Appendix K-a Low Impact Development Plan - Lot 1 South Lemon Avenue and Paseo Del Prado

Appendices

This page intentionally left blank.

Low Impact Development Plan (LID Plan)

Project Name:

Walnut Business Park – Lot 1
South Lemon Avenue and Paseo Del Prado
Walnut, CA 91789

Prepared for:

IDS Real Estate Group 515 South Figueroa Street, 16th Floor Los Angeles, CA 90071 TEL: (213) 362-9300

Prepared by:

Atlas Civil Design 872 Higuera Street San Luis Obispo, California (213) 810-8470

PE Stamp & Sign Here

Date Prepared: June 2023

Date Revised:

Project Owner's Certification

I certify under penalty of law that this document and all attachments were prepared under my jurisdiction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, to the best of my knowledge and belief, the information submitted is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Owner's Name:	Matt Katz				
Owner's Title:	Representative				
Company:	IDS Real Estate Group				
Address:	515 South Figueroa Street, 16th Floor Los Angeles, CA 90071				
Email:	mkatz@idsrealestate.com				
Telephone No:	(213) 362-9300				
Signature:	Date:				

Preparer (Engineer) Certification

	Preparer (Engineer) Certific	alio	n	
Engineer's Name:	Tyler H. Johnson, PE			
Engineer's Title:	Project Manager			
Company:	Atlas Civil Design			
Address:	872 Higuera Street, San Luis Obispo, California			
Email:	thjohnson@atlascivildesign.com			
Telephone No:	(213) 810-8470			
	I hereby certify that this Low Impact Development Plan is in compliance with, and meets the requirements set forth in, Order No. R4-2012-0175, of the Los Angeles Regional Water Quality Contro Board.			
Engineer's Signature		Date		
Place Stamp Here	PROFESSIONAL CIPCINGER No. 85839 * No. 85839 * CIVIL OF CALIFORNIA			

Table of Contents

1.	Project	Description	1
	1.1.	Project Category	1
	1.2.	Project Description	2
	1.3.	Hydromodification Analysis	7
	1.4.	Property Ownership/Management	8
2.	Best Ma	anagement Practices (BMPs)	9
	2.1.	Site Design	9
	2.2.	BMP Selection	10
	2.2.1	1. Infiltration BMPs	10
	2.2.2	2. Rainwater Harvest and Use BMPs	11
	2.2.3	3. Alternative Compliance BMPs	12
	2.2.4	4. Treatment Control BMPs	14
	2.2.5	5. Hydromodification Control BMPs	15
	2.2.6	5. Non-structural Source Control BMPs	16
	2.2.7	7. Structural Source Control BMPs	19
Attachr	ments		
Attachme	ent A	Calcu	lations/Maps
Attachme	ent B		ruction Plans
Attachme	ent C		.BMP Details
Attachme	ent D	Operations and Maintenanc	e (O&M) Plan
Attachme	ent E	Master Covenant and Agre	ement (MCA)
Attachme	ent F	Infiltratio	n Test Report
Attachme	ent G	Geotec	hnical Report

1. PROJECT DESCRIPTION

1.1. PROJECT CATEGORY

Cat	egory	YES	NO
1.	Development ^a of a new project equal to 1 acre or greater of disturbed area and adding more than 10,000 square feet of impervious area ^b		
2.	Development ^a of a new industrial park with 10,000 square feet or more of surface area ^c		
3.	Development ^a of a new commercial mall with 10,000 square feet or more surface area ^c		
4.	Development ^a of a new retail gasoline outlet with 5,000 square feet or more of surface area ^c		
5.	Development ^a of a new restaurant (SIC 5812) with 5,000 square feet or more of surface area ^c		
6.	Development ^a of a new parking lot with either 5,000 ft ² or more of impervious area ^b or with 25 or more parking spaces		
7.	Development ^a of a new automotive service facility (SIC 5013, 5014, 5511, 5541, 7532-7534 and 7536-7539) with 5,000 square feet or more of surface area ^c		
8.	Projects located in or directly adjacent to, or discharging directly to a Significant Ecological Area (SEA), ^d where the development will: a. Discharge stormwater runoff that is likely to impact a sensitive biological species or habitat; and b. Create 2,500 square feet or more of impervious area ^b		
9.	Redevelopment ^e of 5,000 square feet or more in one of the categories listed above If yes, list redevelopment category here: 2		
10.	Redevelopment ^e of 10,000 square feet or more to a Single Family Home, without a change in landuse.		

- a Development includes any construction or demolition activity, clearing, grading, grubbing, or excavation or any other activity that results in land disturbance.
- b Surfaces that do not allow stormwater runoff to percolate into the ground. Typical impervious surfaces include: concrete, asphalt, roofing materials, etc.
- c The surface area is the total footprint of an area. Not to include the cumulative area above or below the ground surface.
- An area in which plant or animal life or their habitats are either rare or especially valuable because of their special nature or role in an ecosystem and would be disturbed or degraded by human activities and developments. Also, an area designated by the City as approved by the Regional Water Quality Control Board.
- e Land-disturbing activities that result in the creation, addition, or replacement of a certain amount of impervious surface area on an already developed site. Redevelopment does not include routine maintenance activities that are conducted to maintain the original line and grade, hydraulic capacity, or original purpose of facility, nor does it include modifications to existing single family structures, or emergency construction activities required to immediately protect public health and safety.

1.2. STORMWATER MANAGEMENT REQUIREMENTS FOR DESIGNATED PROJECTS

All Designated Projects must retain 100 percent of the SWQDv on-site through infiltration, evapotranspiration, stormwater runoff harvest and use, or a combination thereof unless it is demonstrated that it is technically infeasible to do so. To meet these requirements, Designated Projects must:

- Conduct site assessment and identify design considerations, including determining the feasibility of on-site infiltration (see Section 4 and Section 7.3);
- Apply site-specific source control measures (see Section 5);
- Calculate the Stormwater Quality Design Volume (see Section 6);
- Implement stormwater quality control measures (see Section 7);
- Implement alternative compliance measures, if necessary (see Section 7);
- Implement hydromodification requirements, if necessary (see Section 8); and
- Develop a Maintenance Plan, if necessary (see Section 9).

A flow chart outlining the design process for Designated Projects is presented in Figure 2-1.

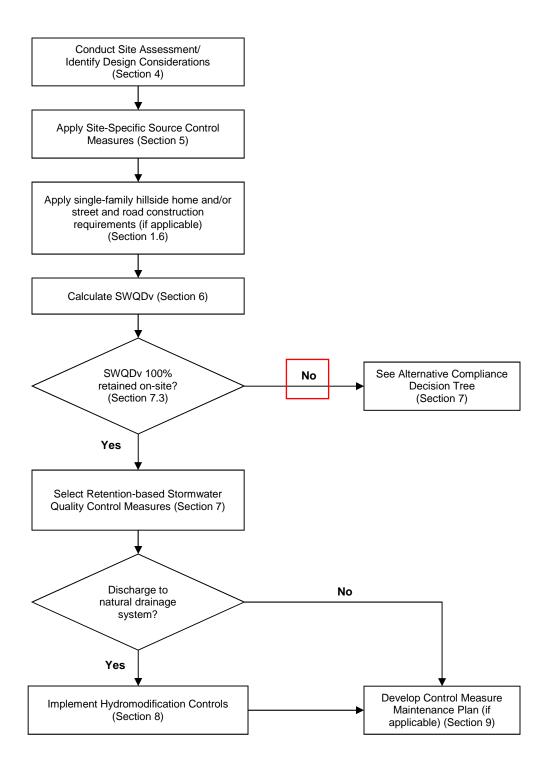


Figure 2-1. Design Process for Meeting Stormwater Requirements for Designated Projects

1.3. PROJECT DESCRIPTION

Total Project Area (ft²): 449,974.8

Total Project Area (Ac): 10.33

EXISTING CONDITIONS

Condition	Area (ft²)	Percentage (%)	
Pervious Area:	43,715	9.6	
Impervious Area:	406,806.8	90.4	

PROPOSED CONDITIONS

Condition	Area (ft²)	Percentage (%)	
Pervious Area:	45,738	10.1	
Impervious Area:	404,236.8	89.9	

SITE CHARACTERISTICS

Drainage Patterns/Connections

Existing:

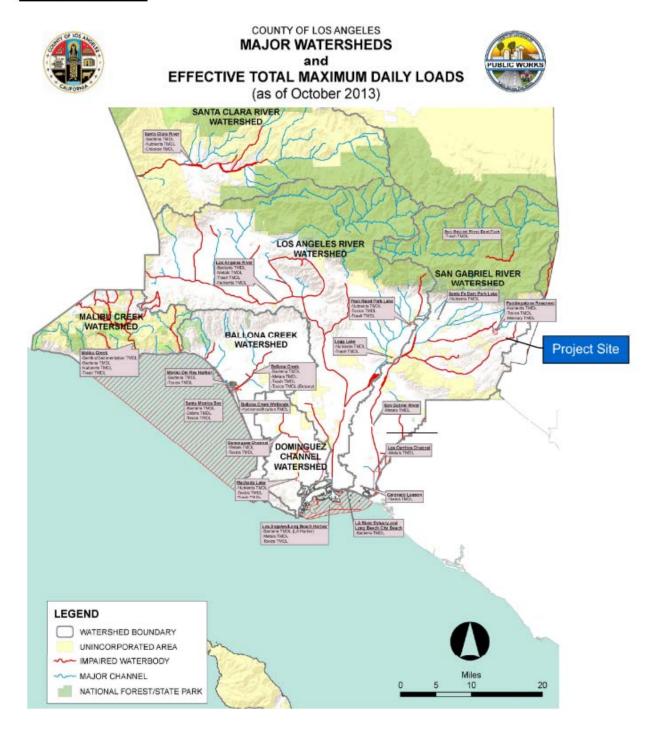
The existing site is an industrial manufacturing park with associated landscaping, paving and parking lots. The northwest half of the site drains to the southeast and sheet flows to multiple ribbon gutters which direct runoff to an existing on-site catch basin near the south corner of the site. This existing catchbasin is directly connected to an existing 90" RCP storm drain maintained by the Los Angeles County Flood Control District.

The northeast half of the site drains to the southeast and sheet flows to multiple ribbon gutters which direct runoff over the driveways and into Paseo Sonrisa (public ROW). Runoff then flows in the curb and gutter north until it is captured by existing curb inlets that are connected to the existing 90" RCP storm drain maintained by the Los Angeles County Flood Control District.

This LACFCD storm drain flows south across the site to the intersection of South Lemon Avenue and Valley Boulevard. The Storm drain becomes a 96" RCP and flows southeast into San Jose Creek. San Jose Creek flows west until it merges with the San Gabriel River which flows south until it reaches the Pacific Ocean near Seal Beach.

Proposed:

The proposed project will be a 192,729 sf warehouse with associated landscaping, paving and parking lots. The site drains to the southeast and sheet flows to multiple ribbon gutters which direct runoff to catch basins along the southeast property line. This runoff is directed to an underground detention system. The underground detention system has


Low Impact Development Plan (LID Plan) Walnut Business Park – Lot 1

	been sized to accommodate 150% of the 85 th percentile storm event. After detention the runoff will enter a Modular Wetland BMP for Treatment. After treatment the runoff will flow to a sump pump and the pumped to the existing on-site catch basin which is connected to the existing 90" RCP storm drain. Larger storm events shall be directed around the BMP and detention system through an overflow bypass pipe and connected to the existing catch basin.
	This existing catch basin is directly connected to an existing 90" RCP storm drain maintained by the Los Angeles County Flood Control District. This storm drain flows south across the site to the intersection of South Lemon Avenue and Valley Boulevard. The Storm drain becomes a 96" RCP and flows southeast into San Jose Creek. San Jose Creek flows west until it merges with the San Gabriel River which flows south until it reaches the Pacific Ocean near Seal Beach.
Narrative Project Description:	The project will construct a new 192,729 sf warehouse with associated landscaping, paving and parking lots. The proposed drainage within DMA-1 (10.33 acre) of the development includes surface gutters, storm drain inlets/lines, and an underground detention system, a modular wetland near the southeast corner of the property.

Low Impact Development Plan (LID Plan) Walnut Business Park – Lot 1

Offsite Runon	No offsite runon will be anticipated.
UTILITY AND INFRASTRUCTURE INFORMATION	All existing buildings, paving, curbs, landscaping and driveways will be demolished. The existing on-site utilities will be relocated or demolished. The existing 90"storm drain and the 12" sewer main that bisect the site will remain in place. New water and sewer utility connections will be made for the proposed warehouse.
Significant Ecological Areas (SEAs)	No known Significant Ecological Area (SEA) are adjacent or located within the project discharge path.
EFFECTIVE TMDL'S AND POLLUTANTS	Based on the County of Los Angeles Major Watersheds and Effective Total Maximum Daily Loads (as of 2013), San Jose Creek and San Gabriel River are an impaired waterbody as shown in Figure-5. Based on the 303(d) list of Water Quality Limited Segments Table the following are the main pollutant/Stressor of San Jose Creek (reach 2): Coliform Bacteria Based on the 303(d) list of Water Quality Limited Segments Table the following are the main pollutant/Stressor of San Gabriel River: Coliform Bacteria , Metals, pH, Cyanide, Pathogens, Nutrients The following is a list of materials to be used in the daily construction activities at the project site and the normal operation of the building, which will potentially contribute to pollutants, other than sediment, to stormwater runoff. Control Practices for each activity are identified below: • Vehicle fluids, including oil, grease, petroleum, and coolants from personal vehicles • Landscaping materials and wastes (topsoil, plant materials, herbicides, fertilizers, mulch, pesticides) • General trash debris and liter • The list of expected pollutants from the proposed Project was compared with the pollutants of concern for the San Jose Creek. The Best Management Practices (BMPs) that have been selected for implementation on this project are detailed in the following sections.

Figure-5: Impaired Waters

1.4. HYDROMODIFICATION ANALYSIS

Do	ES THE PROPOSED PROJECT FALL INTO ONE OF THE FOLLOWING CATEGORIES? CHECK YES/NO.	YES	No
1.	Project is a redevelopment that decreases the effective impervious area compared to the pre-project conditions.	\boxtimes	
	Describe: The project will decrease the impervious areas by adding more landscape areas.		
2.	Project is a redevelopment that increases the infiltration capacity of pervious areas compared to the pre-project conditions.		\boxtimes
	Describe: Native soils infiltration rates will be used.		
3.	Project discharges directly or via a storm drain to a sump, lake, area under tidal influence, into a waterway that has a 100-year peak flow (Q_{100}) of 25,000 cfs or more.		\boxtimes
	Describe: Project discharges to the LACFCD storm drain system.		
4.	Project discharges directly or via a storm drain into concrete or otherwise engineered (not natural) channels (e.g., channelized or armored with rip rap, shotcrete, etc.), which, in turn, discharge into receiving water that is not susceptible to hydromodification impacts.	\boxtimes	
	Describe: Project discharges to the LACFCD storm drain system.		

[Check "Yes" or "No," as applicable.

If one or more of the above criteria are checked "Yes," the project is exempt from Hydromodification Control Measures. State as such.

If none of the above criteria are checked "Yes," the project will require Hydromodification control measures. Include detailed description of control measures to be implemented and a reference to calculations following the criteria outlined in MS4 Permit (Order R4-2012-0175) §VI.D.7.c.iv]

HYDROMODIFICATION ANALYSIS

The project decreases the impervious area and runoff discharges to the LACFCD storm drain system so is exempt from hydromodification.

1.5. PROPERTY OWNERSHIP/MANAGEMENT

The project is owned by IDS Real Estate Group.			

Page 8

2. BEST MANAGEMENT PRACTICES (BMPs)

2.1. SITE DESIGN

85 TH PERCENTILE, 24-HOUR STORM DEPTH [Determined from the Los Angeles County 85th percentile precipitation isohyetal map. If less than 0.75 inch, state as such and use 0.75 inch throughout.]	1.0 in See Attachment A
SITE DESIGN [Describe site design and drainage plan including; site design practices utilized and how BMPs are incorporated using the appropriate hierarchy.]	Roof drainage is routed through downspouts to the sidewalk around the warehouse. 36" wide ribbon gutters collect parking lot runoff and direct It to catch basins. Numerous 24" catch basins collect site runoff and direct it to an underground detention system that has been sized to accommodate 150% of the 85 th percentile storm event. After detention the runoff will enter a Modular Wetland BMP for Treatment. After treatment the runoff will flow to a sump pump and be pumped to the existing on-site catch basin which is connected to the existing 90" RCP storm drain. Larger storm events shall be directed around the BMP and detention system through an overflow bypass pipe and connected to the existing catch basin.

BMP LIST

DMA DESIGNATIO N	SQUARE FOOTAGE (SF)	ACREAGE (AC)	STORM WATER QUALITY DESIGN VOLUME (SWQDV, CF)	STORM WATER QUALITY DESIGN FLOWRATE (SWQDQ, CFS)	BMP TYPE [Include make & model if proprietary]	MINIMU M BMP SIZE [Include units]	BMP SIZE PROVIDED [Include units]	GPS COORDINATE S
				1.837	Modular Wetland			34.003900
DMA-1	449,975	10.33	30,465		MWS-L-8- 20-V-UG	8'x20'	8'x20'	117.512935

See Attachment A for calculations.

2.2. BMP SELECTION

2.2.1. INFILTRATION BMPs

	Name		Included	
			[Check all that apply.]	
	Bioretention without underdrains			
	Infiltration Trench			
	Infiltration Basin			
	Drywell			
	Proprieta	ary Subsurface Infiltration Gallery		
	Permeab	le Pavement (concrete, asphalt, pavers)		
	Other: Catch Basin Filter Inserts			
	Other:			
Description		NA		
Calculations		NA		

INFILTRATION TEST REPORT:

See Attachment F

2.2.2. RAINWATER HARVEST AND USE BMPS

Name	Included	
	[Check all that apply.]	
Above-ground cisterns and basins		
Underground detention		
Other:		
Other:		
Other:		

DESCRIPTION	NA
Calculations	NA

2.2.3. ALTERNATIVE COMPLIANCE BMPS

BIOFILTRATION BMPs

(If Infiltration BMPs and Rainwater Harvest and Use BMPs are Infeasible)

Name	Included
	[Check all that apply.]
Bioretention with underdrains (i.e. planter box, rain garden, etc.)	
Constructed Wetland	
Vegetated Swale	
Vegetated Filter Strip	
Tree-Well Filter	
Other: Underground Detention System	\boxtimes
Other: Modular Wetland System	

DESCRIPTION	The proposed underground detention system is a Stormtech MC-3500 chamber system by ADS. Each chamber is 45" tall and 90" long utilizing 251 chambers. The detention system will be laid on impermeable geotextile fabric and then on a 9" layer of washed aggregate stone. The subgrade is native soil with an infiltration rate of 0.0 in/hr.
Calculations	Underground Detention System: BMP storage per the manufacturer's specifications: Single chamber storage: 181 cf End cap storage: 43.7 cf (251x181) + (18x43.7) = 44,737 cf Total Storage = 46,218 cf (SWQDv = 45,698) Modular Wetland: 45,698k cf / 22hrs / 60 min / 60 sec = 0.577 CFS maximum treatment.

See Attachment C for BMP details.

Low Impact Development Plan (LID Plan) Walnut Business Park – Lot 1

OFFSITE BMPS

(If Infiltration BMPs, Rainwater Harvest and Use BMPs, and Biofiltration BMPs are Infeasible)

	Name		Included
			[Check all that apply.]
	Offsite I	nfiltration	
	Ground '	Water Replenishment Projects	
	Offsite P	roject - Retrofit Existing Development	
	Regional	Storm Water Mitigation Program	
	Other:		
	Other:		
DESCRIPTION	ļ	NA	
Calculations		NA	
CALCULATIONS			

2.2.4. TREATMENT CONTROL BMPS

NAME

INCLUDED

[Check all that apply.]

Media Filter

Filter Insert

Filter Insert

CDS Unit

Other:

Treatment control BMPs can only be used as pre-treatment to LID BMPs.

·	→
DESCRIPTION	! NA
DESCRIPTION	NA .
!	!
!	
!	!

2.2.5. HYDROMODIFICATION CONTROL BMPs

Name	Included	
	[Check all that apply.]	
Infiltration System		
Above-ground Cistern		
Above-ground Basin		
Underground Detention		
Other:		
Other:		

DESCRIPTION	NA
Calculations	NA

2.2.6. Non-structural Source Control BMPs

Name	CHECK ONE	
	Included	Not Applicable
Education for Property Owners, Tenants and Occupants	\boxtimes	
Activity Restrictions	\boxtimes	
Common Area Landscape Management	\boxtimes	
Common Area Litter Control	\boxtimes	
Housekeeping of Loading Docks	\boxtimes	
Common Area Catch Basin Inspection	\boxtimes	
Street Sweeping Private Streets and Parking Lots	\boxtimes	

Education for Property Owners, Tenants and Occupants

Practical informational materials will be provided to the employees of the Science Building and/or IDS Real Estate Group to ensure general good housekeeping practices that contribute to the protection of storm water quality. Among other things, these materials will describe the use of chemicals (including household type) that should be limited to the property, with no discharge of specified wastes via hosing or other direct discharge to gutters, catch basins and storm drains.

Initially, IDS Real Estate Group will provide these materials. Thereafter, such materials will be available through the employee education program. This program must be maintained, enforced, and updated periodically by IDS Real Estate Group. Educational materials including, but not limited to the materials included in the Appendix E of this plan will be made available to the employees and contractors of IDS Real Estate Group.

Activity Restrictions

Activities on this site will be limited to activities related to residential living. The project's Conditions, Covenants, and Restrictions (CC&Rs) will outline the activities that are restricted on the property. Such activities related to the LID include car washing, car maintenance and disposal of used motor fluids, pet waste cleanup, and trash container areas.

Common Area Landscape Management

Management programs will be designed and established by IDS Real Estate Group, who will maintain the common areas within the project site. These programs will include how to mitigate the potential dangers of fertilizer and pesticide usage (refer to the Maintenance and Frequency Table).

Ongoing maintenance will be consistent with the State of California Model-Water Efficient Landscape Ordinance.

Low Impact Development Plan (LID Plan) Walnut Business Park – Lot 1

Fertilizer and pesticide usage shall be consistent with County Management Guidelines for use of Fertilizers and Pesticides.

BMP Maintenance

IDS Real Estate Group will be responsible for implementing each of the BMPs detailed in this plan. IDS Real Estate Group will also be responsible for cleaning and maintaining the BMPs on a regular basis. Maintenance operations should be logged in Appendix F.

Title 22 CCR Compliance

IDS Real Estate Group will comply with this Regulation.

Uniform Fire Code Implementation

IDS Real Estate Group will comply with this Code.

Common Area Litter Control

IDS Real Estate Group will be required to implement trash management and litter control procedures in the common areas aimed at reducing pollution of drainage water. IDS Real Estate Group may also contract with their landscape maintenance firm to provide this service during regularly scheduled maintenance, which should consist of litter patrol, emptying of trash receptacles in common areas, and noting trash disposal violations and reporting the violations to IDS Real Estate Group for remediation.

Employee Training

A training program will be established as it would apply to future employees of the Medical Facility, and contractors of IDS Real Estate Group to inform and train in maintenance activities regarding the impact of dumping oil, paints, solvents, or other potentially harmful chemicals into storm drains; the proper use of fertilizers and pesticides in landscaping maintenance practices; and the impacts of littering and improper water disposal.

IDS Real Estate Group will conduct the training program which will include targeted training sessions with specific construction disciplines (landscaping, concrete finishers, painters, etc.). See Appendix E for examples of educational materials that will be provided to the Employees. The project's CC&Rs will include provisions for future employee training programs conducted on a yearly based prior to the rainy season.

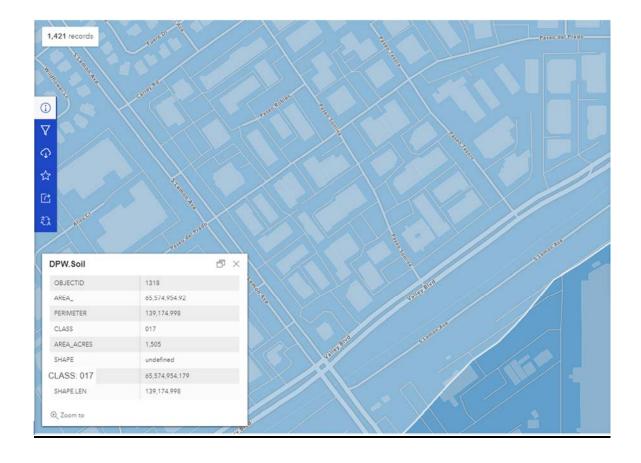
Catch Basin Inspection

IDS Real Estate Group will maintain the drainage systems, including catch basins and storm drain pipes. IDS Real Estate Group is required to have catch basins inspected and, if necessary, cleaned prior to the storm season, no later than October 15th each year prior to the "first flush" storm. These duties may be contracted out to the landscape maintenance firm hired by IDS Real Estate Group. Please see Appendix F for the maintenance program. Maintenance operations should be logged in Appendix F.

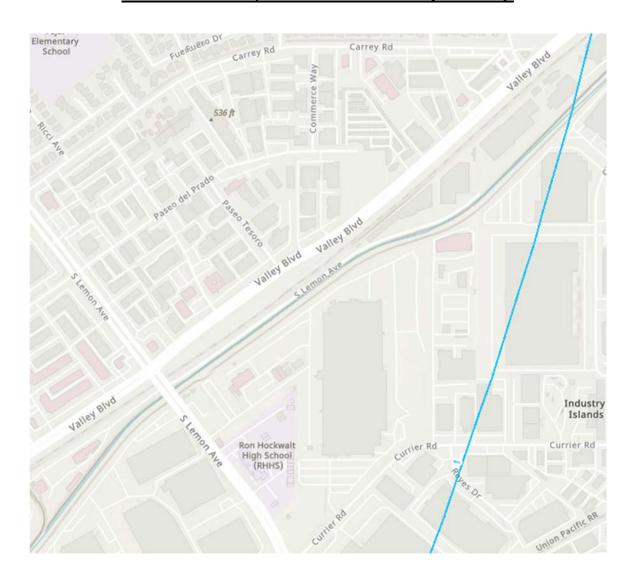
Low Impact Development Plan (LID Plan) Walnut Business Park – Lot 1

Street Sweeping Private Streets and Parking Lots

IDS Real Estate Group shall have all streets and parking lots swept on a weekly basis. This procedure will be intensified around October 15th of each year prior to the "first flush" storm.


2.2.7. STRUCTURAL SOURCE CONTROL BMPs

Name	CHECK ONE	
TVAIVIE	Included	Not Applicable
Provide storm drain system stenciling and signage	\boxtimes	
Design and construct outdoor material storage areas to reduce pollution introduction		
Design and construct trash and waste storage areas to reduce pollution introduction		
Use efficient irrigation systems & landscape design, water conservation, smart controllers, and source control		
Protect slopes and channels and provide energy dissipation		
Loading docks	\boxtimes	
Maintenance bays		
Vehicle wash areas		
Outdoor processing areas		
Equipment wash areas/racks		
Fueling areas		
Hillside landscaping		

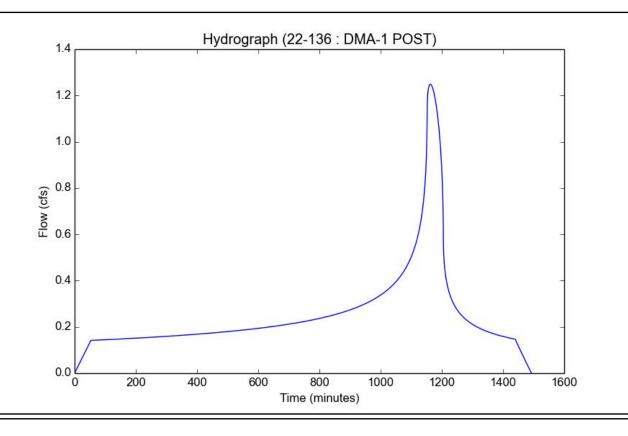

Attachment A

Calculations/Maps

Soil Type

85th Percentile, 24-Hr Rainfall Isohyetal Map

50-year, 24-Hr Rainfall Isohyetal Map

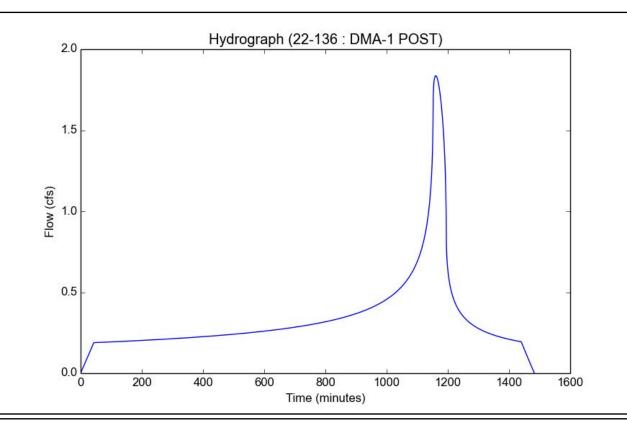

Volume and Flow Rate Calculations

The Underground Detention System shall be sized to capture 100% of the design capture volume (SWQDv) based on the runoff produced from the 85th percentile storm event (1.0").

