropriate regulatory agency. However, if it is not possible to analyze the fill material at the borrow area or determine that it is appropriate for use via a Phase I or PEA, it is recommended that one (1) sample per truckload be collected and analyzed for all com-

pounds of concern to ensure that the imported soil is uncontaminated and acceptable. (See chart on Potential Contaminants Based on the Fill Source Area for appropriate analyses). This sampling frequency may be modified upon consultation with the DTSC or appropriate regulatory agency if all of the fill material is derived from a common borrow area. However, fill material that is not characterized at the borrow area will need to be stockpiled either on or off-site until the analyses have been completed. In addition, should contaminants exceeding acceptance criteria be identified in the stockpiled fill material, that material will be deemed unacceptable and new fill material will need to be obtained. sampled and analyzed. Therefore, the DTSC recommends that all sampling and analyses should be completed prior to delivery to the site to ensure the soil is free of contamination, and to eliminate unnecessary transportation charges for unacceptable fill material.

Composite sampling for fill material characterization may or may not be appropriate, depending on quality and homogeneity of source/borrow area, and compounds of concern. Compositing samples for volatile and semivolatile constituents is <u>not</u> acceptable. Composite sampling for heavy metals, pesticides, herbicides or PAH's from unanalyzed stockpiled soil is also unacceptable, unless it is stockpiled at the borrow area and originates from the same source area. In addition, if samples are composited, they should be from the same soil layer, and not from different soil layers.

When very large volumes of fill material are anticipated, or when larger areas are being considered as borrow areas, the DTSC recommends that a Phase I or PEA be conducted on the area to ensure that the borrow area has not been impacted by previous activities on the property. After the property has been evaluated, any sampling that may be required can be determined during a meeting with the DTSC.

For further information, call Shahir Haddad, P.E. at (714) 484-5368.

APPENDIX F Potential Waste Disposal Facilities

B. Waste Disposal Service providers:

RCRA Hazardous and TSCA Waste for Landfill or Treatment:

- Chemical Waste Management Kettleman Hills, Kettleman City, CA
- Clean Harbors Buttonwillow, LLC, Buttonwillow, CA (very limited TSCA)
- US Ecology Nevada, Beatty, NV

Non-RCRA Hazardous (California Haz) Waste for Landfill

- Chemical Waste Management Kettleman Hills, Kettleman City, CA
- Clean Harbors Buttonwillow, LLC, Buttonwillow, CA
- US Ecology Nevada, Beatty, NV

Nonhazardous Contaminated Waste for Landfill

- Simi Valley Landfill Waste Management, Simi Valley, CA
- Sunshine Canyon Landfill Republic Services, Sylmar, CA
- Chiquita Canyon Landfill Waste Connections, Valencia, CA

Non-hazardous Contaminated Waste for Thermal Desorption Recycling (nonhazardous TPH contaminated soil)

- Thermal Remediation Solutions (TRS) Facility Waste Management, Azusa, CA
- Soil Safe, Inc., Adelanto, CA

Treated Weathered Wood Waste (railroad ties, etc.)

- Sunshine Canyon Landfill Republic Services, Sylmar, CA
- Chiquita Canyon Landfill Waste Connections, Valencia, CA
- Simi Valley Landfill Waste Management, Simi Valley, CA

RCRA Hazardous Waste Liquid, Non-RCRA (California Haz) Waste Liquid, and/or Nonhazardous Waste Liquid

- DeMenno/ Kerdoon, Compton, CA
- Clean Harbors, Wilmington, CA