

PRELIMINARY DRAINAGE STUDY

TO: Ms. Monica Stegall

City of Williams

P.O. Box 310/810 E. Street Williams, California 95987

FROM: Brian Delemos, P.E., CA C66421

Laugenour and Meikle

DATE: September 22, 2021

SUBJECT: Preliminary Drainage Study - Valley Ranch Unit 3 Tentative Map Application

INTRODUCTION:

This preliminary drainage study (Drainage Study) was prepared in support of a tentative map application for the Valley Ranch, Unit 3, development project (Project); the TM sheets are contained in **Attachment 1, Tentative Map for the Project**. The focus of the Drainage Study is whether the existing city drainage system has adequate capacity to accept the additional rainfall runoff that would be generated by the Project (as compared to existing conditions of the Project area). In particular, the capacity of the existing detention basin at the intersection of Highway 20 and Husted Road (referred to as HLDET7) is in question. The capacity was analyzed in accordance with the methods and assumptions in the citywide storm drainage master plan (Master Plan)^a. The topics discussed in the following sections include:

- Citywide Drainage Master Plan
- Analysis Approach
- Scenarios
- Results
- Conclusions

CITYWIDE DRAINAGE MASTERPLAN:

The citywide Master Plan referenced above included an evaluation of the city's existing drainage system to handle the runoff from the ultimate buildout of the city's planned land uses. The results of the evaluation are shown on **Exhibit 1, Storm Drainage Infrastructure Plan** from the Master Plan. The exhibit shows existing drainage system and any improvements that would be needed to accommodate development in the city.

The Project location is shown on **Exhibit 1**, as is detention basin HLDET7. Also shown on the exhibit are the areas that are tributary to detention basin HLDET7. The tributary areas are NE16, NE17, HL13,

^a City of Williams Storm Drainage Master Plan, November 2007. Stormwater Consulting Inc., and Civil Engineering Solutions, Inc.

and HL14, which are sub-basins in the hydrologic model (discussed below).

These areas are mostly undeveloped, with NE16, NE17, and HL14 planned for industrial land uses. The Project area lies within subbasin HL13. The remainder of subbasin HL13 is already developed with multi-family housing. It should be noted that, for the Master Plan, sub-basin HL13 was not planned to be tributary to detention basin HLDET7, but sub-basin HL13 has been physically plumbed to detention basin HLDET7 after the Master Plan had been completed.

Exhibit 1, Storm Drainage Infrastructure Plan shows the estimated size for detention basin HLDET7 to have the capacity to accommodate buildout of the tributary areas. The required size is 101 acre-feet of storage volume, with a foot print of approximately 29 acres. Additional storage may be needed to accommodate runoff from sub-basin HL13, for the reason discussed above. Since the completion of the Master Plan, HLDET7 has been constructed, but not to the full storage volume specified in the Master Plan. Based on topographic survey data collected by L&M in 2008^b, the existing detention basin HLDET7 has a storage volume of approximately 65 acre-feet of storage volume, and a foot print of approximately 13 acres (not including ancillary facilities such as patrol roads).

ANALYSIS APPROACH:

The Master Plan included development and use of an HEC-1 hydrologic model for evaluation of the drainage system capacity. This model was not available electronically, so the relevant portion of the model was recreated based on information contained in the Master Plan.

HEC-HMS (version 4.8, successor to HEC-1 software) hydrologic models were developed for detention basin HLDET7 and the sub-basin areas tributary to the HLDET7—the electronic model files are attached separately for review. The associated model schematic is shown on Exhibit 2, Hydrologic Model Schematic. The model sub-basin inputs from the Master Plan are highlighted in Attachment 2, Model Input from the Master Plan. The connectivity of the model elements (sub-basins and detention basins) was determined from the HEC-1 model code from the Draft Master Plan^c; relevant excerpts of the model code are contained in Attachment 3, Model Code from the Master Plan. Model input for detention basin HLDET7 was developed from the topographic survey discussed above. The existing detention basin has a total of approximately 65 acre-feet of storage space, and a 24-inch diameter culvert outlet (which is different than what was assumed for the Master Plan) with a flap gate. The water surface elevation in the detention basin for the model runs was started at elevation 62 feet (National Geodetic Vertical Datum of 1929, or NGVD29) to reflect apparent groundwater infiltration observed on aerial photography taken over several years. It should be noted that the vertical datum referenced above may be a different vertical datum than was used for the Master Plan.

-

^b LM, 2008, file 3021-3-D.

^c City of Williams Storm Drainage Master Plan, Draft, August 2007. Stormwater Consulting Inc., and Civil Engineering Solutions, Inc.

Exhibit 1, Storm Drainage Infrastructure Plan shows the allowable outflow from detention basin HLDET7, which is 30 cubic feet per second (cfs). With this outflow (or lower), it was deemed in the Master Plan that the existing drainage system would not be impacted by land development that occurs in the sub-basin areas that are tributary to detention basin HLDET7.