File location: P:/2022/22-136 Walnut Business Park/Civil/reports/Hydrology/Working/22-136 - DMA-1 POST 0.75.pdf Version: HydroCalc 1.0.3

Project Name	22-136
Subarea ID	DMA-1 POST
Area (ac)	10.33
Flow Path Length (ft)	1050.0
Flow Path Slope (vft/hft)	0.0063
0.75-inch Rainfall Depth (in)	0.75
Percent Impervious	0.899
Soil Type	17
Design Storm Frequency	0.75 inch storm
Fire Factor	0
LID	True

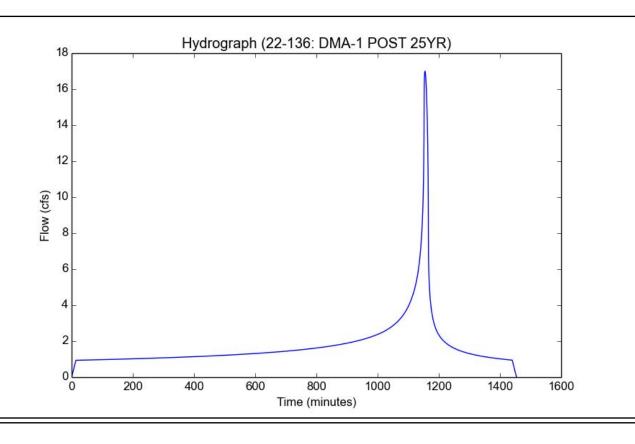
Modeled (0.75 inch storm) Rainfall Depth (in)	0.75
Peak Intensity (in/hr)	0.1475
Undeveloped Runoff Coefficient (Cu)	0.1
Developed Runoff Coefficient (Cd)	0.8192
Time of Concentration (min)	53.0
Clear Peak Flow Rate (cfs)	1.2484
Burned Peak Flow Rate (cfs)	1.2484
24-Hr Clear Runoff Volume (ac-ft)	0.5245
24-Hr Clear Runoff Volume (cu-ft)	22849.1384



File location: P:/2022/22-136 Walnut Business Park/Civil/reports/Hydrology/Working/22-136 - DMA-1 POST 85th.pdf Version: HydroCalc 1.0.3

Input	Param	eters
-------	--------------	-------

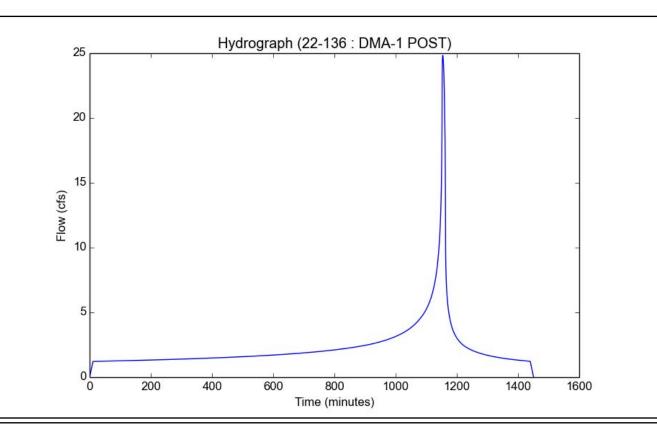
Project Name	22-136
Subarea ID	DMA-1 POST
Area (ac)	10.33
Flow Path Length (ft)	1050.0
Flow Path Slope (vft/hft)	0.0063
85th Percentile Rainfall Depth (in)	1.0
Percent Impervious	0.899
Soil Type	17
Design Storm Frequency	85th percentile storm
Fire Factor	0
LID	True


Modeled (85th percentile storm) Rainfall Depth (in)	1.0
Peak Intensity (in/hr)	0.217
Undeveloped Runoff Coefficient (Cu)	0.1
Developed Runoff Coefficient (Cd)	0.8192
Time of Concentration (min)	43.0
Clear Peak Flow Rate (cfs)	1.8365
Burned Peak Flow Rate (cfs)	1.8365
24-Hr Clear Runoff Volume (ac-ft)	0.6994
24-Hr Clear Runoff Volume (cu-ft)	30465.1343

File location: C:/Local Cloud/Shared/2022/22-136 Walnut Business Park/Civil/reports/Hydrology/Working/22-136 - DMA-1 POST 25yr.pdf Version: HydroCalc 1.0.3

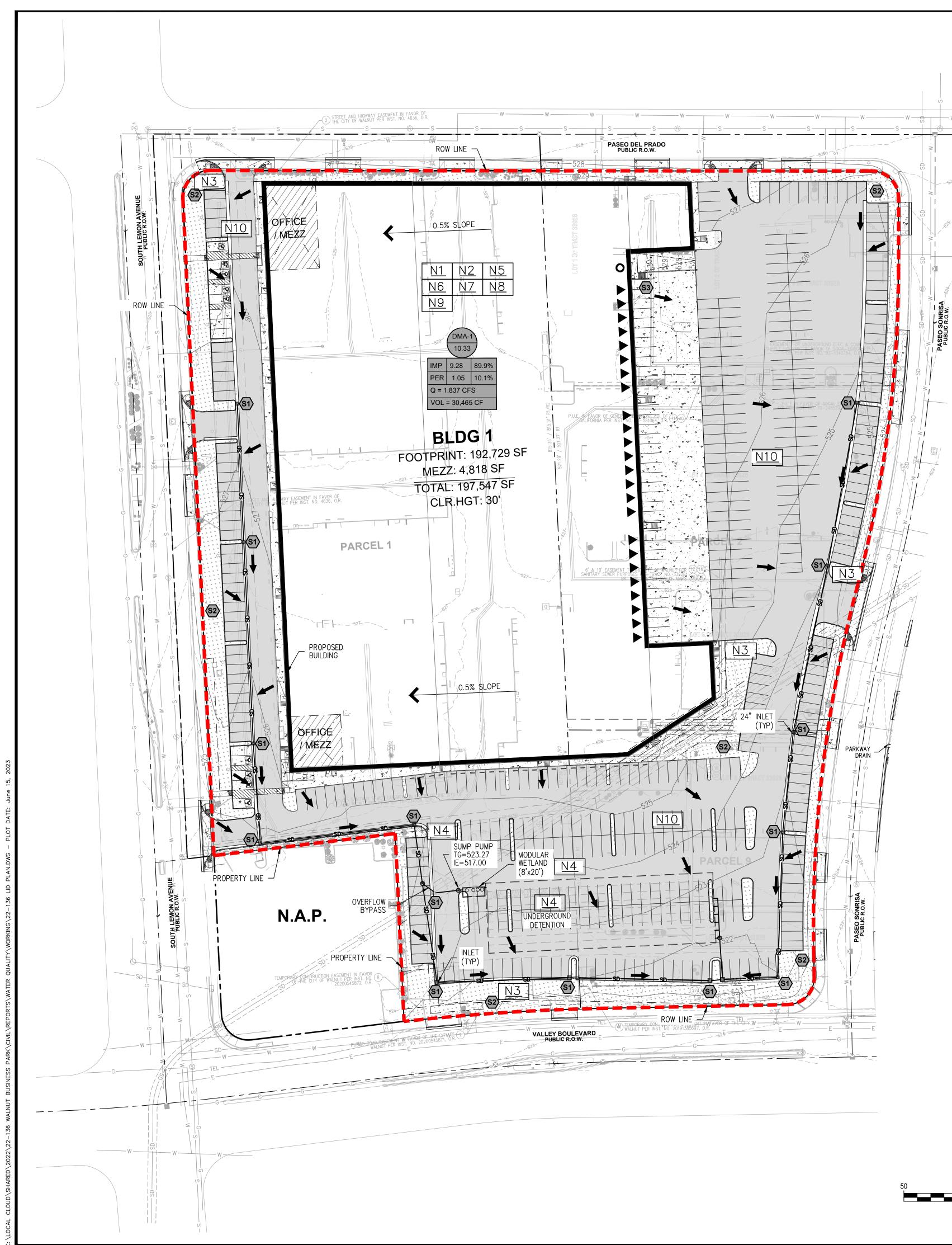
Project Name	22-136
Subarea ID	DMA-1 POST 25YR
Area (ac)	10.33
Flow Path Length (ft)	1050.0
Flow Path Slope (vft/hft)	0.0063
50-yr Rainfall Depth (in)	5.71
Percent Impervious	0.899
Soil Type	17
Design Storm Frequency	25-yr
Fire Factor	0
LID	False

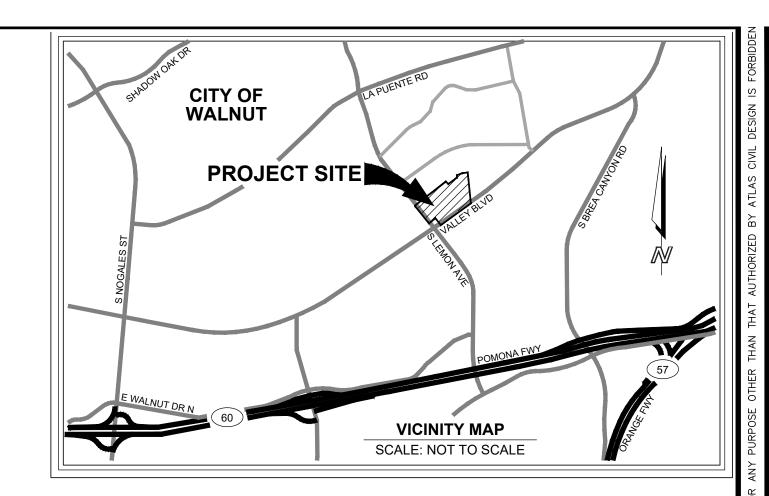
Modeled (25-yr) Rainfall Depth (in)	5.0134
Peak Intensity (in/hr)	1.8436
Undeveloped Runoff Coefficient (Cu)	0.8257
Developed Runoff Coefficient (Cd)	0.8925
Time of Concentration (min)	14.0
Clear Peak Flow Rate (cfs)	16.9972
Burned Peak Flow Rate (cfs)	16.9972
24-Hr Clear Runoff Volume (ac-ft)	3.5617
24-Hr Clear Runoff Volume (cu-ft)	155146.7392
,	



File location: P:/2022/22-136 Walnut Business Park/Civil/reports/Hydrology/Working/22-136 - DMA-1 POST 50yr.pdf Version: HydroCalc 1.0.3

Input	Parame	eters
-------	---------------	-------


Project Name	22-136
Subarea ID	DMA-1 POST
Area (ac)	10.33
Flow Path Length (ft)	1050.0
Flow Path Slope (vft/hft)	0.0063
50-yr Rainfall Depth (in)	6.5
Percent Impervious	0.899
Soil Type	17
Design Storm Frequency	50-yr
Fire Factor	0
LID	False


output Modulio	
Modeled (50-yr) Rainfall Depth (in)	6.5
Peak Intensity (in/hr)	2.6772
Undeveloped Runoff Coefficient (Cu)	0.8802
Developed Runoff Coefficient (Cd)	0.898
Time of Concentration (min)	11.0
Clear Peak Flow Rate (cfs)	24.8344
Burned Peak Flow Rate (cfs)	24.8344
24-Hr Clear Runoff Volume (ac-ft)	4.6427
24-Hr Clear Runoff Volume (cu-ft)	202237.1016

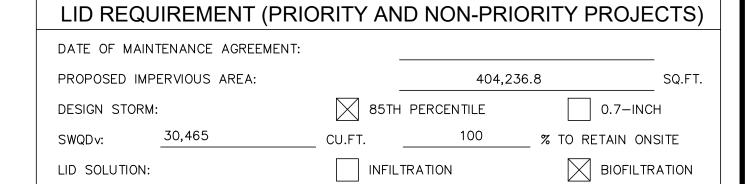
Attachment B

Construction Plans

LEGEND

	PROPERTY BOUNDARY LINE		
	CENTERLINE		
335	EXISTING CONTOURS		
335	PROPOSED CONTOURS		
SD	STORM DRAIN		
	PROPOSED CONCRETE		
	LIGHT DUTY AC PAVEMENT		
* * * * * * * * * * * * * * * * * * *	PROPOSED LANDSCAPE		
	STORM DRAIN CATCH BASIN		
	STORM DRAIN MANHOLE		
0.52 DMA#	DRAINAGE MANAGEMENT AREA AREA IN ACRE		
IMP 0.52 100%	IMPERVIOUS AREA		
PER 0.00 0%	PERVIOUS AREA		
QTREAT = 0.13CFS	Q TREATMENT		
SWQDV = 1,444CF	VOLUME TREATMENT		
-	FLOW DIRECTION		

CODE


THIS SITE WILL BE DESIGNED AND CONSTRUCTED IN ACCORDANCE WITH THE CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD ORDER NO. R8-2009-0030 DISCHARGE REQUIREMENTS (MS4 PERMIT).

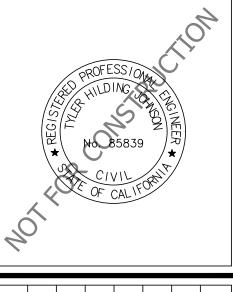
SUMP PUMP NOTE

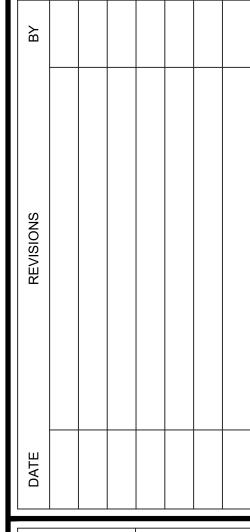
SEE THE GRADING AND DRAINAGE PLANS FOR THE SUMP PUMP DETAILS.

LAND USE:

M1 (LIGHT MANUFACTURING)

HYDROLOGIC DATA:


DMA-1	DETAILS
AREA (ACRES)	10.33
SOIL GROUP	017
DESIGN FREQUENCY	25-YEAR
50-YEAR RAINFALL DEPTH (IN)	6.5
PERCENT IMPERVIOUS	89.9%
Q ₂₅ (CFS)	17.00
SWQDv	VOLUME (CU-FT)
0.75-INCH STORM	22,849
85TH PERCENTILE STORM	30,465 x 1.5 = 45,698
ВМР	TOTAL VOLUME CAPACITY (CU-FT)
MODULAR WETLAND (8'x 20')	49,853
22 HR DRAWN DOWN	0
TOTAL VOLUME CAPACITY	49,853


NOTE: 85TH PERCENTILE STORM GOVERNS

LID DETAILS:

	NON-STRUCTURAL SOURCE CONTROL BMPs		
ID	DESCRIPTION		
N1	EDUCATION FOR PROPERTY OWNERS, TENANTS AND OCCUPANTS		
N2	ACTIVITY RESTRICTIONS		
N3	LANDSCAPE MANAGEMENT		
N4	BMP MAINTENANCE		
N5	TITLE 22 CCR COMPLIANCE		
N6	UNIFORM FIRE CODE IMPLEMENTATION		
N7	LITTER / DEBRIS CONTROL PROGRAM		
N8	EMPLOYEE TRAINING		
N9	CATCH BASIN INSPECTION PROGRAM		
N10	SWEEPING OF PRIVATE STREETS AND PARKING LOTS		
	STRUCTURAL SOURCE CONTROL BMPs		
S1	PROVIDE STORM DRAIN STENCILING AND SIGNAGE (CASQA NEW DEVELOPMENT BMP HANDBOOK SD-13)		
S2	USE EFFICIENT IRRIGATION SYSTEMS & LANDSCAPE DESIGN, WATER CONSERVATION, SMART CONTROLLERS, AND SOURCE CONTROL (CASQA NEW DEVELOPMENT BMP HANDBOOK SD-12)		
S3	DESIGN AND CONSTRUCT TRASH AND WASTE STORAGE AREAS TO REDUCE POLLUTION INTRODUCTION (CASQA NEW DEVELOPMENT BMP HANDBOOK SD-32)		

WALNUI BUSINESS PARK
CITY OF WALNUT
COUNTY OF LOS ANGELES

PROJECT NUMBER: 22-136

PREPARED ON:

REVISED ON: 6/15/23

PREPARED BY: GMH

PREPARED BY: GMH
CHECKED BY: THJ
SHEET
1 OF 1

Attachment C BMP Details

User Inputs

MC-3500

Imperial

40%

9 in.

12 in.

18 in.

GREG HOWELL

45698 cubic ft.

(90 ft. x 211 ft.)

Yes

Chamber Model:

Project Name:

Project Location:

Stone Porosity:

Measurement Type:

Required Storage Volume:

Stone Foundation Depth:

Stone Above Chambers:

Average Cover Over Chambers:

Design Constraint Dimensions:

Engineer:

Outlet Control Structure:

<u>Results</u>

System Volume and Bed Size

Installed Storage Volume: 46218.28 cubic ft.

Storage Volume Per Chamber: 109.90 cubic ft.

Number Of Chambers Required: 251

Number Of End Caps Required: 18

Chamber Rows: 9

Maximum Length: 210.90 ft.

Maximum Width: 64.35 ft.

Approx. Bed Size Required: 13412.01 square ft.

System Components

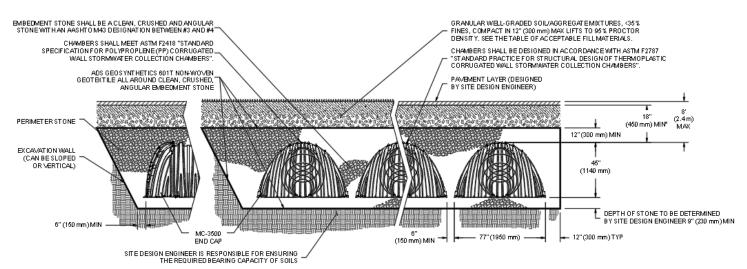
Amount Of Stone Required: 1701 cubic yards

Volume Of Excavation (Not Including 2733 cubic yards

Fill):

Total Non-woven Geotextile Required: 3981 square yards

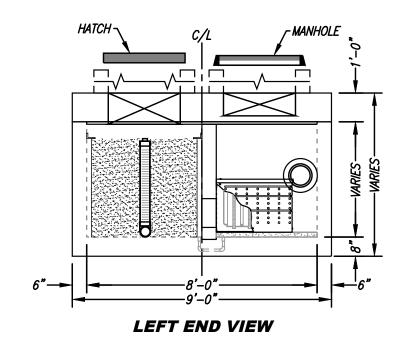
Woven Geotextile Required (excluding 84 square yards


Isolator Row):

Woven Geotextile Required (Isolator 239 square yards

Row):

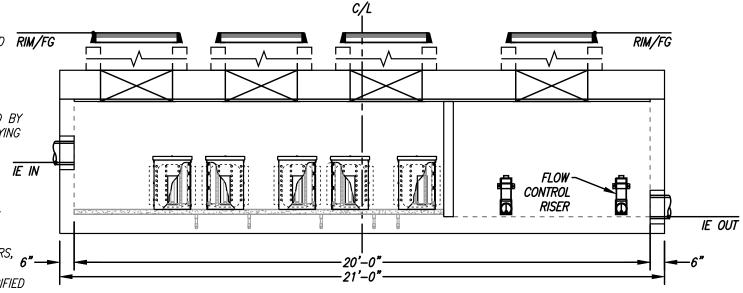
Total Woven Geotextile Required: 323 square yards

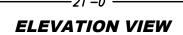

Impervious Liner Required: 0 square yards

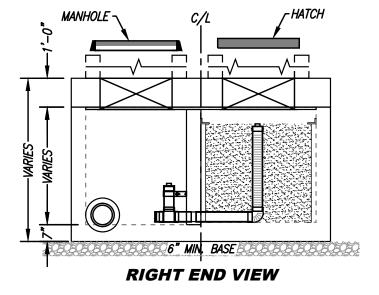
MINMUM COVER TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, INCREASE COVER TO 24"

PROJECT NUMBE			
PROJECT NAME			
PROJECT LOCATI	'ON		
STRUCTURE ID			
	TREATMENT	REQUIRED	
	FLOW BAS	SED (CFS)	
	0.5	577	
PEAK BYPASS R	PEQUIRED (CFS) -	IF APPLICABLE	OFFLINE
PIPE DATA	I.E.	MATERIAL	DIAMETER
INLET PIPE 1			
INLET PIPE 2	N/A	N/A	N/A
OUTLET PIPE			
	PRETREATMENT	BIOFILTRATION	DISCHARGE
RIM ELEVATION			
SURFACE LOAD	DIRECT TRAFFIC		

⁻PATENTED PERIMETER r*WETLANDMEDIA BED* VOID AREA VERTICAL UNDERDRAIN MANIFOLD INLET PIPE DRAIN OUTLET PIPE -PRE-FILTER SEE NOTES DOWN LINE SEE NOTES **CARTRIDGE PLAN VIEW**


* PRELIMINARY NOT FOR CONSTRUCTION


INSTALLATION NOTES


- CONTRACTOR TO PROVIDE ALL LABOR, EQUIPMENT, MATERIALS AND INCIDENTALS REQUIRED TO OFFLOAD AND INSTALL THE SYSTEM AND RIM/FG APPURTENANCES IN ACCORDANCE WITH THIS DRAWING AND THE MANUFACTURERS' SPECIFICATIONS, UNLESS OTHERWISE STATED IN MANUFACTURER'S CONTRACT.
- 2. UNIT MUST BE INSTALLED ON LEVEL BASE. MANUFACTURER RECOMMENDS A MINIMUM 6" LEVEL ROCK BASE UNLESS SPECIFIED BY THE PROJECT ENGINEER. CONTRACTOR IS RESPONSIBLE FOR VERIFYING PROJECT ENGINEER'S RECOMMENDED BASE SPECIFICATIONS.
- CONTRACTOR TO SUPPLY AND INSTALL ALL EXTERNAL CONNECTING PIPES. ALL PIPES MUST BE FLUSH WITH INSIDE SURFACE OF CONCRETE (PIPES CANNOT INTRUDE BEYOND FLUSH). INVERT OF OUTFLOW PIPE MUST BE FLUSH WITH DISCHARGE CHAMBER FLOOR. ALL PIPES SHALL BE SEALED WATERTIGHT PER MANUFACTURER'S STANDARD CONNECTION DETAIL.
- CONTRACTOR RESPONSIBLE FOR INSTALLATION OF ALL PIPES, RISERS, MANHOLES, AND HATCHES. CONTRACTOR TO USE GROUT AND/OR BRICKS TO MATCH COVERS WITH FINISHED SURFACE UNLESS SPECIFIED OTHERWISE.
- VEGETATION SUPPLIED AND INSTALLED BY OTHERS. ALL UNITS WITH VEGETATION MUST HAVE DRIP OR SPRAY IRRIGATION SUPPLIED AND INSTALLED BY OTHERS.
- 7. CONTRACTOR RESPONSIBLE FOR CONTACTING CONTECH FOR ACTIVATION OF UNIT. MANUFACTURER'S WARRANTY IS VOID WITHOUT PROPER ACTIVATION BY A CONTECH REPRESENTATIVE.

GENERAL NOTES

- MANUFACTURER TO PROVIDE ALL MATERIALS UNLESS OTHERWISE NOTED.
- ALL DIMENSIONS, ELEVATIONS, SPECIFICATIONS AND CAPACITIES ARE SUBJECT TO CHANGE. FOR PROJECT SPECIFIC DRAWINGS DETAILING EXACT DIMENSIONS, WEIGHTS AND ACCESSORIES PLEASE CONTACT CONTECH.

TREATMENT FLOW (CFS)	0.577
OPERATING HEAD (FT)	3.4
PRETREATMENT LOADING RATE (GPM/SF)	2.0
WETLAND MEDIA LOADING RATE (GPM/SF)	1.0

MWS-L-8-20-V-UG STORMWATER BIOFILTRATION SYSTEM STANDARD DETAIL

Attachment D

Operations and Maintenance (O&M) Plan

Operations and Maintenance (O&M) Guidelines

Property:

Walnut Business Park – Lot 1
South Lemon Avenue and Paseo Del Prado
Walnut, CA 91789

Prepared for:

IDS Real Estate Group 515 South Figueroa Street, 16th Floor Los Angeles, CA 90071 TEL: (213) 362-9300

Prepared by:

Atlas Civil Design 872 Higuera Street San Luis Obispo, California (213) 810-8470

Operations and Maintenance Plan Funding:

The owner, IDS Real Estate Group, is aware of the maintenance responsibilities of the proposed BMPs. A funding mechanism is in place to maintain the BMPs at the frequency stated in the LID Plan.

Exhibit A, Operations and Maintenance Plan

BMP Applicable? Yes/ No	BMP Name and BMP Implementation, Maintenance, and Inspection Procedures	Implementation, Maintenance, and Inspection Frequency and Schedule	Person or Entity with Operation and Maintenance Responsibility			
	Non-Structural Source Control BMPs					
Yes	Education for Property Owners, Employees, and Occupants This will be addressed through educational materials. All included materials provide ways of mitigating stormwater pollution in everyday activities associated with residents as well as employees of the property management company and their sub-contractors. Practical informational materials are provided to employees, occupants, or tenants to increase the public's understanding of stormwater quality, sources of pollutants, and what they can do to reduce pollutants in stormwater.	The distribution of these materials will be the responsibility of IDS Real Estate Group or at the initial hiring on an employee.	IDS Real Estate Group			
Yes	Activity Restriction (CC&Rs) Covenant, Conditions & Restrictions for the development are to be established within the appropriate documents which prohibit activities that can result in discharges of pollutants.	The distribution of these materials will be the responsibility of IDS Real Estate Group or at the initial hiring on an employee.	IDS Real Estate Group			
Yes	Common Area Landscaped Management Specific practices are followed and ongoing maintenance is conducted to minimize erosion and over-irrigation, conserve water, and reduce pesticide and fertilizer applications.	Landscape maintenance should be practiced at least once per week or to the desire of the Medical Office staff. Overall landscape care should be inspected monthly.	IDS Real Estate Group will maintain or hire professionals to manage the upkeep of the project's landscaped areas.			
Yes	BMP Maintenance In order to ensure adequate and comprehensive BMP implementation, all responsible parties are identified for implementing all non-structural and structural BMPs, cleaning, inspection, and other maintenance activities are specified including responsible parties for conducting such activities.	2 Inspections/ Cleanings per year per manufacturer's specifications starting on or near October 1 st (before the rainy season)	IDS Real Estate Group will maintain or hire professionals to manage the upkeep of the project's BMPs			
Yes	Title 22 CCR Compliance Hazardous waste is managed properly through compliance with applicable Title 22 regulations. Hazardous materials or wastes will be generated,	The distribution of these materials will be the responsibility of IDS Real	IDS Real Estate Group			

	handled, transported, or disposed of in association with the project, measures are taken to comply with applicable local, state, and federal regulation to avoid harm to humans and the environment.	Estate Group or at the initial hiring on an employee.		
	Common Area Litter Control The proposed project will have various trash receptacles located near the	It will be the responsibility of the IDS Real Estate Group to		
Yes	common areas. Trash management and litter control procedures are specified within this report, including responsible parties, and implemented to reduce pollution of drainage water.	empty and maintain the upkeep of these areas on a weekly basis.	IDS Real Estate Group	
Yes	Employee/ Tenant Training Practical informational materials and/or training are provided to employees at the initial time of hiring by the HOA to increase their understanding of stormwater quality, sources of pollutants, and their responsibility for reducing pollutants in stormwater.	The distribution of these materials will be the responsibility of IDS Real Estate Group or at the initial hiring on an employee.	IDS Real Estate Group	
Yes	Housekeeping of Loading Docks	Common inspection should occur weekly or prior to any significant storm events by method of clearing any trash and oil.	IDS Real Estate Group	
Yes	Common Area Catch Basin Inspection In order to ensure adequate and comprehensive BMP implementation, all responsible parties are identified for implementing all non-structural and structural BMPs, cleaning, inspection, and other maintenance activities are specified including responsible parties for conducting such activities.	Common inspection should occur weekly or prior to any significant storm events by method of clearing any trash/debris from the catch basin.	IDS Real Estate Group	
Yes	Street Sweeping Private Streets and Parking Lots Regular sweeping is conducted to reduce pollution of drainage water.	City's Street Sweeping Services or approved Private Company on a weekly basis	IDS Real Estate Group	
No	Retail Gasoline Outlets			
	Structural Source Control E			
Yes	Provide Storm Drain System Stenciling and Signage Catch Basin Stenciling and Signage will be placed on all on-site catch basins to the satisfaction of the City Engineer.	Stenciling and Signage should be implemented prior to construction completion by the Contractor. Any defacement of the signage should be addressed	IDS Real Estate Group	
		immediately by IDS Real Estate Group		

No	Design and Construct Outdoor Material Storage Areas to Reduce Pollutant Introduction		
	Design and Construct Trash and Waste Storage Areas to Reduce Pollutant	It will be the responsibility of	
	Introduction	IDS Real Estate Group to	
Yes		empty on a daily basis and	IDS Real Estate Group
		maintain the upkeep of these	
		areas on a weekly basis.	
	Use Efficient Irrigation Systems and Landscape Design	Efficient irrigation and	
	Site efficient irrigation and landscaping has been implemented by the	landscaping should be	
	project's landscape architect to the satisfaction of the City Engineer and	implemented prior to	
	Planning Department.	construction completion by	
		the Contractor. IDS Real	IDS Real Estate Group w
Yes		Estate Group will be	maintain or hire professio
163		responsible for the upkeep.	to manage the upkeep of
		Irrigation piping, timers, and	project's landscaping.
		landscaped areas should be	
		inspected at least 4 times per	
		year by IDS Real Estate Group	
		or a professional landscaper.	
	Protect Slopes and Channels and Provide Energy Dissipation		IDS Real Estate Group w
			maintain or hire professio
Yes			to manage the upkeep of
			project's landscaping ar
			slopes.
	Loading Docks		IDS Real Estate Group w
Yes			maintain or hire professio to manage the upkeep of
			project's Loading Dock
No	Maintenance Bays		project's Loading Dock
No	Vehicle Wash Areas		
No	Outdoor Processing Areas		
No	Equipment Wash Areas		
No	Fueling Areas		
No	Hillside Landscaping		
No	Wash Water Controls for Food Preparation Areas		

	Treatment Control BMPs				
Yes	BMP #1 – Underground detention system	See Stormtech manufacturer recommendations attached herein for the implementation, maintenance, and inspection information.	IDS Real Estate Group will maintain or hire professionals to manage the upkeep of the project's BMP's.		
Yes	Modular Wetland	See Contech's manufacturer recommendations attached herein for the implementation, maintenance, and inspection information.	IDS Real Estate Group will maintain or hire professionals to manage the upkeep of the project's Modular Wetland systems.		

Required Permits

This section must list any permits required for the implementation, operation, and maintenance of the BMPs. Possible examples are:

• No required permits are needed for the implementation, operation, and maintenance of the previously listed BMPs.

Forms to Record the BMP Implementation, Maintenance, and Inspection

The form that will be used to record the implementation, maintenance, and inspection of the BMPs is attached.

Recordkeeping

All records must be maintained for at least five (5) years and must be made available for review upon request.

RECORD OF BMP IMPLEMENTATION, MAINTENANCE, AND INSPECTION

Today's Date: _____

Name of Person Performing Activity:			
(Printed)			
	Signature:		
BMP Name (As Shown on O&M Plan)	Brief Description of Implementation, Maintenance, and Inspection Activity Performed		
(ris silverille all risal)	Thamsenance, and mopeonion reality is another a		

Attachment E

Master Covenant Agreement (MCA)

RECORDING REQUESTED BY AND MAIL TO:

APPROVED BY:___

(Print Name)

Space above this line is for Recorder's use

COVENANT AND AGREEMENT REGARDING THE MAINTENANCE OF LOW IMPACT DEVELOPMENT (LID) & NATIONAL POLLUTANTS DISCHARGE ELIMINATION SYSTEM (NPDES) BMPs

	NATIONAL FOLLUTANTS DISCHARGE ELI	MINATION STSTEM (NFDES) BWFS		
The undersigned, ("Owner"), hereby certifies that it owns the real property described as follows: ("Subject Property"), located in the County of Los Angeles, State of California:				
	LEGAL DESCRI	<u>PTION</u>		
ASSESSOR'S ID #	TRACT NO	LOT NO		
ADDRESS:				
	quirements of County of Los Angeles' Green Building Sta ent Standards. The following post-construction BMP fea	ndards Code, Title 31 Section 4.106.5 (LID), and Title 12, Chapter 12.84 tures have been installed on the Subject Property:		
□ Green roof	l pit ofiltration er box vious surfaces			
diagram attached hereto	as Exhibit 1.	BMP feature installed on the Subject Property is identified on the site		
	s and agrees to maintain the above-described post-consi ID/NPDES Maintenance Guidelines, attached hereto as l	truction BMP features in a good and operable condition at all times, and Exhibit 2.		
Owner further covenants until they have been rep Development Standards	aced with other post-construction BMP features in accord	BMP features shall not be removed from the Subject Property unless and dance with County of Los Angeles' Title 12, Chapter 12.84 – Low Impact		
Owner further covenants	and agrees to maintain all drainage devices located with	nin his/her property in good condition and operable condition at all times.		
regarding the post-cons		roperty, Owner shall provide printed educational materials to the buyer Property, including the type(s) and location(s) of all such features, and		
Property and shall inure	nant and Agreement on behalf of itself and its successors to the benefit of the County of Los Angeles and be binding ect until the release of this Covenant and Agreement by t	s and assigns. This Covenant and Agreement shall run with the Subject gupon Owner, future owners, and their heirs, successors and assignees, he County of Los Angeles, in its sole discretion.		
Owner(s):				
By:	Date:			
By:	Date:			
	r other officer completing the attached certificate ver th the certificate is attached, and not the truthfulne	erifies only the identity of the individual who signed the ss, accuracy, or validity of that document.		
(PLEASE ATTACH NO	,			
	FOR DEPARTMENT BY COUNTY OF LOS ANGELES BUILDING AND SAFI	<u>USE ONLY:</u> ETY DIVISION PRIOR TO RECORDING.		

(Signature)

Permit No._

_ Date ____

Attachment F

Infiltration Test Report

March 13, 2023

Matt Katz IDS Real Estate Group 515 South Figueroa Street, 16th Floor Los Angeles, CA 90071

Re: Addendum 1 - Field Percolation Testing
Proposed Walnut Business Center
Valley Boulevard and South Lemon Avenue
Walnut, California 91789
Langan Project No. 700108301

Dear Matt:

Langan Engineering and Environemental Services, Inc. (LANGAN) previously performed a geotechnical investigation for the proposed Walnut Business Center to be constructed at the north corner of Valley Boulevard and South Lemon Avenue in Walnut, California. The results of our geotechnical investigation were summarized in a draft geotechnical report dated December 15, 2021.

Our services were performed in accordance with our proposal dated January 6, 2023 and the Professional Services Agreement, executed January 12, 2023.

This letter (Addendum 1) summarizes field percolation testing performed in a subsequent mobilization as part of our overall investigation.

Field Percolation Testing

Field Percolation Test Well Installation

To supplement the data from our geotechnical investigation, five borings, P-1 through P-5, were drilled at the approximate locations shown on Figure 1. The locations of the borings were selected based on our discussions with the project civil engineer. The borings were drilled between approximately 5 to 10 feet below the existing ground surface (bgs) using a truck-mounted drill rig equipped with an eight-inch, outside diameter hollow-stem auger.