The adequacy of the storage space in detention basin HLDET7 was evaluated for the analysis herein using the following criteria:

- Outflow from HLDET7 < 30 cfs
- Minimum freeboard = 1 foot (since the detention basin is below ground, and not leveed, this freeboard is acceptable). The top of the existing detention basin HLDET7 is approximately 66 feet (NGVD29). So, the maximum allowable water elevation in HLDET7 is 65 feet.

SCENARIOS:

The scenarios in Table 1, Scenarios Analyzed were analyzed. A model was created for each scenario.

Table 1, Scenarios Analyze	Table	1.	Scenarios	Ana	lvzed
----------------------------	--------------	----	------------------	-----	-------

Scenario Name	Development Level	Detention Basin Size (acre-feet)	Detention Basin Foot Print (acres)
Base	Ultimate	65, existing	13
Design-Ultimate	Ultimate	TBD	TBD
Design-Interim	Current + Project	TBD	TBD

For the last two scenarios (Design-Ultimate and Design-Interim), the size of detention basin HLDET7 was adjusted in the model until the criteria listed above could be met. For the last scenario (Design-Interim), the model parameters for the sub-basins were recalculated as shown in **Attachment 4**, **Calculations for Model Input for the Design-Interim Scenario**. The input reflects the current level of development in the model sub-basin areas, as shown on **Exhibit 3**, **Current Level of Development** (2021), plus the Project.

RESULTS:

The model results are summarized in **Table 2**, **Model Results**. The results indicate that the existing detention basin HLDET7 is not large enough to accommodate the Project. An additional 35 acre-feet (100 -65 acre-feet) of storage space would be needed to accommodate ultimate buildout of all areas tributary to detention basin HLDET7. An additional 7 acre-feet (72 -65 acre-feet) of storage space would be needed to accommodate the current level of development plus the Project.

It should be noted that the estimated foot print of the enlarged detention basin is based on the discharge resulting from the existing gravity outlet culvert. The foot print of the enlarged detention basin may be

able to be decreased (compared to what is in **Table 2**) if a pump station is installed to help evacuate the detention basin. A pump-station scenario was not evaluated at this time.

Table 2, Model Results

			Detention Basin	Contains Storm-
		Detention Basin	Foot Print	Event Runoff?
Scenario Name	Development Level	Size (acre-feet)	(acres) ^{1,2}	
Base	Ultimate	65, existing	13	No
Design-Ultimate	Ultimate	100	30	Yes
Design-Interim	Current + Project	72	18	Yes

⁽¹⁾ Does not include ancillary areas, such as for patrol roads.

CONCLUSIONS:

Detention basin HLDET7 needs to be enlarged to accommodate the Project. An additional 35 acre-feet (56,500 cubic yards) is needed for ultimate buildout of the tributary area. An additional 7 acre-feet (11,300 cubic yards) is needed to accommodate only the Project (with the current level of development in the remainder of the tributary area).

If you have any questions, please feel free to call me at (530) 662-1755, or e-mail me at bdelemos@lmce.net.

Enclosures

⁽²⁾ The foot print of the enlarged detention basin may be able to be decreased if a pump station is installed to help evacuate the detention basin.

EXHIBITS

DETENTION BASIN **AREAS TRIBUTARY** PROPOSED DETENTION BASINS **HLDET7** TO DETENTION **PLANNED BASIN HLDET7 DETENTION BASIN SIZE** MATCH LINE SEE THIS SHEET EXIST. PUMP STATION PROJECT ® LOCATION **DETENTION BASIN OUTLET TYPES** 12" PIPE PRIMARY OUTLET; 20' WEIR AT 3' DEPTH. ED06 ⑤ DISCHARGE BASED ON EXISTING 2-5'x2' CBC CAPACITY. **CULVERT INFORMATION** NW11 ESTATES NW09B FUTURE DEVÉLOPMENT NW06 NW05 SD26 NW03 HL17 SD#8 NW02 SD31 SD30 22.60 Ac HL16 ① SDDET7 NW01/ SD17 NW01 40' R/W SD28 SD05 15' MAINTENANCE ACCESS 6" CONCRETE -SD#6 LEGEND: 1 SDDET8 ① SDDET2 SD06 SECTION A-A
TYPICAL OPEN CHANNEL SD22 ① SDDET2 HL#12~ EXHIBIT 1 - STORM DRAINAGE 1 SDDET1 P **INFRASTRUCTURE PLAN** ① HLDET7 **EXHIBIT 1** MATCH LINE SEE THIS SHEET CIVIL ENGINEERING CITY OF WILLIAMS STORM DRAINAGE MASTER PLAN EXH-1 CALE: 1"=600' SOLUTIONS, INC.

STORM DRAINAGE INFRASTRUCTURE PLAN

3

ECKED BY: J.H.N.

EXHIBIT 2, HYDROLOGIC MODEL SCHEMATIC.

ATTACHMENT 1 TENTATIEVE MAP FOR THE PROJECT

ATTACHMENT 2 MODEL INPUT FROM THE MASTER PLAN

TABLE 1 CITY OF WILLIAMS

Storm Drainage Master Plan

Weighted % Impervious Cover Values for Sub-basins (Based on Future Land Uses Assumptions)

			Future Land Uses and % Impervious Cover Values							
Watershed I.D.	Sub-basin I.D.	Total Area (ac)	Comm 90% (ac)	Ind 90% (ac)	M/HDR 65% (ac)	SFR 50% (ac)	LDR 15% (ac)	PF 50% (ac)	OS 2% (ac)	Weighted % Impervious
	NW01	57.96				57.04	0.92			49
	NW01A	38.77				38.34			0.43	49
	NW02	49.38					0.47		48.91	2
	NW03	14.11					0.10		14.01	2
	NW04	58.32					57.46		0.86	15
	NW05	9.96					0.16		9.80	2
	NW06	22.35					22.20		0.15	15
	NW07	83.95				0.87	82.95		0.13	15
Northwest										
(NW)	NW08	95.91				0.05	95.85		0.01	15
(1447)	NW09	15.46				0.09	15.37			15
	NW09B	27.20		0.02		27.18				50
	NW10	63.45	0.07			10.14	53.17		0.07	21
	NW11 NW12	88.29 163.41				83.06	0.75		4.48	47 2
	NW12 NW13	9.14				0.01	0.02		163.39 9.13	2
	NW14	20.62	0.21		0.07	20.24			0.09	50
	NW15	21.88	21.65		0.07	0.18			0.03	90
	NW16	5.47	21.00		0.01	5.47				50
	NW17	9.17				7.98			1.19	44
	NW18	19.19	0.56		18.63					66
	NW19	24.17			7.62	11.70			4.86	45
	NW20	6.98			5.46				1.52	51
	N01	48.50			25.52	16.53	0.03	6.43		58
	N02	37.45	5.98		10.86	20.60				61
	N03	50.44			2.35	5.29		42.80		51
North (N)	N03B	38.77	0.13		18.19	13.37		7.09		57
	N04	46.45	0.52		0.17	43.87		1.89		51
	N04B N05	8.86 7.39			2.44	8.86 3.30			1.66	50 44
	N08	43.50	0.04		2.44	3.30			43.46	2
	NE03	81.67	25.33		12.87	37.77	2.15	2.84	0.71	63
	NE04	15.94	13.03		0.82	51.11	2.10	2.04	2.09	77
	NE05	47.84	34.23		10.06	1.95			1.60	80
Monthopit	NE06	33.82	20.75		4.39	4.30			1.70	70
Northeast	NE07	12.84		9.93					2.91	70
(NE)	NE08	30.73	5.18	19.54					6.01	73
	NE15	44.29		33.99					10.30	70
	NE16	101.11		86.02					15.09	77
	NE17	77.71	0.5	73.24					3.96	86

1

Land Use Categories

Comm = Commercial Ind = Industrial

M/HDR = Med/High Density Residential
SFR = Single Family Residential
LDR = Low Density Residential

PF = Public Facility
OS = Open Space

TABLE 1 CITY OF WILLIAMS

Storm Drainage Master Plan

Weighted % Impervious Cover Values for Sub-basins (Based on Future Land Uses Assumptions)

			Future Land Uses and % Impervious Cover Values							
Watershed I.D.	Sub-basin I.D.	Total Area (ac)	Comm 90% (ac)	Ind 90% (ac)	M/HDR 65% (ac)	SFR 50% (ac)	LDR 15% (ac)	PF 50% (ac)	OS 2% (ac)	Weighted % Impervious
	NC10	24.71	0.34	21.45					2.93	80
North	NC11	20.52	14.24	2.66					3.62	74
Central (NC)	NC12	32.56	17.54			12.03			3.00	67
Central (NC)	NC13	12.79	9.39						3.40	67
	NC14	16.36	13.64						2.72	75
	HL01	16.37				0.25	16.12			16
	HL02	49.33				0.05	49.28			15
	HL03	78.65				0.31	78.34			15
	HL04	32.38				2.10	30.05		0.23	17
	HL04B	12.61				0.04	12.57			15
	HL05	78.53			1.16	76.70	0.67			50
	HL06	43.01	0.51		0.2	42.30				51
	HL06B	28.10	10.53		0.09	10.39			7.00	53
	HL07	19.64			5.07	14.57				54
	HL08	10.45	0.02		10.42	0.01				65
	HL09	28.76		1.47	24.32				2.97	60
	HL10	15.22		13.28					1.94	79
	HL11	39.45	2.32			37.13				52
Husted	HL12	141.07	12.38			115.35			13.34	49
Lateral (HL)	HL13	34.43			3.65	22.75			8.04	40
	HL14	190.33		181.44					8.89	86
	HL15	22.07	3.09						18.98	14
	HL16	39.14				34.42	4.72			46
	HL17	19.16				19.08	0.08			50
	HL18	36.17				36.08	0.09			50
	HL19	17.17				17.17				50
	HL20	21.68				20.25			1.43	47
	HL21	38.76				35.44			3.32	46
	HL22	20.33				17.65			2.68	44
	HL23	33.79		27.66	0.07				6.06	74
	HL24	49.33	40.76			0.54			8.03	75
	HL25	67.80				66.65			1.15	49
	HL26	129.15				126.87			2.28	49
	SD01	38.10				38.10				50
South Drain	SD02	127.38				127.38				50
(SD)	SD03	26.44				26.44				50
(==)	SD04	242.85				242.85				50
	SD05	42.54				36.25			6.29	43