We performed standard penetration test (SPT) sampling within the borings and maintained a log of the subsurface conditions encountered.

Upon the completion of drilling, the boreholes were converted to percolation test wells by installing perforated PVC pipe and gravel to fill the annular space between the PVC pipe and the borehole sidewalls.

The test well was installed in general accordance with the *Boring Percolation Test Procedure* outlined in the *County of Los Angeles, Department of Public Works, Guidelines for Geotechnical Investigation and Reporting Low Impact Development Stormwater Infiltration Manual (LA County Guidelines, GS200.2)*, dated June 30, 2021.

Subsurface Conditions

General subsurface conditions encountered at the site are summarized in our Section 2.2 of our draft geotechnical investigation report dated December 15, 2021.

Addendum 1 Proposed Walnut Business Center Valley Boulevard and South Lemon Avenue Walnut, California Langan Project No. 700108301

Asphalt concrete pavement (AC) 2.5- to 3.5-inches in thickness, underlain by aggregate base (AB) 3-to 4-inches in thickness, was encountered in the borings.

The pavement section in the borings was underlain by artificial fill soils. Fill soils were encountered to depths of approximately 4 to 7 feet bgs. The fill soils consisted of very moist, firm to stiff clay to clay with silt.

Native soil, consisting of Quartenary-age young alluvial fan deposits were encountered beneath the fill in each boring. The native soils consisted predominantly of moist to very moist, medium stiff to hard sandy silt, silt, clay, and clay with silt.

Groundwater was not encountered in borings P-1 through P-5.

As summarized in our geotechnical investigation report, the depth to groundwater was measured between depths of 16 and 24½ feet below ground surface (bgs). Additionally, the historical high groundwater level (HHGWL) is on the order of approximately 20 feet bgs.

Logs of our supplemental borings are presented in Attachment A.

Field Percolation Testing and Results

After completion of the well construction, the wells were pre-soaked in advance of field percolation testing. Pre-soaking and subsequent field percolation testing was performed in general conformance with Los Angeles County guidelines.

The testing was repeated in the test wells until the measured rate of percolation stabilized and county testing requirements were achieved. Twelve trials were performed within each test well.

The results of the field percolation testing are summarized in Table 1 and presented in Attachment B.

Field Percolation Test #	Depth (Feet)	Ground Surface Elevation (Feet, NAVD88)	Test Elevation (Feet, NAVD88)	USCS Soil Type	Design Infiltration Rate (in/hr)
P-1	10	526	516	ML	0.01
P-2	5	525	520	CL	0.01
P-3	10	524	514	CL	0.00
P-4	5	526	521	ML	0.07
P-5	5	529	524	CL	0.00

Table 1 - Summary of Percolation Testing

The procedure outlined in the LA County Guidelines requires the use of reduction factors to account for the test method used, the variability of subsurface conditions across the site, and the long-term serviceability of the infiltration system. Please note the above test results include the minimum reduction factor of 3 as outlined in the LA County Guidelines.

Conclusions

Based on the results of the percolation testing, we have calculated design infiltration rates of 0.00 to 0.07 inches per hour for the site.

These design infiltration rates are below the minimum allowable design infiltration rate of 0.3 inches per hour; therefore, infiltration at the site is not feasible and an alternative WQMP system will be necessary.

Langan Project No. 700108301

signed 3/13/23

Closing

We appreciate the opportunity to have provided these services for this project. Should you have any questions regarding this letter, please feel free to contact us.

Sincerely,

Langan Engineering and Environmental Services, Inc.

Shaun Wilkins

Senior Project Geologist

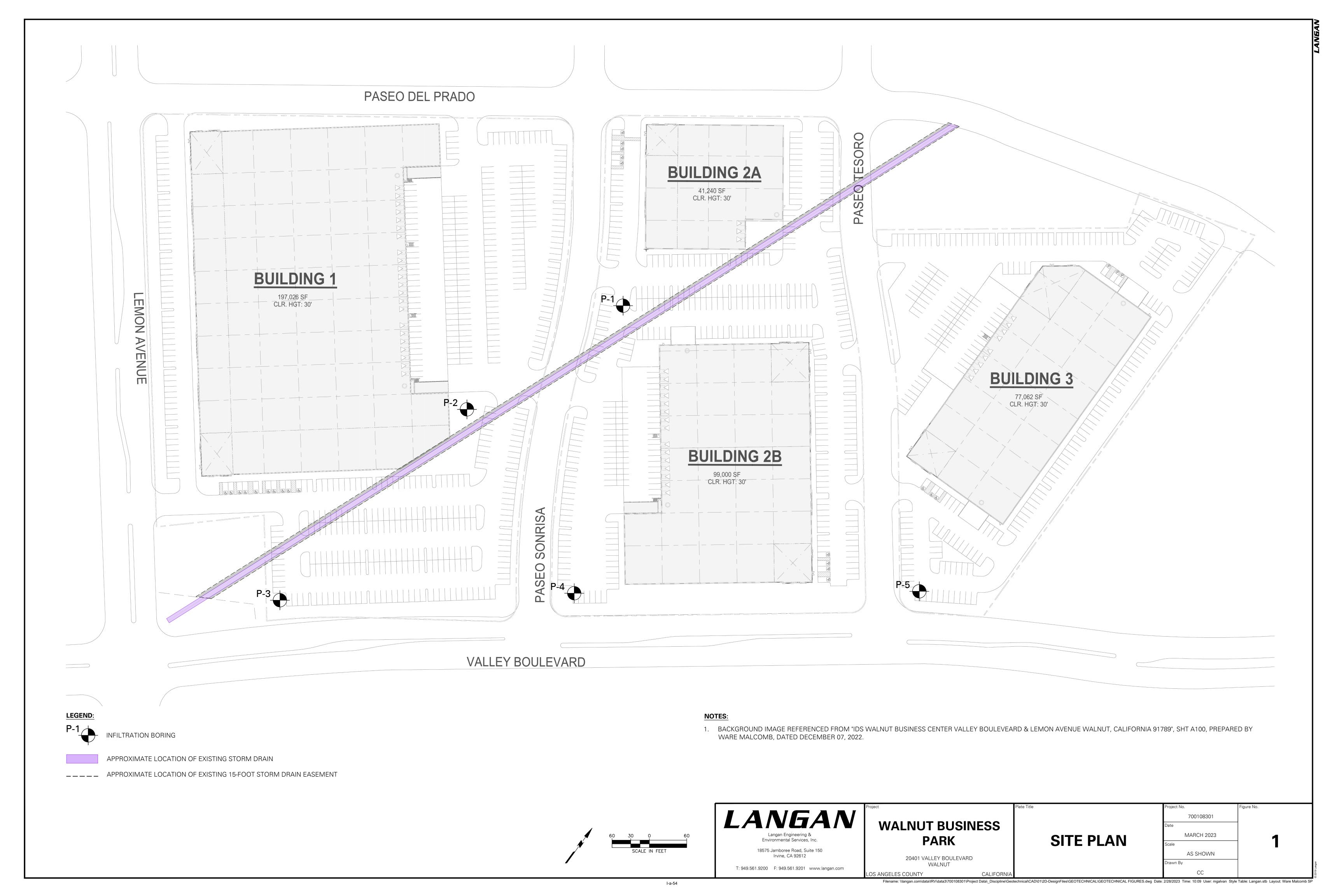
Shaw & ilking

Claudia Rangel Staff Engineer

GE2493 GE2493 A COPE CONTROL OF CALIFORNIA COPE CALIFORNIA COP

signed 3/13/23

Christopher J. Zadoorian Senior Associate


Enclosures: Figure 1 – Site Plan

Attachment A – Boring Logs

Attachment B - Percolation Test Results

\\langan.com\\data\\R\\data\\700108301\\Project Data_Discipline\\Geotechnica\\Reports\\Percolation Lette\\700108301 - geoA1 - 03.13.23-cr-mg-shw.docx

FIGURE

ATTACHMENT A Boring Logs

			UNIFIED SOIL CLASSIFICATION SYSTEM
Major	Divisions	Symbols	Typical Names
ier ()	Gravels	GW	Well-graded GRAVELS with less than 5% fines or gravel-sand mixtures
Soil is larg	(more than half of	GP	Poorly-graded GRAVELS with less than 5% fines or gravel-sand mixtures
oil is	coarse fraction is retained/> no. 4 sieve	GM	Silty gravels, gravel-sand-silt mixtures;GRAVELS with greater than 12% ML or MH fines
-Grained	size)	GC	Clayey gravels, gravel-sand-clay mixtures; GRAVELS with greater than 12% CL or CH
Coarse-Grained Soil (more than half of soil is larger than the no. 200 sieve size)	Sands	sw	Well-graded sands with less than 5% fines or gravelly sands, little or no fines
oarse than t	(more than half of	SP	Poorly-graded sands with less than 5% fines or gravelly sands, little or no fines
ore han	coarse fraction passes/< no. 4 sieve	SM	Silty sands, sand-silt mixtures; SANDS with greater than 12% ML or MH fines
(j. 1)	size)	sc	Clayey sands, sand-clay mixtures; SANDS with greater than 12% CL or CH fines
si 00	Cite and Class	ML	Inorganic silts and clayey silts of low plasticity, sandy non-plastic SILT, gravelly SILT
Soils of soil no. 2(Silts and Clays LL = < 50	CL	Inorganic clays of low to medium plasticity, silty CLAY, trace fines, sand
alf of the r		OL	Organic silts and organic silt-clays of non-plastic to medium plasticity
•Grained Soils than half of soil is ir than the no. 200 sieve size)		МН	Inorganic medium plastic silts, medium plastic to very plastic clayey silts.
Fine-Grained Soi (more than half of sc smaller than the no. sieve size)	Silts and Clays LL = > 50	СН	Inorganic plastic to very plastic CLAYS, sandy plastic CLAY
mol (mol sma		ОН	Organic medium plastic to plastic silty CLAYS, and very plastic CLAYS
Highly O	rganic Soils	PT	Peat and other highly organic soils

	GRAIN SIZE CHAR	T
	Range of G	rain Sizes
Classification	U.S. Standard Sieve Size	Grain Size in Millimeters
Boulders	Above 12"	Above 305
Cobbles	12" to 3"	305 to 76.2
Gravel coarse fine	3" to No. 4 3" to ¾" ¾" to No.4	76.2 to 4.75 76.2 to 19.1 19.1 to 4.75
Sand coarse medium fine	No. 4 to No. 200 No. 4 to No. 10 No. 10 to No. 40 No. 40 to No. 200	4.76 to 0.075 4.76 to 2.00 2.00 to 0.420 0.240 to 0.075
Silt and Clay	Below No. 200	Below 0.075

GROUNDWATER READING

Groundwater at completion

Groundwater at 24 hours

SOIL DESCRIPTIONS/SYMBOLS

Well-graded GRAVEL (GW)

Poorly-graded GRAVEL (GP)

Silty GRAVEL (GM)

Clayey GRAVEL (GC)

Well-graded SAND (SW)

Poorly-graded SAND (SP)

Silty SAND (SM)

Clayey SAND (SC)

AGGREGATE BASE

Low-Plasticity SILT (ML)

High-Plasticity SILT (MH)

Low-Plasticity CLAY (CL)

High-Plasticity CLAY (CH)

SANDSTONE

CLAYSTONE

SILTSTONE

ASPHALT

SAMPLER TYPE

SPT -

Modified California (CR) split-barrel ring sampler with 3.0-inch outside diameter CR and a 2.5-inch inside diameter.

> Standard Penetration Test (SPT) split-barrel sampler with a 2.00-inch outside diameter with a 1.5-inch inside diameter

Shelby Tube (3.0-inch outside diameter, thin-walled tube) advanced with hydraulic pressure

BAG -Bulk Sample

C -Core Barrel

LANGAN

Langan Engineering & Environmental Services, Inc.

18575 Jamboree Road, Suite 150, Irvine, CA 92612 : 949.561.9200 F: 949.561.9201 www.langan.com

Figure Title

BORING LOG LEGEND

APPENDIX A

	\V U /	T/V	Log		_			P-1	l		_	S	Shee	et	1	of	1
Project	Walnut Business Park	<			ect No.			70010)8301								
Location	20401 Valley Bouleva	rd		Eleva	ation ar	nd Da		526 (feet, l	MGI	`						
Drilling Compa		ııu		Date	Starte	d		J20 (icci, i	IVIOL		te Fir	nishe	d			
Drilling Equipr	2R Drilling			Com	pletion	Dept		1/30/2	2023		Ro	ck De	enth		01/3	30/2023	
	CME-75 Truck-mount	ted drill rig		Com	piction	БСР			10 ft							-	
Size and Type	of Bit 8-inch O.D. Hollow St	em Auger		Num	ber of	Samp	oles	Distur	bed	2	2	Undi	sturb	ed	_	Core	_
Casing Diame	ter (in)		Casing Depth (ft)	Wate	er Leve	l (ft.)		First				Com	pletic		_	24 HR.	
Casing Hamm	ier_	Weight (lbs)	Drop (in)	Drilli	ng Fore	eman	1	<u></u>				<u> </u>			-	<u> </u>	
Sampler	2-inch O.D. SPT Split	-Barrel		Field	l Engin	eer	Co	dy									
Sampler Hami		Weight (lbs)	Drop (in) 30		Liigiii	CCI	S.	Wilkiı	ns								
SYMBOL (tt)		Sample Description			Depth Scale	lber		Sam	ple Da	N-	-Value	Contact	Depth		We	ell Diagra	m
HE MAN (ft) +526.0		3-inches thick, AB = 4-			- 0 —	Number	Туре	(in) Penetr	resist BL/6in	,	20 30 4		۵				
519.0 519.0	Young Alluvial Far CLAY with Silt (CL) stringers. Sandy SILT (ML), o	, olive gray, very stiff, m	ery fine sand.	y	1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 10 - 11 - 12 - 13 - 15 - 16 - 17 - 18 - 19 - 19 - 19 - 19 - 19 - 19 - 19			9	8	179	32	7	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c			-10 feet of diameter, perforate pipe with around p 3/4-inch the annu	d PVC sock ipe. gravel lar spa of gravel

	NG/	1/V	Log		oring			Р	-2				Sh	eet	1	of	1
Project	Walnut Business Park				•			700	10830	01							
Location				Ele	vation a	and D	atum				21.\						
Drilling Compar	20401 Valley Boulevar ny	u		Da	te Start	ed		525	(feet	., IVIS		ate	Finis	hed			
Orilling Equipme	2R Drilling			Co	mpletio	n Dei		01/3	0/202	3	F	Rock	Dept	h	01/	30/2023	
	CME-75 Truck-mount	ed drill rig			mpicao	ii Doj	Jui 1		5	ft	ľ	took	Борі			-	
Size and Type o	of Bit 8-inch O.D. Hollow Sto	em Auger		Nu	mber of	Sam	ples	Dist	urbed		1	Un	ndistu	rbed	_	Core	_
Casing Diamete	er (in) -	Ü	Casing Depth (ft)	Wa	ater Lev	el (ft.)	Firs					mple	tion	_	24 HR.	_
Casing Hamme	<u>r</u>	Weight (lbs)	Drop (in)	Dri	lling Fo	rema		_	-				<u>-</u>			1 - 2	
Sampler	2-inch O.D. SPT Split-			Fie	ld Engi	neer	С	ody									
Sampler Hamm	er Automatic	Weight (lbs) 140	Drop (in) 30				S	. Wil						1			
SYMBOL (tt)		Sample Description			Depth Scale	Number	Type		Penetr. resist ald		N-Valı (Blows	/ft)	Contact		W	ell Diagra	ım
+525.0	Asphalt Concrete =	3-inches thick, AB = 3-i	nches thick.		_ 0 -	Z	+	-		1	0 20 30	0 40	0.5		4:34		
524.5	Artificial Fill (af)	ve brown and olive gray			2 3								0.5			-5 feet of diameter perforate pipe with	; ed PVC
+521.0 +520.0	to medium sand, cal Total Depth = 5 feet Groundwater not en Boring converted to	ve gray, medium stiff, ve liche stringers present.			11 12 13	9-1	IdS	18	2 2 3	5.50			5.0			pipe with around p 3/4-inch the annu—3 inches 3/4-inch with solic on pipe.	oipe. gravel llar spa of gravel

NU CA	4/V	Log				P-3		_	Sł	neet	1	of	1
Walnut Business Parl	k					001083	01						
20404 Valley Bayleye	. mad		Elevatio	n and D		-04 (for	+ MC	1.\					
	ard		Date Sta	arted	•	524 (1 0 6	et, ivio		e Finis	shed			
2R Drilling			Comple	tion Don		/30/202	23	Por	k Dor	ath.	01/3	30/2023	
	ted drill rig		Comple	uon Dep	uı	10	ft	Roc	k Deb)UT		_	
e of Bit			Number	of Sam	ples	Disturbed			Jndist	urbed		Core	
	tem Auger	Casing Depth (ft)	Water L	evel (ft.)	F	irst				etion		24 HR.	
- ner	Weight (lbs)	Drop (in)				<u> </u>			<u> </u>		-	<u> </u>	-
2-inch O.D. SPT Solit	- 	-	F:-14 F:-		Cod	dy							
mer	Weight (lbs)	Drop (in)	Trieia En	igineer	s I	Wilkins							
	140		' T_			Sample			5	_	۱۸/۵	all Diagrar	
	Sample Description			oth industrial	Type	(in) Penetr. resist	<u>.</u> [<u>.</u>	Blows/ft)		Deptr	VVC	oli Diagrai	11
	3.5-inches thick, AB =	3.5-inches thick	 0	1 + 2	+	- -	10	20 30 4					
CLAY (CL), light ye very moist, few fine Dark olive gray mot Young Alluvial Fa CLAY (CL), olive gr present. Total Depth = 10 fe Groundwater not er Boring converted to	tled. n Deposits (Qya) ray, stiff, very moist, calinated and countered. percolation test well.	che stringers				8	14·					-10 feet of diameter, perforater pipe with around pi 3/4-inch of the annul	d PVC sock pe. gravel ar spa of gravel
	Walnut Business Par 20401 Valley Bouleval any 2R Drilling ment CME-75 Truck-moun e of Bit 8-inch O.D. Hollow Sieter (in) - ner 2-inch O.D. SPT Split mer Automatic Asphalt Concrete = Artificial Fill (af) CLAY (CL), light ye very moist, few fine Dark olive gray mot Young Alluvial Fa CLAY (CL), olive gr present.	2R Drilling ment CME-75 Truck-mounted drill rig e of Bit 8-inch O.D. Hollow Stem Auger eter (in)	Walnut Business Park 20401 Valley Boulevard any 2R Drilling ment CME-75 Truck-mounted drill rig 3 of Bit Sench O.D. Hollow Stem Auger Ster (in)	Walnut Business Park 20401 Valley Boulevard any 2R Drilling Complete CME-75 Truck-mounted drill rig of Bit 8-inch O.D. Hollow Stem Auger Iter (In) Casing Depth (ft) Valter L Veriff Automatic Sample Description Asphalt Concrete = 3.5-inches thick, AB = 3.5-inches thick Artificial Fill (af) CLAY (CL), light yellowish brown and olive gray mottled, stiff, very moist, few fine to medium sand. [FILL] Total Depth = 10 feet Groundwater not encountered. Boring backfilled with soil cuttings and patched with AC. Project Casing Depth (ft) Water L Drop (in) Drop (in) Drop (in) Drop (in) Drop (in) Asphalt Concrete = 3.5-inches thick, AB = 3.5-inches thick Artificial Fill (af) CLAY (CL), light yellowish brown and olive gray mottled, stiff, very moist, few fine to medium sand. [FILL] Total Depth = 10 feet Groundwater not encountered. Boring converted to percolation test well. Boring backfilled with soil cuttings and patched with AC.	Walnut Business Park 20401 Valley Boulevard any 2R Drilling	Walnut Business Park 20401 Valley Boulevard any 2R Drilling ment CME-75 Truck-mounted drill rig of Bit S-inch O.D. Hollow Stem Auger ster (in)	Walnut Business Park 20401 Valley Boulevard any 20401 Valley Boulevard 2R Drilling ment CME-75 Truck-mounted drill rig of Bit 8-inch O.D. Hollow Stern Auger ster (in) Weight (lbs) Drop (in) Casing Depth (ft) Water Level (ft.) First Value Fried Engineer S. Wilkins Sample Description Asphalt Concrete = 3.5-inches thick, AB = 3.5-inches thick Artificial Fill (af) CLAY (CL.), light yellowish brown and olive gray mottled, stiff, very moist, few fine to medium sand. [FILL] Pyoung Alluvial Fan Deposits (Qva) CLAY (CL.) olive gray, stiff, very moist, caliche stringers present. Project No. 7001083 Flevation and Datum 524 (fee Ompletion Depth 10 Author of Samples Cody Field Engineer S. Wilkins Sample Depth Scale Author of Samples S. Wilkins Sample Depth Scale Author of Marker of Author of Samples S. Wilkins Sample Depth Scale Author of Marker of Author of Samples S. Wilkins Sample Author of Marker of Author of Samples S. Wilkins Sample Author of Marker of Author of Samples S. Wilkins Sample Author of Marker of Author of Samples S. Wilkins Sample Author of Marker of Author of	Walnut Business Park 20401 Valley Boulevard any 20401 Valley Boulevard 2R Drilling ment CME-75 Truck-mounted drill rig sof Bi S-inch O.D. Hollow Stem Auger alter (in) Casing Depth (ft) Weight (lbs) Drop (in) 2-inch O.D. SPT Split-Barrel Mer Automatic Sample Description Sample Description Asphalt Concrete = 3.5-inches thick, AB = 3.5-inches thick Artificial Fill (af) CLAY (CL), light yellowish brown and olive gray mottled, stiff, very moist, few fine to medium sand. [FILL] Pound Alluvial Fan Deposits (Qva) CLAY (CL), olive gray, stiff, very moist, caliche stringers Project No. 700108301 Blevation and Datum 524 (feet, MS 01/30/2023 Completion Depth 10 ft Number of Samples 10 ft Project No. 700108301 Blevation and Datum 524 (feet, MS Number of Samples 10 ft Project No. 700108301 Blevation and Datum 524 (feet, MS Number of Samples 10 ft First Cody Field Engineer Sullkins Sample Description Depth Sample Description Sample Description Depth Sample Description Depth Sample Description Sample Description Asphalt Concrete = 3.5-inches thick, AB = 3.5-inches thick Artificial Fill (af) CLAY (CL), light yellowish brown and olive gray mottled, stiff, very moist, few fine to medium sand. [FILL] Dark olive gray mottled. Total Depth = 10 feet Groundwater not encountered. Groundwater not encountered. Groundwater not encountered. Groundwater not encountered. Boring onverted to percolation test well. Boring backfilled with soil cuttings and patched with AC.	Walnut Business Park 20401 Valley Boulevard	Walnut Business Park 20401 Valley Boulevard 20402 Valley Boulevard	Walnut Business Park 20401 Valley Boulevard any 2R Drilling ment CME-75 Truck-mounted drill rig rof Bi S-inch O.D. Hollow Stem Auger text (in) 2-inch O.D. Sample Description Sample Description Sample Description Sample Description Asphalt Concrete = 3.5-inches thick, AB = 3.5-inches thick Artificial Fill Laft CLAY (CL), light yellowish brown and office gray mottled, stiff, very most, few fine to medium sand. [Fill.] Park olive gray mottled. Project No. 700108301 Date Started 01/30/2023 Rock Depth 10 th 10	Walnut Business Park 20401 Valley Boulevard any 2R Orling Both Started O1/30/2023 Completion Depth Shinch O.D. Hollow Stem Auger ref (in) Valer Lovel (it) Sample Description Sample Description Sample Description Sample Description Asphalt Concrete = 3.5-inches thick, AB = 3.5-inches thick Artificial Fill Laft CLAY (CL), light yellowish brown and olive gray mottled, stiff, very most, few fine to medium sand. [FILL] Port (CLAY (CL), light yellowish brown and patched with AC. Total Depth = 10 feet Groundwater not encountered. Boring Description test well. Boring beackfilled with soil cuttings and patched with AC.	Walanut Business Park 20401 Valley Boulevard 2070 2R Chilling CME-75 Truck-mounted drill rig 20 fill 8-Inch O.D. Hollow Stam Auger Casing Depth (fill) 10 ft 9-Inch O.D. SPT Spitt-Barrel 2-Inch O.D. SPT Spitt-Barrel 2-Inch O.D. SPT Spitt-Barrel Sample Description Sample Description Asphalt Concrete = 3.5-inches thick, AB = 3.5-inches thick, Artifical Fill (af) CLAY (CL), light yellowish brown and olive gray mottled, stiff, very moist, few fine to medium sand, [FILL] Pound Altuvial Fan Deposits (Oya) Total Depth = 10 feet Total Depth = 10 feet Concrete ed. Total Depth = 10 feet Total Depth = 10 feet Concrete ed. Total Depth = 10 feet Total Depth = 10 feet Concrete ed. Total Depth = 10 feet Total Depth = 10 feet

LANGAN Log of Boring Sheet of 1 1 Project Project No. Walnut Business Park 700108301 Location Elevation and Datum 20401 Valley Boulevard 526 (feet, MSL) Drilling Company Date Started Date Finished 01/30/2023 01/30/2023 2R Drilling Drilling Equipment Completion Depth Rock Depth CME-75 Truck-mounted drill rig 5 ft Size and Type of Bit Disturbed Undisturbed Core Number of Samples 8-inch O.D. Hollow Stem Auger Casing Diameter (in) Casing Depth (ft) Completion 24 HR. First Water Level (ft.) \mathbf{V} Drilling Foreman Casing Hammer Weight (lbs) Drop (in) Cody Sampler 2-inch O.D. SPT Split-Barrel Field Engineer Weight (lbs) Drop (in) Sampler Hammer 140 30 Automatic S. Wilkins Sample Data MATERIAL SYMBOL Well Diagram N-Value (Blows/ft) Depth Depth Recov. (in) Penetr. resist BL/6in Number Sample Description (ft) Scale 526. 0 Asphalt Concrete = 2.5-inches thick, AB = 4-inches thick. Artificial Fill (af) CLAY (CL), dark olive gray, stiff, very moist. [FILL] 5 feet of 3-inch diameter, 3 perforated PVC pipe with sock SPT around pipe. S-1 8 3/4-inch gravel in the annular space. Young Alluvial Fan Deposits (Qya) "LANGAN.COM"DATA\IRV/DATA3\700108301\PROJECT DATA_DISCIPLINE\GEOTECHNICAL\GINTLOGS\700108301 - PERCOL 3 inches of 5 SILT (ML), light olive brown, very stiff, moist, caliche stringers 3/4-inch gravel present. with solid end cap Total Depth = 5 feet 6 on pipe. Groundwater not encountered. Boring converted to percolation test well. Boring backfilled with soil cuttings and patched with AC. 8 9 12 13 14 16 18

19

20

		/V <i>G</i> /	T/W	L	og of Bo	_	_		Р	-5				Sn	eet	1	of	1
Project		Walnut Business Parl	k			ect No			700	10830)1							
ocation		0040437 " 5 :	d		Elev	ation a	nd D	atum		. /5) \						
Drilling C		20401 Valley Bouleva ny	ara		Date	Starte	ed		529	(feet	, MS	SL) [Date	Finis	hed			
		2R Drilling)1/3(0/2023	3					01/	30/2023	
Prilling E		ent CME-75 Truck-mount	tod drill ria		Com	pletio	n Dep	th		5 f	·		Rock	Dept	:h			
ize and	Type o	of Bit	•		Num	ber of	Sam	nles	Dist	urbed			Ur	ndistu	ırbed		Core	
Casing D	Diamete	8-inch O.D. Hollow Ster (in)	tem Auger	Casing Depth (41				Firs	t		1	Co	omple	etion	-	24 HR.	
	lamma	-	Weight (lbs)	Drop (in)	- 1	er Leve			∇					<u> </u>		-	<u>Ā</u>	
Casing H		-		-	-		Oma		ody									
Sampler		2-inch O.D. SPT Split	Weight (lbs)	Drop (in)		l Engir	neer											
	T Idillilli	Automatic Automatic	140)	80		1	S.	Wil Sa	kins mple [Data			T				
SYM	Elev. (ft)		Sample Description	ı		Depth Scale		Туре		Penetr. resist BI /6in		N-Val (Blows	s/ft)	Contact		W	ell Diagra	m
	+529.0	Concrete = 3.5-inch	nes thick, AB = 3-inche	s thick	-	- 0 -	Z -		ш.	<u> </u>	10	0 20 3	0 40	0.5		1:3		
		Artificial Fill (af) CLAY with Silt (CL)), olive brown and gray ı		1	1 -								0.5				
		stiff, very moist. [FII	LLJ		E]											
					E	2 -	=									 	-5 feet of	
					-	3 -	=									∄%]	diameter perforate	d PV
	+525.0 _				Ė		1	╁		2	11			4.0			pipe with around p	
	. 323.0_	Young Alluvial Fa	n Deposits (Qya)), olive brown, medium :	etiff vory moist	-	4 -	S-	SPT	18	3	7•						3/4-inch	grave
	+524.0_	Total Depth = 5 feet	·	Still, very moist.	<u>F</u>	5 -]	ĮĒ		4	-			5.0		#\C	the annu 3 inches	of
		Groundwater not er Boring converted to		ab ad with concr		6 -	- - -										3/4-inch with solid on pipe.	
		Boring backlilled wil	un son cullings and pall	oned with concre	ele	_	=											
					E	7 -	3											
					E	8 -	=											
					Ė		=											
					E	9 -	=											
					E	10 -	∄ .											
					ŧ	. •	=											
					F	11 -	=											
					Ė	. 10	=											
					F	12 -]											
					E	13 -	=											
					F		=											
					E	14 -	=											
					Ē	15 -	=											
					Ė	10	=											
					F	16 -	1											
					Ė	. –	=											
					-	17 -	=											
					E	18 -	Ξ											
	l l														1			
					ŧ	10	=											
						19 -												

ATTACHMENT B Percolation Test Results

Project:			Walnut Bu	siness Park		Project No.:	700108301	Date:	1/31/2023	
Test Hole No.:			Р	-1		Tested By:	S. Wilkins			
Depth of Test H	lole (ft):		1	0		USCS Soil Classifica	ation:		ML	
PVC Pipe Dimer	nsion:		3-in I.D. F	Perforated		Test Hole Diameter	(in):		8	
Trial No.	Date	Time of Measurement	Initial Depth to Water (ft)	Time of Measurement	Final Depth to Water (ft)	Volume of Water Infiltrated (cu.in.)	Surface Area (sq.in.)	Time Interval (min)	Inflitration Rate (in/hr)	
#1 (Refill)	1/31/2023	7:23 AM	4.93	7:53 AM	4.96	18	1579	30	0.02	
#2 (Refill)	1/31/2023	7:53 AM	4.96	8:23 AM	5.00	24	1570	30	0.03	
#3 (Refill)	1/31/2023	8:23 AM	5.00	8:53 AM	5.06	36	1558	30	0.05	
#4 (Refill)	1/31/2023	8:53 AM	4.85	9:23 AM	4.91	36	1603	30	0.05	
#5 (Refill)	1/31/2023	9:23 AM	4.91	9:53 AM	4.95	24	1585	30	0.03	
#6 (Refill)	1/31/2023	9:53 AM	4.95	10:23 AM	5.01	36	1573	30	0.05	
#7 (Refill)	1/31/2023	10:23 AM	5.01	10:53 AM	5.08	42	1555	30	0.05	
#8 (Refill)	1/31/2023	10:53 AM	4.85	11:23 AM	4.91	36	1603	30	0.05	
#9 (Refill)	1/31/2023	11:23 AM	4.91	11:53 PM	4.96	30	1585	30	0.04	
#10 (Refill)	1/31/2023	11:53 AM	4.95	12:23 PM	5.00	30	1573	30	0.04	
#11 (Refill)	1/31/2023	12:23 PM	5.00	12:53 PM	5.06	36	1558	30	0.05	
#12 (Refill)	1/31/2023	12:53 PM	5.06	1:23 PM	5.12	36	1540	30	0.05	
Comments:	Procedure pro Low Impact D Angeles Depa	test was perform ovided in the "Guid Development Storr rtment of Public V Gunny and warm.	elines for Design, nwater Infiltratior	Investigation, and n," prepared by Co	d Reporting -	Average Stab Reduction RF _t =1, RF _v = Design Infiltration	Factors 1, RF _s =1	0.04 3 0.01		