Land Use Categories

Comm = Commercial Ind = Industrial

M/HDR = Med/High Density Residential SFR = Single Family Residential LDR = Low Density Residential

PF = Public Facility
OS = Open Space

TABLE 1 CITY OF WILLIAMS

Storm Drainage Master Plan

Weighted % Impervious Cover Values for Sub-basins (Based on Future Land Uses Assumptions)

			Futu	Future Land Uses and % Impervious Cover Values						
Watershed I.D.	Sub-basin I.D.	Total Area (ac)	Comm 90% (ac)	Ind 90% (ac)	M/HDR 65% (ac)	SFR 50% (ac)	LDR 15% (ac)	PF 50% (ac)	OS 2% (ac)	Weighted % Impervious
	SD06	50.17	5.51			42.37			2.29	52
	SD07	37.02				36.62			0.40	49
	SD08	166.31				166.31				50
	SD09	81.76	0.44			81.32				50
	SD10	81.28	32.22			48.92			0.14	66
	SD11	80.47	24.91			53.65			1.91	61
	SD12	32.99	30.06						2.93	82
	SD13	30.57	30.57							90
	SD14	15.20	12.86						2.34	76
	SD15	12.92	7.09						5.83	50
	SD16	35.50	31.82						3.68	81
	SD17	47.39	1.12	45.66		0.58			0.03	89
South Drain	SD18	38.77	0.56	38.01					0.20	90
(SD)	SD19	10.66		10.66						90
	SD20	51.94		51.94						90
	SD21	132.20		129.52					2.68	88
	SD22	71.13		71.13						90
	SD25	165.01		165.01						90
	SD26	115.80	1.24	3.33		108.05			3.18	50
	SD27	80.21		80.21						90
	SD28	37.73		37.73						90
	SD29	34.82		34.82						90
	SD30	22.60		22.6						90
	SD31	40.17		40.17						90
	SD32	91.54		87.44		4.10				88
	SD33	10.86		9.78		1.08				86
	ED01	111.00				106.84			4.16	48
	ED02	97.24				97.24				50
	ED03	31.62				31.62				50
	ED04	40.23				40.32				50
East Drain	ED05	68.29				65.22			3.07	48
(ED)	ED06	39.12				39.12				50
	ED07	42.80				41.66			1.14	49
	ED09	77.57				77.57				50
	ED11	161.64				160.85			0.79	50
	ED12	292.57				280.70			11.87	48
Canal (CAN)	CAN03	20.31	4.59			0.06			15.66	22
Canai (CAN)	CAN04	3.44							3.44	2
Total of Areas	3	6090.43	435.93	1298.7	164	3081.54	523.52	61.05	522.56	

Land Use Categories

Comm = Commercial Ind = Industrial

M/HDR = Med/High Density Residential
SFR = Single Family Residential
LDR = Low Density Residential

PF = Public Facility

TABLE 2 CITY OF WILLIAMS

Storm Drainage Master Plan Sub-basin Lag Times (hr)

	Sub-basin	Length	Slope	Percent	Composite	Surface	Lag
Watershed I.D.	I.D.	(ft)	(%)	Impervious	CN	Retention	Time (hr)
	NW01	2050	0.32	49	89	1.24	0.73
	NW01A	1700	0.32	49	91	0.99	0.58
	NW02	2300	0.17	2	84	1.90	1.32
	NW03	1400	0.21	2	84	1.90	0.80
	NW04	2500	0.14	15	86	1.63	1.45
	NW05	1100	0.30	2	84	1.90	0.55
	NW06	1700	0.20	15	86	1.63	0.89
	NW07	3000	0.26	15	86	1.63	1.23
Northwest	NW08	3200	0.34	15	86	1.63	1.13
(NW)	NW09	1850	0.26	15	86	1.63	0.83
(INVV)	NW09B	1500	0.27	50	91	0.99	0.57
	NW10	3200	0.37	21	88	1.36	1.01
	NW11	2800	0.24	47	91	0.99	1.00
	NW12	4400	0.23	2	84	1.90	1.90
	NW13	2400	0.17	2	84	1.90	1.36
	NW14	1200	0.06	50	91	0.99	1.01
	NW15	1300	0.19	90	97	0.31	0.45
	NW16	900	0.02	50	91	0.99	1.39
	NW17	2100	0.22	44	90	1.11	0.86
	NW18	1100	0.08	66	94	0.64	0.71
	NW19	2400	0.10	45	90	1.11	1.42
	NW20	1100	0.15	51	91	0.99	0.60
	N01	1800	0.47	58	93	0.75	0.46
	N02	1850	0.20	61	93	0.75	0.72
	N03	2200	0.40	51	91	0.99	0.64
North (N)	N03B	1900	0.21	57	93	0.75	0.71
North (N)	N04	3500	0.33	51	91	0.99	1.01
	N04B	1400	0.15	50	91	0.99	0.72
	N05	500	0.18	44	90	1.11	0.30
	N08	2200	0.22	2	84	1.90	1.12
	NE03	4000	0.22	63	93	0.75	1.27
	NE04	1600	0.30	77	95	0.53	0.47
	NE05	2400	0.24	80	95	0.53	0.73
	NE06	2800	0.12	70	94	0.64	1.23
Northeast (NE)	NE07	1900	0.15	70	94	0.64	0.81
	NE08	1400	0.21	73	94	0.64	0.53
	NE15	2700	0.26	70	94	0.64	0.81
	NE16	3700	0.22	77	95	0.53	1.08
	NE17	3200	0.09	86	96	0.42	1.43

1

Last Modified: 10-29-07

TABLE 2 CITY OF WILLIAMS

Storm Drainage Master Plan Sub-basin Lag Times (hr)

Watershed I.D.	Sub-basin I.D.	Length (ft)	Slope (%)	Percent Impervious	Composite CN	Surface Retention	Lag Time (hr)
Watershed I.D.	NC10	` '		•	=		` ,
	NC10 NC11	1200 1700	0.28 0.30	80 74	95 95	0.53 0.53	0.39 0.50
North Central	NC12	1400	0.30			0.53	0.36
(NC)	NC12 NC13	1300	0.46	67 67	94 94	0.64	0.53
	NC14	900	0.19	75	95	0.64	0.33
	HL01	1200			87		
			0.43	16		1.49	0.44
	HL02 HL03	2100	0.47 0.43	15 15	87 87	1.49 1.49	0.66 1.02
		3400					
	HL04	1500	0.45	17	87	1.49	0.52
	HL04B	1500	0.49	15 50	87	1.49	0.50
	HL05	2600	0.37	50 51	91	0.99	0.76
	HL06	2700	0.47		92	0.87	0.66
	HL06B	1800	0.40	53	92	0.87	0.52
	HL07	800	0.30	54	92	0.87	0.31
	HL08	900	0.31	65	93	0.75	0.32
	HL09	1400	0.18	60	93	0.75	0.60
	HL10	900	0.38	79 50	95	0.53	0.27
	HL11	1500	0.42	52	92	0.87	0.44
Husted Lateral	HL12	2300	0.34	49	91	0.99	0.71
(HL)	HL13	1500	0.11	40	90	1.11	0.93
L	HL14	4400	0.16	86	96	0.42	1.38
	HL15	2000	0.30	14	84	1.90	0.89
	HL16	2000	0.24	46	90	1.11	0.79
	HL17	1300	0.35	50	91	0.99	0.45
	HL18	2800	0.29	50	91	0.99	0.91
	HL19	1400	0.19	50	91	0.99	0.64
	HL20	2400	0.28	47	90	1.11	0.85
	HL21	1700	0.12	46	90	1.11	0.98
	HL22	1500	0.64	44	90	1.11	0.39
	HL23	1600	0.28	74	93	0.75	0.54
	HL24	1900	0.32	75	95	0.53	0.53
	HL25	2400	0.13	49	91	0.99	1.20
	HL26	3100	0.14	49	91	0.99	1.41
	SD01	1700	0.45	50	91	0.99	0.49
	SD02	3200	0.33	50	91	0.99	0.94
South Drain	SD03	1800	0.31	50	91	0.99	0.61
(SD)	SD04	3600	0.34	50	91	0.99	1.02
(30)	SD05	1900	0.21	43	90	1.11	0.81
	SD06	1600	0.25	52	92	0.87	0.60
	SD07	1750	0.27	49	91	0.99	0.64