Project:			Walnut Bu	siness Park		Project No.:	700108301	Date:	1/31/2023	
Test Hole No.:			Р	-2		Tested By:	S. Wilkins			
Depth of Test H	lole (ft):		!	5		USCS Soil Classifica	ation:		CL	
PVC Pipe Dimer	nsion:		3-in I.D. F	Perforated		Test Hole Diameter	(in):		8	
Trial No.	Date	Time of Measurement	Initial Depth to Water (ft)	Time of Measurement	Final Depth to Water (ft)	Volume of Water Infiltrated (cu.in.)	Surface Area (sq.in.)	Time Interval (min)	Inflitration Rate (in/hr)	
#1 (Refill)	1/31/2023	7:25 AM	1.75	7:55 AM	1.80	30	1030	30	0.06	
#2 (Refill)	1/31/2023	7:55 AM	1.80	8:25 AM	1.84	24	1015	30	0.05	
#3 (Refill)	1/31/2023	8:25 AM	1.84	8:55 AM	1.87	18	1003	30	0.04	
#4 (Refill)	1/31/2023	8:55 AM	1.87	9:25 AM	1.89	12	994	30	0.02	
#5 (Refill)	1/31/2023	9:25 AM	1.89	9:55 AM	1.94	30	988	30	0.06	
#6 (Refill)	1/31/2023	9:55 AM	1.94	10:25 AM	1.95	6	973	30	0.01	
#7 (Refill)	1/31/2023	10:25 AM	1.95	10:55 AM	1.97	12	970	30	0.02	
#8 (Refill)	1/31/2023	10:55 AM	1.97	11:25 AM	2.00	18	964	30	0.04	
#9 (Refill)	1/31/2023	11:25 AM	2.00	11:55 AM	2.03	18	955	30	0.04	
#10 (Refill)	1/31/2023	11:55 AM	1.83	12:25 PM	1.86	18	1006	30	0.04	
#11 (Refill)	1/31/2023	12:25 PM	1.86	12:55 PM	1.88	12	997	30	0.02	
#12 (Refill)	1/31/2023	12:55 PM	1.88	1:25 PM	1.91	18	991	30	0.04	
	-					Average Stab	ilizad Rata	<u> </u>	0.03	
Comments:	Procedure pro Low Impact D Angeles Depa	test was perform wided in the "Guid levelopment Storr rtment of Public Vanny and warm.	elines for Design, nwater Infiltratior	Investigation, and n," prepared by Co	d Reporting -	Reduction RF _t =1, RF _v =	Factors 1, RF _s =1	3 0.01		

Project:			Walnut Bu	siness Park		Project No.:	700108301	Date:	1/31/2023	
Test Hole No.:			Р	-3		Tested By:	S. Wilkins			
Depth of Test H	lole (ft):		1	0		USCS Soil Classifica	ation:		CL	
PVC Pipe Dimer	nsion:		3-in I.D. F	Perforated		Test Hole Diameter	(in):		8	
Trial No.	Date	Time of Measurement	Initial Depth to Water (ft)	Time of Measurement	Final Depth to Water (ft)	Volume of Water Infiltrated (cu.in.)	Surface Area (sq.in.)	Time Interval (min)	Inflitration Rate (in/hr)	
#1 (Refill)	1/31/2023	7:28 AM	3.00	7:58 AM	3.00	0	2161	30	0.00	
#2 (Refill)	1/31/2023	7:58 AM	3.00	8:28 AM	3.01	6	2161	30	0.01	
#3 (Refill)	1/31/2023	8:28 AM	3.01	8:58 AM	3.02	6	2158	30	0.01	
#4 (Refill)	1/31/2023	8:58 AM	3.02	9:28 AM	3.08	36	2155	30	0.03	
#5 (Refill)	1/31/2023	9:28 AM	3.08	9:58 AM	3.11	18	2137	30	0.02	
#6 (Refill)	1/31/2023	9:58 AM	3.11	10:28 AM	3.14	18	2128	30	0.02	
#7 (Refill)	1/31/2023	10:28 AM	3.14	10:58 AM	3.18	24	2119	30	0.02	
#8 (Refill)	1/31/2023	10:58 AM	3.18	11:28 AM	3.21	18	2107	30	0.02	
#9 (Refill)	1/31/2023	11:28 AM	3.21	11:58 AM	3.23	12	2098	30	0.01	
#10 (Refill)	1/31/2023	11:58 AM	3.23	12:28 PM	3.24	6	2092	30	0.01	
#11 (Refill)	1/31/2023	12:28 PM	3.24	12:58 PM	3.26	12	2089	30	0.01	
#12 (Refill)	1/31/2023	12:58 PM	3.26	1:28 PM	3.29	18	2083	30	0.02	
Comments:	Procedure pro Low Impact D	test was perform ovided in the "Guid Development Storr rtment of Public V	elines for Design, nwater Infiltratior	Investigation, and n," prepared by Co	d Reporting -	Average Stab Reduction RF _t =1, RF _v =	Factors 1, RF _s =1	3		
		Sunny and warm.				Design Infiltratio	on Rate (in/hr)		0.00	

Project:			Walnut Bu	siness Park		Project No.:	700108301	Date:	1/31/2023	
Test Hole No.:			Р	-4		Tested By:	S. Wilkins			
Depth of Test H	lole (ft):			5		USCS Soil Classifica	ation:		ML	
PVC Pipe Dimer	nsion:		3-in I.D. F	Perforated		Test Hole Diameter	(in):		8	
Trial No.	Date	Time of Measurement	Initial Depth to Water (ft)	Time of Measurement	Final Depth to Water (ft)	Volume of Water Infiltrated (cu.in.)	Surface Area (sq.in.)	Time Interval (min)	Inflitration Rate (in/hr)	
#1 (Refill)	1/31/2023	7:31 AM	0.72	8:01 AM	1.01	175	1341	30	0.26	
#2 (Refill)	1/31/2023	8:01 AM	1.01	8:31 AM	1.27	157	1254	30	0.25	
#3 (Refill)	1/31/2023	8:31 AM	1.27	9:01 AM	1.52	151	1175	30	0.26	
#4 (Refill)	1/31/2023	9:01 AM	1.52	9:31 AM	1.75	139	1100	30	0.25	
#5 (Refill)	1/31/2023	9:31 AM	1.75	10:01 AM	1.95	121	1030	30	0.23	
#6 (Refill)	1/31/2023	10:01 AM	1.95	10:31 AM	2.11	97	970	30	0.20	
#7 (Refill)	1/31/2023	10:31 AM	1.73	11:01 AM	1.89	97	1036	30	0.19	
#8 (Refill)	1/31/2023	11:01 AM	1.89	11:31 AM	2.07	109	988	30	0.22	
#9 (Refill)	1/31/2023	11:31 AM	2.07	12:01 PM	2.24	103	934	30	0.22	
#10 (Refill)	1/31/2023	12:01 PM	1.84	12:31 PM	2.01	103	1003	30	0.20	
#11 (Refill)	1/31/2023	12:31 PM	2.01	1:01 PM	2.16	90	952	30	0.19	
#12 (Refill)	1/31/2023	1:01 PM	2.16	1:31 PM	2.32	97	907	30	0.21	
	1. Percolation	test was perform	ed in accordance	with the Boring P	Percolation Test	Average Stab			0.20	
Comments:	Procedure pro Low Impact D Angeles Depa	ovided in the "Guid Development Storr rtment of Public V Sunny and warm.	elines for Design, nwater Infiltratior	Investigation, an n," prepared by Co	d Reporting -	$ \begin{array}{c} \text{Reduction} \\ \text{RF}_{t} = 1, \text{RF}_{v} = \\ \\ \text{Design Infiltration} \end{array} $	1, RF _s =1	0.07		

Project:			Walnut Bu	siness Park		Project No.:	700108301	Date:	1/31/2023	
Test Hole No.:			Р	-5		Tested By:	S. Wilkins			
Depth of Test H	ole (ft):		į	5		USCS Soil Classifica	ation:		CL	
PVC Pipe Dimer	sion:		3-in I.D. F	Perforated		Test Hole Diameter	(in):		8	
Trial No.	Date	Time of Measurement	Initial Depth to Water (ft)	Time of Measurement	Final Depth to Water (ft)	Volume of Water Infiltrated (cu.in.)	Surface Area (sq.in.)	Time Interval (min)	Inflitration Rate (in/hr)	
#1 (Refill)	1/31/2023	7:34 AM	1.40	8:04 AM	1.40	0	1136	30	0.00	
#2 (Refill)	1/31/2023	8:04 AM	1.40	8:34 AM	1.41	6	1136	30	0.01	
#3 (Refill)	1/31/2023	8:34 AM	1.41	9:04 AM	1.41	0	1133	30	0.00	
#4 (Refill)	1/31/2023	9:04 AM	1.41	9:34 AM	1.42	6	1133	30	0.01	
#5 (Refill)	1/31/2023	9:34 AM	1.42	10:04 AM	1.42	0	1130	30	0.00	
#6 (Refill)	1/31/2023	10:04 AM	1.42	10:34 AM	1.42	0	1130	30	0.00	
#7 (Refill)	1/31/2023	10:34 AM	1.42	11:04 AM	1.42	0	1130	30	0.00	
#8 (Refill)	1/31/2023	11:04 AM	1.42	11:34 AM	1.43	6	1130	30	0.01	
#9 (Refill)	1/31/2023	11:34 AM	1.43	12:04 PM	1.43	0	1127	30	0.00	
#10 (Refill)	1/31/2023	12:04 PM	1.43	12:34 PM	1.44	6	1127	30	0.01	
#11 (Refill)	1/31/2023	12:34 PM	1.44	1:04 PM	1.45	6	1124	30	0.01	
#12 (Refill)	1/31/2023	1:04 PM	1.45	1:34 PM	1.46	6	1121	30	0.01	
Comments:	Procedure pro Low Impact D	test was perform vided in the "Guid evelopment Storr	elines for Design, nwater Infiltratior	Investigation, and n," prepared by Co	d Reporting -	Average Stab Reduction RF _t =1, RF _v =	Factors		0.01	
		rtment of Public V Sunny and warm.	vorks, dated 30 J	une 2021.		Design Infiltratio	on Rate (in/hr)	0.00		

Attachment G

Geotechnical Investigation

DRAFT GEOTECHNICAL INVESTIGATION REPORT

for

PROPOSED INDUSTRIAL BUILDING DEVELOPMENT 20401 Valley Boulevard Walnut, California 91789

Prepared For:

IDS Real Estate Group 515 South Figueroa Street, 16th Floor Los Angeles, CA 90071

Prepared By:

Langan Engineering and Environmental Services, Inc.
18575 Jamboree Road, Suite 150
Irvine, California 92612

December 15, 2021

Langan Project No.: 700108301

LANGAN

Technical Excellence Practical Experience Client Responsiveness

DRAFT

December 15, 2021

Matt Katz and Geoff Garland IDS Real Estate Group 515 South Figueroa Street, 16th Floor Los Angeles, CA 90071

Draft Geotechnical Investigation Report Proposed Industrial Building Development 20401 Valley Boulevard Walnut, California Langan Project No. 700108301

Dear Matt and Geoff:

Langan Engineering & Environmental Services, Inc. is pleased to submit this Draft geotechnical investigation report for the proposed Industrial Building development to be constructed at 20401 Valley Boulevard in Walnut, California.

This report was prepared in general accordance with our proposal dated November 9, 2021.

We sincerely appreciate the opportunity to be of service to you. Please contact us if you have questions regarding this report.

Sincerely,

Langan Engineering & Environmental Services, Inc.

DRAFT

Chris Zadoorian, G.E. Associate

CC:SHW:CJZ:

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	SUBSURFACE EXPLORATIONS AND CONDITIONS	1
2.1	Subsurface Explorations	1
2.2	SUBSURFACE CONDITIONS	
2.3	GROUNDWATER	
2.4	TABULAR SUMMARY OF SUBSURFACE CONDITIONS	
3.0	GEOTECHNICAL LABORATORY TESTING	
4.0	GEOLOGIC AND SEISMIC HAZARDS EVALUATION	
4.1	REGIONAL AND LOCAL GEOLOGIC SETTING	
4.2	GEOLOGIC AND SEISMIC HAZARDS EVALUATION	
4.3	REGIONAL FAULTING	
4.4	Regional Seismicity	
4.5	GROUND SURFACE RUPTURE POTENTIAL	
4.6	Liquefaction Potential	
4.7	LATERAL SPREADING POTENTIAL	
4.8	SEISMIC (AKA 'DRY') SETTLEMENT	
4.9	Earthquake-Induced Landslides	
4.10		
4.11		
4.12	Subsidence	(
4.13	EXPANSIVE SOILS AND BEDROCK	e
5.0	CONCLUSIONS	7
5.1	GENERAL	7
5.2	FOUNDATIONS	7
5.3	Earthwork Considerations	7
5.4	FLOOR SLAB SUPPORT	8
5.5	PAVEMENT DESIGN AND CONSTRUCTION	8
5.6	GROUNDWATER	8
5.7	STORMWATER INFILTRATION	8
5.8	CORROSION CONSIDERATIONS	9
6.0	RECOMMENDATIONS	9
6.1	FOUNDATIONS	<u>c</u>
6.2	SEISMIC DESIGN	9
6.3	FLOOR SLAB SUPPORT	10
6.4	PAVEMENT DESIGN RECOMMENDATIONS	10
6.5	Site Flatwork / Sidewalks	11
6.6	EARTHWORK CONSIDERATIONS	11
7.0	LIMITATIONS	13
8 N	CLOSING	14

FIGURES

- 1 SITE LOCATION MAP
- 2 SITE PLAN

Langan Project No. 700108301

- 3 CROSS SECTION A-A'
- 4 CROSS SECTION B-B'
- 5 CROSS SECTION C-C'
- 6 CROSS SECTION D-D'
- 7 CROSS SECTION E-E'
- 8 CROSS SECTION F-F'
- 9 CROSS SECTION G-G'
- 10 CROSS SECTION H-H'
- 11 HISTORICAL HIGH GROUNDWATER MAP
- 12 REGIONAL GEOLOGIC MAP
- 13 QUARTENARY FAULT ACTIVITY AND EARTHQUAKE EPICENTER MAP (13A and 13B)
- 14 SEISMIC HAZARD ZONES MAP

APPENDICES

A FIELD EXPLORATIONS AND LABORATORY TEST RESULTS

Geotechnical Investigation Report Proposed Industrial Building Development 20401 Valley Boulevard Walnut, California Langan Project No. 700108301

1.0 INTRODUCTION

Langan Engineering and Environmental Services, Inc. (LANGAN) has completed a geotechnical investigation for the proposed industrial building development to be constructed at 20401 Valley Boulevard in Walnut, California at the location shown on Figure 1.

The site is located between Valley Boulevard and Paseo del Prado east of Lemon Avenue as shown on Figure 2.

The site is approximately 26 acres and is currently developed with approximately 36 commercial and/or industrial buildings and associated surface parking lots.

An existing 84- to 90-inch-diameter, reinforced concrete pipe (RCP) storm drain crosses the site roughly from northeast to southwest. The existing storm drain was constructed in the late 1960s and the invert ranges from approximately 15 feet bgs at the northeasterly corner of the site to approximately ten feet bgs at the southwesterly corner of the site.

The ground surface level at the site generally slopes down to the south and ranges from approximately Elevation 525 to Elevation 520.

You furnished us with a conceptual site plan dated November 11, 2021 prepared by Ware Malcomb that depict the current proposed Walnut Business Park development.

Based on our review of the site plan, we understand that the proposed development will include four at-grade high-bay industrial buildings, designated as Buildings 1, 2A, 2B and 3 at the approximate location shown on Figure 1. The buildings will range in size between approximately 41,000 and 177,000 square feet.

Based on our discussions with you, each proposed building will be established approximately four feet above the existing ground surface level at the site to accommodate loading docks. For the purposes of this report, we have assumed that the lowest finish floor levels will range from approximately Elevation 525 to 528 noting that actual lowest finish floor elevations for each building may vary somewhat.

Portland cement concrete (PCC) and/or and asphalt concrete (AC) pavement are also planned for loading docks, drive lanes, and vehicle parking.

Our investigation is summarized herein followed by our conclusions and recommendations for the proposed development.

2.0 SUBSURFACE EXPLORATIONS AND CONDITIONS

2.1 Subsurface Explorations

Prior to drilling, we obtained permits from the Los Angeles (LA) County Environmental Health Department (Permit Number SR 0277564).

We drilled twelve borings, borings B-1 through B-12, at the locations show on Figure 2. Our borings were drilled to depths of approximately 25 to 50 feet below existing ground surface (bgs) using truck-mounted mud rotary drilling equipment. Table 1 summarizes the general locations of our borings with respect to the proposed building locations.

Table 1 – Boring Locations

Building Designation	Associated Borings
Building 1	B-1 through B-4
Buildings 2A and 2B	B-5 through B-9
Building 3	B-10 through B-12

Our field representative maintained a log of the soil conditions encountered during drilling and we collected relatively undisturbed samples and performed standard penetration testing (SPT) at regular intervals. We also collected bulk samples in several of the borings.

The samples collected from the borings were transported to our office for further review and for assignment of geotechnical laboratory testing.

Upon completion of the borings, we backfilled the boreholes with bentonite grout in accordance with the conditions of the LA County permit.

The drill spoils from the borings were placed in 55-gallon drums for temporary storage pending subsequent off-site disposal by a licensed materials hauler.

We also restored the ground surface to the pre-existing condition at each boring location.

2.2 Subsurface Conditions

Asphalt concrete pavement (AC) was encountered in each boring overlying aggregate base. The AC pavement ranged from three to five and one-half inches in thickness overlying aggregate base ranging from as summarized in Table 2.

Table 2 – Summary of AC Pavement and Underlying Base Materials

Building Designation	Associated Borings	AC Pavement (inches)	Aggregate Base (inches)
Building 1	B-1 through B-4	3.0	2.0 to 6.0
Buildings 2A and 2B	B-5 through B-9	3.0 to 5.5	4.0 to 6.0
Building 3	B-10 through B-12	4.0 to 5.0	6.0

Fill soils were encountered in the borings to depths of approximately 4.5 to 9.5 feet bgs. The fill consisted of moist to very moist clayey soils with varying amounts of silt, sand, and gravel and is summarized in Table 3, below.

Native soil, consisting of Quaternary-age young alluvial fan deposits were encountered beneath the fill in each boring. The native soils consisted predominately of very moist to wet medium stiff to very stiff clay with varying amounts of sand, silt, and gravel as well as a layer of medium dense sandy clay.

The upper native soils exhibit medium to high plasticity and in isolated cases are very soft and compressible as encountered in borings B-5 and B-7 at depths of approximately 20 feet bgs.

Interbedded sandstone, claystone, and siltstone bedrock of the Tertiary-aged Puente Formation, Yorba member, was encountered below the alluvial fan deposits in borings B-1, B-2, and B-4 at depths of approximately 10, 20, and 35 feet, respectively, as summarized in Table 3.

The generalized subsurface conditions at the site are depicted in Figures 3 through 10, Cross Sections A-A' through H-H'.

2.3 Groundwater

It's sometimes difficult to positively identify the groundwater level in geotechnical exploration borings in general, and when using mud-rotary drilling methods in clayey soils the difficulty is exacerbated.

The primary reason for the challenges is that the time required for the groundwater level to 'stabilize' is considerably longer than the time allotted to drill and backfill the borings.

Upon completion of each boring, the drilling mud was bailed from the borehole and the borehole was allowed to stand briefly. We measured the depth of groundwater in each case after removal of the drilling mud; however, reliable measurement were obtained only in borings B-2, B-4, B-8, B-9 and B-11. Groundwater was located measured between depths of 16 and 24½ feet bgs in these borings and it's reasonable to assume that the groundwater level in the remaining borings is similar to the levels in the nearby borings.

Table 3 below summarizes the groundwater levels measured at the time of drilling and as Groundwater was not always observed due to the drilling fluids utilized.

Please note also that the groundwater levels shown on Figures 3 through 10 are based extrapolated from the above measurements.

Based on our review of nearby groundwater well data and the historically highest groundwater map, provided by the State of California, the historically highest groundwater level (HHGWL) at the site is on the order of 20 feet bgs, as shown in Figure 11.

2.4 Tabular Summary of Subsurface Conditions

Table 3 summarizes the thickness of fill, depth to groundwater at the time of drilling and depth to bedrock in each exploration boring.

Depth to Depth to Fill Thickness Groundwater¹ **Bedrock Boring Building Area** (feet) (feet) (feet) B-1 2.5 10 Building 1 B-2 Building 1 2.5 20.0 20 B-3 Building 1 2.5 > 26.5 B-4 Building 1 24.0 5.0 35 B-5 Building 2A 2.5 >26.5 B-6 Building 2A 2.5 >26.5 Building 2B B-7 2.5 >26.5 B-8 2.5 Building 2B 24.5 >51.5 B-9 Building 2B 5.0 24.0 >26.5 B-10 Building 3 5.0 >26.5 B-11 Building 3 7.5 16.0 >51.5 B-12 Building 3 5.0 >26.5

Table 3 - Fill Thickness, Depth to Groundwater and Bedrock

3.0 GEOTECHNICAL LABORATORY TESTING

We performed geotechnical laboratory testing on samples collected from our borings that included the following:

- In-situ Moisture Content and Dry-density
- Atterberg Limits
- Direct Shear
- Consolidation
- Maximum Dry-density and Optimum Moisture Content
- Fines Content
- Expansion Index
- Corrosion Potential
- R-Value

Laboratory testing is in progress as the time this draft report was prepared; we will present the results of the testing when all test data is available.

4.0 GEOLOGIC AND SEISMIC HAZARDS EVALUATION

4.1 Regional and Local Geologic Setting

The subject site is located in the Los Angeles Basin, a northwest trending, alluvium-filled lowland situated at the north end of the Peninsular Ranges geomorphic province of coastal southern California. This basin, which is the surface expression of a deep structural trough, has been subdivided into four primary structural blocks distinguished from one another by contrasting basement rock types and stratigraphy. These structural blocks are generally separated by zones of faulting along which movement has occurred intermittently since middle Miocene time (Yerkes and others, 1965).

The site is located in the central portion of the Northeastern Block of the Los Angeles Basin, a roughly triangular-shaped area bounded on the south by the Elsinore/Whittier fault, on the east by the Chino fault, and on the north by the Sierra Madre/Cucamonga fault.

The city of Walnut is located between the San Jose and Puente Hills in an alluviated valley. Bedrock of these hills generally consists of the Puente Formation. Drainage through the area is controlled by San Jose Creek, which flows toward the west-southwest.

Locally, Morton and Miller (2003) have mapped the site as being underlain by middle Holocene-aged young alluvial-fan deposits (map unit Qyf₃). This unit is described as "slightly consolidated silt, sand, and coarse-grained sand to boulder alluvial fan deposits having slightly to moderately dissected surfaces."* These alluvial fans are noted to consist primarily of boulder alluvial in the headward portions of the fan, grading southward into dominantly sand and gravel.

Morton and Miller indicate several outcrops of the Yorba member of the Puente Formation bedrock near the site (map unit Tpy). The Yorba member is described as "white to gray, thin bedded, micaceous and siliceous siltstone and sandy siltstone." The Yorba member is Miocene in age.

A regional geologic map of the site vicinity is provided in Figure 12.

4.2 Geologic and Seismic Hazards Evaluation

We evaluated the geologic and seismic hazards at the site in general accordance with California Geological Survey (CGS) Special Publication 117A, "Guidelines for Evaluating and Mitigating Seismic Hazards in California." The results of our evaluation is summarized below.

4.3 Regional Faulting

Langan Project No. 700108301

We reviewed the CGS 2010 Fault Activity Map (FAM) of California and the USGS Quaternary Fault and Fold Database (QFFD), to identify mapped faults within 100 kilometers of the site. The FAM and QFFD show that the closest mapped faults to the site are the San Jose fault, approximately 3 kilometers (1.8 miles) to the northwest, the Walnut Creek fault, approximately 6.3 kilometers to the northwest (4 miles) and the Whittier fault, approximately 8 kilometers (5 miles) to the southwest.

Figures 13A and 13B show the site location relative to the nearby seismic sources.

4.4 Regional Seismicity

The site is located in an active seismic area that has historically been affected by generally moderate to occasionally high levels of ground motion. Therefore, the proposed development will probably experience moderate to occasionally high levels of ground motion from nearby faults as well as ground motions from other active seismic areas of the southern California region.

A search of the web-based USGS Advanced National Seismic System (ANSS) Comprehensive Earthquake Catalog (ComCat), accessed on December 9, 2021, found that 62 earthquakes with magnitudes of 5.0 or greater have occurred within a 100-km radius of the site since 1800.

4.5 Ground Surface Rupture Potential

The site is not located within a County of Los Angeles or CGS Alquist-Priolo Earthquake Fault Zone based on a review of their respective websites.

Thus, the potential for ground surface rupture is considered very low.

4.6 Liquefaction Potential

Liquefaction may occur in loose to medium dense granular soils and low-plasticity silts and clays below the groundwater level as a result of strong ground shaking.

Liquefaction occurs when the cyclic loading to the soil due to strong ground shaking results in a buildup of excessive pore-water pressure in the pore spaces between the soil grains and the grain-to-grain contact of the soils is temporarily interrupted resulting is settlement as the soil particles reconstitute. Typically, liquefaction occurs within the upper approximately 50 feet bgs.

The site is located within County- and State-designated liquefaction hazard zones as shown on Figure 14

Noting that the HHGWL is approximately 20 feet bgs and the geologic deposits present below this depth consist of stiff to very stiff clayey soils and/or bedrock, the potential for liquefaction at the site is considered to be very low.

Localized, discontinuous soft clays that would be subject to loss of strength during strong ground sharking are present at the site, however, these deposits are not anticipated to contribute appreciably to the overall performance of foundation elements constructed as part of the proposed development.

4.7 Lateral Spreading Potential

Lateral spreading is seismically-induced slope instability phenomenon wherein slope failure can occur as a result of liquefaction.

The ground surface level at the site is generally flat so that open or unsupported slopes are not present. However, San Jose Creek Diversion Channel is located as close as approximately 300 feet

south of the site. This channel has been improved with vertical concrete channel walls and is approximately 20 feet in depth.

Based on the very low liquefaction potential of the site and depth to HHGWL, the potential for lateral spreading is likewise considered very low.

4.8 Seismic (aka 'Dry') Settlement

Seismically-induced (aka 'dry') settlement may occur in loose granular soils due to strong ground shaking.

The soils encountered in the exploration borings consist mainly of medium stiff to stiff fine-grained deposits and/or medium dense granular deposits. Therefore, the potential for seismically-induced settlement is considered very low.

4.9 Earthquake-Induced Landslides

The site is not located in a zone of required investigation for Earthquake-Induced Landslides per CGS Earthquake Fault Zones and Seismic Hazard Zones, San Dimas Quadrangle map as shown on Figure 14. Additionally, no landslides have been mapped near the site on regional geologic maps of the area. No evidence of deep-seated landsliding was observed during our field exploration and no significant sloped boundary conditions exist. Therefore, the probability of earthquake-induced landsliding at the site is negligible.

4.10 Flood Mapping

Based on the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) Number 06071C8600H, the site is located within an area determined to be outside the 0.2 percent annual chance floodplain.

4.11 Tsunamis, Seiche, and Dam Inundation

Based on information and maps available from the CGS and the County of Los Angeles, the site is not located within a Tsunami inundation hazard zone. Based on review of adjacent water bodies, the site is not subject to inundation from seiche. Based on a review of the Dam Breach Inundation Map Web Publisher hosted by the California Division of Safety of Dams (DSOD) the site is not within a dam inundation boundary.

4.12 Subsidence

Land subsidence may be induced from withdrawal of oil, gas, or water from wells. Based on a search of the CalGEM (formerly known as Division of Oil, Gas, and Geothermal Resources [DOGGR]) GIS Well Finder online tool, the site is not located in an oil field. The nearest well is indicated approximately 0.8 miles west of the site. The status of this well is listed as plugged. According to our review of the available information from CalGEM, the likelihood of land subsidence caused by oil or gas withdrawal from oil wells is negligible.

4.13 Expansive Soils and Bedrock

Expansive soils swell and shrink when the moisture content in the soil changes as a result of cyclic wet/dry weather cycles, installation of irrigation systems, change in landscape plantings, or changes in grading.

Swelling and shrinking soils can result in differential movement of structures including floor slabs and foundations, and site work including hardscape, utilities, and sidewalks.

Geotechnical Investigation Report Proposed Industrial Building Development 20401 Valley Boulevard Walnut, California Langan Project No. 700108301

Based on the preliminary laboratory test data, the on-site soils have a moderate to high potential for expansion.

5.0 CONCLUSIONS

5.1 General

The site is generally free from geologic or seismic hazards that would preclude the proposed development and the proposed development is considered feasible from a geotechnical perspective.

The site is subject to strong ground shaking that would result from an earthquake occurring on a nearby or distant fault source; however, this hazard is common in Southern California and can be mitigated by following the seismic design requirements of the 2019 California Building Code (CBC).

Undocumented fill was encountered in each boring; and the undocumented fill, native soils and underlying bedrock typically contain high to very high moisture contents, are moderately to highly plastic and subject to swelling or shrinking due to changes in moisture content.

These conditions impact each of the primary geotechnical considerations for the proposed development including (1) foundation support, (2) floor slab and flat work support and (3) general grading.

Mitigation measures to reduce the moisture content will be required to allow the re-use of the onsite soils and also to address potential for expansion and compression due to changes in moisture content.

The planned grading, that will include placement of approximately four feet of new fill, will help to mitigate these existing conditions.

5.2 Foundations

The current planned development concept includes raising the existing ground surface level by approximately four feet across the site so that the proposed building foundations will be established at near the existing ground surface level or slightly above.

The soils present at the existing ground surface level generally consist of undocumented fill materials, likely placed as part of the existing commercial building development. The soils are not considered suitable for foundation support and should be removed and replaced as properly compacted fill as recommended herein.

The proposed buildings may be supported on spread and continuous footings established in properly compacted fill soils provided the recommendations presented herein are followed.

The existing fill soils may require some degree of drying or conditioning in order to re-use as properly compacted fill.

The bottom of footings for Buildings 1, 2A and 2B should be established at a suitable depth so that surcharge loading is not imposed to the existing RCP storm drains.

5.3 Earthwork Considerations

Based on the current planned development concept and the recommendations presented herein for remedial grading, we anticipate that mass excavation typically on the order of two to three feet and up to approximately eight feet will be required to remove existing undocumented fill.

Geotechnical Investigation Report Proposed Industrial Building Development 20401 Valley Boulevard Walnut, California Langan Project No. 700108301

The existing fill soils generally contain relatively high moisture contents and are subject to shrinkage and swelling due to changes in moisture content and these soils are not suitable for reuse in required fills.

Additionally, these soils are subject to shrinkage and swelling with subsequent changes in moisture content.

The on-site soils may be re-used on-site provided mitigation measures are performed to address the moisture and plasticity (shrink and swell potential) of these soil. Mitigation measures are presented herein.

Alternatively, the on-site soils could be exported and suitable import materials could be utilized.

We anticipate that the exposed excavation bottoms will be relatively wet and compressible and that mitigation measures will be required to establish a firm working surface to receive new compacted select fill.

Recommendations for bottom stabilization are presented herein.

5.4 Floor Slab Support

Again noting that the proposed finish floor levels will be established approximately four feet above the existing ground surface level, the proposed building floor slab may be established on non-expansive properly compacted fill as recommended herein.

5.5 Pavement Design and Construction

Existing undocumented fill soils are not suitable for pavement support due the previously described expansive potential and high moisture contents.

PCC and AC pavement may be supported on properly compacted fill as recommended herein.

5.6 Groundwater

The current groundwater level at the site is on the order of 15 feet or more bgs; these depths correspond roughly with the HHGWL is on the order of five to ten feet BGS.

As noted above, we estimate the maximum depth of on-site excavation to be on the order of eight feet bgs to remove existing undocumented fill soils.

Thus, it's unlikely that groundwater will be encountered during mass excavation.

5.7 Stormwater Infiltration

The Los Angeles County Public Works Guidelines for *Geotechnical Investigation and Development – Low Impact Development Stormwater Infiltration (LA County Stormwater Guidelines)* dated June 30, 2021 lists the conditions at a site that allow for stormwater infiltration.

We did not perform field percolation testing as part of our investigation, as the soils present at the site consist primarily of clayey soils with relatively high moisture contents. The soils, by observation, do not appear to have a design infiltration rate greater than 0.3 inches per hour as required by the LA County Stormwater Guidelines.

Additionally, introduction of stormwater within the soils above the groundwater level will likely result in expansion and swelling of the upper soils and therefore is not considered feasible.

5.8 Corrosion Considerations

The results of the corrosion testing are summarized in Table 4.

Table 4 - Corrosion Test Results

Boring (Depth)	Soil Type	Resistivity (ohm-cm)	рН	Sulfate (% by Mass)	Chloride (% by Mass)
B-1 (0-5 feet)	Clay (CL)	820	7.4	0.0687	0.0106
B-9 (0-5 feet)	Clay (CL)	770	7.5	0.0448	0.0098

The results of the sulfate testing indicates that the on-site soils be classified as exposure category S_0 for sulfates and exposure category C_1 for chlorides in accordance with American Concrete Institute (ACI) Table 19.3.1.1).

The sulfate concentrations indicate a low potential for sulfate attack on PCC and that the on-site soils are extremely corrosive to ferrous metals.

It would be prudent to engage a corrosion consultant to evaluate the need for mitigation measures for buried metallic piping.

6.0 RECOMMENDATIONS

6.1 Foundations

The proposed industrial building may be supported on spread and continuous footings established in properly compacted fill soils.

Spread and continuous footings a minimum of two feet wide and established at least two feet below the lowest finish floor level and/or adjacent grade may be designed using an allowable bearing pressure of 5,000 pounds per square foot (psf). The recommended bearing pressure may be increased by one-third when considering short term wind and seismic loading conditions.

We anticipate static settlement due to the dead-plus-live loading to be on the order of 1 inch or less.

Differential settlement between adjacent footings is expected to be on the order of ¼ inch or less.

Lateral loading may be resisted by passive pressure of the soils acting against the sides of the footings and friction along the bottom of the footing.

To resist lateral loading, an ultimate passive resistance equal to 600 psf per foot of embedment up to a maximum value of 6,000 psf and an ultimate coefficient of friction equal to 0.6 may be used.

The ultimate passive pressure and the ultimate coefficient of friction may be combined noting that the ultimate passive resistance should be reduced in this case by 50 percent in consideration of the deformation required to mobilize the full passive resistance.

6.2 Seismic Design

Based on the data from our investigation and our review of available shear wave velocity mapping, the site may be classified as Site Class D in accordance with Chapter 20 of ASCE-7-16. We anticipate that exception 2 of Section 11.4.8 of ASCE 7-16 will be applicable for the proposed building and therefore, a site specific response spectra is not required per CBC.

CBC-prescribed seismic design parameters are presented in Table 5.

Table 5 – CBC Prescriptive Seismic Design Parameters

Criteria	Value
MCE _R Ground Motion at Short Periods, S _s	1.778
MCE _R Ground Motion at 1 Second Period, S ₁	0.628
Site Class	D
Site-Modified Spectral Acceleration Value at Short Periods, S _{MS}	1.778
Site-Modified Spectral Acceleration Value at 1 Second Period, S _{M1}	1.068
Design Spectral Response Acceleration at short periods, S _{DS}	1.185
Design Spectral Response Acceleration at 1 second period, S _{D1}	0.712
MCE _G Peak Ground Acceleration, PGA _M	0.833

6.3 Floor Slab Support

The proposed building floor slab may be supported on non-expansive properly compacted fill soil.

To minimize the potential of moisture transfer from the soil through the building floor slab that could damage finish flooring, a capillary break section should be installed beneath the building floor slab.

The capillary break section should consist of six inches of gravel underlying a 15-mil HDPE membrane and is required only where finish flooring is planned.

6.4 Pavement Design Recommendations

The required pavement and base thicknesses will depend on the expected wheel loads, traffic index (TI), and the R-value of the subgrade materials.

Pavement sections should be supported on 12 inches of properly compacted fill soils. Noting that geotechnical laboratory testing is in progress at the time we issued this draft report, we assumed an R-value of 20 in our analysis.

Our pavement design recommendations for asphalt concrete (AC) and Portland cement concrete (PCC) are provided below.

6.4.1 Asphalt-Concrete Pavement Design

AC pavement for surface parking shall be designed in accordance with the CATRANS method. Table 6 summarizes our AC pavement recommendations for assumed TIs of 4.5, 5, 6, and 7.

Table 6 – AC Pavement Design Recommendations

Traffic Use	TI	AC (inches)	AB (inches)
Parking Areas	4.5	3.0	7.0
Automobile Drive Lanes	5.0	3.5	8.0
Truck and Trailer Drive Lanes	6.0	4.0	10.0
Delivery Access and Loading Docks	7.0	5.0	12.0

We can determine the recommended pavement and aggregate base thickness for other TIs if required. Careful inspection is recommended to confirm that the recommended thickness or greater is achieved and there proper construction procedures are followed.

Langan Project No. 700108301

The aggregate base should conform to California Department of Transportation (CALTRANS) Class 2 aggregate base or equivalent. The base should be compacted to at least 95 percent relative compaction.

6.4.2 Portland Cement Concrete Pavement Design

Table 7 summarizes our Portland cement concrete (PCC) pavement recommendations for assumed TIs of 6 and 7 based on minimum compressive strength of 3,000 psi for the PCC.

Table 7 – PCC Pavement Design Recommendations

Traffic Use	TI	PCC (inches)	AB (inches)
Truck and Trailer Drive Lanes	6.0	7.0	6.0
Delivery Access and Loading Docks	7.0	8.0	6.0

Dowels are recommended at joints to reduce any possible offsets. Careful inspection is recommended to check that the recommended thickness or greater is achieved and that proper construction procedures are followed.

The aggregate base should conform to CALTRANS Class 2 aggregate base or equivalent. The base should be compacted to at least 95 percent relative compaction.

6.5 Site Flatwork / Sidewalks

The design section for site flatwork, including sidewalks, should consist of four inches of reinforced PCC over four inches of CALTRANS Class II aggregate base. The PCC thickness should be increased to six inches for the outer six horizontal inches of the flatwork or sidewalk.

Steel reinforcement should consist of #3 bars placed at 24-inch center-to-center spacing in each direction.

The PCC and CMB, or AB section should be underlain by a minimum of 12 inches of properly compacted fill soils; however we anticipate that site flatwork will be established within the minimum 3 foot properly compacted fill zone required for the building foundations. New fill soils may be placed on existing undocumented fill soils provided the recommendations presented in Section 6.7.2 are followed.

6.6 Earthwork Considerations

6.6.1 Temporary Vertical Cuts and Construction Slopes

Temporary vertical cuts are feasible in the native material and should not exceed 4 feet in height.

Temporary, unsurcharged slopes may be excavated into the on-site soils and fill materials and these slopes should not exceed a 1.5H:1V gradient and should not exceed 15 feet in height.

Temporary vertical cuts and temporary construction slopes should be protected from erosion by directing surface water away from the top of the slope, by placing sand-bags at the top of the slopes and vertical cuts, and/or covering the slopes with plastic sheeting during rain events.

6.6.2 Subgrade Preparation

Demolition of the existing buildings and site flatwork will be performed along with subsequent removal and recompaction of the existing undocumented fill soils.

Geotechnical Investigation Report Proposed Industrial Building Development 20401 Valley Boulevard Walnut, California Langan Project No. 700108301

We anticipate that very moist to wet, medium to high plasticity, potentially expansive soils are present at the bottom of the mass excavation.

It will be necessary to stabilize the exposed bottom to allow subsequent placement and compaction of new, select fill. One method to stabilize the bottom of the mass excavation is to place a one-foot thick layer of 1½-minus crushed rock directly on the exposed bottom to establish a firm working surface.

Depending on the condition of the exposed bottom, additional stabilization could be require and could include the use of a geotextile fabric and/or a geosynthetic cellular confinement material.

Other methods are also suitable, provided we review the procedure with the contractor, again, to assure the required degree of stabilization is achieved.

There is not any benefit in performing mechanical preparation on the exposed mass excavation bottom, rather scarification and compaction effort on the moist to wet clayey soils will likely result in significant disturbance accompanied by little if any improvement.

Prior to the placement of one or more of the above-referenced stabilization methods, the exposed excavation bottom should be proof rolled with light-weight steel drum equipment and the crushed rock and/or geotextile material(s) may be placed directly on the proof-rolled alluvial clay bottom materials.

The crushed rock should be densified using vibratory compaction equipment, noting again however that it's not advisable to utilized heavy duty equipment such as vibrating vibratory rollers; rather it'd be prudent to utilized vibratory equipment that delivers its energy with an eight to 12-inch thick lift. Heavy duty equipment may result in disturbance to the wet clayey bottom, even with 12 inches of crushed rock overlying.

The suitability of the crushed rock and geotextile fabric, if utilized, to support new fill can be evaluated in the field by observing the deformation of the surface materials under loaded construction equipment (scrapers, front-end loaders with a fully loaded bucket, etc.).

The crushed rock materials may be considered to be part of the select fill beneath the footings.

Prior to the placement of new select fill on the stabilized bottom, all deleterious materials should be removed from the areas to be graded prior to initiation of grading operations and disposed of offsite.

6.6.3 Materials for Fill

The existing on-site soils, including existing undocumented fill soils consist primarily of very moist clayey soils. These soils are generally suitable for re-use in compacted fills, however, it's likely that these soils will require drying or blending with drier granular materials to achieve the required degree of compaction.

One method that would allow re-use of on-site clayey soils in compacted fills would be to blend these soils with dry coarse materials including crushed miscellaneous base (CMB), aggregate base, crushed rock and/or coarse sand.

Blending of on-site soils will result in three primary benefits that will facilitate grading and assure performance of the fill: (1) reduction in the moisture content to facilitate placement and compaction, (2) stiffening to reduce compressibility and strength increase to increase allowable bearing pressure and (3) reduced potential for expansion.

Geotechnical Investigation Report Proposed Industrial Building Development 20401 Valley Boulevard Walnut, California Langan Project No. 700108301

It will be necessary to perform strength and compressibility testing on proposed blends to confirm the mixture sufficient improves the stiffness and compressibility; however, as a preliminary estimate, it may be assumed that one part CMB blended with two parts of on-site clayey soil, will achieve the necessary improvements.

Imported fill materials, if utilized, should consist of non-expansive materials with adequate strength and stiffness to support foundation, floor slab, and pavement loading. We should be provided with samples of proposed import materials prior import to the site to evaluate the suitability of those materials for the intended on-site use.

In general, all fill soils should be free of organic and other deleterious materials and have a maximum particle size no greater than three inches.

6.6.4 Fill Placement and Compaction

Fill soils shall be moisture conditioned as recommended herein, placed in loose lifts not exceeding 8-inches in thickness and mechanically compacted.

For the purposes of this report, the above-recommended granular and on-site clayey soil blend may be considered to be a fine-grained soil.

Fine-grained fill soils should be moisture conditioned to 2 to 4 percent above the optimum moisture content and compacted to at least 90 percent of the maximum dry density obtainable per ASTM D-1557. We recommend that relatively light-weight compaction equipment be utilized when working in fine-grained soils.

Granular soils should be moisture conditioned to 0 to 2 percent above the optimum moisture content and compacted to at least 95 percent of the maximum dry density obtained per ASTM D-1557.

6.6.5 Site Drainage

Proper drainage should be maintained at all times. Ponding or trapping of water in localized areas can cause differing moisture levels in the subsurface soil. Drainage should be directed away from the tops of slopes. Erosion protection and drainage control measures should be implemented during periods of inclement weather. During rainfall events, backfill operations may need to be restricted to allow for proper moisture control during fill placement.

7.0 LIMITATIONS

The conclusions and recommendations provided in this report are based on subsurface conditions inferred from available boring and test pit data, as well as project information provided to date.

This report was prepared for IDS Reality Group, their design consultants and subcontractors for use in the proposed development.

If changes to the proposed development are made, we should be notified to review our conclusions and recommendations.

We should be retained during the construction phase to perform necessary geotechnical observations and testing in accordance with good geotechnical engineering practice.

Information on subsurface strata and groundwater levels shown on the logs represent conditions encountered only at the locations indicated and at the time of investigation.

8.0 CLOSING

We sincerely appreciate the opportunity to provide professional services for this project and look forward to working with you on this project. Please contact us at your convenience to discuss any questions you may have regarding this report.

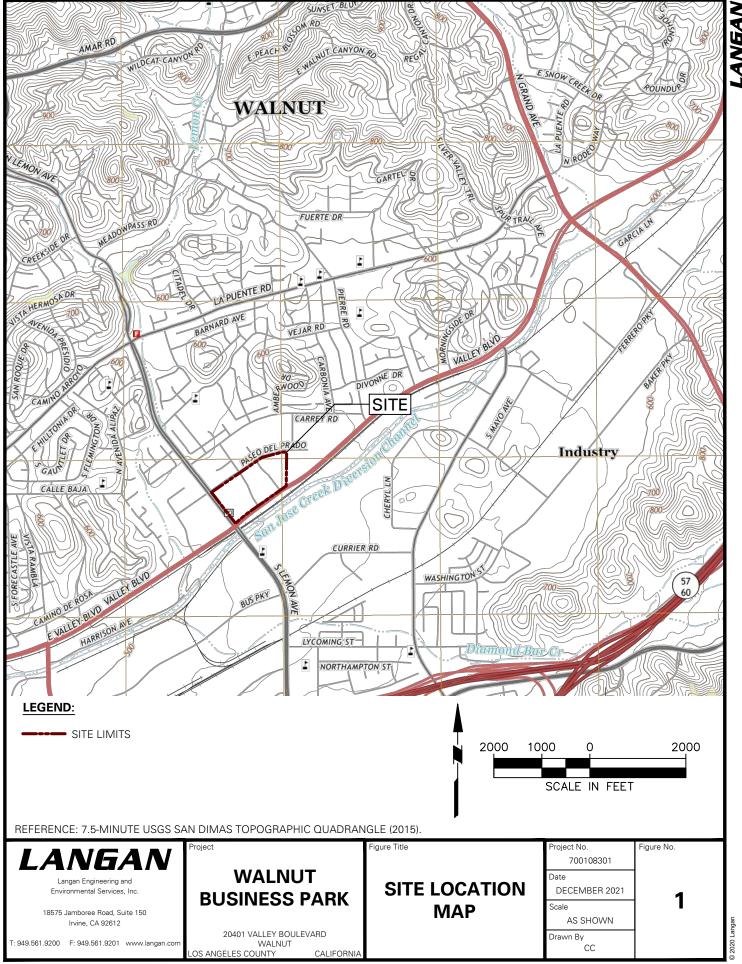
Sincerely,

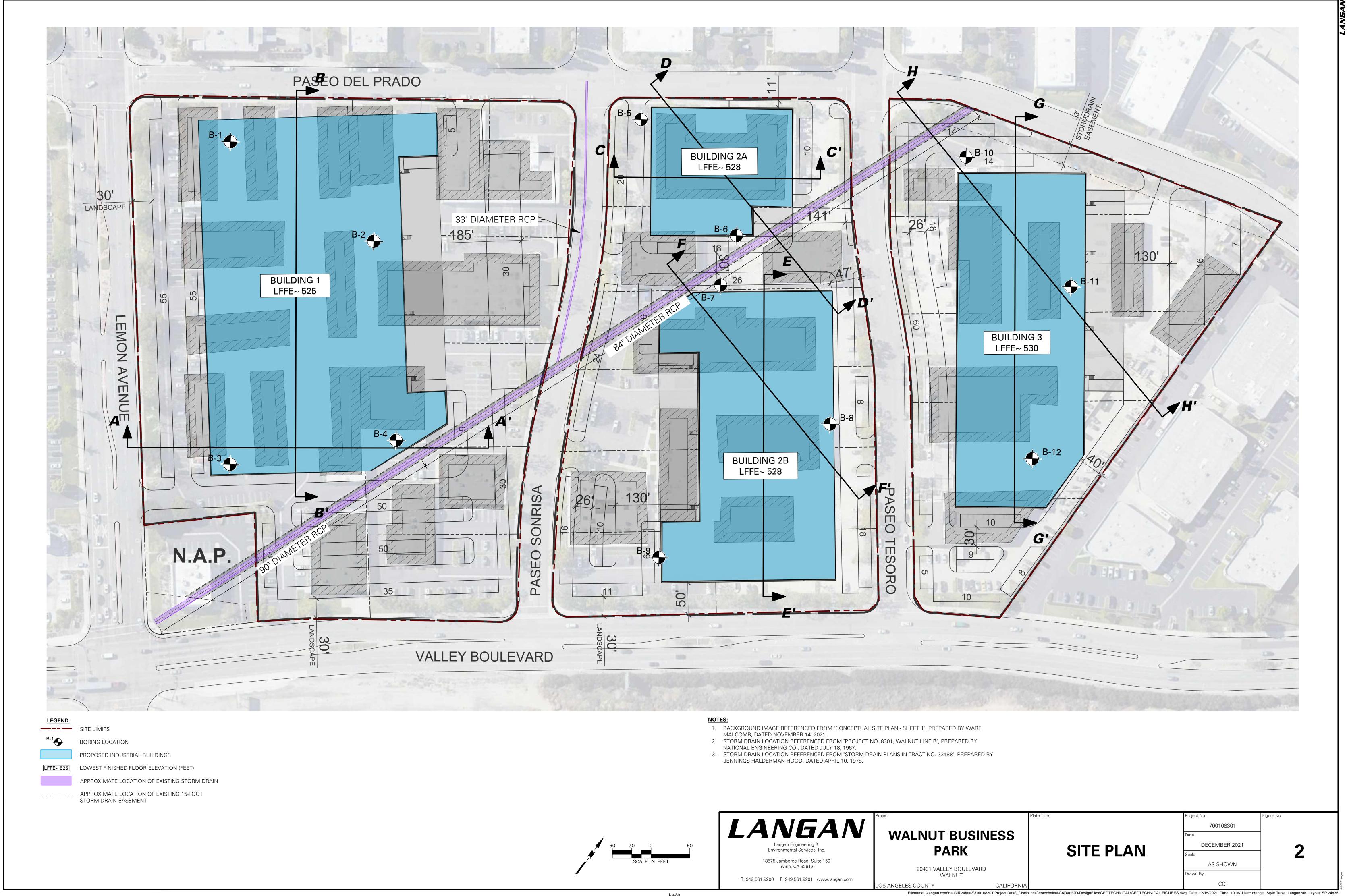
Langan Engineering and Environmental Services, Inc.

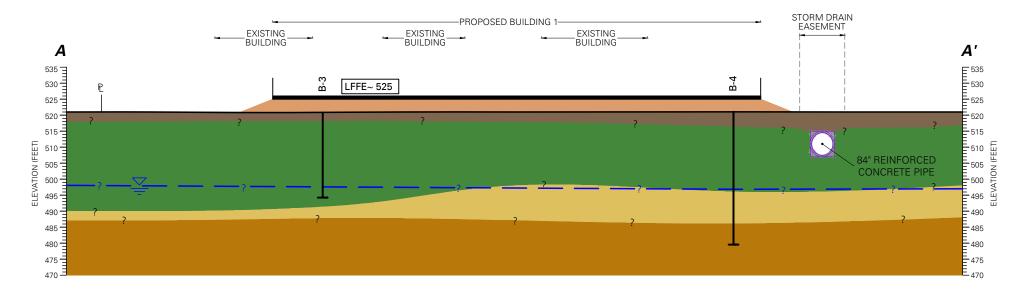
DRAFT

DRAFT

Claudia Rangel Staff Engineer Shaun Wilkins Senior Project Geologist


DRAFT


Chris Zadoorian Associate


FIGURES

DRAFT

APPROXIMATE GROUND SURFACE LEVEL

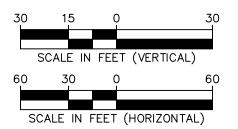
PROPOSED FILL

ARTIFICIAL FILL (af)

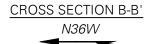
PREDOMINATELY SANDY SOILS

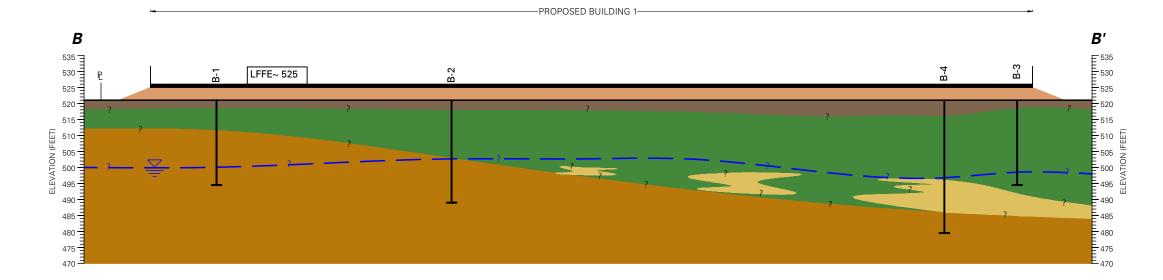
PREDOMINATELY CLAYEY SOILS

SANDSTONE/SILTSTONE/CLAYSTONE


APPROXIMATE GROUNDWATER LEVEL AT TIME OF EXPLORATION

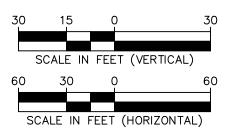
LFFE~ 525


LOWEST FINISHED FLOOR ELEVATION (FEET)


NOTES:

- 1. CROSS SECTION DISPLAYS GENERALIZED SUBSURFACE CONDITIONS; FOR A DETAILED DESCRIPTION OF CONDITIONS ENCOUNTERED REFER TO BORING LOGS.
- 2. REFER TO SITE PLAN FOR LOCATION OF CROSS SECTIONS.
- 3. GROUND SURFACE PROFILE INFERRED FROM GOOGLE EARTH PRO ON DECEMBER 3, 2021.

igure Title roject No. Figure No. LANGAN 700108301 **WALNUT BUSINESS** Langan Engineering and **CROSS SECTION** DECEMBER 2021 Environmental Services, Inc. **PARK** 18575 Jamboree Road Suite 150 A-A' AS SHOWN Irvine, CA 92612 20401 VALLEY BOULEVARD Drawn By WALNUT T: 949.561.9200 F: 949.561.9201 www.langan.com



LEGEND: APPROXIMATE GROUND SURFACE LEVEL PROPOSED FILL ARTIFICIAL FILL (af) PREDOMINATELY SANDY SOILS PREDOMINATELY CLAYEY SOILS SANDSTONE/SILTSTONE/CLAYSTONE APPROXIMATE GROUNDWATER LEVEL AT TIME OF EXPLORATION LFFE~ 525 LOWEST FINISHED FLOOR ELEVATION (FEET)

NOTES:

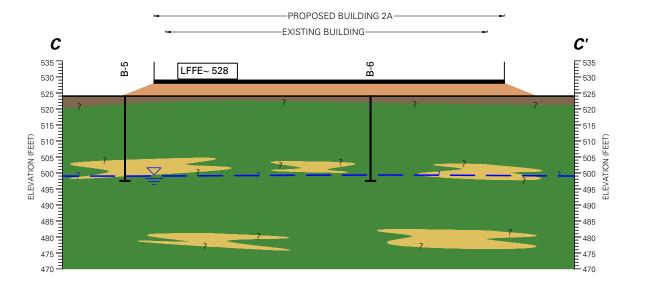
- 1. CROSS SECTION DISPLAYS GENERALIZED SUBSURFACE CONDITIONS; FOR A DETAILED DESCRIPTION OF CONDITIONS ENCOUNTERED REFER TO BORING LOGS.
- 2. REFER TO SITE PLAN FOR LOCATION OF CROSS SECTIONS.
- 3. GROUND SURFACE PROFILE INFERRED FROM GOOGLE EARTH PRO ON DECEMBER 3, 2021.

Environmental Services, Inc.

18575 Jamboree Road Suite 150 Irvine, CA 92612

T: 949.561.9200 F: 949.561.9201 www.langan.com

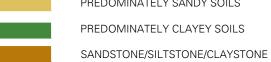
WALNUT BUSINESS **PARK**


> 20401 VALLEY BOULEVARD WALNUT

CROSS SECTION C-C'

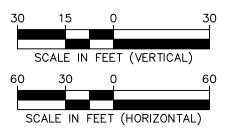
Project No. Figure No. 700108301 DECEMBER 2021 AS SHOWN Drawn By

igure Title


CROSS SECTION C-C' N54E_

LEGEND: APPROXIMATE GROUND SURFACE LEVEL PROPOSED FILL

PREDOMINATELY SANDY SOILS


LFFE~ 525

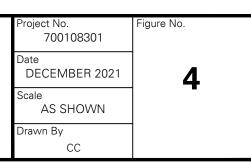
APPROXIMATE GROUNDWATER LEVEL AT TIME OF EXPLORATION

LOWEST FINISHED FLOOR ELEVATION (FEET)

NOTES:

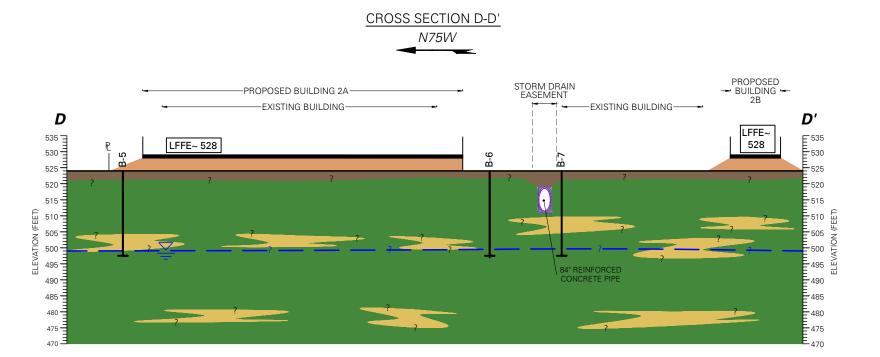
- 1. CROSS SECTION DISPLAYS GENERALIZED SUBSURFACE CONDITIONS; FOR A DETAILED DESCRIPTION OF CONDITIONS ENCOUNTERED REFER TO BORING LOGS.
- 2. REFER TO SITE PLAN FOR LOCATION OF CROSS SECTIONS.
- 3. GROUND SURFACE PROFILE INFERRED FROM GOOGLE EARTH PRO ON DECEMBER 3, 2021.

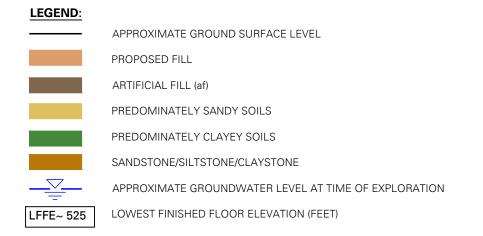
Langan Engineering and Environmental Services, Inc.


18575 Jamboree Road Suite 150 Irvine, CA 92612

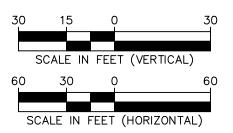
T: 949.561.9200 F: 949.561.9201 www.langan.com

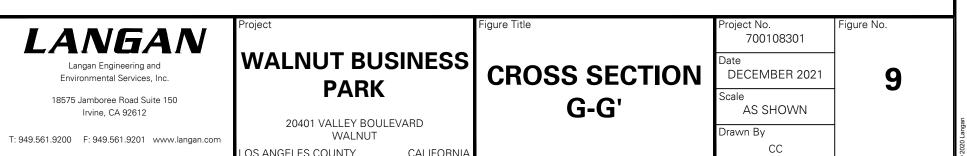
WALNUT BUSINESS **PARK**

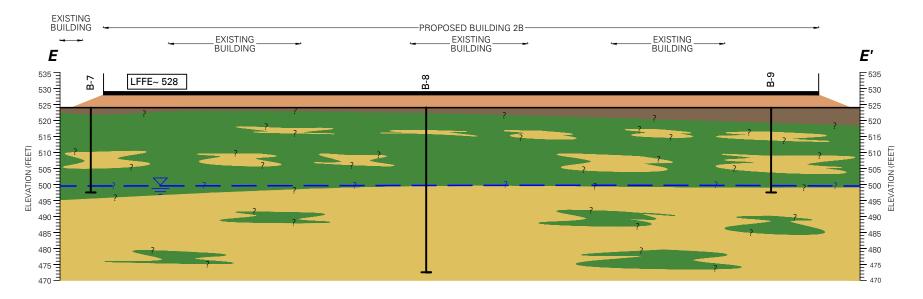

20401 VALLEY BOULEVARD WALNUT


CROSS SECTION B-B'

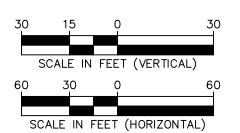
Filename: \\langan.com\\data\\\RV\\data\\\Z00108301\\Project Data_Discipline\Geotechnical\CAD\01\2D-DesignFiles\GEOTECHNICAL\GEOTECHNICAL FIGURES.dwg Date: 12/15/2021 Time: 09:58 User: crangel Style Table: Langan.stb Layout: XSC

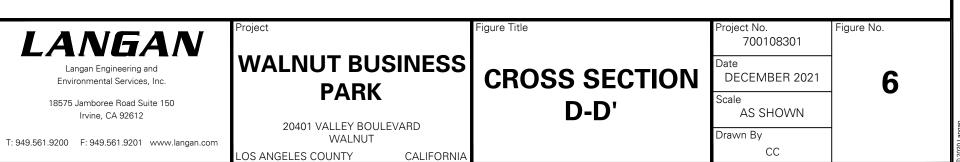

igure Title



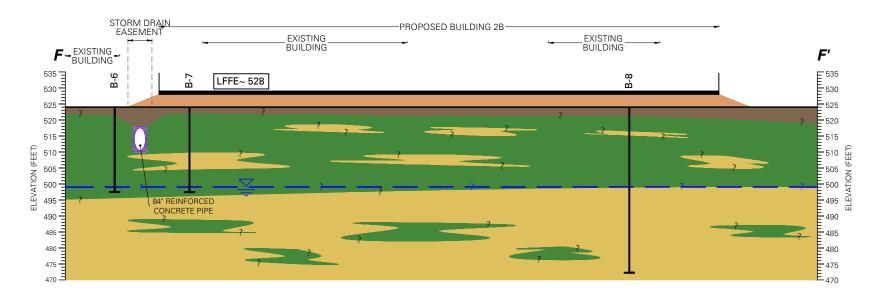

NOTES:

- 1. CROSS SECTION DISPLAYS GENERALIZED SUBSURFACE CONDITIONS; FOR A DETAILED DESCRIPTION OF CONDITIONS ENCOUNTERED REFER TO BORING LOGS.
- 2. REFER TO SITE PLAN FOR LOCATION OF CROSS SECTIONS.
- 3. GROUND SURFACE PROFILE INFERRED FROM GOOGLE EARTH PRO ON DECEMBER 3, 2021.

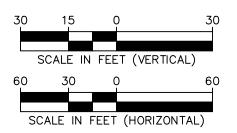


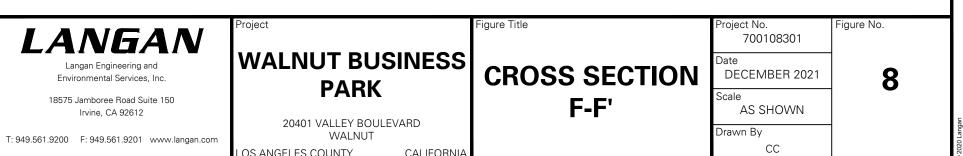


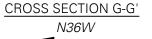
APPROXIMATE GROUND SURFACE LEVEL PROPOSED FILL ARTIFICIAL FILL (af) PREDOMINATELY SANDY SOILS PREDOMINATELY CLAYEY SOILS SANDSTONE/SILTSTONE/CLAYSTONE APPROXIMATE GROUNDWATER LEVEL AT TIME OF EXPLORATION LFFE~ 525 LOWEST FINISHED FLOOR ELEVATION (FEET)


NOTES:

- 1. CROSS SECTION DISPLAYS GENERALIZED SUBSURFACE CONDITIONS; FOR A DETAILED DESCRIPTION OF CONDITIONS ENCOUNTERED REFER TO BORING LOGS.
- 2. REFER TO SITE PLAN FOR LOCATION OF CROSS SECTIONS.
- 3. GROUND SURFACE PROFILE INFERRED FROM GOOGLE EARTH PRO ON DECEMBER 3, 2021.