2 Last Modified: 10-29-07

TABLE 2 CITY OF WILLIAMS

Storm Drainage Master Plan Sub-basin Lag Times (hr)

	Sub-basin	Length	Slope	Percent	Composite	Surface	Lag
Watershed I.D.	I.D.	(ft)	(%)	Impervious	CN	Retention	Time (hr)
	SD08	3600	0.16	50	91	0.99	1.49
	SD09	2700	0.25	50	91	0.99	0.95
	SD10	2700	0.28	66	93	0.75	0.82
	SD11	2400	0.36	61	93	0.75	0.66
	SD12	1800	0.26	82	96	0.42	0.53
	SD13	3550	0.39	90	97	0.31	0.70
	SD14	1050	0.14	76	95	0.53	0.49
	SD15	1050	0.19	50	91	0.99	0.51
	SD16	1500	0.23	81	95	0.53	0.51
	SD17	1600	0.19	89	97	0.31	0.53
	SD18	1400	0.14	90	97	0.31	0.56
South Drain	SD19	900	0.33	90	97	0.31	0.26
(SD)	SD20	2000	0.10	90	97	0.31	0.88
	SD21	2200	0.58	88	97	0.31	0.39
	SD22	2300	0.15	90	97	0.31	0.80
	SD25	3600	0.26	90	97	0.31	0.87
	SD26	3150	0.11	50	91	0.99	1.62
	SD27	2850	0.23	90	97	0.31	0.77
	SD28	1700	0.24	90	97	0.31	0.50
	SD29	1550	0.23	90	97	0.31	0.47
	SD30	1100	0.18	90	97	0.31	0.41
	SD31	1600	0.23	90	97	0.31	0.48
	SD32	2700	0.23	88	97	0.31	0.74
	SD33	900	0.10	86	96	0.42	0.49
	ED01	2400	0.28	48	91	0.99	0.81
	ED02	2900	0.17	50	91	0.99	1.22
	ED03	2600	0.41	50	91	0.99	0.72
	ED04	2800	0.27	50	91	0.99	0.94
East Drain	ED05	2200	0.15	48	91	0.99	1.04
(ED)	ED06	1700	0.31	50	91	0.99	0.59
	ED07	1800	0.14	49	91	0.99	0.92
	ED09	2750	0.12	50	91	0.99	1.39
	ED11	3600	0.14	50	91	0.99	1.59
	ED12	5400	0.12	48	91	0.99	2.38
Canal (CAN)	CAN03	1600	0.21	22	87	1.49	0.80
Callal (CAN)	CAN04	800	0.13	2	84	1.90	0.65