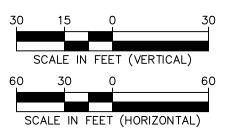

CROSS SECTION F-F' N75W




APPROXIMATE GROUND SURFACE LEVEL PROPOSED FILL ARTIFICIAL FILL (af) PREDOMINATELY SANDY SOILS PREDOMINATELY CLAYEY SOILS SANDSTONE/SILTSTONE/CLAYSTONE APPROXIMATE GROUNDWATER LEVEL AT TIME OF EXPLORATION LFFE~ 525 LOWEST FINISHED FLOOR ELEVATION (FEET)

NOTES:

- 1. CROSS SECTION DISPLAYS GENERALIZED SUBSURFACE CONDITIONS; FOR A DETAILED DESCRIPTION OF CONDITIONS ENCOUNTERED REFER TO BORING LOGS.
- 2. REFER TO SITE PLAN FOR LOCATION OF CROSS SECTIONS.
- 3. GROUND SURFACE PROFILE INFERRED FROM GOOGLE EARTH PRO ON DECEMBER 3, 2021.



APPROXIMATE GROUND SURFACE LEVEL PROPOSED FILL ARTIFICIAL FILL (af) PREDOMINATELY SANDY SOILS PREDOMINATELY CLAYEY SOILS SANDSTONE/SILTSTONE/CLAYSTONE APPROXIMATE GROUNDWATER LEVEL AT TIME OF EXPLORATION LFFE~ 525 LOWEST FINISHED FLOOR ELEVATION (FEET)

NOTES:

- 1. CROSS SECTION DISPLAYS GENERALIZED SUBSURFACE CONDITIONS; FOR A DETAILED DESCRIPTION OF CONDITIONS ENCOUNTERED REFER TO BORING LOGS.
- 2. REFER TO SITE PLAN FOR LOCATION OF CROSS SECTIONS.
- 3. GROUND SURFACE PROFILE INFERRED FROM GOOGLE EARTH PRO ON DECEMBER 3, 2021.

Environmental Services, Inc.

18575 Jamboree Road Suite 150 Irvine, CA 92612

T: 949.561.9200 F: 949.561.9201 www.langan.com

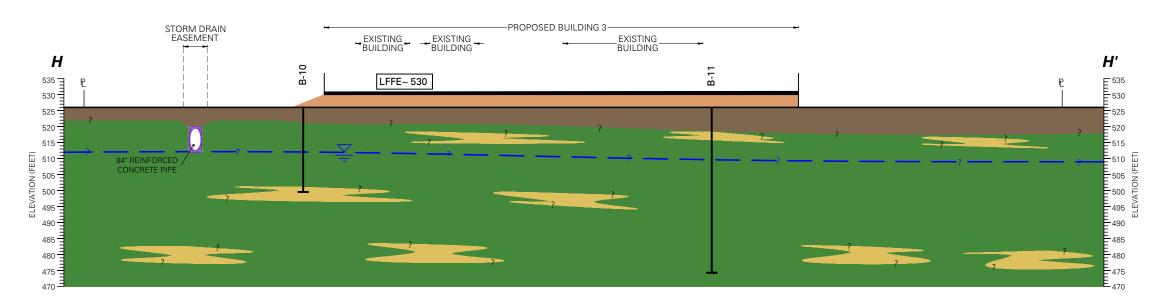
WALNUT BUSINESS PARK

> 20401 VALLEY BOULEVARD WALNUT

CROSS SECTION E-E'

Project No.
700108301

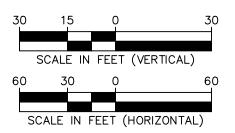
Date
DECEMBER 2021


Scale
AS SHOWN

Drawn By
CC

Filename: \\langan.com\\data\\IRV\\data\\3700108301\\Project Data_Discipline\\Geotechnical\\CAD\\01\\2D-DesignFiles\\GEOTECHNICAL\\GEOTECHNICAL FIGURES.dwg Date: 12/15/2021 Time: 09:59 User: crangel Style Table: Langan.stb Layout: XSG

igure Title

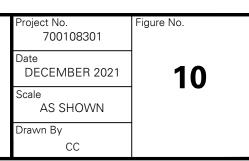


LEGEND: APPROXIMATE GROUND SURFACE LEVEL PROPOSED FILL ARTIFICIAL FILL (af) PREDOMINATELY SANDY SOILS PREDOMINATELY CLAYEY SOILS SANDSTONE/SILTSTONE/CLAYSTONE APPROXIMATE GROUNDWATER LEVEL AT TIME OF EXPLORATION LFFE~ 525 LOWEST FINISHED FLOOR ELEVATION (FEET)

NOTES:

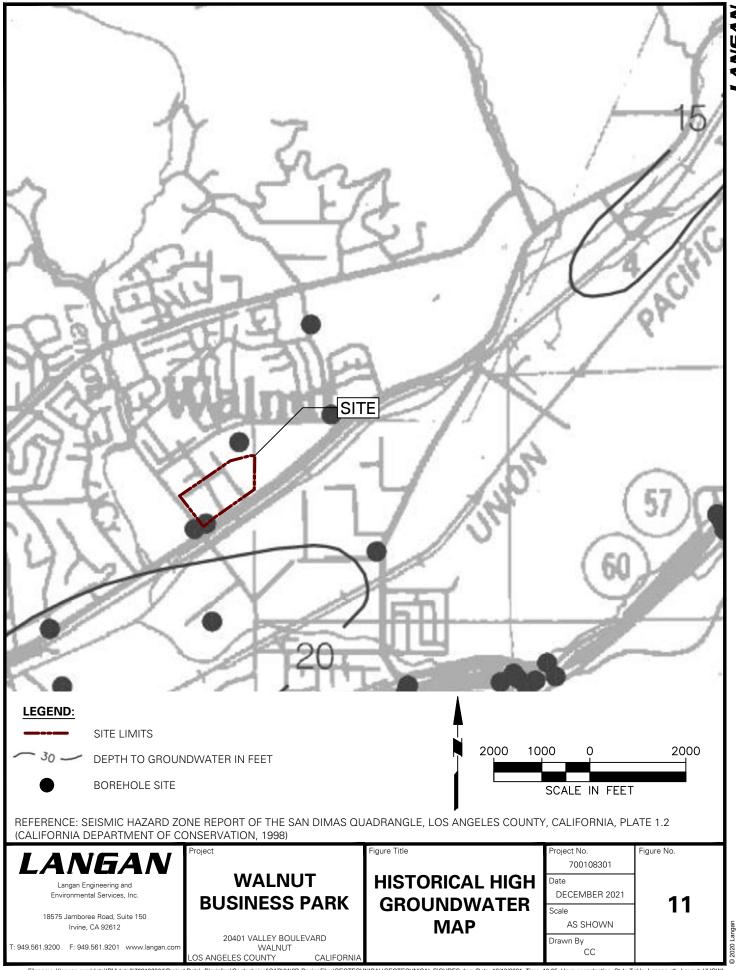
- 1. CROSS SECTION DISPLAYS GENERALIZED SUBSURFACE CONDITIONS; FOR A DETAILED DESCRIPTION OF CONDITIONS ENCOUNTERED REFER TO BORING LOGS.
- 2. REFER TO SITE PLAN FOR LOCATION OF CROSS SECTIONS.
- 3. GROUND SURFACE PROFILE INFERRED FROM GOOGLE EARTH PRO ON DECEMBER 3, 2021.

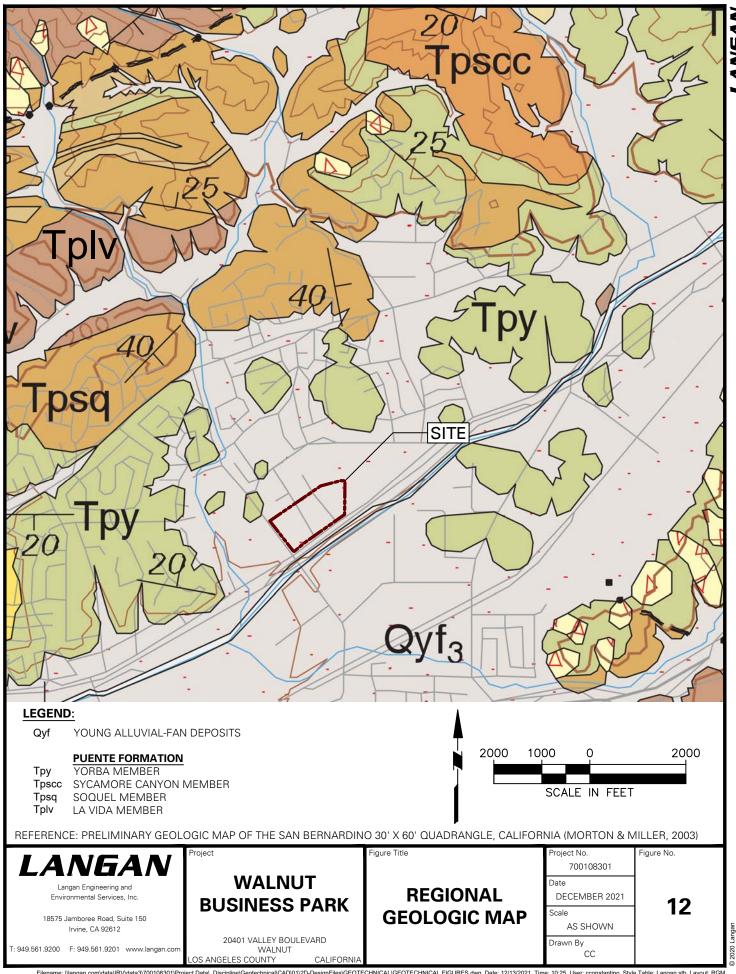
Environmental Services, Inc.

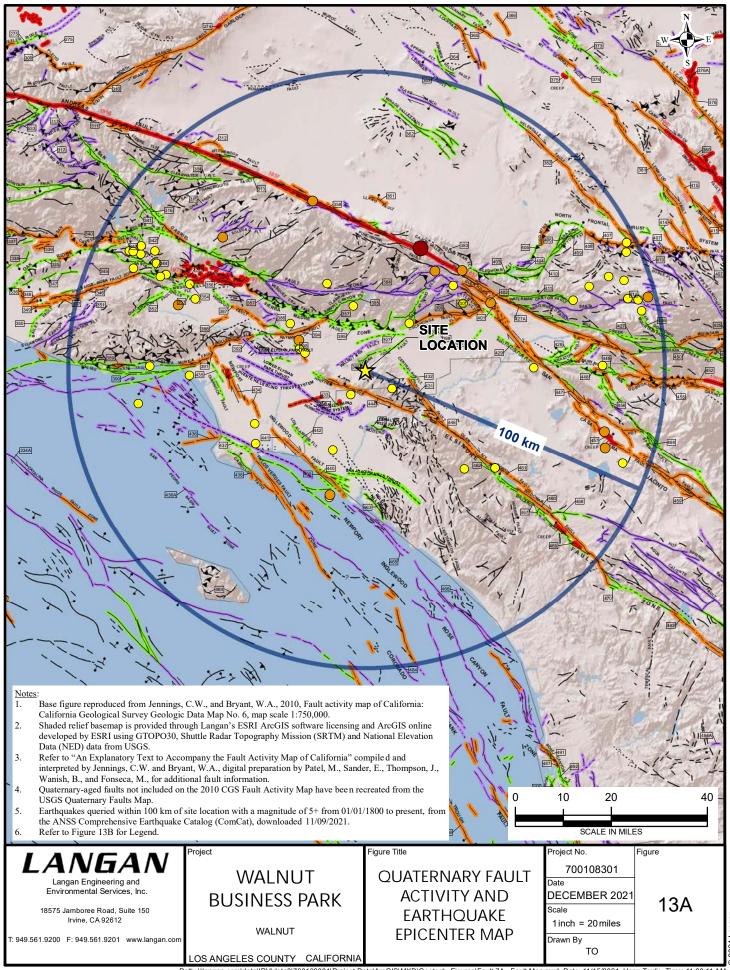

18575 Jamboree Road Suite 150 Irvine, CA 92612

T: 949.561.9200 F: 949.561.9201 www.langan.com

WALNUT BUSINESS PARK


20401 VALLEY BOULEVARD WALNUT


CROSS SECTION H-H'



Filename: \\langan.com\\data\\\RV\\data\\\200108301\\Project Data_Discipline\Geotechnical\CAD\\01\\2D-DesignFiles\GEOTECHNICAL\GEOTECHNICAL FIGURES.dwg Date: 12/15/2021 Time: 09:59 User: crangel Style Table: Langan.stb Layout: XSH

igure Title

LEGEND:

Fault Age

The age classifications are based on geologic evidence to determine the youngest faulted unit and the oldest unfaulted unit along each fault or fault section

- Historic
- Holocene
- Late Quaternary
- Quaternary

Earthquake Epicenter

- Magnitude 5.0 to 5.9
- Magnitude 6.0 to 6.9
- Magnitude 7.0 to 7.4
- Magnitude 7.5 to 8.0

Pre-Quaternary Faults

- fault, certain
- --- fault, approx. located
- ····· fault, concealed
- --- thrust fault, certain
- ··· thrust fault, approx. located, queried

Project

- fault, certain
- ·--t- fault, concealed

Quaternary Faults

- fault, certain
- fault, approx. located
- -?— fault, approx. located, queried
- 2 fault, inferred, queried
- ····· fault, concealed
- --?-- fault, concealed, queried
- thrust fault, certain
- thrust fault, approx. located
- ··· thrust fault, concealed
- dextral fault, certain
- --- dextral fault, approx. located
- ····· dextral fault, concealed
- sinistral fault, certain
- --- sinistral fault, approx. located
- ····· sinistral fault, concealed
- thrust fault, certain (2)
- —— thrust fault, approx. located (2)
- ····· thrust fault, concealed (2)
- fault, solid
- -- fault, dashed
- ·-- fault, dotted
- dextral fault, solid
- fault, dotted, queried
- fault, dotted, queried (2)
- fault, solid, dip
- fault, dashed, dip
- ····· fault, dotted, dip
- reverse fault, solid
- ···· reverse fault, dotted

Langan Engineering and

Environmental Services, Inc. 18575 Jamboree Road, Suite 150 Irvine, CA 92612

T: 949.561.9200 F: 949.561.9201 www.langan.com

WALNUT BUSINESS PARK

WALNUT

LOS ANGELES COUNTY CALIFORNIA

QUATERNARY FAULT **ACTIVITY AND EARTHQUAKE** EPICENTER MAP

Project No. Figure 700108301 Date DECEMBER 2021 Scale NOT TO SCALE Drawn By

13B

APPENDIX A Field Explorations and Laboratory Testing

APPENDIX A

SUBSURFACE EXPLORATIONS

We explored the subsurface conditions at the site by drilling twelve borings (B-1 through B-12) to depths ranging between 26.5 and 51.5 feet BGS at the locations shown on Figure 2. The borings were drilled in November 2021 by SoCal Drilling Co. using a Mayhew 1,000 Mud-Rotary drill.

The locations of the explorations were determined in the field by observing nearby landmarks. This information should be considered accurate only to the degree implied by the methods used.

A member of our geotechnical staff observed and logged the explorations. We obtained representative samples of the various soil encountered in the explorations. Classifications and sampling intervals are presented on the exploration logs included in this appendix.

SOIL SAMPLING

Samples were collected from the borings using modified California split-spoon samplers in general accordance with ASTM D3550 and we performed Standard Penetration Tests (SPTs) in general accordance with ASTM D1586.

The modified California samplers and SPTs were driven using a 140-pound hammer free falling 30 inches. The samplers were driven a total distance of 18 inches or to refusal. The number of blow counts required to drive the sampler for each 6 inch (California sampler) and 12-inch (SPT) segment was recorded (or less if refusal is met) on the exploration logs. Sampling methods and intervals are shown on the exploration logs.

The samples collected from the borings were transported to our office for further review and for assignment of geotechnical laboratory testing.

SOIL CLASSIFICATION

The soil samples were described in accordance with the classification legend that is included in this appendix prior to the exploration logs. The exploration logs indicate the depths at which the soils or their characteristics change, although the change actually may be gradual. If the change was observed directly in a sample then the contact is indicated with a solid line on the logs. If the change occurred between sample locations, the depth was interpreted and the change is indicated on the logs with a dashed line. Classifications are shown on the exploration logs.

LABORATORY TESTING

Moisture Content and In-place Dry Density

The natural moisture content of select soil samples were performed in general accordance with ASTM D2216. The natural moisture content is a ratio of the weight of the water to soil in a test sample and is expressed as a percentage.

Select soil samples were tested to determine the in situ dry density. The tests were performed in general accordance with ASTM D2937. The dry density is defined as the ratio of the dry weight of the soil sample to the volume of that sample. The dry density typically is expressed in units of pounds per cubic foot (pcf).

The test results are presented in this appendix.

Maximum Dry-Density and Optimum Moisture Content

Maximum dry-density and optimum moisture content testing was performed in general accordance with ASTM D 1557 on one bulk samples obtained from the explorations. The tests determines the optimal moisture content at which sample achieves its maximum dry density. The test results are presented in this appendix.

Grain size Analysis

Grain Size analysis was completed on select samples obtained from the explorations. The tests were conducted in general accordance with ASTM D 1140. The test measures the liquid limit, plastic limit, and plasticity index of soils. The test results are presented in this appendix.

Atterberg Limits

Atterberg Limit tests were completed on select samples obtained from the explorations. The tests were conducted in general accordance with ASTM D 4318. The test measures the amount of material finer than 75-µm (No. 200) sieve in soils. The test results are presented in this appendix.

Expansion Index

Expansion index tests were performed on selected bulk samples of the on-site soils in accordance with the latest version of Test Method ASTM D4829.

The test results are presented in this appendix.

Corrosion Testing

Chemical and electrical analyses were performed on selected bulk samples of onsite soils to determine their soluble sulfate content, chloride content, pH (acidity) and minimum electrical resistivity. These tests were performed in accordance with the latest versions of California Test Method Nos. CTM 417 (sulfate), CTM 422 (chloride), and CTM 643 (pH and resistivity) respectively. The results of these tests are included in this appendix.

Consolidation Testing

One-dimensional consolidation testing was performed in general accordance with ASTM D2435 on relatively undisturbed soil samples. The test measures the volume change of a soil sample under predetermined loads.

The test results are presented in this appendix.

Strength Testing

Direct shear tests were completed on select samples obtained from the explorations. The tests were performed in general accordance with ASTM D3080. The test determines the effects upon shear resistance and displacement, and strength properties such as Mohr strength envelopes.

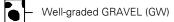
The test results are presented in this appendix.

R-Value

A representative sample of the near-surface soil was tested for resistance value (R-Value) in accordance with California Test Method 301. This test is designed to provide a relative measure of soil strength for use in pavement design.

The test result is presented in this appendix.

UNIFIED SOIL CLASSIFICATION SYSTEM					
Major Divisions		Symbols	Typical Names		
) ler	Gravels	GW	Well-graded GRAVELS with less than 5% fines or gravel-sand mixtures		
ned Soil soil is larger sieve size)	(more than half of	GP	Poorly-graded GRAVELS with less than 5% fines or gravel-sand mixtures		
oil is	coarse fraction is retained/> no. 4 sieve	GM	Silty gravels, gravel-sand-silt mixtures;GRAVELS with greater than 12% ML or MH fines		
aine of s 00 s	size)	GC	Clayey gravels, gravel-sand-clay mixtures; GRAVELS with greater than 12% CL or CH		
Coarse-Grained (more than half of soi than the no. 200 sie	Sands	sw	Well-graded sands with less than 5% fines or gravelly sands, little or no fines		
cars than the r	(more than half of	SP	Poorly-graded sands with less than 5% fines or gravelly sands, little or no fines		
ore .		SM	Silty sands, sand-silt mixtures; SANDS with greater than 12% ML or MH fines		
		sc	Clayey sands, sand-clay mixtures; SANDS with greater than 12% CL or CH fines		
si 00	Cilta and Claus	ML	Inorganic silts and clayey silts of low plasticity, sandy non-plastic SILT, gravelly SILT		
Soils f soil	Silts and Clays LL = < 50	CL	Inorganic clays of low to medium plasticity, silty CLAY, trace fines, sand		
Fine-Grained Soils (more than half of soil is smaller than the no. 200 sieve size)	'	OL	Organic silts and organic silt-clays of non-plastic to medium plasticity		
-Grain than ha than t		МН	Inorganic medium plastic silts, medium plastic to very plastic clayey silts.		
ne-G e thi ller t	Silts and Clays LL = > 50	СН	Inorganic plastic to very plastic CLAYS, sandy plastic CLAY		
Fi (mor sma		ОН	Organic medium plastic to plastic silty CLAYS, and very plastic CLAYS		
Highly Organic Soils		PT	Peat and other highly organic soils		


GRAIN SIZE CHART				
	Range of Grain Sizes			
Classification	U.S. Standard Sieve Size	Grain Size in Millimeters		
Boulders	Above 12"	Above 305		
Cobbles	12" to 3"	305 to 76.2		
Gravel coarse fine	3" to No. 4 3" to ¾" ¾" to No.4	76.2 to 4.75 76.2 to 19.1 19.1 to 4.75		
Sand coarse medium fine	No. 4 to No. 200 No. 4 to No. 10 No. 10 to No. 40 No. 40 to No. 200	4.76 to 0.075 4.76 to 2.00 2.00 to 0.420 0.240 to 0.075		
Silt and Clay	Below No. 200	Below 0.075		

GROUNDWATER READING

Groundwater at completion

Groundwater at 24 hours

SOIL DESCRIPTIONS/SYMBOLS

Poorly-graded GRAVEL (GP)

Silty GRAVEL (GM)

Clayey GRAVEL (GC)

Well-graded SAND (SW)

Poorly-graded SAND (SP)

Silty SAND (SM)

Clayey SAND (SC)

AGGREGATE BASE

SAMPLER TYPE

Modified California (CR) split-barrel ring sampler with 3.0-inch outside diameter CR and a 2.5-inch inside diameter.

BAG -Bulk Sample

Standard Penetration Test (SPT) split-barrel sampler with a 2.00-inch outside SPT diameter with a 1.5-inch inside diameter

C -Core Barrel

Shelby Tube (3.0-inch outside diameter, thin-walled tube) advanced with hydraulic pressure

Figure Title

LANGAN

Langan Engineering & Environmental Services, Inc.

18575 Jamboree Road, Suite 150, Irvine, CA 92612 : 949.561.9200 F: 949.561.9201 www.langan.com

BORING LOG LEGEND

APPENDIX A

	NU /	7/V		Log	of Bor	_			В	-1			Sheet	1	of	2
Project	Walnut Business P	ark			Projec				700 ⁻	108301						
Location					Elevat	tion a	nd Da									
Drilling Compa	20401 Valley Boule	vard			Date \$	Starte	d		Goo	gle Ear		21 (fee ate Fir	et, MSL) nished			
	SoCal Drilling								11/	22/21				11	/22/21	
Drilling Equipr					Comp	letion	Dept	h			R	ock De	epth			
Size and Type	Mayhew 1000									26.5 ft urbed		Undi	sturbed		- Core	
	4.75" Mud Rotary				Numb	er of	Samp	les			4			4		-
Casing Diame	eter (in)		Ca	sing Depth (ft)	Water	Leve	l (ft.)		First			Com	pletion	_	24 HR.	_
Casing Hamm	ner_	Weight (lbs)		Drop (in)	Drilling	g Fore	eman					<u> </u>				
Sampler	Bulk; 2-inch O.D. S	PT Split-Barrel 2	2 5-inch I [Cal Mod	F:-1-11			R	andy	'						
Sampler Ham		Weight (lbs)	140	Drop (in) 30	Field I	=ngin	eer	Δ	. Nie	hlae						
٦	Automatic		140	30	1					mple Da	a					
SYMBOL (tt)		Sample Desc	ription			epth cale	Number	Type	.) (n	Penetr. resist BL/6in	Water			Rem Fluid, D	arks epth of Casing Resistance, e	ıg,
+521.0	o	·	•			0 -	Nur	F	Be	Pe B B	Conter	nt				
. 500	AC = 3-inches thi	ck, AB = 6-inche	s thick.		E	U -	∄					T	Bulk sar 0-10 fee		collected f	from
+520.:	Artificial Fill (af)				<u>.</u>	1 -	1						Corrosiv		st	
	CLAY (CL), olive [FILL].	brown with dark l	brown mo	ttled, stiff, mois	t F		=									
/////					F	2 -	}									
<i>/////</i> +518.!	Quaternary Your	g Alluvial Fan De	eposits (C	<u>Qyf)</u>	F	2	1		П	4						
	CLAY with Sand sand.	(CL), dark brown,	, stiff, very	moist, some	F	3 -	S-1	유	18	8						
					Ē	4 -	1			12						
					Ė		1									
	Olive brown, med	lium stiff to stiff			E	5 -	_			2						
	Onvo Brown, mos	nam can to can.			Ė		S-2	SPT	12	4						
					E	6 -	<u> </u>	S	<u> </u>	4						
					E	7 -		<u> </u>								
<i></i> +513.!	5				E	, -	<u></u>						DD = 04	ا ۱ ۵ م	f, MC = 28	0.07
	CLAY (CL), olive abundant caliche	gray and brown r , few iron oxide a	nottled, st nd limonit	utt, very moist, e staining.	E	8 -	ص ا		_	4			שט = 94	.u pc	i, ivic = 28	o.9%
		, 2334		····· J·	F		S-3	CR	18	9						
					F	9 -	1			9						
#511.U					F	10	=									
	BEDROCK - Terti	iary Puente Form	nation Yor	ba Member	F	10 -	1_	l E		4						
	(Tpy) Clayey SANDSTO				E	11 -	S-42	SPT	12	6						
1 1 1 1	limonite mottled, shallow dipping p			sand, distinct	F		}—	μĒ		10						
	Shahow dipping p	a. Dodo, umily	Dougla.		F	12 -	1									
					E		=									
					F	13 -	1									
					E	14 -	=									
					E		=									
506.0	SANDSTONE/SII	TSTONE/CI AV	STONE		E	15 -	_		Н							
	brown/gray/orang	jish brown, hard t	o dense, i	moist, iron	E		S-5	CR	18	9 22						
	oxide and some I bedded, planar.	imonite staining,	moderate	ly dipping, thinl	y F	16 -	S			29						
	acada, pianar.				F	17	1	""								
					F	17 -	=									
					E	18 -	1									
	1				-		+	1	1	1						
					þ		‡									
						19 -										

. Report:

NLANGAN.COMIDATAIIRVIDATA3(700108301/PROJECT DATA), DISCIPLINE(GEOTECHNICAL/GINTLOGS/700108301 - GINT LOGS.GPJ ... 12/14/2021 4:18:48 PM ...

Log of Boring **B-1** Sheet 2 of 2 Project Project No. Walnut Business Park 700108301 Location Elevation and Datum Google Earth = 521 (feet, MSL) 20401 Valley Boulevard Sample Data Remarks Elev Depth Sample Description Water (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale Content -501.0 20 SANDSTONE with Clay and SILTSTONE, olive brown with SPT gray and orangish brown interbeds, medium dense to very S-6 10 9 stiff, moist, fine sand, well to moderate bedding. 21 9 22 23 24 25 SILTSTONE/SANDSTONE, olive brown with gray and 20 orangish brown interbeds, very dense to hard, moist, fine S-7 CR 38 sand, moderately shallow dipping planar beds, thinly 26 49 bedded. Total Depth = 26.5 feet 27 Boring bailed after completion. Depth to groundwater not Boring backfilled with bentonite grout and AC patched. 28 29 30 31 32 33 34 35 36 37 38 39 42 43

LANGAN

Duningt		/VU/	1 / V		Log		oring	_		В	-2		Sh	neet	1	of	2
Project	1	Walnut Business Pa	ark			Pro	ject No.			700	108301						
Location		vaniat Dusiiless Pe	шк			Ele	vation ar	nd Da		, 00	100301						
		20401 Valley Boule	vard							Goo	gle Ea	rth = 52	1 (feet,	MSL)			
Drilling C						Da	te Starte	d			100101	D	ate Finis	shed		1/00/01	
Drilling E	guipmer	SoCal Drilling nt				Co	mpletion	Dept	:h	11	/22/21	R	ock Dep	th	11	1/22/21	
		Mayhew 1000									32 ft					_	
Size and	Type of	Bit				Nu	mber of S	Samp	oles	Dist	urbed		Undist		,	Core	
Casing D	2 Diameter	1.75" Mud Rotary (in)		Ca	sing Depth (ft)					First		4	Comple		4	24 HR.	-
-	-				-		ater Leve	. ,		∇			T		20	$ar{m{\Lambda}}$	-
Casing F			Weight (lbs)	-	Drop (in)	Dri	lling Fore	man									
Sampler	2	2-inch O.D. SPT Sp		n I.D. Cal	Mod	Fie	ld Engine	eer	Γ.	andy	/						
Sampler	Hamme	r Automatic	Weight (lbs)	140	Drop (in) 30				A.	. Nie	blas						
	_				•		D			Sa	mple Da	ta			Rem	arks	
MATERIAL SYMBOL	Elev. (ft)		Sample Descr	iption			Depth Scale	Number	Type) in)	Penetr. resist BL/6in	Water Conter	. _	ا Drilling F)	luid, D	epth of Casin Resistance,	ng,
žσ	+521.0	10 0: 1 ":	-I- AD 0: 1	41-1-1			— o –	Ž	-	8	~ = B	Conter	" F	·IUIO LOSS,	Urilling	resistance,	etc.)
	+520.3	AC = 3-inches thic	ск, АВ = 6-inches	tnick.			-										
	323.5	Artificial Fill (af)	ا الناجاء الخانب مريدهما	rou	Hlad = 1:EE '		_ 1 -	1									
		CLAY (CL), olive [FILL].	prown with dark b	orown mo	uea, stitt, moi:	Sī	-	1									
	LE10 5						_ 2 -	=									
	+518.5	Quaternary Youn	g Alluvial Fan De	posits (C	<u>vf</u>		_ ;	+	↾₣		4						
		CLAY (CL), dark to plasticity.	orown, stiff, very i	moist, mo	derate		- 3 -	S-1	SPT	9	4						
		,					- - 4 -	1_	ΙĒ		5						
							- · :	=									
4444	+516.0	Sandy CLAY (CL)	Olive brown with	vellow	nd orangish		_ 5 -	1			_			DD = 10	4.2 n	cf, MC =	19.8%
		brown mottled, sti	ff, moist, fine to n	nedium s	and, trace		_ :	S-2	CR	18	5 9			10	_ P	J., IIIO -	. 5.570
	+515.0	caliche.					6 -	ψ	0	-	12						
		Sandy CLAY (CL) fine sand, abunda	ı, olive brown, stif ınt caliche.	i, moist to	very moist,		_ :	\vdash									
		•					- 7 -	1									
							- - 8 -	-	[]		3						
							_ 0 -	S-3	SPT	12	5						
							_ _ 9 -	_	μĒ		5						
								1									
	+511.0	CLAY with Sand (CL), olive grav ar	nd brown	stiff. verv		10 -	1	+		3		[DD = 97	.8 pc	f, MC = 2	7.2%
		moist, some fine	sand, caliche strir	ngers.	, · • · · · ·		- :	84	CR	18	6				Ċ		
							- 11 -	3			8						
							- - 12 -		T ""								
							- 12 -	1									
							_ _ 13 -	1									
							:	1									
							_ 14 -										
							_ ;										
	+506.0	Sandy CLAY (CL)	, orangish dusk b	rown, stif	ff, moist, fine		_ 15 -	\pm	TE		4						
		sand, fine to coars	se gravel.				- - - 16	S-5	SPT	18	7						
							<u> </u>	Ľ			7						
							- - 17 -	1									
								1									
							_ _ 18 -										
							_ :	1									
							19 -	1									
	504.0					_	= :	1									
111111	#5U1.0I					<u></u>	 20	1	1	_							

VILANGAN.COMIDATAVIRV/DATA3/700108301/PROJECT DATA_DISCIPLINE\GEOTECHNICAL\GINTLOGS\700108301

Log of Boring **B-2** Sheet 2 of 2 Project Project No. Walnut Business Park 700108301 Location Elevation and Datum Google Earth = 521 (feet, MSL) 20401 Valley Boulevard Sample Data Remarks Elev Depth Sample Description Water (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale Content -501. 20 **BEDROCK - Tertiary Puente Formation Yorba Member** (Tpy)
SANDSTONE/SILTSTONE, olive brown and orangish S-6 CR 8 34 21 brown, very dense to hard, moist, fine sand, planar, shallow 42 dipping beds. 22 23 24 25 Clayey to Silty SANDSTONE, orangish brown to olive 15 brown, very dense, moist, fine sand, iron oxide staining. 27 26 36 27 28 29 - S-8 CR 0 50/3.5" No sample recovery. Very hard, concretionary bed. 31 32 Total Depth = 32 feet Boring bailed after completion. Groundwater observed at 20 33 Boring backfilled with bentonite grout and AC patched. 34 35 36 37 38 39 43

Project						Proj	ect No.										
Location		Walnut Business P	ark ark			Elev	ation a	nd Da		7001	108301						
D		20401 Valley Boule	evard				<u> </u>			Goo	gle Ear			eet, MSL)			
Drilling (y SoCal Drilling				Date	Starte	d		11/	22/21		ate F	inished	4	1/22/21	
Drilling E	Equipme	ent				Corr	pletion	Dept	h	1 1/.	<u> </u>	R	Rock [Depth	- 1	1122121	_
0:		Mayhew 1000									26.5 ft					-	
Size and		อา Bit 4.75" Mud Rotary				Num	ber of	Samp	les	Distu	irbed	4	Und	disturbed	3	Core	_
Casing [C	asing Depth (ft)	Wat	er Leve	l (ft.)		First			Cor	mpletion	_	24 HR.	
Casing I	Hamme	<u>-</u> r_	Weight (lbs)		Drop (in)	Drilli	ng Fore	eman		<u>-¥</u>				<u>-</u>		<u>*</u>	
Sampler		2-inch ∩ D SPT St	l plit-Barrel, 2.5-inch I.l	n Ca	al Mod	┤ <u>.</u>			R	andy							
Sampler			Weight (lhs)	40	Drop (in) 30	_ Field	l Engine	eer	Δ	Niel	hlae						
		Automatic		40	30						nple Dat	а			D		
MATERIAL SYMBOL	Elev. (ft)		Sample Descript	ion			Depth Scale	Number	Туре	in)	Penetr. resist BL/6in	Wate				arks lepth of Casir Resistance,	ng,
MA (2)	+521.0	10 0					- 0 <i>-</i>	Nur	F	ag e	e a B	Conte	nt	Fluid Loss,	Drilling	Resistance,	etc.)
	+520.6	AC = 3-inches thi Artificial Fill (af)	ick, AB = 2-inches th	ick.		 ‡											
		CLAY (CL), olive	brown with dark brow	vn mo	ottled, stiff, mois	st -	- 1 -	=									
		[FILL].				Ę	_	1									
	+518.5					F	- 2 -										
		Quaternary Your	ng Alluvial Fan Depo olive brown, stiff, ver	sits (Qyf)		- 3 -	[SPT		2						
		o, oer ((oe),	o o blown, oun, ver	, ,,,,,,,		Ė	-	S-1	SP	5	5						
	+517.0	CLAY with Silt (C	CL), olive gray, very s	tiff, ve	ery moist.	<u>-</u> -	- 4 -		F	\vdash	4						
		- (-	,. J ,, J -	, -	•	Ē	_										
						F	- 5 -	1			5			DD = 87	7.4 pc	f, MC = 2	9.6
						E	- 6 -	S-2	S	15	9						
						E		-			11						
						F	- 7 -	=									
	+513.5	CLAY with Silt ar	nd Sand (CL), olive g	ray, s	tiff, very moist,	[0		 		2						
		abundant caliche	stringers.			F	- 8 -	S-3	SPT	9	4						
						F	- 9 -		LE		4						
						F											
		Very stiff, fine gra	avel, decreased sand			F	- 10 -			$\vdash \vdash$	6			DD = 95	5.1 pc	f, MC = 2	8.2
		_				F	- 11 -	S-4	SR	18	10						
						E	11 -		\coprod		14						
						E	- 12 -										
						E											
						E	- 13 -										
						Ė	- 14 -	=									
						Ė	1.7										
		Olive brown, incre	eased clav.			Ė	- 15 -	-	┢	\vdash	6						
		55 S. 5.Wii, iiloli				Ė		5.5	SPT		12						
						Ė	- 16 -		0		8						
						Ė	- 17 -										
						Ė	••	1									
						F	- 18 -										
	502.0					Ė	, -										
	+502.0	CLAY (CL), gray	brown, very stiff, very	y mois	st, few caliche	E	- 19 -	1									
///////	al	and rootlets.				F		+		1 1							

NLANGAN, COMIDATANRVIDATA3/700108301/PROJECT DATA_DISCIPLINE\GEOTECHNICALIGINTLOGS/700108301 - GINT LOGS.GPJ ... 12/14/2021 4:18:57 PM

Log of Boring **B-3** Sheet 2 of 2 Project Project No. Walnut Business Park 700108301 Location Elevation and Datum 20401 Valley Boulevard Google Earth = 521 (feet, MSL) Sample Data Remarks Elev (ft) Depth Scale Number Sample Description Water (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) Content -501.0 20 DD = 96.8 pcf, MC = 26.6% 10 S-6 CR 8 18 21 22 22 23 Sandy CLAY (CL), olive brown, very stiff, very moist, iron oxide and limonite staining. 24 25 18 S-7 8 26 10 Total Depth = 26.5 feet Boring bailed after completion. Depth to groundwater not 27 apparent. Boring backfilled with bentonite grout and AC patched. 28 29 30 31 32 33 34 35 36 37 38 39 42 43

Project	NG/		Log	of Boring Project No.			B-4		Sheet	1	of	2
	Walnut Business Pa	rk		'		7	700108301					
Location	20404 Vallay Bayley	rord		Elevation a	nd Datur		Coorle Car	th - 50	of (foot MC)	\		
Drilling Compa	20401 Valley Bouley ny	alu		Date Starte	d		oogle Ear		21 (feet, MSL ate Finished)		
Drilling Equipm	SoCal Drilling			Completion	Denth		11/22/21	P	ock Depth	1	1/22/21	
Drilling Equipm	Mayhew 1000			Completion	Берит		41.5 ft		оск Берит		_	
Size and Type	of Bit 4.75" Mud Rotary			Number of	Samples]	Disturbed	5	Undisturbed	5	Core	
Casing Diamet			Casing Depth (ft)	Water Leve	el (ft.)	F	First		Completion		24 HR.	
Casing Hamme	er	Weight (lbs)	Drop (in)	Drilling Fore	` ,		<u>¥</u>		<u> </u>	24	<u>Ā</u>	
Sampler	2-inch O.D. SPT Snl	it-Barrel, 2.5-inch I.D. (Cal Mod	Field Frein		Ra	ındy					
Sampler Hamn		Weight (lbs)	Drop (in)	Field Engin		A.	Nieblas					
JO L			'	Danth			Sample Dat	а		Rem	narks	
SYMBOL (tt)		Sample Description		Depth Scale	Number	abe	Recov. (in) Penetr. resist BL/6in	Water Conter	(Drilling		Depth of Casir Besistance,	ng, etc.)
+521.0	AC = 3-inches thic	k, AB = 4-inches thick.		0 -	Z '	+	- LC - m		1 14.4 200	, =	,	
+520.4	Artificial Fill (af)			1 -]							
	SILT with Sand (M sand, high plasticit	lL), dark olive gray, me ty, few rootlets [FILL].	dium stiff, fine	<u> </u>	∄							
				_ 2 -	1							
				Ē.,	1	\parallel	3					
				- 3 -	S-1-8		∞ 3					
				- 4 -	+ +	4	5					
+516.0				_	1							
	Quaternary Young	Alluvial Fan Deposits brown and gray, soft to	s (Qyf) medium stiff ven	- 5 -	2		1					
	moist, abundant ca	aliche.	modium oun, von	6 -	S-2	Ħ	φ 2 2					
				<u> </u>	1	Ħ						
		0.00		F 7 -	1				DD = (nn 0 na	of MC = 2	ട റാ
	Olive gray, mediur	n stiff, fine sand, calich	ne stringers.	8 -	S-3		2 <u>\therefore</u> 4		00 - 8	0.6 pc	of, MC = 2	0.07
				Ė,	j o lo		6					
				9 -	1	"						
	Olive brown, abun	dant caliche stringers.		10 -	1	┪	2					
	Onvo brown, abun	aant oanono ounigeis.		Ė	SPT		2 3					
				F 11 -	1 " s	I	4					
				12 -] [
				Ė	∄							
				- 13 - -	∄							
				_ 14 -] [
/////				Ė	╡							
+506.0	Sandy CLAY (CL)	reddish dusk brown, s	stiff, moist to very	- 15 -	1	\blacksquare	4		DD = 1	04.6 p	ocf, MC =	21.9
	moist, fine to very	coarse sand.		16 -	S-5		8 3					
				E	+	#	9					
				<u> </u>	∄							
				_ 18 -]							
				E] [
				- 19 -	<u> </u>							
					1							

- GINT LOGS.

/\LANGAN.COM\DATA\\RV\DATA3\700108301\PROJECT DATA_DISCIPLINE\GEOTECHNICAL\GINTLOGS\700108301 ·

Log of Boring **B-4** Sheet of 2 2 Project Project No. Walnut Business Park 700108301 Elevation and Datum Location 20401 Valley Boulevard Google Earth = 521 (feet, MSL) Sample Data Remarks Elev Depth Sample Description Water (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale Content 501. 20 Reddish brown with some brown mottled, medium dense to SPT stiff, moist, very fine sand, increase sand. S-6 12 8 21 22 23 24 25 DD = 114.4 pcf, MC = 19.5% Clayey SAND (SC), olive brown, dense, moist to very 26 moist, medium to coarse sand, fine gravel. CR S-7 29 26 22 27 28 Heavy auger chatter from 28-33 feet. 29 30 Gravelly SAND with Clay (SW), olive brown, very dense, SPT 14 very moist, fine to coarse sand and gravel. S-S 9 37 31 50/5" 32 33 34 35 **BEDROCK - Tertiary Puente Formation Yorba Member** 30 (Tpy)
SILTSTONE/SANDSTONE, gray and olive brown 8-9 CR 45 36 50/5" interbeds, very dense to hard, moist to very moist, fine sandstone with some silt, well to moderate plannar bedding 37 with shallow dip, thinly bedded. 38 39 SANDY SILTSTONE/SILTY SANDSTONE, olive brown and 28 S-10 gray, hard to very dense, moist, thinly bedded, planar. 10 32 36 Total Depth = 41.5 feet 42 Boring bailed after completion. Groundwater observed at 24 feet bgs. Boring backfilled with bentonite grout and AC patched. 43

Project				of Borin	_									
Location	Walnut Business Pa	ark		Elevatio	n and	l Datur	7 m	70010830	1					
	20401 Valley Bouley	vard		Lievatic	ni and	Datui		Google Ea	rth = 5	24 (f	eet, MSL)			
Drilling Compa	iny			Date St	arted						Finished			
Drilling Equipm	SoCal Drilling nent			Comple	tion D	epth		11/24/21	F	Rock	Depth	1	1/24/21	
Size and Type	Mayhew 1000						1.	26.5 ft		III.	aliako oda a al		-	
	4.75" Mud Rotary			Number	r of Sa	amples	١	Disturbed	5		disturbed	3	Core	-
Casing Diamet	ter (in) -		Casing Depth (ft)	Water L	_evel (ft.)	F	First			mpletion	-	24 HR.	_
Casing Hamme	er_	Weight (lbs)	Drop (in)	Drilling	Foren									
Sampler		PT Split-Barrel, 2.5-inch		Field Er	nginee		ка	ındy						
Sampler Hamn	ner Automatic	Weight (lbs) 140	Drop (in) 30	<u> </u>			Α.	Nieblas			1			
SYMBOL (tt)		Sample Description			pth ale	Number	abhe	Reccov. (in) Penetr. resist BL/6in	Wate Conte				narks Depth of Casi g Resistance,	ing, , etc.)
+524.0 +523.3	AC = 3-inches thic	ck, AB = 6-inches thick.		(o 	2						mple	collected	
	Artificial Fill (af)	brown with dark brown	mottled, stiff. moi	st -	1 =									
	[FILL].		,,	E	2 -									
+521.5	Quaternary Young	g Alluvial Fan Deposits	 s (Qyf)	E	}		\forall	3						
	CLAY with Gravel	(CL), medium brown wiff, moist, fine gravel.	ith some dark	- 3	3 -	SPT		ო 6						
	brown motalog, on	m, molet, mie graven		- 4			Ħ	6						
				E	=									
				F 5	5 🛨			5			DD = 10)8.3 p	ocf, MC =	26.1
				- 6	6 = E	S-2		8 2						
				ŧ.	_ ‡		Щ	8						
				F 7	/ 寸									
	Medium stiff to sti	Π.		- 8	3 =	S-3		2 ග 4						
				Ē,		ω ω		4						
				- 9	7 🗍		T							
514.0	CLAY with Gravel	(CL), olive brown with	orangish brown	1	0 🕂		₩	2			DD = 10	0.8 p	ocf, MC =	26.3
	mottled, medium	stiff, moist to very mois	t, caliche.	E 1	1 -	S4 SA		₩ 4						
				E	' <u> </u>			6						
				F 1	2 -									
				<u> </u>	3 =									
				E	=									
				- 1	4 =									
+509.0	Sandy CLAV (CL)), reddish dusk brown, r	nedium stiff mois	_ -	5 🚽		╁							
	fine gravel.	,, roddion ddon blowll, l	noulum sun, mois	P1,	=	S-5		2 3						
				F 1	6 =	3, 0	I	3						
				E 1	7 =									
				ŧ,	, =									
				F 1	8 –									
				<u> </u>	9 =									
<i>'/////</i> }				<u>_</u>	. =									

Report: Log - LANGAN

NLANGAN.COM/DATANRV/DATA3/700108301/PROJECT DATA_DISCIPLINE\GEOTECHNICAL\GINTLOGS\700108301 - GINT LOGS.GPJ ... 12/4/2021 4:19:01 PM

Log of Boring B-5 Sheet 2 of 2 Project Project No. Walnut Business Park 700108301 Location Elevation and Datum 20401 Valley Boulevard Google Earth = 524 (feet, MSL) Sample Data Remarks Elev (ft) Depth Number Sample Description Water (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) Scale Content 504.0 20 SILT (ML), dusky brown, stiff, wet, grades into Silty SAND with Gravel (SM) with depth Soil saturated DD = 79.8 pcf, MC = 40.5% S-6 CR 8 4 21 16 22 23 24 25 Sandy CLAY (CL), reddish dusk brown, very stiff, very SPT moist, very fine to fine sand. S-7 10 9 26 14 Total Depth = 26.5 feet Boring bailed after completion. Depth to groundwater not 27 apparent. Boring backfilled with bentonite grout and AC patched. 28 29 30 31 32 33 34 35 36 37 38 39 42 43

Project	NU A		LO	g of Borir Project				B-6			heet	1	of	2
	Walnut Business Pa	ark						700108301						
Location	20401 Valley Boule	ward		Elevation	on and	Datun		Google Ear	th = 50	A (foot	+ MQI \			
Drilling Compa		vaiu		Date St	arted			Joogle Ear		ate Fini				
Drilling Equipn	SoCal Drilling			Comple	tion D	onth		11/23/21		lock Der	oth	1	1/23/21	
Drilling Equipm	Mayhew 1000			Comple	ט ווטוו	ерш		26.5 ft		ock Del	Jui		_	
Size and Type	of Bit			Number	r of Sa	mples	1	Disturbed		Undist	turbed	2	Core	
Casing Diame	4.75" Mud Rotary eter (in)		Casing Depth (ft)	Water L	evel (ft \	F	First	4	Comp	letion	3	24 HR.	
Casing Hamm	- ner	Weight (lbs)	Drop (in)	Drilling	`			$\overline{\Delta}$		Ţ		-	$ar{ar{\Lambda}}$	-
Sampler	-	-		\dashv			Ra	ndy						
Sampler Hamr	mor	Dlit-Barrel, 2.5-inch I.D. Weight (lbs)	Drop (in)	Field Er	nginee		^	Nishlas						
	Automatic	140	30				Α.	Nieblas Sample Dat	ia					
SYMBOL (tt)		Sample Description	1		pth ale	Number	2 2	Kecov. (in) Penetr. resist BL/6in	Wate	r		Rem	arks epth of Casir Resistance,	ng,
+524.0	o				0 -	n L		S = B = B	Conte	nt	Fluid Loss,	Drilling	Resistance,	etc.)
+523.3	3	ck, AB = 4-inches thick	•	ŧ`	- - - -									
		brown with dark brown	mottled, stiff, mo	oist E	1 =									
	[FILL].			Ŀ	2 =									
521.5	Ouatornan Varia	a Alluvial Fon Donosite		╞ '	• <u> </u>		\downarrow							
	Sandy CLAY (CL)	g Alluvial Fan Deposits), olive gray, medium st	iff to stiff, moist,	þ ;	3 =	SPT SPT	Ħ	o 3						
	fine to coarse sar	nd, moderately plastic c	lay.	Ē		o ο	Ħ	5						
				F '	4 🛨									
- 519.0	CLAY with Sand	(CL), olive gray, stiff, ve	ry moist some	·E :	5 🚽						DD =11	5 0 pc	of, MC = 2	9 3
	fine sand, caliche		ry moist, some	E	Ē	S-2		<u>∞</u> 4 10			DD - 11	0.0 pt	51, IVIO – 2	-0.0
				E	6 =	တ ြ		14						
				<u> </u>	, 📑									
	Olive brown and a	aray madium atiff mais	t fine to seems	Ė '	′ ‡									
	sand, iron oxide.	gray, medium stiff, mois	it, line to coarse	- 8	8 🚽	S-3	Ħ	o 3						
				Ė,		S S	Ħ	4						
				F (9 🛨		٦							
+514.0		brown with orange and	light brown	· <u>E</u> 1	0 🗐						DD = 10)4.6 n	cf, MC =	30 7
	mottled, stiff, very	moist, fine to coarse s	and, abundant	E	=	S4 CR		8 6			22 . 10	o p	o., .vio = .	55.1
	caliche, iron oxide	e staining.		F 1	1 =	တ ြ		9						
				<u> </u>	2									
				į į	_ =									
				<u> </u>	3 =									
				ŧ,	, ‡									
				F ¹	4 =									
	Olive brown with	brown mottled, medium	etiff no calicho	<u>E</u> 1	5 🚽		\downarrow							
	Olive Diowil with I	orown moueu, meulum	ani, no cantile.	E	=	S-5	Ħ	<u>∞</u> 2 3						
				<u> </u> 1	6 =	ω ω		4						
				<u> </u>	7		T							
					. =									
				<u> </u>	8 =									
				ŧ,	, ‡									
				F 1	9 =									
				<u>_</u>	<u>£</u> 02									

NLANGAN, COMIDATANRVIDATA3/700108301/PROJECT DATA_DISCIPLINE\GEOTECHNICALIGINTLOGS/700108301 - GINT LOGS.GPJ ... 12/14/2021 4:19:02 PM

Log of Boring **B-6** Sheet 2 of 2 Project Project No. Walnut Business Park 700108301 Location Elevation and Datum 20401 Valley Boulevard Google Earth = 524 (feet, MSL) Sample Data Remarks Elev. (ft) Depth Scale Sample Description Water (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) Content -504.0 20 DD = 98.8 pcf, MC = 30.1% Dusk brown, medium stiff to stiff, coarse sand. S-6 CR 8 4 21 8 22 23 24 25 Olive and dusky brown, stiff, fine to coarse sand. SPT S-7 12 4 26 497.5 Total Depth = 26.5 feet Boring bailed after completion. Depth to groundwater not 27 Boring backfilled with bentonite grout and concrete 28 patched. 29 30 31 32 33 34 35 36 37 38 39 42 43

LA	/V <i>L</i>	-1/V		Log	of Borin				B-7				Sheet	1	of	2
Project	Walnut Business P				Project	No.			700108	3301						
Location					Elevatio	n and	d Datur	m								
Drilling Compa	20401 Valley Boule	evard			Date Sta	arted		(Google	e Earth			et, MSL) nished			
Orilling Equipm	SoCal Drilling				Complet	tion F)onth		11/23	3/21		ock D	onth	11	1/23/21	
Jrilling Equipm	Mayhew 1000				Comple	tion L	epin		26.	.5 ft	K	OCK D	eptn		_	
Size and Type	of Bit 4.75" Mud Rotary				Number	of S	amples	,	Disturbe	ed	3	Undi	sturbed	4	Core	
Casing Diamet			Casing D	epth (ft)	Water L	.evel	(ft.)		First		<u> </u>	Com	pletion	-	24 HR.	
Casing Hamme	 er	Weight (lbs)	Drop	(in) _	Drilling I	Forer	nan		<u>-¥</u>			<u> </u>		-	<u>*</u>	<u>-</u>
Sampler	2-inch O.D. SPT St	plit-Barrel, 2.5-inch I.D	. Cal Mod		Field En	naine		Ra	andy							
Sampler Hamn		Weight (lbs)	Dron	(in) 30	1.10/4 [1	.ყ 100		Α.	Niebla							
MATERIAL SYMBOL (tt)		Sample Descriptio	n		De _l Sca		Number	lype	Recov. (in) Penetr.	le Data	Wate Conter			Rem	arks lepth of Casir Resistance,	ng,
+524.0		thick, AB = 6-inches th	ick.		+ c) =	ž ľ		<u> </u>	- m '	Jorner		Fluid LOSS	, Drilling	Resistance,	etc.)
+523.0	Artificial Fill (af)				1	=										
	CLAY (CL), olive [FILL].	brown with dark brown	n mottled,	stiff, moist	t = 2	2 =										
521.5	Quaternary Your	ng Alluvial Fan Deposi	ts (Qyf)		- E	3		┰	4	\dashv						
	CLAY (CL), dark some caliche.	brown, stiff, moist, fine	to coarse	sand,	3 	3 -	S-7		18	9						
					- 4	1 =			12	2						
//// +519.0	L			. _	_E,	<u>,</u>										
	CLAY (CL), olive some caliche.	gray, medium stiff, ve	y moist, fi	ne sand,	5		5 -	Ī	2							
					Εe	3 =	S-2		7 4	3						
					E 7	,]										
	Olive brown. stiff	, moist to very moist, ir	on oxide a	and	Ė,	=			3	\dashv			DD = 98	3.9 pc	f, MC = 3	2.9%
	abundant caliche	mottled.	Jago d		- 8	3 -	S-3		18	5				, -		
					<u> </u>	, =			8	_						
					E	_ =										
	Olive gray, medic abundant caliche	um stiff, very moist, son	me iron ox	ide and	F 1	- 1	4 -	I	2							
	abundani Caliche	, stanning.			- 1	1 =	SPT		5 5	3						
					- - 1:	,]		f								
					F "	-										
					1:	3 =										
					E 1	4 =										
					Ē	=										
////+509.0	SAND and Claye	y SAND (SP-SC), brow	vn to orang	gish — —	· - [1:				8				Poor sa	mple	recovery. f, MC = 1	7 10/
	prown, medium d	lense, slightly móist, fii	ie gravel.		- 1	6 =	S-5		`	11			טט – אַנ	.υ pc	1, IVIO – I	1.17
					Ē.	_			5	\dashv						
					1º	/ -										
					1	8 =										
					F 4	<u> </u>										
					- 1	9 -										
<u>∷///</u> +504.0					<u> </u>	Εo										

Report

NLANGAN. COMIDATAIIRVIDATA3(700108301)PROJECT DATA_DISCIPLINE(GEOTECHNICAL\GINTLOGS)(700108301 - GINT LOGS.GPJ ... 12/14/2021 4:19:04 PM ..

Log of Boring **B-7** Sheet 2 of 2 Project Project No. Walnut Business Park 700108301 Location Elevation and Datum 20401 Valley Boulevard Google Earth = 524 (feet, MSL) Sample Data Remarks Elev. (ft) Depth Sample Description Water (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) Scale Content -504.0 20 CLAY (CL), dusky reddish brown, very soft, very moist. SPT S-6 10 1 21 0 22 23 24 25 Sandy SILT (ML), medium olive brown, medium stiff, wet, DD = 99.3 pcf, MC = 24.4% very fine to fine sand, low plasticity. 8 S-7 CR 2 26 6 497. Total Depth = 26.5 feet Boring bailed after completion. Depth to groundwater not 27 Boring backfilled with bentonite grout and concrete 28 patched. 29 30 31 32 33 34 35 36 37 38 39 42 43

LANGAN

	7	IV CI /	7/V		Log		Boring			B-	-8		S	Sheet	1	of	3
Project		Malmud Decelor	- ul -			Pro	oject No.			700	10000						
Location	V	Valnut Business Pa	ark			Ele	vation an	nd Da		7001	108301						
	2	0401 Valley Boule	vard							Goo	ale Ea	rth = 52	4 (fee	et, MSL)			
Drilling Co						Da	te Started	t			الم حار	D	ate Fir	ished			
	S	oCal Drilling								11/	23/21				1	1/23/21	
Drilling Eq	-					Co	mpletion	Dept	h			R	lock De	∌pth			
Size and T		layhew 1000 _{Rit}				+					51.5 ft irbed		Undis	sturbed		- Core	
	4	.75" Mud Rotary				Nu	mber of S	Samp	les			6			6		
Casing Dia	ameter	(in)		Ca	asing Depth (ft)	Wa	ater Level	(ft.)		First			Com	pletion	4.5	24 HR.	
Casing Ha	mmer		Weight (lbs)		Drop (in)	Dri	lling Fore	man		<u> </u>			<u> </u>		1.5	<u> </u>	
Sampler				<u> </u>	-	\dashv			R	andy	,						
•		-inch O.D. SPT Sp	lit-Barrel, 2.5-inc Weight (lbs)		Drop (in)	Fie	eld Engine	eer									
Sampler H	arrimer	Automatic	Troignit (iba)	140	30 John (III)			1	Α.	Nie		to	-				
BOL	Elev.		0				Depth	-i-	4.		nple Da		\dashv		Rem		
SYM	(ft)		Sample Descr	ription			Scale	Number	Type	(in)	Penetr. resist BL/6in	Water Conter		(Drilling Fluid Loss	Fluid, D , Drilling	epth of Casin Resistance,	g, etc.)
- +:	524.0	AC = 4-inches thic	ck AB = 6-inches	s thick			_ 0 _	Z		ш.	т п		-				
	523.2	7-1110/165 till	5, 7.b – 0-111011 0 :	o unon.			<u> </u>	1									
		Artificial Fill (af)			Walan		1 -	1									
		CLAY (CL), dark to moist [FILL].	orown with light b	prown mot	wea, very stiff,			1									
/////.	521 5	<u>-</u> —- j.					2 -	1									
	521.5	Quaternary Young	g Alluvial Fan De	eposits (C	<u>Qyf)</u>		<u> </u>				6						
		CLAY (CL), olive or rootlets.	gray, stiff, very m	noist, calid	che, few old		- 3 -	<u>۲</u> -	유	18	11						
		rootiets.						"			14						
							- 4 -										
							5 -										
								4	l. E		2						
							6 -	S-2	SPT	ω	4						
								_			5						
							7 -	}									
	516.5	70 F 70 TA ID 70 TA						_	<u> </u>					DD = 0') Q no	f, MC = 22	2 00/-
		Silty SAND (SM), moist.	olive gray and bi	rown, loos	se, moist to vei	ТУ	8 -	8		ٍ	3			טט – 92	o pc	i, iviC – 22	J ∕0
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	515.5	CLAY (CL), olive	gray and braves	modium -	tiff maint to			S-3	CR	12	4						
		very moist.	yray ariu brown,	mealum S	sun, moist to		9 -	1	$+ \mathbb{I}$		6						
		,					<u> </u>	1									
		Dark brown with s	ome light brown	mottled v	verv moist		10 -	1	-	\vdash	2						
		coarse sand.	and again brown		,		<u> </u>	S-4		12	3						
							11 -	S	SPT	-	3						
								\vdash			-						
							12 -										
							E . :	}									
							13 -	1									
							44	1									
							<u> </u>	1									
//////////////////////////////////////	509.0		. =	 _ = -			_ 15 _										
		CLAY with Sand (abundant caliche,	CL), olive brown	, very stiff	, very moist,		13				7			DD = 10)7.7 p	ocf, MC = 2	20.3%
		apunuani caliche,	iew very old roo	ພະເຮ.			- 16 -	S-5	CR	18	16						
							<u> </u>	<u> </u>	$oxed{\parallel}$		17						
							17 -	}									
							Ē	1									
							18 -	1									
							[]	1									
							19 -	1									
								1									
////// /	04.0						Ŀ ₂₀ -	1									

Log of Boring **B-8** Sheet 2 of 3 Project Project No. Walnut Business Park 700108301 Location Elevation and Datum 20401 Valley Boulevard Google Earth = 524 (feet, MSL) Sample Data Remarks Elev (ft) Depth Sample Description Water (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) Scale Content 504.0 20 CLAY (CL), reddish dusk brown, very stiff, very moist, SPT S-6 12 7 21 9 22 23 24 25 DD = 119.3 pcf, MC = 14.7% Clayey SAND with Gravel (SC), reddish dusky brown, 10 dense, moist, fine gravel. S-7 26 Auger chatter from 26-45 34 feet. 27 28 29 Olive brown, very dense, very moist, fine gravel. 36 10 50/4" 31 32 33 34 Sandy to Clayey GRAVEL (GC), olive brown, very dense, wet, fine to coarse gravel. - S-9 CR 2 50/5" Poor sample recovery. 36 37 38 39 SAND with Gravel and Clay (SW), olive brown, very dense, 35 S-10 wet, fine to coarse gravel. 10 37 38 42 43

NLANGAN, COMIDATANRVIDATA3/700108301/PROJECT DATA_DISCIPLINE\GEOTECHNICALIGINTLOGS/700108301 - GINT LOGS.GPJ ... 12/14/2021 4:19:06 PM

Log of Boring **B-8** Sheet 3 of 3 Project Project No. Walnut Business Park 700108301 Location Elevation and Datum 20401 Valley Boulevard Google Earth = 524 (feet, MSL) Sample Data Remarks Elev (ft) Depth Scale Number Sample Description Water (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) Content 479.0 45 Silty to Clayey SAND (SC), olive brown, medium dense, wet, some caliche, few lenses of Sandy Silt/Clay. S-11 CR 12 9 46 9 48 49 50 Fine to very fine sand, no caliche. S-12 10 10 11 Total Depth = 51.5 feet Boring bailed after completion. Groundwater observed at 52 24.5 feet bgs. Boring backfilled with bentonite grout and AC patched. 53 54 55 56 58 59 60 61 62 63 64 65 66 67 68 69