3 Last Modified: 10-29-07

ATTACHMENT 3 MODEL CODE FROM THE DRAFT MASTER PLAN

```
7.964
                 TOP AREA (AC)
                 VOLUME (AC-FT)
                                              94.0
                 DISCHARGE (Gravity) 2-24"RCP
BOTTOM ELEVATION (FT) 71
TOP ELEVATION (FT) 75
     1 STOR
                  -1
SA 7.33 7.409 7.489 7.568 7.647 7.806
SE 71 71.5 72 72.5 73 74
* SQ 0 9 25 45 67 130
* use 2-24" RCP AS OUTLET
SL 71.0 6.28 0.67 0.5
SS 73.99 20 2.75 1.5
KK RR306
KMROUTE FLOW FROM B ST & RR TO EAST UNDER I-5
KM2-5'X 2' BOX CULVERTS
RD 350 0.003 0.015
                               TRAP 10
KK RR307
KMROUTE FLOW FROM I-5 TO NORTHEAST TO JOIN WITH HUSTED LATERAL
RD 4800 0.003 0.035 TRAP 5 3
KMNORTHEAST WATERSHED
KMAREA = 101.11 AC = 0.1580 SQ MI
           84 77
LS
UD 1.08
KK NE17
KMNORTHEAST WATERSHED
KMAREA = 77.71 AC = 0.1214 SQ MI
BA0.1214
           84 86
LS
UD 1.43
KMHUSTED LATERAL WATERSHED
KMAREA = 190.33 AC = 0.2974 SQ MI
BA0.2974
            84
LS
                 86
UD 1.38
KK C305
                                 21
KMCOMBINE FLOW FROM NE16 &NE17 WITH FLOW FROM I-5 CULVERTS
HC 3
* ******* ADD A DETENTION BASIN **********
* ****** EAST OF HUSTED ROAD & SOUTH OF HIGHWAY 20 ********
KKHLDET7
KMDETENTION BASIN NORTHEAST
KMASSUMES THE FOLLOWING PARAMETERS:
* **********************
                BOTTOM WIDTH (FT)
                                              1104
                BOTTOM LENGTH (FT)
                BOTTOM AREA (AC)
                                             28.0
                SIDE SLOPES (H:V)
                                             3:1
                DEPTH (FT)
                TOP WIDTH (FT)
                                            1128
                TOP LENGTH (FT)
                                              1128
                TOP AREA (AC)
VOLUME (AC-FT)
                                         29.20
                VOLUME (AC-FT) 112
DISCHARGE (GRAVITY) 1-12" PIPE
```

```
BOTTOM ELEVATION (FT)
                TOP ELEVATION (FT)
                                              67
RS
          STOR
                   -1
SA 28.0
         29.20
SE
    63
          67
* ******* USE 1-12" AS OUTLET *******
SL 63.5
         0.79 0.67 0.5
SS 66.00
                 2.75
          20
                         1.5
KK CHL14
KMCOMBINE OUTFLOW FROM DETENTION WITH FLOW FROM NORTHEAST
HC
KK NC10
KMNORTH CENTRAL WATERSHED
KMAREA = 24.71 AC = 0.0386 SQ MI
BA0.0386
LS
            84
                  80
UD 0.39
KK RR308
KMROUTE FLOW FROM BASIN NC10 TO I-5 SOUTH BOUND RAMP CULVERT
RD 1200 0.003 0.035
                        TRAP
                                    5
KMNORTH CENTRAL WATERSHED
KMAREA = 20.52 AC = 0.0321 SQ MI
BA0.0321
LS
            84
                  74
UD 0.50
KMCOMBINE FLOW FORM NC10 & NC11
HC
     2
KK RR309
KMROUTE FLOW ACROSS I-5 TO THE EAST
RD 950 0.003 0.035
                              TRAP
KK NC12
KMNORTH CENTRAL WATERSHED
KMAREA = 13.54 AC = 0.0212 SQ MI
BA0.0212
LS
           84 73
UD 0.34
KK NC14
KO
                                21
KMNORTH CENTRAL WATERSHED
KMAREA = 16.36 AC = 0.0256 SQ MI
BA0.0256
LS
           84
                75
UD 0.29
* KKNCDET1
* KO 3
* KM DETENTION BASIN NORTH CENTRAL
^\star KM ASSUMES THE FOLLOWING PARAMETERS:
* *********************
                BOTTOM WIDTH (FT)
                                            185
                BOTTOM LENGTH (FT)
                                             185
                BOTTOM AREA (AC)
                                            0.79
                SIDE SLOPES (H:V)
                                            3:1
                DEPTH (FT)
                TOP WIDTH (FT)
                                             209
```

```
KK C408
KMCOMBINE FLOW AT CALTRANS 24" RCP
KK RR413
KMROUTE FLOW TO THE NORTH TO HUSTED LATERAL DRAINAGE VIA 24" RCP
RD 1800 0.003 0.015
                                 CIRC
KK HL11
KO
                                   21
KMHUSTED LATERAL WATERSHED (Williams Property)
KMAREA = 39.45 AC = 0.0616 SQ MI
BA0.0616
LS
             84
                    52
UD 0.46
KKHLDET3
KO
      3
                                   21
KMWILLIAMS PROPERTY (S OF HUSTED LATERAL RD & W OF I-5)
KMDETENTION BASIN HUSTED LATERAL
KMASSUMES THE FOLLOWING PARAMETERS:
    ********************
                 BOTTOM WIDTH (FT)
                                                 300
                 BOTTOM LENGTH (FT)
                                                 300
                 BOTTOM AREA (AC)
                 SIDE SLOPES (H:V)
                                                 3:1
                 DEPTH (FT)
                 TOP WIDTH (FT)
                                                 330
                 TOP LENGTH (FT)
                                                 330
                 TOP AREA (AC)
                                                2.50
                 VOLUME (AC-FT)
                                                10.0
                                          1-12" pipe
                 DISCHARGE (GRAVITY)
                 BOTTOM ELEVATION (FT)
                                                  85
                 TOP ELEVATION (FT)
                                                  89
* ***************************
RS
           STOR
                    -1
          2.5
SA 2.07
    85
            89
* ******* USE 1-12" AS OUTLET *******
SL 85.5
         0.79
                  0.67
                        0.5
SS 88,00
            20
                  2.75
                          1.5
KMCOMBINE FLOW AT CALTRANS 24" RCP HUSTED LATERAL AT SUBDIVISION ENTRANCE
KK RR414
KMROUTE FLOW TO THE NORTH IN HUSTED LATERAL DRAINAGE ALONG HUSTED RD
RD 3200 0.003 0.045
                                 TRAP
                                           5
KK HL12
KMEXISTING SUBDIVISIONS
KMHUSTED LATERAL WATERSHED
KMAREA = 160.10 AC = 0.2502 SQ MI
BA0.2502
LS
            84
                    51
UD 0.68
KK C410
KMCOMBINE FLOW AT HUSTED LATERAL WITH FLOW FROM SUBDIVISION
KK RR415
KMROUTE FLOW TO THE NORTH IN HUSTED LATERAL DRAINAGE TO E ST
   1350 0.003 0.045
                                 TRAP
                                         5
                                              3
KK HL13
KMHUSTED LATERAL WATERSHED
```

```
KMAREA = 34.43 AC = 0.0538 SQ MI
BA0.0538
LS
                   40
UD
   0.93
KK HL25
KO
                                  21
KMHUSTED LATERAL DRAINAGE WATERSHED
KMAREA = 67.80 AC = 0.1059 SQ MI
BA0.1059
LS
            84
                   49
UD 1.20
KKHLDET5
KO
KMSOUTH OF "E" STREET AND EAST OF HUSTED TOAD
KMDETENTION BASIN FOR HL25
KMASSUMES THE FOLLOWING PARAMETERS:
* **********************
                 BOTTOM WIDTH (FT)
                                            401
                 BOTTOM LENGTH (FT)
                                               401
                 BOTTOM AREA (AC)
                                              3.69
                 SIDE SLOPES (H:V)
                                              3:1
                 DEPTH (FT)
                 TOP WIDTH (FT)
                                               425
                 TOP LENGTH (FT)
                                              425
                 TOP AREA (AC)
                                              4.15
                 VOLUME (AC-FT)
                                              17.0
                 DISCHARGE (PUMP)
                                               2.0
                 BOTTOM ELEVATION (FT)
                 TOP ELEVATION (FT)
                                               89
* **********
                                   ********
RS
     1
          STOR
                 -1
SA 3.69
          4.15
SQ
    0
             2
SS 88.00
            20
                 2.75
                         1.5
KK C413
KMCOMBINE FLOW AT HUSTED LATERAL W FLOW FROM HL13& NORTHEAST DRAIN
HC
KK RR416
KMROUTE FLOW TO THE NORTH IN HUSTED LATERAL DRAINAGE TO HL 26
RD 2700 0.003 0.045 TRAP
                                      5
KK HL26
KO
   3
                                 21
KMHUSTED LATERAL DRAINAGE WATERSHED
KMAREA = 129.15 AC = 0.2018 SQ MI
BA0.2018
LS
            84
                  49
UD 1.41
KKHLDET6
                                 21
KM2600' NORTH OF "E" STREET AND EAST OF HUSTED ROAD
KMDETENTION BASIN FOR HL26
KMASSUMES THE FOLLOWING PARAMETERS:
* *********************
                BOTTOM WIDTH (FT)
                                              576
                BOTTOM LENGTH (FT)
                                              576
                BOTTOM AREA (AC)
                                             7.62
                SIDE SLOPES (H:V)
                                              3:1
                DEPTH (FT)
                TOP WIDTH (FT)
                                              600
                TOP LENGTH (FT)
                                              600
                TOP AREA (AC)
                                             8.26
```


ATTACHMENT 4 CALCULATIONS FOR MODEL INPUT FOR THE DESIGN-INTERIM SCENARIO

	WEIGHTED ON VALUES
NE 16:	CH = (1-i)84 + (i)(98)
	= (112)84+(.12)(98)
	= 73.92 + 11.76 -> ON weighted = 86
	L= 3700 ft
	5= (1000/CN)-10 + (1000/86)-10 + 5=1.63
	CN = 86
	¥ =.22
	LAG = (1)0.8(s+1)0.7/1900(Y)0.5
	= (3700) ^{0.8} (1.63+1) ^{0.7} /1900(.22) ^{0.5}
	= 1.58 > [LAG = 1.58] 94.8 minute
HL 14:	CN = (1-i)84+(i)(98)
	= (115)84+ (.15)(98)
	= 71.4 + 14.7 -> C Novergraphed = 86
	L= 4400 ft
	S= (1000/CN)-10 -> (1000/86)-10 -> S=1.63
	CN= 86
	Y = .16
	LAG = (L)0.8 (S+1)0.7/1900(Y)0.5
	= (4400)0.8 (1.63+1)6.7/1900 (.16) 5.5
	= 2.13 + LAG = 2.13 HLI4 127.8 minutes
	127.8 minutes

NE 17:	L= 3200 ft
	5 = (1000/CN)-10 = (1000/84)-10 = 5 = 1.90
	cn = 84
	Y = 0.9
	LAG = (3200)0.8 (1.90+1)0.7/1900 (.09)0.5 + LAG = 2.36 NOTE
HL13:	L=1500f+
	5=(1000/CN)-10 + (1000/90)-10 + 5= 1.11
	CN = 90
	Y = . 11
	LAG = (1500)0.8 (1.11+1)0.7/1900(.11)0.5 > LAG = .93 HL13 55.8 minutes