Project				Project No.										
	Walnut Business Pa	ırk					7001	108301						
Location	20401 Valley Barder	uord		Elevation a	ind Da		Cos	alo Co	th - 50) / /£~	ot MCL			
Drilling Compa	20401 Valley Boulevny	raiu		Date Starte	ed		G00	gie ⊑ar			et, MSL) inished			
	SoCal Drilling			<u> </u>			11/	23/21				11	1/23/21	
Drilling Equipm	nent Mayhew 1000			Completion	n Dept	h	,	26.5 ft	R	ock D	epth			
Size and Type	of Bit			Number of	Samo	les		rbed		Und	isturbed		Core	
Casing Diamet	4.75" Mud Rotary		Casing Depth (ft)				First		5	Con	npletion	3	24 HR.	
	-	114/:14/2	-	Water Leve	. ,		Σ			Ţ		24	<u>Ā</u>	
Casing Hamme	er	Weight (lbs)	Drop (in)	Drilling For	eman	D	andy	,						
Sampler		PT Split-Barrel, 2.5-inch	I.D. Cal Mod	Field Engin	neer	ĸ	anuy							
Sampler Hamn	ner Automatic	Weight (lbs) 140	Drop (in) 30	1		Α	. Nie							
Flev.		0 1 5		Depth	<u></u>	-		mple Dat				Rem		
SKW (ft)		Sample Description		Scale		Type	(in)	Penetr. resist BL/6in	Water Conter		(Drilling Fluid Loss	Fluid, D , Drilling	epth of Casin Resistance,	ıg, etc.
+524.0	AC = 4-inches thic	ck, AB = 6-inches thick.		0 -	+		Н						collected 1	
+523.2	Artificial Fill (af)				Ξ.						0-10 fee Corrosi	et.		
	CLAY (CL), dark b	prown and light brown m	nottled, stiff, very	E' '	=						COLLOSI	vity tes	J.	
	moist, fine sand [F	FILL].		_ 2 -	4									
				E	+	┢		3						
				- 3	S-1	SPT	6	5						
				- 4		ľ		6						
				<u> </u>	=									
519.0	Quaternary Young	Alluvial Fan Deposits	(Qvf)	5	+			4			DD = 96	6.5 pc	f, MC = 27	7.3
	CLAY (CL), olive of	gray and brown mottled	, stiff, very moist,	⊢ ⊢	S-2	CR	15	7						
	trace caliche.			- 6 -	<u> </u>			9						
				- 7 -	∄_									
516.5	Silty SAND (SM)	medium brown, loose, i		 	1	-	\vdash	2						
작하다	Only Orang (ON),	mediani biowii, ioose, i	noist.	- 8	S-3	SPT	9	2 2						
				Ē,	3	S		2						
				9 -	=									
514.0		prown, stiff, very moist.		[10 -	1		\vdash				DD = 8.	7.4 nc	f, MC = 33	3.4
	CLAT (CL), dark c	nown, sun, very moist.		E	S-4	S.	18	3 4			Direct S	Shear	Test	J. T
				- 11	S			6						
				- - 12 -	1	"					Δ.	le e C		
				'2	#						Auger of feet.	natter	from 12-	14
				13	-									
				ŧ	=									
				<u> </u>	=									
+509.0			d light heaves	- 15 -	1									
	mottled, medium of	Gravel (SC), brown an dense, slightly moist to	moist, fine to	E	S-5	SPT	4	4 8						
	coarse sand, fine	gravel, iron oxide staini	ng.	16	ψ	S		8						
				E 17	<u> </u>									
				<u> </u>	}									
				18	4									
				E	=									
				- 19 -	1									
/////					4									

NLANGAN, COMIDATANRVIDATA3/700108301/PROJECT DATA_DISCIPLINE\GEOTECHNICALIGINTLOGS/700108301 - GINT LOGS.GPJ ... 12/14/2021 4:19:09 PM

Log of Boring **B-9** Sheet 2 of 2 Project Project No. Walnut Business Park 700108301 Location Elevation and Datum 20401 Valley Boulevard Google Earth = 524 (feet, MSL) Sample Data Remarks Elev (ft) Depth Number Sample Description Water (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) Scale Content -504.0 20 DD = 96.7 pcf, MC = 27.9% CLAY (CL), medium to dark brown, medium stiff, very moist. S-6 CR 8 3 21 5 22 23 24 25 Silty SAND (SM), medium brown, medium dense, moist, SPT very fine sand. 18 S-7 11 26 10 Total Depth = 26.5 feet Boring bailed after completion. Groundwater observed at 24 27 Boring backfilled with bentonite grout and AC patched. 28 29 30 31 32 33 34 35 36 37 38 39 42 43

	NU/	7/V		Log	of Boring			B-10			Sheet	1	of	
Project	Walnut Business D	ork			Project No			70010020	.1					
Location	Walnut Business P	агк			Elevation a	and Dat		70010830	1					
D :::: 0	20401 Valley Boule	evard			D / O /		-	Google E			eet, MSL)			
Drilling Comp	sany SoCal Drilling				Date Starte	ed		11/24/21		Date F	inished	1.	1/24/21	
Drilling Equip	ment				Completion	n Depth		11/24/2		Rock [Depth		1/24/21	
o: .	Mayhew 1000							26.5 f	t	1			-	
Size and Typ	e of Bit 4.75" Mud Rotary				Number of	Sample	es	Disturbed	3		disturbed	4	Core	
Casing Diam	eter (in)		Cas	sing Depth (ft)	Water Lev	el (ft.)		First		Cor	mpletion	_	24 HR.	
Casing Hamr	mer_	Weight (lbs)		Drop (in)	Drilling For	eman		_ 			-			
Sampler	2-inch O.D. SPT Sp	olit-Barrel 2.5-inch	ID Cal	Mod	Field Engir	noor.	Ra	andy						
Sampler Ham		Weight (lbs)	140	Drop (in) 30	_ r reid Erigii	icci	Α	Nieblas						
4 - 1 - 1 - 1 - 1 - 1 - 1					<u>'</u>			Sample D				Rem	arke	_
MATERIAL SYMBOL (tt)		Sample Descrip	otion		Depth Scale	Number	Type	Recov. (in) Penetr. resist BL/6in	Wate Conte		(Drilling	Fluid, D	epth of Casin Resistance,	ng,
±526	.0	ick, AB = 6-inches t	thick		<u> </u>	Ž		~ ~ 표면	Conte	>11L	riuia Loss	, unilling	resistance,	etc
+525		IUN, AD - 0-INCHES I	u IICK.		E]								
	Artificial Fill (af)	(CL), dark gray and	d liaht ar:	av mottled		<u> </u>								
	stiff, moist [FILL].		a ligiti git	ay motticu,	_ 2	<u> </u>								
					<u> </u>	1								
					_ 3	S-1	_당	5 <u>&</u> 9						
					Ė	- N	°	- 11 °						
					- 4	# 1								
///// ₂ +521	.0				5	1								
	Quaternary Your CLAY with Silt (C	ng Alluvial Fan Dep CL), light olive gray,	osits (Q stiff moi	yf) st, abundant	Ę	2	SPT	3						
	caliche.	,, 0 0 ,,		,	- 6	S-2	₽₽	ιο 6 7						
					F _	1	Ħ	<u> </u>	-					
//// ₂ +518	.5											- 0		_
	CLAY with Sand fine sand.	(CL), olive gray, sti	ff, moist,	fine to very	E 8	3	~ 	5			Direct S	o.3 pc Shear	f, MC = 21 Test	1.
					F	S-3	ಜ 🎆	∞ 12						
					- 9	1	ш	12						
					10	1								
	Olive brown and caliche.	gray, medium stiff,	some iro	on oxide and	E 10	S-4	Ļ∄	2						
					11	- j vj	₽₽	♀ 3						
					Ė	#	ᅾ							
					<u> </u>	4								
					13	4								
					F]								
					_ 14									
///// ₂ +511	.0				E]								_
	SILT with Sand (I to very fine sand.	ML), medium browr	n, very st	iff, moist, fine	15][~ 	4			DD = 10 Consoli	05.0 p dation	cf, MC = 2 Test	21
	to very fine sailu.				16	S-5	R	<u>∞</u> 11					•	
					E	 	_	14						
					<u> </u>	-								
					- - 18	∄								
					į '									
	1				- ⊢	4			1		I			
'					_ 19	┪ ┃								

Report: Log - LANGAN

NLANGAN, COMIDATANRVIDATA3/700108301/PROJECT DATA_DISCIPLINE\GEOTECHNICALIGINTLOGS/700108301 - GINT LOGS.GPJ ... 12/14/2021 4:18:50 PM

Log of Boring B-10 Sheet 2 of 2 Project Project No. Walnut Business Park 700108301 Location Elevation and Datum 20401 Valley Boulevard Google Earth = 526 (feet, MSL) Sample Data Remarks Elev. (ft) Depth Scale Sample Description Water (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) Content -506.0 20 Dusk brown, stiff, moist to very moist. SPT S-6 10 6 21 22 23 24 25 Clayey SAND (SC), medium brown, medium dense, very moist to wet. S-7 CR 16 26 18 499. Total Depth = 26.5 feet Boring bailed after completion. Depth to groundwater not 27 apparent. Boring backfilled with bentonite grout and AC patched. 28 29 30 31 32 33 34 35 36 37 38 39 42 43

	NLA	7/V		Log					B-	11			Sheet	1	of	3
Project	Walnut Business Pa	ark			Proj	ect No.			700	108301						
Location					Elev	ation a	nd D				46 - 50)C /5:	-4 MOL			
Orilling Compar	20401 Valley Bouley	vard			Date	e Starte	:d		Goo	gie			et, MSL) nished			
Orilling Equipm	SoCal Drilling				Con	npletion	Den	th	11	/24/21	R	lock D	epth	11	/24/21	
	Mayhew 1000									51.5 ft					-	
Size and Type	4.75" Mud Rotary				Nun	nber of	Sam	oles	Dist	urbed	7	Undi	sturbed	6	Core	-
Casing Diamete	er (in)		Cas	sing Depth (ft)	Wat	ter Leve	el (ft.)		First	İ		Com	pletion	16	24 HR. V	_
Casing Hamme	Pr_	Weight (lbs)	-	Drop (in)	Drill	ing Fore	emar		_			1 =				
Sampler		PT Split-Barrel, 2.5-inc	h I.D		Fiel	d Engin	eer	R	andy	/						
Sampler Hamm	ner Automatic	Weight (lbs)	0	Drop (in) 30	L,			Α		blas						
SYMBOL SHIP		Sample Description	n			Depth Scale		Туре		Penetr. resist BL/6in	Water Conter			Rema	arks pth of Casin Resistance,	.g, etc.)
+526.0	AC = 4-inches thic	ck, AB = 6-inches thick	k.		\dashv	- 0 -	Z -	<u> </u>	IK.	е-ш					ollected f	
+525.2	Artificial Fill (af)				_	- 1 -]						0-10 fee			•
	Sandy CLAY (CL)	, brown and dark brow	vn, ve	ery stiff, moist	F	· ·	=									
	[· ·==]·				F	- 2 -	1									
					E	: - 3 -	- [SPT	_	3 8						
					þ		S-1-8	SE	0,	9						
						- 4 -	1									
	Light and dark bro	own, medium stiff to st	iff.		Ė	- 5 -	1			3			DD = 94	.6 pcf	MC = 25	5.6%
	J	,			Ė	: - 6 -	S-2	CR	18	5						
					þ		╞			7						
+518.5						- 7 -	1									
	Quaternary Young Clayev SAND (SC	g Alluvial Fan Deposit	ts (Q	yf) nse, wet. fine		- 8 -		Ļ		4						
	gravel.	,,,,,	5	,	Ē		S-3	SPT	4	6						
					F	- 9 -	1									
516.0	CLAY (CL) olive	gray, medium stiff, ver	v mo	ist, fine gravel		: - 10 -	1			1			DD = 10	0.5 pc	sf, MC = 3	35.9°
	medium plasticity.		,0	914101,	þ	. 11	S-4	CR	18	3				,		
					F	- 11 -]			4						
					þ	- - 12 -	=									
					F	- 13 -	=									
					Ė		=									
					F	- 14 -	=									
+511.0	CLAV with Sand (CL), medium brown, s	oft v	very moist fine		: - 15 -	1	+		2						
	sand.	or, modium brown, s	, Jit, V	ory moist, inte			S-5	SPT	9	2 2						
					*	- 16 -	<u>Į</u> "			2						
					F	: - 17 -	=									
					Ė	- - 18 -	1									
					F	10 -	=									
					Ė	- - 19 -	1									
////// +506.0						- - 20 -	‡									

LANGAN Log of Boring B-11 Sheet of 3 Project Project No. Walnut Business Park 700108301 Location Elevation and Datum 20401 Valley Boulevard Google Earth = 526 (feet, MSL) Sample Data Remarks Elev (ft) Depth Scale Sample Description Water (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) 506.0 20 DD = 107.6 pcf, MC = 26.9% Sandy CLAY (CL), medium brown, soft, very moist. S-6 CR 8 2 21 2 22 23 24 25 Brown, very stiff, very moist, iron oxide staining. 8 26 27 28 29 DD = 103.8 pcf, MC = 22.6% Orangish brown, moist, very fine to fine sand, some iron oxide staining. S-8 12 31 14 32 33 34 35 Light brown and dark brown mottled, stiff, very moist. 15 5 36 37 38 39 Brown, very stiff, very moist, abundant caliche, some iron 14 S-10 CR 18 21 42 43

Report

Log of Boring B-11 Sheet 3 of 3 Project Project No. Walnut Business Park 700108301 Location Elevation and Datum 20401 Valley Boulevard Google Earth = 526 (feet, MSL) Sample Data Remarks Elev (ft) Depth Scale Sample Description Water (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) Content -481.0 45 Medium brown, stiff, moist. SPT S-11 6 7 46 48 49 50 Sandy SILT (ML), olive brown, very stiff, moist. S-12 8 CR 17 51 21 Total Depth = 51.5 feet Boring bailed after completion. Groundwater observed at 16 52 Boring backfilled with bentonite grout and concrete 53 patched. 54 55 56 58 59 60 61 62 63 64 65 66 67 68 69

ANICANI

	/VU/	4/ W		Log	of Boring			3-12		Sheet	1	of	2
Project	Walnut Business P	ark			Project No.		70	00108301					
Location	vvaillut Dusilless P	air			Elevation an	d Datu		JU 1003U I					
	20401 Valley Boule	vard					G	oogle Ea	th = 52	26 (feet, MS	L)		
Drilling Compa	-				Date Started	I				ate Finished			
Drilling Equipm	SoCal Drilling				Completion I	Denth	1	11/24/21	F	Rock Depth	1	1/24/21	
Drilling Equipm	Mayhew 1000				Compiction	Борит		26.5 ft		took Beptil		_	
Size and Type	of Bit				Number of S	Samples	Di	isturbed		Undisturbed		Core	
Casing Diamet	4.75" Mud Rotary		C	asing Depth (ft)	Trumber of C	ampiec		rst	3	Completion	4	24 HR.	
Odding Diamet	-			-	Water Level	` '		<u> </u>		<u>T</u>	-	<u>Ā</u>	
Casing Hamme	er_	Weight (lbs)	-	Drop (in)	Drilling Fore								
Sampler	2-inch O.D. SPT Sp	olit-Barrel, 2.5-ind	ch I.D. Ca	l Mod	Field Engine		Ran	dy					
Sampler Hamn		Weight (lbs)	140	Drop (in) 30			ДΝ	lieblas					
ا ـ اـ	, Giornalio		1-10		1		, \. 1	Sample Da	ta				
SYMBOL (tt)		Sample Desc	ription		Depth Scale	Number	l ype Recov.	(in) Penetr. resist BL/6in	Wate	r (Drilli		n arks Depth of Casin	ıg,
+526.0		•				N L	- §	Per J.B.	Conte	nt Fluid Lo	oss, Drillin	Depth of Casin g Resistance,	etc.)
	AC = 5-inches thi	ck, AB = 6-inche	s thick.		- 0 -								
+525.1	Artificial Fill (af)												
	CLAY with Sand	(CL), dusky brow	n to dark	brown, stiff,	<u> </u>								
	very moist, few g	ravel [FILL].			2 -								
					<u> </u>		\blacksquare	2					
					- 3 -	S-1	ď	1 1					
					E . E	\sigma \big \circ	` ∭	8					
					- 4 -								
#521.0		 _ = -					\perp						
	Quaternary Youn CLAY with Silt (C	g Alluvial Fan D	eposits (C	Qyf)	5 -			1					
	fine gravel.	L), Olive DIOWN, I	n e ululli S	un, very moist,	- 6 -	S-2	9						
	-						<u> </u>	3					
					7 -								
///// +518.5	SAND (SP), light	brown, medium	dense m	oist. coarse	[=		╖	9		DD =	106.8	pcf, MC = 5	5.0%
	sand, fine to med	ium gravel.	,	-,	- 8 -	S-3	٠ م	1 1					
						0)	∭ `	15					
					- 9 -								
516.0+ بربر	L 												
	CLAY (CL), olive	brown, soft, very	moist, ca	aliche.	10 -			1					
					11 -	SPT	9	2					
					<u> </u>		4	1					
					12 -								
					<u> </u>								
					13 -								
					F =								
					_ 14 _								
					15								
	Olive gray.				<u> </u>			5		DD =	115.3	pcf, MC = 2	29.0
					16 -	S-5	ά.						
					<u> </u>			14					
					17 -								
					F =								
					_ 18 _								
					<u> </u>								
					_ 19 _	1							
<i>'////</i> //					Ε -								

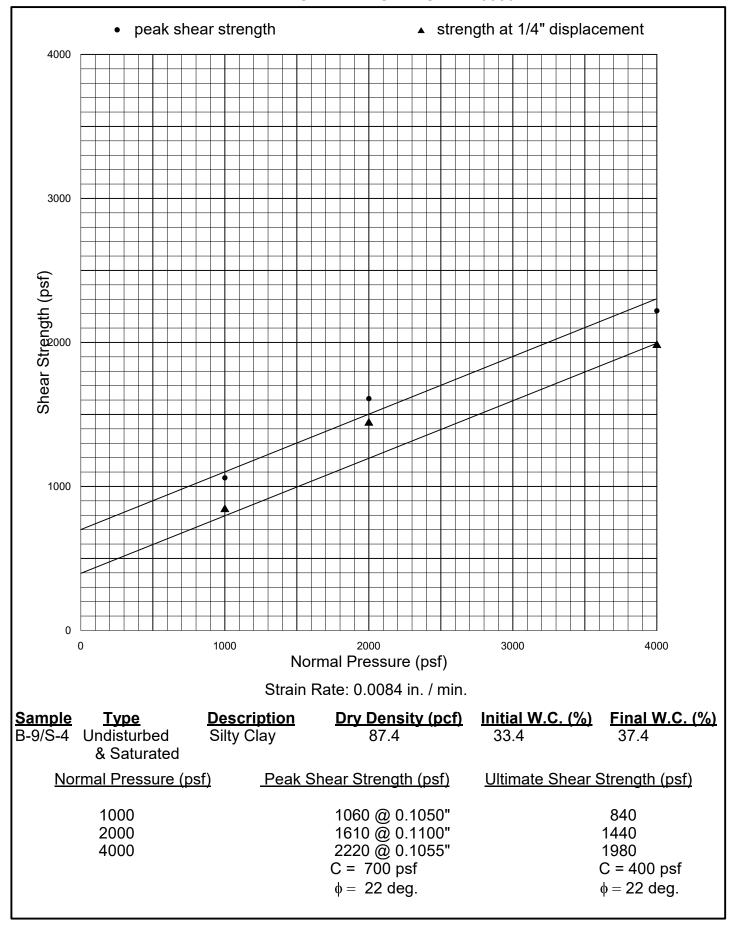
NLANGAN, COMIDATANRVIDATA3/700108301/PROJECT DATA_DISCIPLINE\GEOTECHNICALIGINTLOGS/700108301 - GINT LOGS.GPJ ... 12/14/2021 4:18:53 PM

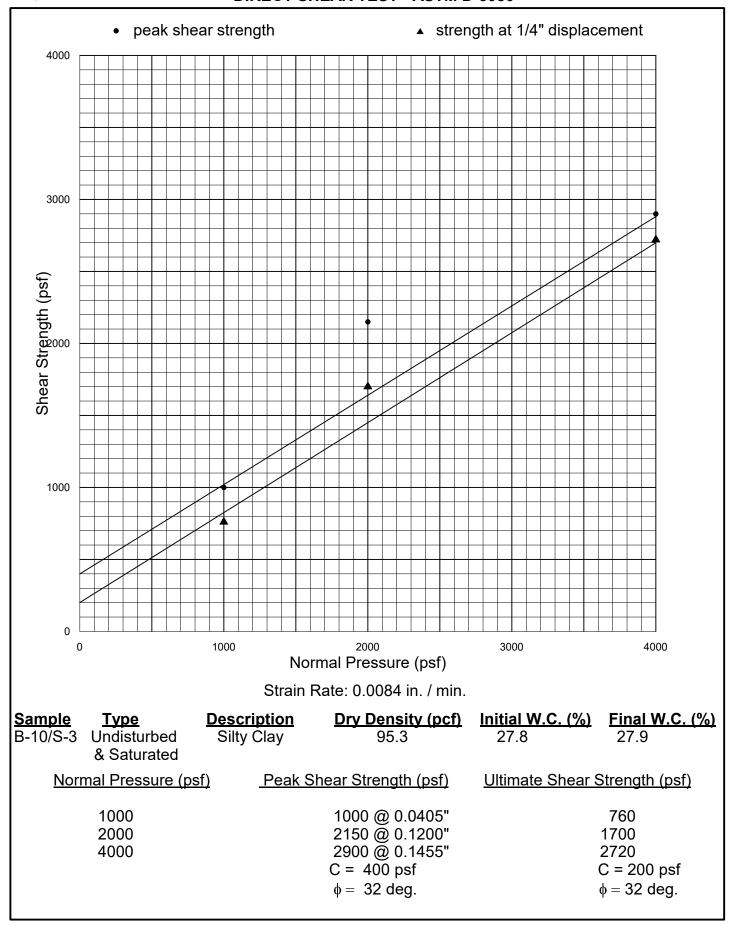
Log of Boring **B-12** Sheet 2 of 2 Project Project No. Walnut Business Park 700108301 Location Elevation and Datum 20401 Valley Boulevard Google Earth = 526 (feet, MSL) Sample Data Remarks Elev (ft) Depth Sample Description Water (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) Scale Content 506.0 20 CLAY with Silt (CL), olive to medium brown, stiff to very SPT stiff, caliche. S-6 12 7 21 8 22 23 24 25 Sandy CLAY (CL), medium brown, hard, very moist, with 11 gravel. S-7 CR 22 26 30 Total Depth = 26.5 feet Boring bailed after completion. Depth to groundwater not 27 Boring backfilled with bentonite grout and concrete 28 patched. 29 30 31 32 33 34 35 36 37 38 39 42 43

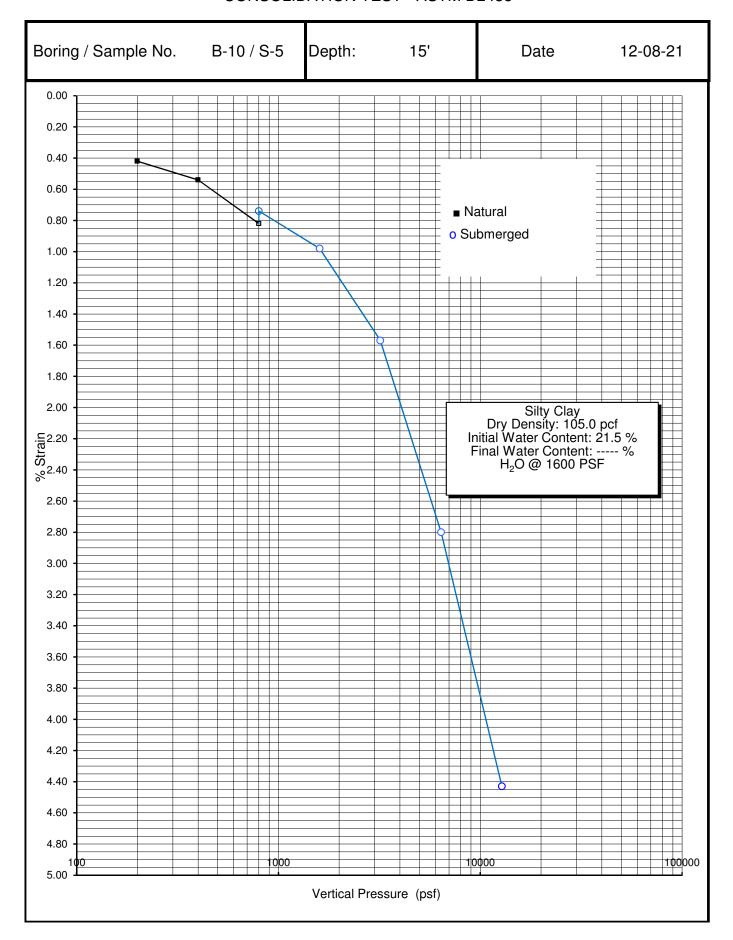
MOISTURE DENSITY TESTS

PROJECT Langan # 70018301 JOB NO. 2012-0057 BY LD DATE 12/13/21

Sample No.	B-1 / S-3	B-2 / S-2	B-2 / S-4	B-3 / S-2	B-3 / S-4	B-3 / S-6	B-4 / S-3	B-4 / S-5
Depth (ft)	7.5	5.0	10.0	5.0	10.0	20.0	7.5	15.0
Testing								
Soil Type	Brown, Silty Clay	Brown, Silty Clay	Brown, Silty Clay	Brown, Silty Clay	Brown, Silty Clay	Brown, Silty Clay	Brown, Silty Clay	Brown, Silty Clay
Wet+Tare	952.0	1169.6	971.8	905.1	957.2	960.6	729.6	990.1
No. Ring	5	6	5	5	5	5	4	5
Wet Weight	110.3	139.3	132.4	150.1	128.8	112.9	131.4	144.3
Dry Weight	85.6	116.3	104.1	115.8	100.5	89.2	104.3	118.4
Wet density	121.1	124.9	124.4	113.2	121.9	122.5	114.4	127.4
% Water	28.9	19.8	27.2	29.6	28.2	26.6	26.0	21.9
Dry Density	94.0	104.2	97.8	87.4	95.1	96.8	90.8	104.6
O.B.Press(psf)								
Sample No.	B-4 / S-7	B-5 / S-2	B-5 / S-3	B-5 / S-4	B-6 / S-2	B-6 / S-4	B-6 / S-6	B-7 / S-3
Depth (ft)								
()	2.5	5.0	10.0	20.0	5.0	10.0	20.0	7.5
Testing	2.5	5.0	10.0	20.0	5.0	10.0	20.0	7.5
	2.5 Brown, Silty Clay w. Sand	5.0 Brown, Silty Clay w. Gravel	10.0 Brown, Silty Clay	Brown, Silty Clay w. Gravel	5.0 Brown, Silty Clay	10.0 Brown, Silty Clay	20.0 Brown, Silty Clay	7.5 Brown, Silty Clay
Testing	Brown, Silty Clay	Brown, Silty Clay		Brown, Silty Clay				
Testing Soil Type	Brown, Silty Clay w. Sand	Brown, Silty Clay w. Gravel	Brown, Silty Clay	Brown, Silty Clay w. Gravel	Brown, Silty Clay	Brown, Silty Clay	Brown, Silty Clay	Brown, Silty Clay
Testing Soil Type Wet+Tare	Brown, Silty Clay w. Sand 1180.9	Brown, Silty Clay w. Gravel 951.5	Brown, Silty Clay	Brown, Silty Clay w. Gravel 945.5	Brown, Silty Clay 949.6	Brown, Silty Clay 936.4	Brown, Silty Clay 950.1	Brown, Silty Clay
Testing Soil Type Wet+Tare No. Ring	Brown, Silty Clay w. Sand 1180.9	Brown, Silty Clay w. Gravel 951.5	Brown, Silty Clay 1131.5 6	Brown, Silty Clay w. Gravel 945.5	Brown, Silty Clay 949.6 5	Brown, Silty Clay 936.4 5	Brown, Silty Clay 950.1 5	Brown, Silty Clay 1124.3 6
Testing Soil Type Wet+Tare No. Ring Wet Weight	Brown, Silty Clay w. Sand 1180.9 6 169.5	Brown, Silty Clay w. Gravel 951.5 5 136.6	Brown, Silty Clay 1131.5 6 127.3	Brown, Silty Clay w. Gravel 945.5 5 112.1	Brown, Silty Clay 949.6 5 148.7	936.4 5 136.7	950.1 5 128.5	Brown, Silty Clay 1124.3 6 131.4
Testing Soil Type Wet+Tare No. Ring Wet Weight Dry Weight	Brown, Silty Clay w. Sand 1180.9 6 169.5 141.9	Brown, Silty Clay w. Gravel 951.5 5 136.6 108.3	Brown, Silty Clay 1131.5 6 127.3 100.8	Brown, Silty Clay w. Gravel 945.5 5 112.1 79.8	949.6 5 148.7 115.0	936.4 5 136.7 104.6	950.1 5 128.5 98.8	Brown, Silty Clay 1124.3 6 131.4 98.9
Testing Soil Type Wet+Tare No. Ring Wet Weight Dry Weight Wet density	Brown, Silty Clay w. Sand 1180.9 6 169.5 141.9 136.6	Brown, Silty Clay w. Gravel 951.5 5 136.6 108.3 136.6	Brown, Silty Clay 1131.5 6 127.3 100.8 127.3	Brown, Silty Clay w. Gravel 945.5 5 112.1 79.8 112.1	949.6 5 148.7 115.0 148.7	936.4 5 136.7 104.6 136.7	950.1 5 128.5 98.8 128.5	Brown, Silty Clay 1124.3 6 131.4 98.9 131.4


MOISTURE DENSITY TESTS


PROJECT Langan # 70018301 JOB NO. 2012-0057 BY LD DATE 12/13/21


Sample No.	B-7 / S-5	B-7 / S-7	B-8 / S-3	B-8 / S-5	B-8 / S-7	B-9 / S-2	B-9 / S-6	B-11 / S-2
Depth (ft)	15.0	25.0	7.5	15.0	25.0	5.0	20.0	5.0
Testing								
Soil Type	Brown, Silty Sand w. Gravel &Silty Clay	Brown, Clayey Sand	Brown, Clayey Sand	Brown, Silty Clay	Brown, Silty Clay w. Silty Sand	Brown, Silty Clay	Brown, Silty Clay	Brown, Silty Clay
Wet+Tare	725.0	773.6	909.9	1002.6	1045.9	962.8	1161.3	938.3
No. Ring	4	4	5	5	5	5	6	5
Wet Weight	155.1	187.7	124.5	132.9	157.1	123.9	135.6	86.9
Dry Weight	132.4	150.9	101.3	110.5	137.0	97.3	106.0	69.2
Wet density	113.4	123.6	114.0	129.5	136.8	122.9	123.7	118.8
% Water	17.1	24.4	22.9	20.3	14.7	27.3	27.9	25.6
Dry Density	96.8	99.3	92.8	107.7	119.3	96.5	96.7	94.6
O.B.Press(psf)								
Sample No.	B-11 / S-4	B-11 / S-6	B-11 / S-8	B-12 / S-5	B-12 / S-4			
Depth (ft)	10.0	20.0	30.0	7.5	15.0			
Testing								
Soil Type	Brown, Silty Clay	Brown, Silty Clay	Brown, Silty Clay	Brown, Silty Sand	Brown, Silty Clay			
Wet+Tare	908.0	1175.5	1193.7	929.4	956.8			
No. Ring	5	6	6	5	5			
Wet Weight	118.5	168.3	133.9	166.8	121.6			
Dry Weight	87.2	132.6	109.2	158.9	94.3			
Wet density	136.6	136.6	127.3	112.1	148.7			
% Water	35.9	26.9	22.6	5.0	29.0			
	400.5	107.0	100.0	400.0	445.0			
Dry Density	100.5	107.6	103.8	106.8	115.3			

SAMPLE NO.:	B-1	B-9		
Depth:	0 - 5'	0 - 5'		
DIRECT SHEAR TEST (type)				
Initial Moisture Content %				
Dry Density (pcf)				
Normal Stress (psf)				
Peak Shear Stress (psf)				
Ultimate Shear Stress (psf)				
Cohesion (psf)				
Internal Friction Angle (degrees)				
EXPANSION TEST UBC STD 18-2				
Initial Dry Density (pcf)				
Initial Moisture Content %				
Final Moisture Content %				
Pressure (psf)				
Expansion Index Swell %				
CORROSIVITY TEST				
Resistivity (CTM 643) (ohm-cm)	820	770		
pH (ASTM D1293)	7.4	7.5		
CHEMICAL TESTS				
Soluble Sulfate (CTM 417) (%)	0.0687	0.0448		
Chloride Content (CTM 422) (%)	0.0106	0.0098		
Wash #200 Sieve (ASTM-1140) %				
Sand Equivalent (ASTM D2419)				

